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January 5, 2024

ON THE ASYMPTOTICS OF EXTREMAL ℓp-BLOCKS

CLUSTER INFERENCE

GLORIA BURITICÁ AND OLIVIER WINTENBERGER

Abstract. Extremes occur in stationary regularly varying time series
as short periods with several large observations, known as extremal
blocks. We study cluster statistics summarizing the behavior of func-
tions acting on these extremal blocks. Examples of cluster statistics are
the extremal index, cluster size probabilities, and other cluster indices.
The purpose of our work is twofold. First, we state the asymptotic
normality of block estimators for cluster inference based on consecu-
tive observations with large ℓp-norms, for p > 0. The case p = α, where
α > 0 is the tail index of the time series, has specific nice properties thus
we analyze the asymptotic of blocks estimators when approximating α

using the Hill estimator. Second, we verify the conditions we require
on classical models such as linear models and solutions of stochastic
recurrence equations. Regarding linear models, we prove that the as-
ymptotic variance of classical index cluster-based estimators is null as
first conjectured in [28]. We illustrate our findings on simulations.

1. Introduction

We study stationary heavy-tailed time series (Xt) in (Rd, | · |), with regu-
larly varying distributions, and tail index α > 0; cf. [5], a formal definition
is conferred to Section 2.2. In this framework, extremal observations cluster:
an extreme value triggers a short period with numerous large observations.
This behavior is known to perturb classical inference procedures tailored for
independent observations like high quantile inference; see [22]. This cluster-
ing effect can be summarized with the extremal index, initially introduced
in [38] and [39]. We can interpret it as the inverse of the mean number of
consecutive exceedances above a high threshold in a short period of time.
In this article, we aim to infer statistics of the clustering effect by letting
functionals act on consecutive observations with extremal behavior. For ex-
ample, we can recover the extremal index from this setting and also other
important indices of the extremes of the series.

For extremal cluster inference, we consider a sample X[1,n] together with
a sequence (bn), and we define the sample of disjoint blocks (Bj)j=1,...,mn as
blocks of consecutive observations:

Bj := (X(j−1)bn+1, . . . ,Xjbn) = X(j−1)bn+[1,bn],(1.1)
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such that bn → ∞, mn = n/bn → ∞, as n → ∞. Following the p-clusters
theory developed in [12], the extremal behavior of the series is modeled by
the p-clusters which we can recover form the conditional behavior of a block
Bj given that its ℓp−norm is large:

P(B1/xbn ∈ A | ‖B1‖p > xbn)
w−→ P(YQ(p) ∈ A ), n → ∞,

such that Y is independent of Q(p) ∈ ℓp, P(Y > y) = y−α, for y > 1, and

‖Q(p)‖p = 1 a.s., for p ∈ (0,∞]. The weak convergence holds for a family
of shift-invariant continuity sets A ⊂ ℓp, and (xn) is a suitable sequence
satisfying P(‖B1‖p > xbn) → 0, as n → ∞.

In this article we study inference of p-cluster statistics of the form

fQ(p) = E[f(YQ(p))] ,(1.2)

for suitable ℓp-continuity functions f : ℓp → R which are invariant to the
shift operator of sequences. To infer the cluster statistic (1.2), we use the
disjoint blocks estimators proposed in [12], and defined as

f̂Q(p) :=
1

k

mn∑

t=1

f(Bt/‖B‖p,(k+1))11(‖Bt‖p > ‖B‖p,(k+1)),(1.3)

where ‖B‖p,(1) > ‖B‖p,(2) > . . . > ‖B‖p,(mn), denotes the sequence of order
statistics of the ℓp−norms of blocks defined in (1.1). Examples of cluster
statistics are the extremal index, and other important cluster indices.

The case p = α is particularly relevant for two reasons. First, the ℓα-
norm’s tail P(‖B1‖α > xbn) is equivalent to bnP(|X1| > xbn), which is the tail
of any ℓp−norm of blocks in the iid case. Thus the choice p = α is ideal for
tuning the parameters in the blocks estimator as it is less susceptible to local
serial dependencies; see [12] for a discussion on that topic. Second, under
mixing and anti-clustering conditions, choosing (an) satisfying nP(|X1| >
an) → 1 as n → ∞, [13] prove that

n∑

t=1

εa−1
n Xt

d→
∞∑

i=1

∞∑

j=−∞

ε
Γ
−1/α
i Qij

, n → ∞ ,(1.4)

where (Γi) are the points of an homogeneous Poisson process, (Qij)j are

independent copies of the α−cluster process Q := Q(α) independent of (Γi).
Thus the extremal cluster dependencies of the series are fully modeled using
the spectral cluster process Q, and from it one can recover the distribution
of Q(p), for every p ∈ (0,∞] using the change-of-norms equation given by
[12] and recalled in (2.12). This means in general we can estimate p-cluster
statistics using ℓα−blocks estimators.

The main goal of this article is to establish the asymptotic normality
of the blocks estimators from Equation (1.3), tailored for cluster inference.
We state moment, mixing and bias assumptions yielding the existence of a
sequence (kn), satisfying k = kn → ∞, mn/kn → ∞ such that

√
k
(
f̂Q(p)− fQ(p)

) d−→ N
(
0,Var(f(YQ(p)))

)
, n → ∞,(1.5)
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and the limit is a centered Gaussian distribution. Our inference methodology
can be viewed as a Peak Over Threshold over order statistics of blocks.
Moreover, for p = α, fixing k and letting first n → ∞ in (1.3), we see from
(1.4)

f̂Q(α) ≈ 1

k

k∑

i=1

f((Γi/Γk+1)
−1/α(Qit)t) .

Then, the simple expression of the asymptotic variance follows as (Γi/Γk+1)
d
=

(Uk,i) where Uk,1 < · · · < Uk,k are the ordered statistics of iid uniformly dis-

tributed Uj, 1 6 j 6 k, and U−1/α d
= Y . This heuristic is extended to any

p−cluster Q(p), p ∈ (0,∞], via the change-of-norms in (2.12).
In general for p-cluster inference, the function f(p) can involve the tail-

index α in its expression, meaning f(p) = fα(p). Furthermore, we already
mentioned that the choice of p = α has some advantages, thus to implement
these procedures we need to replace α with an estimate α̂. We then show
the asymptotic normality of p–cluster estimators of fα̂(p) when we let 1/α̂
equal the classical Hill estimator, and we extend the analysis to cover α̂–
cluster inference. Furthermore, we conduct simulations to illustrate that
ℓα̂–block estimators are competitive both in terms of bias and variance for
finite sample sizes.

Our asymptotic results highlight how introducing ℓp−norm block order
statistics in (1.3), instead of order statistics of the sample (|Xt|) as in [20,
14], can lead to a better asymptotic variance for cluster inference. We
give examples of variance reduction in the case of linear models with short-
range dependence, for inference of classical indices. In our examples, the
asymptotic variance of linear models Var(f(YQ(p))) is null because of the
deterministic properties of the spectral p-cluster process of linear models.
For linear models, the advantage of replacing thresholds with block maxima
records was previously investigated in [28]. Existing works [18, 20, 14, 37]
following [28] focus on cluster of exceedances inference such that p = ∞. Our
asymptotic result comforts and extends the heuristics presented in [28] for
p = ∞ and linear models to the case p < ∞ and general models. To prove the
asymptotic normality of block estimators, we rely on the theory of empirical
processes [53], but adapted to block estimators. For this purpose, we build
on the previous work of [18], and the modern overview in [37]. To handle the
asymptotics of extremal ℓp-blocks, we build on the large deviation principles
studied in [12], and appeal to the p-cluster processes theory therein.

The article is organized as follows. Preliminaries on mixing coefficients,
regular variation, and the p-cluster theory of stationary time series are com-
piled in Section 2. In Section 3 we present our main result in Theorem 3.1,
stating the asymptotic normality of the block estimators introduced in Equa-
tion (1.3). We work under mixing, moment, and bias conditions on the series
that we also present in Section 3. Section 4 studies examples of extremal
cluster inference such as estimation of the extremal index, the cluster size
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probabilities, and the cluster index for sums. We conclude by verifying
our conditions on classical models such as linear processes and stochastic
recurrence equations in Section 5. In the case of linear models with short-
range dependence, Theorem 5.6 states that the ℓp-block estimators of all
the aforementioned quantities have null-asymptotic variance. Thereby, they
are super-efficient for cluster inference of important indices as conjectured
by [28] for p = ∞. We illustrate the finite-sample performances of our
estimators in Section 6. All proofs are deferred to Apendices A, B, C.

1.1. Notation. We consider stationary time series (Xt) taking values in
R
d, that we endow with a norm | · |. Let p > 0, and (xt) ∈ (Rd)Z. Define

the p-modulus function ‖ · ‖p : (Rd)Z → [0,∞] as

‖(xt)‖pp :=
∑

t∈Z

|xt|p ,

and define the sequential space ℓp as ℓp := {(xt) ∈ (Rd)Z : ‖(xt)‖pp < ∞} ,
with the convention that, for p = ∞, the space ℓ∞ refers to sequences with
finite supremum norm. For any p ∈ (0,∞], the p-modulus functions induce a
distance dp in ℓp, and for p ∈ [1,∞), it defines a norm. Abusing notation, we

call them all ℓp-norms. Let ℓ̃p = ℓp/ ∼ be the shift-invariant quotient space
where: (xt) ∼ (yt) if and only if there exists k ∈ Z such that xt−k = yt,

t ∈ Z. We also consider the metric space (ℓ̃p, d̃p) such that for [x], [y] ∈ ℓ̃p,

d̃p([x], [y]) := inf
k∈Z

{dp(xt−k,yt), (xt) ∈ [x], (yt) ∈ [y]},

and without loss of generality, we write an element [x] in ℓ̃p also as (xt).
Further details on the shift-invariant spaces are deferred to [12, 4].

The operator norm for d × d matrices, A ∈ R
d×d, is defined as |A|op :=

sup|x|=1 |Ax|. The truncation operations of (xt) at the level ǫ, for ǫ > 0, are
defined by

(xε
t ) := (xt11|xt|6ε) , (xtǫ

) := (xt11|xt|>ε) .

The notation a∧b denotes the minimum between two constants a, b ∈ Z, and
a ∨ b denotes its maximum. We write log+(x) := log(x) ∨ 0, for x ∈ (0,∞).
We sometimes write x for the sequence x := (xt) ∈ (Rd)Z. Furthermore, for
a, b,∈ R, and a 6 b, we write as x[a,b] the vector (xt)t=a,...,b taking values in

(Rd)b−a+1. We write x[a,b] ∈ ℓ̃p, which means we take the natural embedding

of x[a,b] in ℓ̃p defined by assigning zeros to undefined coefficients. It will be

convenient to write G+(ℓ̃
p) for the continuous non-negative functions on

(ℓ̃p, d̃p) which vanish in a neighborhood of the origin.

2. Preliminaries

2.1. Mixing coefficients. Let (Xt) be an R
d-valued strictly stationary

time series defined over a probability space ((Rd)Z,A,P). The properties
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of stationary sequences are usually studied through mixing coefficients. De-
note the past and future σ−algebras by

Ft60 := σ((Xt)t60), Ft>h := σ((Xt)t>h), h > 1 ,

respectively. We recall the definition of the mixing coefficients (βh) below

βh := dTV

(
PFt60⊗Ft>h

, PFt60
⊗ PFt>h

)
,

where dTV (·, ·) is the total variation distance between two probability mea-
sures: ((Rd)Z,A,P1), ((R

d)Z,A,P2), and P1 ⊗ P2(A × B) := P1(A)P2(B),
for A,B ∈ A. For a summary on mixing conditions see [8, 17, 46].

Remark 2.1. A detailed interpretation of the β−mixing coefficients (βh)
in terms of the total variation distance can be found in Chapter 1.2 in
[17]. These mixing coefficients are well adapted while working with Markov
processes. Indeed, a strictly stationary Harris recurrent Markov chain (Xt),
satisfies βt → 0 exponentially fast as t → ∞; see Theorem 3.5 in [8].

2.2. Regular variation. We consider stationary time series (Xt) taking
values in (Rd, | · |) and regularly varying with tail index α > 0: all its finite-
dimensional vectors are multivariate regularly varying of the same index.
In this case we write (Xt) satisfies RVα. Borrowing the ideas in [5], (Xt)
satisfies RVα if and only if, for all h > 0, there exists a vector (ΘΘΘt)|t|6h,

taking values in (Rd)2h+1 such that

P(x−1(Xt)|t|6h ∈ · | |X0| > x)
d−→ P(Y (ΘΘΘt)|t|6h ∈ ·), x → ∞,(2.6)

where Y is independent of (ΘΘΘt)|t|6h and P(Y > y) = y−α, y > 1. We call

the sequence (ΘΘΘt), taking values in (Rd)Z, the spectral tail process.
The time series (ΘΘΘt) does not inherit the stationarity property of the

series. Instead, the time-change formula of [5] holds: for any s, t ∈ Z, s 6

0 6 t and for any measurable bounded function f : (Rd)t−s+1 → R,

E[f(ΘΘΘs−i, . . . ,ΘΘΘt−i)11(|ΘΘΘ−i| 6= 0)] = E[|ΘΘΘi|α f(ΘΘΘs/|ΘΘΘi|, . . . ,ΘΘΘt/|ΘΘΘi|)].
(2.7)

2.3. ℓp-cluster processes. Let (Xt) be a stationary time series satisfying

RVα. For p > 0, we say the series admits a p-cluster process Q(p) ∈ ℓ̃p if
there exists a sequence (xn), satisfying

P(‖X[1,n]‖p > xn) ∼ n c(p)P(|X1| > xn), n → ∞,(2.8)

with c(p) ∈ (0,∞), nP(|X1| > xn) → 0, and

P(X[1,n]/xn ∈ · | ‖X[1,n]‖p > xn)
w−→ P(YQ(p) ∈ · ), n → ∞,(2.9)

where Y is independent ofQ(p) ∈ ℓ̃p, P(Y > y) = y−α, for y > 1, ‖Q(p)‖p = 1

a.s., and the limit in (2.9) holds in (ℓ̃p, d̃p). We study below the anti-
clustering and vanishing-small values conditions denoted AC, CSp, respec-
tively, which guarantee the existence of ℓp−clusters. We rephrase next the
Theorem 2.1. of [12].
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Proposition 2.2. Let (Xt) be a stationary time series satisfying RVα. Let
(xn) be a sequence such that nP(|X1| > xn) → 0, as n → ∞, and p > 0.
For all δ > 0, assume

AC : lims→∞ lim supn→∞ P(‖X[s,n]‖∞ > ǫxn | |X1| > ǫxn ) = 0, ǫ > 0,

CSp: limǫ↓0 lim supn→∞
P(‖X[1,n]/xn

ǫ
‖pp>δ)

nP(|X1|>xn)
= 0

Then, if p > α, Equation (2.8) holds with c(∞) 6 c(p) 6 c(α) = 1, and (Xt)

admits a p−cluster process Q(p) in the sense of (2.9). If p < α, existence of

the p−cluster process holds if E[‖Q(α)‖αp ] < ∞. In this case, Equation (2.8)

holds with c(p) = E[‖Q(α)‖αp ].
We see from Proposition 2.2 assuming AC and CSα implies the time

series (Xt) admits an α-cluster Q(α), where α > 0, denotes the tail index.
In this case, appealing to Proposition 3.1. in [12], we have

Q := Q(α) d
= ΘΘΘ/‖ΘΘΘ‖α, ∈ ℓ̃α ,(2.10)

where (ΘΘΘt) is the spectral tail process from Equation (2.6). Moreover, if
CSp, CSp′ , and E[‖Q‖αp ] + E[‖Q‖αp′ ] < ∞ also hold, then the p, p′-clusters
exist and are related by the change-of-norms formula below

P(Q(p) ∈ ·)
= c(p)−1

E[‖Q‖αp 11(Q/‖Q‖p ∈ ·)](2.11)

=
c(p′)

c(p)
E[‖Q(p′)‖αp 11(Q(p′)/‖Q(p′)‖p ∈ ·)].(2.12)

Since ‖Q(p)‖p = 1 a.s. for any p > 0, then c(α) = 1, and E[‖Q(p′)‖αp ] =
c(p)/c(p′), where c(p), c(p′), are as in Equation (2.8). In the following we
denote by Q the α-cluster as in (2.10).

Remark 2.3. Using the monotonicty of norms, we see CSp implies CSp′ ,
for p′ > p > 0. If p > α, condition CSp is always satisfied for sequences
(xn) such that nP(|X1| > xn) → 0, as n → ∞. If α/2 < p 6 α, CSp still
holds for short-range dependence models and sequences (xn) such that there

exists κ > 0, satisfying n/x
p∧(α−κ)
n → 0, as n → ∞ (see remarks 5.1. and

5.2. in [12]). We verify this condition for classical models in Section 5.

2.4. Tail-index estimation. To estimate the tail-index α of the series, we
use the Hill estimator:

1

α̂n
:=

1

α̂n(k′)
:=

1

k′

n∑

t=1

log(|Xt|/|X|(k′+1)),(2.13)

where |X|(1) > |X|(2) > · · · > |X|(n), and k′ = k′(n) is a tuning sequence for
(2.13) satisfying k′ → ∞, n/k′ → ∞, as n → ∞. To study the asymptotic
properties of the Hill estimator, we write it as a cluster statistic and consider
the functional h : ℓ̃p → R>0 given by
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h(xt) =
∑

t∈Z

log(|xt|)11(|xt| > 1).(2.14)

It is easy to see h(xt) = h(xt)11(‖xt‖p > 1) for every p > 0, and

hQ(p) :=

∫ ∞

0
E
[∑

t∈Z log(y|Qt|)11(y|Qt| > 1)
]
d(−y−α) =

1

α
.

With this interpretation p > 0 is arbitrary and can be chosen as p = α
for convenience. We also introduce the counts of exceedances functional
e : ℓ̃p → (0,∞) given by

e(xt) :=
∑

j∈Z

11(|xt| > 1),(2.15)

which also satisfies e(xt) = e(xt)11(‖xt‖p > 1) and

eQ(α) =

∫ ∞

0
E
[∑

t∈Z11(y|Qt| > 1)
]
d(−y−α) = 1.

3. Asymptotic normality

3.1. Blocks estimation. Let (Xt) be an R
d-valued stationary time series

satisfying RVα. We fix p ∈ (0,∞], and assume the conditions of Proposi-

tion 2.2 hold for p, thus the series admits a p-cluster process Q(p) ∈ ℓ̃p, and
(2.9) holds for a sequence of high levels (xn) satisfying P(‖X[1,n]‖p > xn) →
0, as n → ∞. Given a functional f(p) : ℓ̃p → R, recall the block estimator in
(1.3) is tuned with the block lengths (bn), and the number (kn) of extremal
blocks. The total number of disjoint blocks in a sample is denoted (mn)
with mn = ⌊n/bn⌋. We assume the relation between (kn), (xn) and (bn):

k := kn(p) =
⌊
mnP(‖B1‖p > xbn)

⌋

∼ n c(p)P(|X1| > xbn), n → ∞,(3.16)

holds, where c(p) ∈ (0,∞) are as in (2.8), and c(α) = 1. The relation (3.16)
is key to derive the asymptotics of the blocks estimator.

In what follows, if the sequences (xn), (bn), (kn), (mn), appear then they
coincide with the ones mentioned here.

It will be useful to consider the functional 1(p) : ℓ̃p → R defined by

1(p)(xt) := 11(‖xt‖p > 1),(3.17)

which satisfies 1Q(p) = P(Y ‖Q(p)‖p > 1) = 1. In numerous examples, the
function f(p) might depend on α on its expression, meaning f(p) = fα(p).

Hence, it will also be useful to consider the family of functions fq(p) : ℓ̃
p → R,

indexed by q, and we take q in a neighbourhood of α.

3.2. Main result. Our main result is presented in Theorem 3.1 stating the
asymptotic normality of the ℓp-blocks estimator in (1.3) under the Linde-
berg, bias and mixing assumptions below. We cover the implementation of
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ℓp-blocks estimators for functionals fα(p) where we replace α with an esti-
mate α̂. We extend the result to α̂-cluster inference and choose extremal
blocks as those with the largest ℓα̂−norm where 1/α̂ is the Hill estima-
tor. We consider below additional moment and smoothness assumptions for
studying the asymptotics of these inference procedures.

L: Fix ǫ > 0, and let f = f(p) ∈ G+(ℓ̃
p), such that u 7→ f((xt)/u) is a

non-increasing, and there exists δ > 0 such that, for all u > 0, the following
Lindeberg-type condition holds

lim
n→∞

E[
(
f(X[1,n]/(uxn))

)2+δ
11(‖X[1,n]/xn‖p > u)]

P(‖X[1,n]‖α > xn)
< ∞,(3.18)

and supq∈[α−ǫ,α+ǫ] E[
(
f(YQ(q))

)2
] < ∞.

B(kn) : Fix ǫ > 0, consider f satisfying L, and assume the bias condition:

lim
n→∞

√
kn sup

u∈[1−ε,1+ε]

∣∣ E[f(B1/(uxbn))11(‖B1/xbn‖p > u)]

P(‖B1‖p > xbn)
− u−α fQ(p)

∣∣

= 0,(3.19)

holds where fQ(p) is as in (1.2).

Bα(kn): Fix ǫ > 0, consider f satisfying L, and assume the bias condition:

lim
n→∞

√
kn sup

u∈[1−ε,1+ε],
q∈[α−ε,α+ε]

∣∣ E[f(B1/(uxbn))11(‖B1/xbn‖q > u)]

P(‖B1‖q > xbn)
− u−α fQ(q)

∣∣

= 0.(3.20)

MXβ: Consider f satisfying L, and let δ be such that (3.18) hold. Assume
that the mixing coefficients (βt) satisfy for some sequence (ℓn) satisfying
ℓn → ∞, and ℓn/bn → 0, mnβℓn/kn → 0, ℓn/bn → 0, as n → ∞,

lim
n→∞

mn∑

t=2

(mnβtbn/kn)
δ

2+δ = 0.(3.21)

If f is bounded, assume
∑mn

t=2 mnβtbn/kn → 0 instead of (3.21).

M: Fix ǫ > 0, and assume that the moment condition below holds

E
[
‖Q‖α+ε

α−ε

]
< ∞ ,

which implies q 7→ c(q) is a continuous function at α.

S: Consider f satisfying L. If f has α on its expression, i.e., f = fα, then
the function obtained by substituting α by q, denoted fq, admits the Taylor
development:

fq(x) = fα(x) + (q − α)
∂fq
∂q |q=α(x) + (q − α)2

∂2fq
∂q2

|q=ξ(x),(3.22)
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where ξ = ξ(x) is a real value in [α−ǫ, α+ǫ]. Moreover, assume ∂fq/∂q|q=q′

and ∂2fq/∂q
2|q=q′ are ℓ̃α−continuous, and there exists δ > 0 such that

E
[
supq′∈[α−ǫ,α+ǫ]

(∂fq
∂q |q=q′ +

∂2fq
∂q2

|q=q′
)1+δ

(X[1,n]/xn)11(‖X[1,n]‖q′ > xn)
]

P(‖X[1,n]‖α > xn)
< ∞.

We state in Theorem 3.1 below our main result on the asymptotic normality
of the blocks estimator following the notation from equations (1.2) and (1.3).
We defer its proof to Section A.

Theorem 3.1. Let (Xt) be a stationary time series satisfying RVα. As-
sume the conditions of Proposition 2.2 hold and the series admits a p-cluster
process Q(p) ∈ ℓ̃p. Consider f = f(p) : ℓ̃p → R, and assume f(p) and 1(p)
satisfy B(kn), and h, e, in (2.14), (2.15) satisfy B(k′n). Assume MXβ holds.
If f(p) = fα(p), assume M and S hold. Then,

√
kn

(
f̂Q

α̂ (p)− fQ
α (p)

)

d−→ N
(
0,Var

(
fα(YQ(p))

)
+ κ2

(
∂fq/∂q|Qα

)2
α2σ2

α

)
, n → ∞,(3.23)

with σ2
α := E[(αh(YQ)− e(YQ))2], and kn/k

′
n → κ, with κ > 0, Y indepen-

dent of Q(p), and P(Y > y) = y−α, for y > 1. Moreover, for p = α, assume
f(α) and 1(α) satisfy Bα(kn), and assume M holds. Then, (3.23) continues
to hold replacing p by α̂ in the estimator.

The choice of kn, k
′
n are subject to the bias conditions B(kn) and B(k′n).

Actually, it is common practice to choose k′n larger than kn, and the numer-
ical results from Section 6 support this practice. When we use fewer blocks
kn for p-cluster inference, compared to the number of records k′n we use to
tune the Hill estimator, precisely if kn/k

′
n → 0, as n → ∞, the variance

term simplifies to
√
k
(
f̂Q

α̂ (p)− fQ
α (p)

)
d−→ N

(
0,Var

(
fα(YQ(p))

) )
, n → ∞.

This expression also holds when the functional f doesn’t include α on its
expression.

Remark 3.2. To plug-in α̂ in the place of α for p-cluster inference we
require the bias condition B(k′n) for h, e. To do so, the Hill estimator is
seen as a block estimator as in (1.3) that evaluates the block functional h on
(Bt/x

′
bn
), t = 1, . . . ,mn, replacing the high threshold level (x′bn) by k′-order

statistic from the sample (|Xt|) where
k′n(α) ∼ nP(|X1| > x′bn), n → ∞.

Then the bias condition B(k′n) can be rewritten as

lim
n→∞

√
k′n sup

u∈[1−ǫ,1+ǫ]

∣∣∣
E[log(|X1|/(ux′bn))11(|X1| > (ux′bn))]

P(|X1| > x′bn)
− u−α 1

α

∣∣∣ = 0,
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which is no longer a condition on blocks, but on |X1|. This type of condi-
tion was considered in [19, 15]. Notice that the dependence of the threshold
x′bn with bn is an artifact of our notation for B which is common for (kn)

extremal blocks or (k′n) extremal components.

Remark 3.3. The mixing condition MXβ is comparable to the classical
mixing conditions for central limit theory for block estimators, notably, (B1)
and (B2) in [18]. In our notation we can write kn = nvn, bn = rn/kn, and
in both cases we can take ℓn = o(bn). Then, their assumption reads as
nβℓn/(knbn) → 0, as n → ∞, which is the first part of MXβ . Actually, in
the models we consider in Section 5, this is the leading term of our mixing
assumption. Instead, our gain comes from the way we deal with the entropy
of the cluster functionals, which is novel here. In [18], the authors require
additionally (D2) or (D2′). In this case, for example, to deal with the ex-
tremal index (see e.g. [20]), the authors also require bn

√
kn → 0, as n → ∞,

which is no longer an assumption in our theory. Instead, we show in Sec-
tion 5 that in the classical model, we can take kn as in (5.36), provided that
the bias assumptions are met.

4. Cluster statistics

In view of Theorem 3.1, we derive asymptotic normality of the classical
cluster index estimators in extreme value theory.

4.1. The extremal index. Let (Xt) be a stationary time series in (Rd, | · |)
satisfying RVα. The extremal index θ|X| of the series (|Xt|) is a measure of
serial clustering introduced in [38] and [39]. We recall the extremal index
estimator proposed in [13], based on extremal ℓα−blocks.

Corollary 4.1. Consider fα : ℓ̃α → R to be the function x 7→ ‖x‖α∞/‖x‖αα.
Assume the conditions of Theorem 3.1 hold for p = α, and k/k′ → 0, as
n → ∞. Let θ|X| = E[‖Q‖α∞], hence we deduce an estimator

θ̂|X| :=
1

k

m∑

t=1

‖Bt‖α̂∞
‖Bt‖α̂α̂

11(‖Bt‖α̂ > ‖B‖α̂,(k+1)),(4.24)

such that
√
k
(
θ̂|X| − θ|X|

) d−→ N (0,Var(‖Q‖α∞)), n → ∞ .

Proof. The proof of Corollary 4.1 follows directly as fα ∈ G+(ℓ̃
α) is a

bounded continuous function satisfying L. �

For comparison, we also review the blocks estimator based on extremal
ℓ∞−blocks proposed in [27]:

θ̂B|X| :=
1

k

mn∑

t=1

11(‖Bt‖∞ > |X|(k+1)) .(4.25)
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Direct computations from Example 10.4.2 in [37] yield
√
k(θ̂B|X| − θ|X|)

d−→ N (0, σ2
θ ), n → ∞,

where σ2
θ ∈ [0,∞), and

σ2
θ := θ2|X|

∑

j∈Z

E[|ΘΘΘj|α ∧ 1]− θ|X|

:= θ2|X|

∑

j∈Z

∑

t∈Z

E[|Qj+t|α ∧ |Qt|α]− θ|X|.(4.26)

The last equality follows appealing to the time-change formula in (2.7) and
Equation (2.10). As a result, we can compare the asymptotic variances of

θ̂|X| and θ̂B|X| in the cases where Q is known. This is the topic of Section 5.

Remark 4.2. An alternative α-cluster estimator of the extremal index cor-
responds to the block functional f ′(x) = 11(‖x‖∞ > 1). A similar asymptotic
normality result applies but with an asymptotic variance Var(f ′(YQ)) larger

than Var(fα(YQ)). It motivates the use of θ̂|X| although it requires the es-
timation of α. The latter using Hill’s estimator is harmless choosing k′

sufficiently large with respect to k, which is always the case in practice.

Remark 4.3. To check condition S for the functional fα(x) = ‖x‖α∞/‖x‖αα,
note the Taylor expansions:

‖x‖qq − ‖x‖αα
= (q − α)

∑

t∈Z

|xt|α log(|xt|) + (q − α)2
∑

t∈Z

|xt|q
′

log2(|xt|),

‖x‖q∞ − ‖x‖α∞
= (q − α) ‖x‖α∞ log(‖x‖∞) + (q − α)2 ‖x‖q′′∞ log2(‖x‖∞),

hold for some q′, q′′ ∈ [α ∧ q, α ∨ q]. Hence, fq satisfies

fq(x)− fα(x)

= (q − α)
‖x‖α∞
‖x‖αα

∑

t∈Z

|xt|α
‖x‖αα

log(‖x‖∞/|xt|)
︸ ︷︷ ︸

:=∂fq/∂q|q=α

+(q − α)2
1

2

‖x‖q′∞
‖x‖q′q′

∑

t∈Z

∑

j∈Z

|xt|q′

‖x‖q′q′
|xj |q

′

‖x‖q′q′
log(‖x‖∞/|xj |) log(|xj |/|xt|).

︸ ︷︷ ︸
:=∂2fq/∂q2|q=q′

As mentioned, this expansion is helpful to verify condition S on the models
from Section 5.

4.2. The cluster index for sums. Let (Xt) be a stationary time series
with values in (Rd, | · |) satisfying RVα. We recall [43] coined the constant
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c(1) in (2.8) as the cluster index for sums. We review a cluster-based esti-
mator of it, introduced in [12], based on extremal ℓα-blocks.

Corollary 4.4. Consider fα : ℓ̃α → R to be the function x 7→ ‖x‖α1 /‖x‖αα.
Assume the conditions of Theorem 3.1 hold for p = α ∧ 1, and α < 2, and
k/k′ → 0, as n → ∞. Let c(1) = E[‖Q‖α1 ] < ∞, hence one deduces an
estimator

ĉ(1) :=
1

k

m∑

t=1

‖Bt‖α̂1
‖Bt‖α̂α̂

11(‖Bt‖α̂ > ‖B‖α̂,(k+1)),(4.27)

such that
√
k
(
ĉ(1)− c(1)

) d−→ N (0,Var(‖Q‖α1 )) , n → ∞,

and c(1) is as in (2.8) with p = 1.

Proof. The proof of Corollary 4.4 follows directly from Theorem 3.1 as fα ∈
G+(ℓ̃

α) is a bounded continuous function satisfying L. �

Another sums index cluster-based estimator we can consider is the one
proposed in [37] based on extremal ℓ∞-blocks:

ĉB(1) =
1

kbn

mn∑

t=1

11(‖Bt‖1 > |X|(k+1)).(4.28)

Then, relying on Example 10.4.2 in [37],
√
k(ĉB − c(1))

d−→ N (0, σ2
c(1)), n → ∞,

for a constant σ2
c(1) ∈ [0,∞) defined by

σ2
c(1) = c(1)2

∑

j∈Z

∑

t∈Z

E[|Qj+t|α ∧ |Qt|α]− c(1).(4.29)

Similarly as in Example 4.1, whenever Q is known, we can directly compare
the asymptotic variances relative to the estimators ĉ(1) and ĉB(1). Section 5
covers this topic for classical models where the cluster process is known.

Moreover, we can use the computations in Remark 4.3 to verify condi-
tion S holds. In this case it suffices to replace ‖x‖∞ by ‖x‖1 in all its
appearances.

4.3. The cluster sizes. In general, a classical approach to model serial
exceedances is using point processes as in [39] and [28]. For the levels (an),
satisfying nP(|X1| > an) → 1, as n → ∞, and for every fixed x > 0 consider
the point process of exceedances with state space (0, 1]:

ηn,x(·) := Nn

(
{y : |y| > x} × ·

)
=

n∑

i=1

εi/n(·) 11(|Xi| > xan) .
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Under mixing and anti-clustering conditions, for fixed x > 0, we can express
the limiting point process in [28] such as

ηn,x(·) d→ ηx(·) := N
(
{y : |y| > x} × ·

)

=

∞∑

i=1

∑

j∈Z

11
(
Γ
−1/α
i |Qji| > x

)
εUi(·) ,

where the points (Ui) are iid uniformly distributed on (0, 1), (Γi) are the
points of a standard homogeneous Poisson process, and (Q·i) are iid copies of
the cluster process Q. Using the independence among these three processes,
one can easily rewrite the limit as

ηx((0, t]) :=

Nx(t)∑

i=1

ξi , 0 < t 6 1 ,(4.30)

where

• Nx is a homogeneous Poisson process on (0, 1] with intensity x−α,
• for an iid sequence (Yi) of Pareto(α)-distributed random variables
which is also independent of (Qi),

ξi :=
∑

j∈Z

11(Yi |Qij | > 1) ,

• Nx, (ξi) are independent.

Relying on the point process of exceedances representation in (4.30), the
random variables (ξi) can be interpreted as counts of serial exceedances from
one cluster. Furthermore, we deduce the relation P(ξ1 > 0) = E[‖Q‖α∞] =
θ|X|, and also get an expression for the cluster size probabilities

P(ξ1 = j) = E[|Q|α(j) − |Q|α(j+1)] = πj , j > 1 .(4.31)

The statistic πj can be understood as the probability of recording a clus-
ter of length j. The blocks estimators provide natural estimators of these
quantities

π̂j :=
1

k

m∑

t=1

|Bt|α̂(j) − |Bt|α̂(j+1)

‖Bt‖α̂α̂
11(‖Bt‖α̂ > ‖B‖α̂,(k+1)),(4.32)

|Bt|(1) > |Bt|(2) > . . . > |Bt|(m) are the order statistics of Bt, the t-th block.

Corollary 4.5. Consider the function πj : ℓ̃α → R defined by πj(x) :=
(|x|α(j) − |x|α(j+1))/‖x‖αα, where |x|(1) > |x|(2) > . . . . Assume the conditions

of Theorem 3.1 hold for p = α and k/k′ → 0, as n → ∞. Then, for all
j > 1 we have

√
k
(
π̂j − πj

) d−→ N (0,Var(πQ
j (Q))) , n → ∞ .(4.33)

Corollary 4.5 provides a novel procedure for estimating cluster size prob-
abilities based on extremal ℓα−blocks. As in the previous examples, the
asymptotic variance can be computed as long as Q is known. This allows
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for comparison with the other cluster-based inference procedures provided
in [27, 23, 49]. One advantage of our methodology is that we can straight-
forwardly infer the asymptotic variances of cluster sizes since we express
them as cluster statistics in (4.33). Moreover, inference through extremal
ℓα-blocks has already proven to be useful in [12] for fine-tuning the hyper-
parameters of the estimators, see also the discussion in Section 6.

As before, we can use the computations in Remark 4.3 to very Condition
S, it suffices to replace ‖x‖∞ by (‖x‖(j)−‖x‖(j+1)) in the equations therein.

5. Models

5.1. Linear m0–dependent sequences. We consider (Xt) to be a m0–
dependent time series with values in (Rd, | · |) satisfying RVα.

Example 5.1. The time series (Xt) is a linear moving average of order
m0 > 1 if it satisfies

Xt := Zt + ϕ1Zt−1 + · · · + ϕm0Zt−m0 , t ∈ Z,(5.34)

with R
d-variate iid innovations (Zt) satisfying RVα, and (ϕj) ∈ R

m0 .
Alternatively, the max-moving average of order m0 > 1 satisfies

Xt := max{Zt, ϕ1Zt−1, . . . , ϕm0Zt−m0}, t ∈ Z,(5.35)

with R+-variate iid innovations (Zt) satisfying RVα, and (ϕj) ∈ R
m0
+ . Then

both moving averages satisfy RVα with |Q| admitting the same deterministic

expression (|ϕt|/‖(ϕj)‖α) in ℓ̃α, see for instance Proposition 3.1. in [12] and
Chapter 5 of [37].

Let p > α/2. For all κ > 0, a sequence satisfying xn = O(b
κ+1/(p∧α)
n )

verifies AC and CSp. This is a consequence of Remark 2.3. Choosing (xn)
in this way implies there exist κ′ > 0, and (kn) satisfying

kn = O(n b−κ′−α/(p∧α)
n ),(5.36)

such that Equation (3.16) holds from an application of Potter’s bound. Since
κ can be chosen arbitrarily small, κ′ can also be arbitrarily close to zero.

Keeping this in mind, we can state the Proposition below. The proof is
postponed to Section C.

Proposition 5.2. Consider (Xt) to be an m0–dependent time series with
values in (Rd, | · |). Consider p > α/2, and sequence (kn) and (k′n) satisfying
(5.36), such that k = kn → ∞, mn/kn → ∞, and k′ = k′n → ∞, k/k′ → 0.

Consider fα(p) : ℓ̃
p → R, and assume L, S hold. Then,

√
k(f̂Q

α̂ (p)− fQ
α (p))

d−→ N (0,Var( fα(YQ(p)) )), n → ∞,

under the bias conditions Bα(k), B(k′), and the result extends to α̂-cluster
inference. In particular the α̂-cluster based estimators from Section 4 in
(4.24) (4.27), and (4.32) are asymptotically normally distributed, and in the
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case of the moving averages of Example 5.1
√
k(f̂Q

α̂ (α̂)− fQ
α (α))

P−→ 0, n → ∞.

5.2. Linear processes. In this section we consider stationary linear pro-
cesses (Xt) with values in (Rd, | · |) satisfying RVα.

Example 5.3. Consider (Xt) to be an R
d−variate sequence satisfying

Xt =
∑

t∈Z

ϕjZt−j , t ∈ Z,(5.37)

for a sequence of iid innovations (Zt) satisfying RVα, and a sequence (ϕj)

in R
Z. Moreover, assume there exists κ > 0 such that ‖(ϕj)‖(α−κ)∧2 < ∞.

In the setting of Example 5.3, a stationary solution (Xt) exists and sat-
isfies RVα (c.f. [16, 41, 30]). Proposition 5.4 below demonstrates condi-
tions AC, CSp hold for p > α/2, and a suitable sequence (xn) such that
nP(|X1| > xn) → 0 as n → ∞. Therefore, the time series (Xt) admits
an α−cluster process Q, which we can compute in terms of the filter (ϕj),

and the spectral measure of the random variable Z0, denoted by ΘΘΘZ
0 , with

|ΘΘΘZ
0 | = 1 a.s. We obtain the expression, cf. Chapter 5 of [37],

Q
d
= (ϕt/‖(ϕj)‖α)ΘΘΘZ

0 , ∈ ℓ̃α.(5.38)

Note again that the norm of the α−cluster process, i.e., |Q|, is deterministic

in ℓ̃α. Assuming ‖(ϕj)‖p < ∞, we can compute the indices c(p) in (2.8) by

c(p) = E[‖Q‖αp ] = ‖(ϕj)‖αp /‖(ϕj)‖αα < ∞.(5.39)

Classic examples of these heavy-tailed linear models are auto-regressive mov-
ing averages, i.e., ARMA processes, with iid regularly varying noise; cf. [10].

The proposition below guarantees that the assumptions of Proposition 2.2
hold. We defer its proof to Section C.1.

Proposition 5.4. Consider (Xt) to be a linear process with values in (Rd, | ·
|), as in Example 5.3. Consider p > α/2, and a sequence (xn) such that

n/x
p∧(α−κ)
n → 0, n → ∞, for some κ > 0. Then it holds for all δ > 0

lim
s→∞

lim sup
n→∞

P(‖X[1,n]/xn −X
(s)
[1,n]/xn‖

p
p > δ)

nP(|X1| > xn)
= 0,(5.40)

where X
(s)
t :=

∑
|j|6s ϕjZt−j. Thus AC and CSp are satisfied.

We now review the mixing properties of a linear process. We recall below
the statement in Theorem 2.1. in [45] (see Lemma 15.3.1. in [37]).

Proposition 5.5. Consider (Xt) to be a causal linear process with values in
(Rd, | · |), as in Example 5.3 with ϕj = 0, for j < 0. Assume the distribution

of Z0 is absolutely continuous with respect to the Lebesgue measure in R
d,

and has a density gZ satisfying

i)
∫
|g(x − y)− g(x)|dx = O(|y|), for all y ∈ R

d,
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ii) ϕt = O(t−ρ), for t > 0, and ρ > 2 + 1/α,
iii)

∑∞
j=0 ϕjx

j 6= 0, for all x ∈ R
d with |x| < 1,

Then, for all 0 < ε < α, the mixing coefficients (βt) satisfy

βt = O
(
t
1−

(ρ−1)(α−ε)
1+α−ε

)
.(5.41)

Combining Propositions 5.4 and 5.5, we state below the asymptotic nor-
mality of the p-cluster based estimators for linear processes in Theorem 5.6.
We defer its proof to Section C.2.

Theorem 5.6. Consider (Xt) to be a causal linear process with values in
(Rd, | · |), as in Example 5.3. Let ρ > 0, and assume the conditions of
Proposition 5.5 hold with ϕt = O(t−ρ), for t > 0. Consider p > α/2, and
sequence (kn) and (k′n) satisfying (5.36), such that k = kn → ∞, mn/kn →
∞, and k′ = k′n → ∞, k/k′ → 0. Consider fα(p) : ℓ̃

p → R, and assume L,
S hold. Assume that for δ > 0 as in (3.18),

ρ > 3 + 2
α + 2

δ (1 +
1
α ) .(5.42)

If fα(p) is bounded, condition (5.42) can be replaced by ρ > 3 + 2/α. Then,
√
k(f̂Q

α̂ (p)− fQ
α (p))

d−→ N (0,Var( fα(YQ(p)) )), n → ∞,

under the bias conditions Bα(k), B(k′), and the result extends to α̂-cluster
inference. In particular the α̂-cluster based estimators from Section 4 in
(4.24) (4.27), and (4.32), satisfy

√
k(f̂Q

α̂ (α̂)− fQ
α (α))

P−→ 0, n → ∞.

Regarding cluster inference in the case of linear models, the α-cluster
approach has an optimal asymptotic variance for shift-invariant function-
als since we use the ℓα−norm order statistics. For this reason, it compares
favourably with state-of-the-art blocks estimator. For example, for the ex-
tremal index, the super-efficient estimator in (4.24) has a lower asymptotic
variance than the blocks estimator in (4.25). Indeed the asymptotic variance
σ2
θ of the latter, computed in (4.26), is not necessarily null. For example,

for the autoregressive process of order one AR(1) one has σ2
θ = 1− θ|X| > 0.

5.3. Affine stochastic recurrence equation solution under Kesten’s

conditions. In this section we focus on the causal solution to the affine
stochastic recurrence equation SRE under Kesten’s conditions. To guarantee
the existence of a solution (Xt), with values in (Rd, |·|) as in (5.43) satisfying
RVα, we rely on Theorem 2.1. and Theorem 2.4 in [2]. For an overview, we
refer to [11]. In what follows, we study time series (Xt) as in the Example 5.7
below.

Example 5.7. Consider (Xt) to be a sequence with values in R
d satisfying

Xt = AtXt−1 +Bt, t ∈ Z,(5.43)
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where ((At,Bt)) is an iid sequence of non-negative random d × d matri-
ces with generic element A, and non-negative random vectors with generic
element B taking values in R

d. For the existence of a causal stationary
solution, we assume

i) E[log+ |A|op] + E[log+ |B|] < ∞,
ii) under i), assume the Lyapunov exponent of (At), denoted γ, satisfies

γ := lim
n→∞

n−1 log |At · · ·A1|op < 0, a.s.

To guarantee the heavy-tailedness condition RVα, we also assume

iii) B 6= 0 a.s., and A has no zero rows a.s.
iv) there exists κ > 0 such that E[|A|κop] < 1,
v) the set Γ from Equation (5.44) generates a dense group on R,

Γ = {log |an · · · a1|op : n > 1, an · · · a1 > 0,

an, . . . ,a1 are in the support of A’s distribution },(5.44)

vi) there exists κ1 > 0 such that E[(mini=1,...,d
∑d

t=1 Aij)
κ1 ] > dκ1/2, and

E[|A|k1op log+ |A|op] < ∞.
vii) under i)− vi), there exists a unique α > 0 such that

lim
n→∞

n−1 logE
[
|An · · ·A1|αop

]
= 0,(5.45)

and E[|B|α] < ∞. If d > 1 assume α is not an even integer.

The R
d-variate series (Xt), satisfying (5.43) and i) − vii), admits a causal

stationary solution and satisfies RVα, with α > 0 as in Equation (5.45).

The previous example is motivated by the seminal Kesten’s paper [35].
We follow Theorem 2.1. in [2] to state conditions i) − ii) of Example 5.7.
Under the conditions i)− ii), the unique solution (Xt) of (5.43) has the a.s.
causal representation

Xt =
∑

i>0

At−i+1 . . .AtBt−i, t ∈ Z,(5.46)

where the first summand is Bt for i = 0 by convention; for an overview see
[11].

One of the main reasons why the solutions to SRE as in Example 5.7 have
received strong interest, is because (Xt) satisfies RVα even when the innova-
tions ((At,Bt)) are light-tailed. This feature was first noticed in [35] where
the original Kesten’s assumptions were introduced. In Kesten’s framework,
a causal stationary solution to the SRE exists as in (5.46), and the extremes
of the series occur due to the sums of infinitely many terms of growing length
products appearing in (5.46); see [6] for a review. Further, the community
adopted the simplified Kesten’s conditions stated by Goldie in [24] for uni-
variate SRE. These conditions also aim to capture the heavy-tailed feature
under lighter-tailed innovations. In Example 5.7, we borrow the conditions
iii) − vii) established for the multivariate setting from Theorem 2.4 and
Corollary 2.7. in [2]. Then, a solution (Xt) as in Example 5.7 satisfies RVα,
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for α > 0, and the index of regular variation α is the unique solution to
the Equation (5.45). We are also interested in Example 5.7 because it mod-
els classic econometric time series such as the squared ARCH(p), and the
volatility of GARCH(p, q) processes; see [11].

Concerning the extremes of (Xt) in Example 5.7, the forward spectral tail
process satisfies the relation

ΘΘΘt = At · · ·A1ΘΘΘ0, t > 0,

where (At) is an iid sequence distributed as A; see [34]. The backward
spectral tail process has a cumbersome representation that we omit here;
c.f. [34]. We state in Proposition 5.8 sufficient conditions on (A,B) yielding
assumptions AC, CSp hold for p > α/2, and a suitable sequence (xn) such
that nP(|X1| > xn) → 0 as n → ∞. In this case the time series (Xt) admits
an α−cluster process Q. We recall the identity from Equation (8.6) of [12]:
c(p) = E[‖Q‖αp ] = E[‖(ΘΘΘt)t>0‖αp − ‖(ΘΘΘt)t>1‖αp ], for c(p) as in (2.8). Then,
letting p = α/2, a straightforward computation yields

c(p) 6 2E[‖(ΘΘΘt)t>0‖α−p
p ] = 2E[

∑
t>0|At · · ·A1ΘΘΘ0|p]

6 2 s
∑

t>0(E[|As · · ·A1|pop])t,
and E[|As · · ·A1|pop] < 1, for p < α and s > 1 fixed sufficiently large in the
setting of Example 5.7. Hence, for p ∈ (α/2, α), c(p) < ∞ in (2.8), and then

the series admits a p−cluster process Q(p).
We state now Proposition 5.8 which verifies conditions AC, CSp for the

SRE equation. The proof is postponed to Section C.3.

Proposition 5.8. Let (Xt) be a stationary time series with values in (Rd, | ·
|), as in Example 5.7. Let p > α/2, and consider (xn) such that there exists

κ > 0 satisfying n/x
p∧(α−κ)
n → 0, as n → ∞. Then, (xn) satisfies conditions

AC and CSp.

In the setting of SRE equations, conditionAC has been shown in Theorem
4.17 in [42]. In [42], the authors already considered a condition similar to
CSp. Parallel to their setting, we propose a proof of Proposition 5.8 which
shows CSp holds over uniform regions Λn = (xn,∞) such that n/xpn → 0,
as n → ∞, in the sense of (C.86). Thereby, our proof extends Theorem 4.17
in [42] to uniform regions Λn not having an upper bound.

Concerning the mixing properties of (Xt)t>0 as in Example 5.7, we use
that it is a Markov chain and that X0 has the stationary distribution. As
mentioned in Remark 2.1, we can then use Markov chain’s theory to compute
its mixing coefficients; cf. [40]. We review Theorem 2.8. in [2], yielding an
exponential decay of the mixing-coefficients (βt) of the series. For a general
treatment see Chapter 4.2 in [11].

Proposition 5.9. Consider a time series (Xt) with values in (Rd, | · |), as
in Example 5.7. Assume there exists a Borel measure µ on (Rd, | · |), such
that the Markov chain (Xt)t>0 is µ-irreducible, i.e., for all C ⊂ R

d with
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µ(C) > 0,
∞∑

t=0

P(Xt ∈ C |X0 = x) > 0, x ∈ R.(5.47)

Then (Xt) has mixing coefficients (βt) satisfying βt = O(ρt) for some ρ ∈
(0, 1), and we say it is strongly mixing with geometric rate. Moreover,
(Xt)t>0 is irreducible with respect to the Lebesgue measure if (A,B) admits
a density.

We can now state the asymptotic normality of cluster-based estimator for
SRE solutions in Theorem 5.10 below. The proof is postponed to Section
C.4.

Theorem 5.10. Consider (Xt) to be the causal solution to the SRE in
(5.43) with values in (Rd, | · |), as in Example 5.7. Assume the conditions
of Proposition 5.9 hold. Consider p > α/2, and sequence (kn) and (k′n)
satisfying (5.36), such that k = kn → ∞, mn/kn → ∞, and k′ = k′n → ∞,

k/k′ → 0. Consider fα(p) : ℓ̃
p → R, and assume L, S hold. Then,

√
k(f̂Q

α̂ (p)− fQ
α (p))

d−→ N (0,Var( fα(YQ(p)) )), n → ∞,

under the bias conditions Bα(k), B(k′), and the result extends to α̂-cluster
inference. In particular, the α̂-cluster based estimators from Section 4 in
(4.24) (4.27), and (4.32), are asymptotically normally distributed.

Remark 5.11. In this example, the asymptotic variances of the α-cluster
based estimators from Section 4 in (4.24) (4.27), and (4.32) are non-null.
The limiting variances in Theorem 5.10 are difficult to compare with the
existing ones in the literature because of the complexity of the distribution
of Q(p). However, we provide simple ℓα-block estimators of the asymptotic
variances in Section 6.

6. Numerical experiments

This section aims to illustrate the finite-sample performance of the α̂-
cluster estimators on time series (Xt) with tail-index α > 0. In all the
models we consider in Section 5, we work under the assumption that the
tuning parameters of the α-cluster satisfy (5.36). We take κ′ = 1 in (5.36)

which yields b =
√

n/k. In this case, the implementation of our estimators
can be written solely as a function of k and k′. Recall k = kn must satisfy
k → ∞, m/k → ∞ with m = [n/b], n/k′ → ∞, and k/k′ → 0. Numerical
comparisons of our α̂-cluster based approach with other existing estimators
for the extremal index and the cluster index are at the advantage of our ap-
proach; see [13] and [12]. The code of all numerical experiments is available
at: https://github.com/GBuritica/cluster_functionals.git.

6.1. Tuning the Hill estimator. We recommend choosing the tuning se-
quence of the tail-index and of the cluster estimators as (k′n), (kn), respec-
tively, such that k/k′ → 0. Roughly speaking, the cluster statistics capture

https://github.com/GBuritica/cluster_functionals.git
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