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Figure 1: Illustration of our method on a texture transfer problem, between two surfaces with significantly different mesh structure. The
source model and its texture were produced by [McG17] (LPS Head) and the target model was extracted from the Faust dataset [BRLB14].
The user-specified landmark placement is shown in green, whereas the computed landmarks are shown below in blue. The state-of-the-
art functional maps-based method “FMapZO” [MRR*19] fails to preserve landmarks exactly, whereas the hyperbolic orbifolds [AL15]
(“HyperOrb”) approach leads to a map with higher distortion compared to our approach. The “reference” transfer was obtained using the
commercial registration tool R3DS Wrap [Wra21] and 33 user-defined landmarks.

Abstract

We propose a principled approach for non-isometric landmark-preserving non-rigid shape matching. Our method is based on

the functional maps framework, but rather than promoting isometries we focus instead on near-conformal maps that preserve

landmarks exactly. We achieve this, first, by introducing a novel landmark-adapted basis using an intrinsic Dirichlet-Steklov

eigenproblem. Second, we establish the functional decomposition of conformal maps expressed in this basis. Finally, we formu-

late a conformally-invariant energy that promotes high-quality landmark-preserving maps, and show how it can be solved via

a variant of the recently proposed ZoomOut method that we extend to our setting. Our method is descriptor-free, efficient and

robust to significant mesh variability. We evaluate our approach on a range of benchmark datasets and demonstrate state-of-

the-art performance on non-isometric benchmarks and near state-of-the-art performance on isometric ones.

Keywords: shape matching, landmark-based correspondence, functional maps

CCS Concepts

• Computing methodologies → Shape analysis;

1. Introduction

A common scenario in shape matching is that of very sparse user-
provided landmark correspondences that need to be extended to a
full map between the considered shapes. The landmarks in ques-
tion are often of a semantic nature, and thus are very sensitive to
exact placement. Consider, for instance the position of the eyes

or the nose on a human face (see Fig. 1) that are matched by an
artist, e.g., in a texture transfer scenario. In such cases, it is crucial
to preserve the landmark correspondences exactly when extending
the map. Furthermore, it is desirable for the extension process to
be time-efficient and applicable to general, possibly non-isometric
shape pairs.
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Functional map methods [OCB*17] constitute a highly effective
shape matching framework, especially when coupled with power-
ful recent post-processing tools such as ZoomOut and its variants
[MRR*19; HRWO20]. The existing methods, however, suffer from
two major limitations: first, they heavily rely upon the assumption
of near-isometry, and second, they typically formulate landmark
correspondence via descriptor preservation objectives, combined
with other regularizers in the least squares sense. Unfortunately,
this implies that the final map is not guaranteed to preserve user-
provided landmark correspondences.

In this paper, we propose a novel approach that maintains the ef-
ficiency and flexibility of the functional maps pipeline, while over-
coming these drawbacks. We organize our proposal in three ma-
jor stages. First, we introduce a novel functional basis in which
to express our map. Crucially, our basis is explicitly adapted to
the landmark correspondences, unlike the commonly-used general
Laplace-Beltrami eigenbasis. Intuitively speaking, this allows us
to enforce landmark preservation by only considering functional
maps with a particular (block-diagonal) structure. The design of
this landmark-adapted basis is the most technically involved part of
our proposal, and relies on solving intrinsic Dirichlet-Steklov and
Dirichlet Laplacian eigenproblems. Specifically, we first construct
new boundaries at the landmarks, and then formulate and solve the
associated boundary value problems.

Second, we remove the assumption of near-isometry by structur-
ing shape matching as a search for bijective near-conformal maps,
which are significantly more general than isometries. Following the
functional maps pipeline, we express this as a carefully designed
energy to be minimized.

Third, we propose an iterative minimization strategy for our en-
ergy by following in the footsteps of ZoomOut [MRR*19]. In par-
ticular, we demonstrate how landmark correspondences can be pro-
moted throughout this iterative refinement. Furthermore, we exploit
the landmark-awareness of our basis to provide a simple initial
guess of the correspondence.

We test our approach on various benchmark datasets, both iso-
metric and non-isometric. We compare our results to both state-
of-the-art functional maps approaches, as well as recent methods
that exactly preserve landmark correspondences. We report state-
of-the-art accuracy on non-isometric datasets and near state of the
art on isometric ones. Meanwhile, the computation time of our ap-
proach is significantly lower than that of the competing landmark-
preserving methods.

Contributions. To summarize:

1. We introduce a novel landmark-dependent functional basis by
solving an intrinsic Dirichlet-Steklov eigenproblem.

2. We formulate a functional maps-based approach to near-
conformal shape matching that preserves given landmarks ex-
actly without restrictions on the topology of the shapes.

3. We propose an efficient way to both compute the basis and to
solve the shape matching problem and report state-of-the-art re-
sults on difficult non-isometric benchmarks.

2. Related Work

Non-rigid shape matching is a well-established research area with a
rich history of solutions. Below we review the works that are most
closely related to ours, focusing on functional maps and landmark-
preserving methods, and refer the interested readers to recent sur-
veys [vKZHC11; Sah20] for a more in-depth discussion.

Functional Maps Our approach fits within the functional maps
framework that was originally introduced in [OBS*12] and ex-
tended in many follow-up works, including including [KBB*13;
ADK16; RCB*17; EB17; BDK17; NO17; MRR*19; RMOW20]
to name a few. An early overview of many functional maps-based
techniques is given in [OCB*17]. The key idea exploited in all of
these techniques is to represent correspondences as linear transfor-
mations across functional spaces, which can be compactly encoded
as small-sized matrices given a choice of basis. This leads to sim-
ple optimization problems that can accommodate a range of geo-
metric objectives such as isometry [OBS*12], accurate descriptor
preservation [NO17], bijectivity [ERGB16], orientation preserva-
tion [RPWO18] or even partiality [RCB*17] among others. Typi-
cally, such objectives are formulated as soft penalties on the func-
tional map and are optimized for in the least squares sense.

Landmarks in functional maps Landmark constraints are com-
monly used in functional maps-based approaches, especially in an
attempt to resolve symmetry ambiguity, present, e.g., when map-
ping between human shapes. Starting from the segment correspon-
dences advocated in the original approach [OBS*12], and exploited
in follow-up works, e.g., [KO19], several techniques also used
pointwise landmarks, that were either user-specified [NO17], au-
tomatically computed [MMRC18], or even extended to curve con-

straints [GBKS18]. All of these techniques, however, formulate
landmark correspondences via functional descriptor preservation,
e.g., based on the heat kernel [SOG09; OMMG10] or wave ker-
nel maps [ASC11], which are enforced during optimization only in
a least squares sense, alongside other descriptors and regularizers.
Therefore, there is no guarantee that the final recovered point-to-
point map will satisfy these user-constraints. In contrast, our ap-
proach is geared towards preserving the landmark correspondences
exactly, while computing a smooth overall map.

Landmark-based matching Landmark-preserving shape corre-
spondence has also been studied in other matching frameworks.
Early methods relied on extrinsic shape alignment, under given
constraints, e.g., using thin plate splines [Boo89; CR00] or by ex-
tending non-rigid ICP, as done in [SP04] among others. Such ap-
proaches, however, rely strongly on the shape embedding and often
require a significant number of landmarks to work well in practice.

Another successful class of approaches have aimed to compute
correspondences by embedding shapes to a common parametriza-
tion domain. This includes powerful approaches based on mapping
surfaces to the planar domain, [APL14; WZ14], Euclidean orb-
ifolds [AL15] general flat cone manifolds [APL15] or, more re-
cently, the hyperbolic plane [AL16], which can accomodate an ar-
bitrary number of landmarks.

Finally, recent techniques have also allowed landmark-
preserving shape correspondence by cross-parametrizing the sur-
faces directly. This includes exploiting direct and inverse averages
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on surfaces [PBDS13] or finding maps that minimize various no-
tions of distortion, e.g., harmonicity and reversibility (using, first a
surrogate high-dimensional embedding) [ESB19] or a related sym-
metric Dirichlet energy [SCBK20] (via direct optimization on the
surface). These recent techniques can lead to accurate results, but
are often computationally expensive, and typically place restric-
tions on the topology of the shape pair, such as having the same
genus. In contrast, our method does not suffer from this limita-
tion, as topological stability is one of the features of functional map
methods, which is also inherited by our technique.

Basis selection for functional maps Finally, we remark that our
construction of landmark-adapted functional bases also fits within
the functional map framework, aimed at developing flexibile and
effective basis functions. The original article and most follow-up
works [OCB*17] have advocated using the eigenfunctions of the
Laplace-Beltrami operator (LBO), which are optimal for represent-
ing smooth functions with bounded variation [ABK15]. However,
the Laplace-Beltrami basis has global support and may not be fully
adapted to non-isometric shape changes.

The compressed manifold modes [NVT*14; OLCO13; KGB16]
have been introduced to offset the global nature of the LBO by
promoting sparsity and locality in the basis construction. In a re-
lated effort, Choukroun et al. [CSBK18] have proposed to modify
the LBO through a potential function, thus defining a Hamiltonian
operator, whose eigenfunctions have better localization properties.
In [MRCB18], a similar approach was introduced to obtain a basis
that is also orthogonal to a given set of functions. The “Coordinate
Manifold Harmonics” used in [MMM*20], complement the LBO
eigenfunctions with the coordinates of the 3D embedding, allow-
ing to capture both extrinsic and intrinsic information. Finally, a
rich family of diffusion and harmonic bases have been proposed
in [Pat18], by exploiting the properties of the heat kernel.

While these basis constructions offer more flexibility and have
been shown to improve the functional map pipeline in certain cases,
e.g., [NVT*14; MMM*20], they nevertheless are typically still
geared towards approximate isometries, and only enable approxi-
mate constraint satisfaction. In contrast our basis is geared towards
landmark-preserving maps during functional map optimization, as
well as during refinement.

Dirichlet-Steklov basis Finally, we note that Steklov eigenprob-
lems have been considered within geometry processing [WBPS18]
as tool for extrinsic shape analysis. This is achieved by consider-
ing the (two-dimensional) surface as the Steklov boundary of its
(three-dimensional) interior. In contrast, we consider a fully intrin-

sic problem by using (one-dimensional) boundaries of small disks
centered around the landmarks as the boundary of the remainder of
the surface.

3. Method Overview

In this section, we provide a high-level overview of our approach.
Our method takes as input a pair of shapes M, N represented
as triangle meshes along with two sets of k landmark vertices
{γM

i }k
i=1 ⊂ M, {γN

i }k
i=1 ⊂ N . We then aim to compute a high-

quality vertex-to-vertex correspondence ϕ : N →M that preserves
the given landmarks exactly. I.e., ϕ(γN

i ) = γM

i for all i.

Figure 2: Schematic of the main steps involved in our method to
map a source shape (orange) to a target shape (blue) as described
in Sec. 3.

Our overall strategy, illustrated in Fig. 2, consists of the follow-
ing major steps:

1. Remove small disks from the mesh surface, centered at each
landmark point γi, i = 1...k. This creates k circular boundary
components {Γi}k

i=1, which are fully contained in the one-ring
neighborhood of each landmark.

2. Compute the set of the first NLB Laplace-Beltrami eigenfunc-

tions {ψ j}
NLB
j=1 with Dirichlet boundary conditions at the bound-

aries of landmark circles. I.e., ψ j|Γi
= 0 for all i, j.

3. Add to this basis another k sets of NDS basis functions each

{u
(i)
j }NDS

j=1, i = 1...k, one for each landmark circle, consisting of
eigenfunctions of the intrinsic Dirichlet-Steklov eigenproblem.
Each of these basis sets is well-suited to describing smooth func-
tions in the vicinity of its corresponding landmark circle. Intu-
itively these functions complement the Laplace-Beltrami eigen-
basis, are harmonic on the interior of the shapes, and are zero at

all but one disk boundary: u
(i)
j |Γl

= 0 for l 6= i and all j.
4. Compute an optimal functional map by minimizing an energy

that promotes near-conformal maps, via an iterative refinement
strategy. We split the functional map into k+ 1 parts, and sepa-
rately align the Laplacian eigenbasis and each set of Dirichlet-
Steklov ones.

5. Convert the computed functional map to a vertex-to-vertex map
between the shapes with the disks cut out.

6. Reinsert the landmark correspondences to obtain a landmark-
preserving vertex-to-vertex map between the original meshes.

Our general strategy follows the standard functional map
pipeline, especially in its recent variants based on iterative refine-
ment [MRR*19; PRM*21; XLZ21], with several crucial changes.

First, our main motivation for introducing disks to represent
landmarks in Step 1 is to associate to each landmark a well-defined
functional space. In this, we are inspired by techniques that repre-
sent landmarks or seed points on a surface via associated harmonic
functions [ZRKS05; Pat18] on a mesh. Unlike such harmonic func-
tions, however, our construction is fully justified in the smooth set-
ting. This is because it is impossible to impose boundary condi-
tions on isolated points on a smooth surface. Furthermore, as we
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ψ1 ψ2 ψ5 ψ10

Figure 3: Several Dirichlet Laplacian eigenfunctions of the annulus
in 2D with external radius 1 and internal radius 1/2. Notice that the
eigenfunctions concentrate away from the boundary.

show below, the Dirichlet-Steklov eigenfunctions that we compute
in Step 3. are orthogonal to the Dirichlet Laplacian eigenbasis and
jointly form a complete basis for the underlying functional space.

Secondly, instead of computing a single functional map across
Laplace-Beltrami eigenfunctions, we estimate a block-diagonal

functional map that aligns each of the k+1 components of the func-
tional space separately. This both improves efficiency and promotes
desirable structural map properties. Indeed, we prove that this split-
ting must hold for conformal maps in the smooth setting, and we
observe that it promotes preservation of landmark neighborhoods
across a wide range of shape deformations in practice.

Finally, rather than focusing on near-isometries, we build a func-
tional map energy that aims at computing near-conformal maps,
and fully avoids the use of descriptor functions. Furthermore, we
propose an efficient initialization and an iterative strategy for opti-
mizing this energy, while promoting desirable map properties. This
ensures high-quality correspondences even in challenging cases, in
which existing functional maps-based methods tend to fail.

In the following sections, we discuss each step of this pipeline
in detail. Throughout our discussion related to the basis construc-
tion and the structure of pointwise and functional maps, we focus
mainly on derivations in the smooth setting, to highlight the theo-
retically justified nature of our approach.

4. Functional Basis

Central to our proposal is a careful choice of functional basis for a
convenient functional space over the considered shapes. Our basis
is built as the union of the solutions to the Dirichlet Laplacian and
Dirichlet-Steklov eigenproblems, which we describe in Secs. 4.1
and 4.2, respectively. In Sec. 4.3 we define the functional space
that we use in the rest of the proposal. The constructions described
in these sections pertain to manifolds with boundaries and are not
yet specialized to our shape matching method, which can be used
both for shapes with and without boundaries. The specialization to
our case is carried out in Sec. 4.4. There, we describe how to create
a landmark adapted functional basis by, roughly speaking, treating
the landmarks as boundaries. All the constructions discussed in this
section are carried out in the smooth setting. Their discretization is
discussed in App. B.

4.1. Dirichlet Laplacian Eigenproblem

Let M be a smooth, connected, oriented compact Riemannian
manifold with metric g and a boundary ∂M. The Dirichlet Lapla-

ψ1 ψ2 ψ5 ψ10

S

D

D

S

Figure 4: Some Dirichlet-Steklov eigenfunctions of the same annu-
lus from Fig. 3. The Steklov boundary condition is imposed in turn
on the external (top row) and internal (bottom row) boundaries. No-
tice that the eigenfunctions concentrate on the Steklov boundary.

cian eigenproblem is:

∆ψi = λiψi

ψi

∣

∣

∂M
= 0 ,

(1)

where ∆ denotes the non-negative Laplace-Beltrami operator. De-
spite the vanishing boundary condition, it can be shown (see
[Cha84]) that the eigenfunctions {ψi}∞i=1 can be chosen to form an
orthonormal basis for L2(M) (square integrable functions of M).
Moreover, the eigenvalues and eigenfunctions can be ordered such
that 0 < λ1 ≤ λ2 ≤ ...→∞.

In Fig. 3, we illustrate the first few Dirichlet Laplacian eigen-
functions for an annulus in the plane with external radius 1 and in-
ternal radius 1/2. We will return to this example of the annulus in
our discussion to compare the properties of different bases that we
consider. We very briefly discuss the discretization of the Dirichlet
Laplacian problem on triangle meshes in App. B.

4.2. Dirichlet-Steklov Eigenproblem

Let M be a smooth, connected, oriented compact Riemannian
manifold with metric g and a Lipschitz continuous boundary ∂M.
Suppose that, up to sets of measure 0, ∂M consists of two dis-
joint nonempty open sets, denoted D and S. The (mixed) Dirichlet-
Steklov eigenproblem is posed as follows:

∆ui = 0

ui

∣

∣

D
= 0

∂nui

∣

∣

S
= σiui ,

(2)

where ∂n denotes the interior normal derivative. The second and
third line of the above are respectively known as the Dirichlet
and Steklov boundary conditions, explaining the name Dirichlet-
Steklov.

As hinted at in Sec. 3 and explained in detail in Sec. 4.4, in our
approach, S will be the boundary corresponding to a given land-
mark, while D will be the union of all other landmark boundaries.

The general theory of the Dirichlet-Steklov and many other sim-
ilar problems can be found in [Neč12]. For a gentle introduction to
Steklov eigenproblems, see [Lab17] (in French).
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The eigenvalues {σi}∞i=1 can be ordered such that 0< σ1 ≤ σ2 ≤
...→∞. Unlike the eigenfunctions of the Laplacian eigenproblem,
the Dirichlet-Steklov eigenfunctions do not form an orthonormal
basis for L2(M). Instead, the restriction of {ui}∞i=1 to the boundary
S form such a basis for L2(S) (see [Neč12]).

We emphasize that, in contrast to previous uses of the Steklov
eigenproblem in [WBPS18], we consider a purely intrinsic prob-
lem on the shape surface. I.e., as described in detail in Sec. 4.4
our boundaries are one-dimensional, being the boundaries of disks
centered at the landmarks.

As it is written above, the Dirichlet-Steklov problem may seem
a bit mysterious. However, it becomes much more approachable
when written in weak form:∫

M
∇ f ·∇ui dM= σi

∫
S

f ui d(∂M) . (3)

In this form, it can be compared to the standard Laplacian eigen-
problem:

∫
M

∇ f · ∇ψi dM = λi

∫
M

f ui dM. Intuitively, and as
we demonstrate in practice, the Dirichlet-Steklov eigenfunctions
“focus” on the boundary S and provide detailed information in the
vicinity of this boundary. As discussed below, in our method we
establish one set of Dirichlet-Steklov eigenfunctions for each land-
mark, and align those functional spaces across the pair of shapes.

A derivation of the weak form of the Dirichlet-Steklov problem
is provided in App. A. The discretization of the resulting problem
on triangle meshes is discussed in App. B.

We illustrate some Dirichlet-Steklov eigenfunctions for the an-
nulus in Fig. 4. Notice that the eigenfunctions concentrate on the
boundary on which the Steklov boundary condition is imposed.

4.3. Functional Space W (M)

In this section, we specify the functional space used for the remain-
der of our proposal. Recall that our goal is to obtain a variant of the
functional maps method suitable for non-isometric shape matching.
We propose to search for near-conformal maps.

We thus need to translate the search for near-conformality to the
functional maps setting. We do so by building upon the founda-
tions laid in the context of conformal shape differences [ROA*13;
CSB*17]. Given a pair of surfaces M and N , in [ROA*13], it is
observed that to study the deviation from conformality of a map
ϕ : N → M, it is useful to consider its pullback FMN as a map
between spaces of functions equipped with the Dirichlet form:

〈 f ,u〉
W (M) =

∫
M

∇ f ·∇u dM . (4)

The Dirichlet form becomes an inner product on the space of
smooth functions modulo constant functions. A Hilbert space is
then obtained by taking the completion of the space in the induced
topology. We denote the space thus obtained by W (M). We remark
that this space is different from the standard L2 space of square
integrable functions, due to the additional smoothness conditions.
Below we describe both the properties and the utility of this space
in the context of our landmark-based shape matching approach.

4.4. Landmark-Adapted Basis for W (M)

As highlighted above, a key aspect of our approach is the construc-
tion of a novel functional basis that is adapted to the landmarks.

Our main idea is to treat the landmarks as boundaries at which
the functional bases satisfy certain boundary conditions. For this,
we first slightly modify the shapes under study. Indeed, while ad-
vocated in several prior works [ZRKS05; Pat18] in geometry pro-
cessing, it is not strictly speaking possible to impose boundary con-
ditions at isolated points in the smooth setting.

Let M and N be compact, connected, oriented Riemannian
surfaces. For simplicity, we also temporarily assume them to
be without boundary. This last assumption is removed later. Let
{γM

i }k
i=1 ⊂ M and {γN

i }k
i=1 ⊂ N be k landmarks in one-to-one

correspondence. That is, we will be looking for maps ϕ : N →M
such that ϕ(γN

i ) = γM

i for all i = 1...k. Such ϕ are said to be land-
mark preserving. The functional map representation of ϕ, that is its
pullback on functions, will be denoted FMN , as before.

Our first step is to convert the landmarks into proper boundaries.
We do so by removing small disks centered at the landmarks and
treat the boundaries of these disks as boundaries of the shapes. We
make sure that none of the disks intersect. Thus, we end up with
a new shape that has k boundary components, one for each land-
mark. We denote the boundary corresponding to the landmark γM

i

by ΓM

i . By abuse of notation, we denote the shapes thus modified
by M and N , same as their original versions. On triangle meshes,
we create boundaries that are fully contained in a one-ring neigh-
borhood of each landmark. This operation is described in detail in
App. C.

We now use the newly created boundaries to split W (M) into
convenient subspaces. These subspaces will be composed of func-
tions satisfying carefully chosen eigenvalue problems and bound-
ary conditions.

We begin by considering the span of Laplace-Beltrami eigen-
functions satisfying Dirichlet boundary conditions on the {Γi}i:

∆ψi = λiψi ,

ψi

∣

∣

Γ j

= 0 , ∀i, j.
(5)

Recall that the eigenfunctions {ψi}∞i=1 form a orthonormal ba-
sis for L2(M). They remain mutually orthogonal in W (M), but
interestingly fail to form a full basis for that space. This counter-
intuitive behavior is due to the change of topology from L2(M)
to W (M) and the infinite dimensionality of the functional spaces
under consideration.

Let the W (M) closure of the subspace spanned by the {ψi}∞i=1
be denoted by G(M).

Naturally, our next step is to find functions that span the remain-
der of W (M). This is where the Dirichlet-Steklov eigenfunctions
of Sec. 4.2 come in. We pose k Dirichlet-Steklov problems, with
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the jth problem being:

∆u
( j)
i = 0

u
( j)
i

∣

∣

Γq

= 0, q 6= j

∂nu
( j)
i

∣

∣

Γ j

= σ
( j)
i u

( j)
i .

(6)

This results in k Dirichlet-Steklov eigenbases and spectra denoted

{u
( j)
i }∞i=1 and {σ

( j)
i }∞i=1, respectively. Recall that the {u

( j)
i }∞i=1

form an orthonormal basis for L2(Γ j). These functions remain mu-
tually orthogonal in W (M). This follows directly from the weak
form of the Dirichlet-Steklov problem (Eq. (3)). We denote the

W (M) closed span of the {u
( j)
i }∞i=1 by H j(M).

Our key result is that, once put together, the Dirichlet Laplacian
eigenfunctions and the k sets of Dirichlet-Steklov eigenfunctions
span all of W (M).
Lemma 1. The function space W (M) admits the following decom-

position:

W (M) = G(M)⦹





k⊕
j=1

H j(M)



 , (7)

where ⊕ denotes direct sums and ⦹ denotes orthogonal direct

sums, and the overline denotes the W (M) closure of the spanned

functional space.

Proof. See App. D.

Intuitively, the above lemma says that W (M) can be split into a
non-harmonic part and k harmonic landmark-associated subspaces,
with each landmark getting its own subspace of harmonic func-
tions that are nonvanishing on it. In practice, we always W (M)-
normalize all of the considered eigenfunctions by dividing each
function by its W norm. In all of the following, we use W (M)-
normalized bases.

The resultant basis is thus normalized. However, it is not quite
W (M)-orthogonal, as suggested by the notation used Lemma 1.
Specifically, the problem lies in the mutual non-orthogonality of
the subspaces H j(M). This is discussed in App. D.

In principle, the energy that we are to minimize (see Sec. 5 be-
low) can be expressed in any basis, even if it is not orthogonal. For
our purposes, however, the non-orthogonality of our basis poses a
few challenges, which will be detailed later. Fortunately, in prac-
tice, our basis can be accurately approximated as orthonormal. A
typical matrix of W (M) inner products is shown in Fig. 5 (see
App. H for an extended evaluation of this approximation). In Fig. 6
we evaluate the orthonormality in the case of the 2D annulus and
observe that it becomes more and more valid as the radius of the
inner disk becomes smaller. We will call attention to this approxi-
mation when we use it in the implementation of our proposal.

Before proceeding further, we note briefly that on shapes with
pre-existing boundaries we impose Neumann boundary conditions
(vanishing normal derivatives). The above discussion remains un-
changed. Note that imposing Neumann boundary conditions re-
quires no special effort in the discrete setting.

Figure 5: W -inner products for the first 20 Dirichlet-Steklov eigen-
functions corresponding to six landmark circles on a sphere mesh
(left). The first three landmarks are on the top left and the remaining
three are on the bottom right. Notice that the different Hi subspaces
are almost orthogonal.

ri = 0.8 ri = 0.5 ri = 0.1

Figure 6: W -inner products for the first 30 Dirichlet-Steklov eigen-
functions corresponding to the two boundaries of the annulus. The
external radius of the annulus is 1, while different values of the
internal radius ri are considered. H1 and H2 correspond to the in-
ternal and external boundaries of the annulus, respectively. In this
case, approximation of orthogonality of H1 and H2 fails for a large
ri, but becomes more and more valid as ri decreases.

We now illustrate our functional basis using the landmark cir-
cles and Neumann boundary conditions on both the inner and outer
boundary of the annulus in Fig. 7. Notice that as their eigenvalue
increases, the Dirichlet-Steklov eigenfunctions rapidly concentrate
on the landmark circles. In fact, the eigenfunctions of the closely
related Steklov eigenproblem (i.e. without the Dirichlet boundary)
are known to decay exponentially with distance from the Steklov
boundary, the rate of decay being proportional to the correspond-
ing eigenvalue [PST19]. In contrast, the Dirichlet-Laplacian eigen-
functions remain evenly spread in the bulk of the shape. Thus, high
eigenvalue Dirichlet-Steklov eigenfunctions are uninformative re-
garding the bulk of the manifold. Meanwhile, the high eigenvalue
Dirichlet Laplacian eigenfunctions remain informative in the bulk
even at high eigenvalues.

So far, we assumed that the considered shapes were connected.
Our discussion remains unchanged on general shapes, as long as
each connected component has at least two landmarks on it, as this
is necessary to impose both boundary conditions of the Dirichlet-
Steklov eigenproblem. If this is not satisfied for some connected
component, at least some of the considered eigenproblems will
have eigenfunctions that are piecewise constant per component and
correspond to eigenvalue 0. These should not be included in a basis
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Figure 7: Dirichlet-Steklov (top row) and Dirichlet Laplacian (bot-
tom row) eigenfunctions on an annulus with three landmark cir-
cles and Neumann conditions on inner and outer boundaries. The
Dirichlet-Steklov eigenfunctions correspond to the landmark on the
right. Notice that as the eigenvalues increase, the Dirichlet-Steklov
eigenfunctions quickly concentrate around the corresponding land-
mark, unlike the Dirichlet Laplacian eigenfunctions that remain
distributed in the bulk of the annulus.

for W (M), as they have vanishing W−norm. We avoid this issue
by rejecting eigenfunctions with eigenvalues below a certain small
threshold. Note that for components with one landmark we only
impose the Steklov condition on the corresponding circle, omitting
the second line of Eq. (2).

4.5. Structure of the Functional Map

Recall that our ultimate goal is to compute a near-conformal diffeo-
morphism ϕ : N → M that preserves the landmarks. Recall also
that we propose to use functional map methods to find it. In this
section we translate the structural properties of ϕ into properties of
its pullback FMN which helps us to restrict the space of admissible
functional maps, which is crucial for our approach.

We begin on a technical note. Since we have replaced landmark
points with landmark circles, the notion of landmark preservation
has to be slightly adjusted. We no longer can claim something as
simple as ϕ(γN

i )= γM

i for all i, as the landmark points are no longer
part of the considered shapes. Instead we impose that ϕ restricts
to a diffeomorphism on corresponding landmark circles. That is,
ϕ : N →M is a diffeomorphism and for each i, ϕ|ΓN

i
: ΓN

i → ΓM

i

is also a diffeomorphism.

Now, suppose that ϕ is indeed a conformal map. Then, FMN

satisfies the following lemma.
Lemma 2 (Structure of FMN ). Let FMN : W (M)→W (N ) be the

pullback of a conformal diffeomorphism that preserves the land-

mark circles in the sense described above. Then, FMN maps

1. G(M) to G(N ),
2. H j(M) to H j(N ) for all j.

Proof. See App. E.

The above lemma provides necessary, but not sufficient condi-
tions for FMN to be the pullback of a diffeomorphism preserving
the landmark circles. Nonetheless, we will use properties (1) and
(2) of Lemma 2 to structure our search for FMN .

From now on, we only consider functional maps that satisfy
statements (1) and (2) of Lemma 2. This can be seen as k+1 sep-
arate maps, one for each landmark subspace Hi and one for the or-
thogonal complement G, assembled into one block-diagonal func-
tional map. Intuitively, this keeps the overall map tethered to the
landmarks.

Landmark preservation At this point, it is worth explaining what
we mean when we say that our method preserves the landmark cor-
respondences in the discrete setting. Indeed, the challenge of land-
mark preservation is to not merely enforce the condition ϕ(γN

i ) =
γM

i , but to also obtain a smooth (or at least continuous) map in
the neighborhood of the landmarks (notice that we required ϕ to
be a diffeomorphism when discussing the smooth setting). Our
method achieves this by using a functional basis whose elements
are well suited to describe smooth functions near the landmarks (re-
call the decay of the Dirichlet-Steklov eigenfunctions away from
the Steklov boundary depicted in Fig. 7). By enforcing the func-
tional map structure of Lemma 2 during the entire solution process,
we promote vertex-to-vertex maps that smoothly map the neighbor-
hoods of the landmarks of N to the corresponding neighborhoods
on M, the smoothness of the map reflecting the smoothness of the
functional basis. Furthermore, we reinsert the original pointwise
landmarks at the end of the solution process to preserve the initial
landmarks exactly. Recall that the landmark vertices are excluded
from the meshes the moment the landmark circles are introduced.

5. Functional Map Energy

The previous section describes our landmark adapted basis con-
struction, and the block-diagonal structure of landmark-preserving
conformal maps when expressed in this basis. In this section we
specify the optimization problem that we will solve in order to ob-
tain landmark-preserving maps between triangle meshes.

Recall that we propose to look for conformal maps, which can be
characterized in terms of the Dirichlet form (W (M) inner product).
Theorem 3. Let ϕ : N → M be a diffeomorphism between ori-

ented Riemannian surfaces with pullback FMN : W (M)→W (N ).
Then, ϕ is conformal if and only if

〈u,v〉
W (M) = 〈FMN u,FMN v〉

W (N ) , ∀u,v ∈W (M) . (8)

Proof. See [ROA*13].

In practice we do not expect to obtain an exact equality of the
inner products as described in the previous theorem. Instead, we
will search for ϕ and FMN by relaxing the above equality to a min-
imization problem. Let ΦM and ΦN denote reduced (finite dimen-
sional) functional bases for W (M) and W (N ), respectively. These
bases consist of the eigenfunctions of the Dirichlet Laplacian and
Dirichlet-Steklov eigenproblems corresponding to small eigenval-
ues. The precise size of the bases is discussed in App. H.

From now on, we concentrate our attention on the discrete case.
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Namely, M and N will now denote oriented manifold triangle
meshes. Letting 〈ΦM ,ΦM〉

W (M)
be the matrix of all inner prod-

ucts of the normalized basis vectors of ΦM , we relax the equality
of Theorem 3 to the minimization of the following energy term:

Ec(FMN ) =
∥

∥

∥〈ΦM ,ΦM〉
W (M)

−〈FMN ΦM ,FMN ΦM〉
W (N )

∥

∥

∥

2

F
.

(9)

We call this the conformal term of the energy. Here, as well as
everywhere else in this text, ‖ · ‖F denotes the Frobenius norm.

Having covered the conformality of the map, it remains to
rephrase the restriction of FMN to pullbacks of landmark-
preserving diffeomorphisms. This assumption cannot be exactly
imposed in the discrete case. Still, we would like FMN to exhibit
the properties of such a map. In order to do so, we complete our en-
ergy by specifying two structural terms. Specifically, the first term
promotes FMN being a proper functional map (i.e., the pullback of
a vertex-to-vertex map), as recently defined in [RMWO21], and the
second promotes the invertibility of FMN [ERGB16].

Let ΠNM denote the vertex-to-vertex map from N to M ex-
pressed as a matrix (i.e. a binary matrix that contains exactly one 1
per row). Then, FMN should satisfy:

FMN = (ΦN )+ ΠNMΦM , (10)

where (ΦN )+ denotes the pseudoinverse of ΦN , or in other words,
the W (N ) projection onto the reduced basis ΦN . As before, we
relax the equality into an energy to be optimized:

Ep(FMN ,ΠNM) =
∥

∥

∥(ΦN )+ ΠNMΦM −FMN

∥

∥

∥

2

F
. (11)

We call this the properness term of the energy. Notice that we have
expressed the energy as a function of both F and Π. We do so as
we will have to consider these two objects as independent variables
when minimizing the energy. The exact meaning of this is discussed
in Sec. 6.

In addition to FMN arising from a point-to-point map, we would
also like for it to be invertible. For this, we consider two maps
FMN : W (M) → W (N ) and FNM : W (N ) → W (M), the latter
arising from a vertex-to-vertex map ΠMN : M → N . Thus, in
what follows, we will be simultaneously optimizing for maps go-
ing in both directions between the shapes. With I being the identity
matrix, the invertibility condition is, of course:

FNMFMN = I ,

FMN FNM = I .
(12)

Once again, we convert the above into minimization form. The in-

vertibility term corresponding to the first line above is

EI,MN (FMN ,FNM) =‖FMN FNM − I‖2
F . (13)

The invertibility term EI,NM is defined analogously.

In sum, our search for the correspondence between M and N
will involve the joint minimization of the energy

EMN = aC Ec(FMN ) +

aP Ep(FMN ,ΠNM) +

aI EI,MN (FMN ,FNM)

(14)

and an analogously defined energy ENM . Here, aC,aP and aI are
nonnegative tunable weights controlling the relative strength of the
conformality, properness and invertibility terms, respectively. Dif-
ferent values of these parameters are explored in App. H.

The above energy is conformally invariant in the following
sense.
Lemma 4 (Energy Invariance). The conformality, properness and

invertibility terms of the energy (Eqs. (9), (11) and (13)), as well

as the energy (their weighted sum, Eq. (14)) are invariant under

(combinations of) the following transformations:

1. Conformal transformations of the meshes keeping the reduced

bases fixed.

2. Orthogonal transformations of the reduced bases.

Proof. Let the functional and vertex-to-vertex maps be fixed. Since
conformal transformations leave the W inner product invariant, the
energy terms are conformally invariant for a fixed choice of func-
tional basis. Statement 1. is now proven. Statement 2. follows from
the fact the Frobenius norm is invariant under orthogonal transfor-
mations.

Note that, in the lemma above, conformal transformations and
changes of basis are treated as independent. In practice, they are
not, as reduced bases are usually mesh-dependent. Thus, the change
of basis induced by a conformal transformation may fail to be or-
thogonal and then Lemma 4 will not apply. As long as one works
with reduced rather than full bases (i.e. spanning all functions of
the mesh), the invariance of the energy under conformal transfor-
mations is therefore only approximately guaranteed.

The conformal invariance of the energy can be violated in an-
other way. Suppose that the recipe for constructing the reduced
bases produces non-orthogonal bases. Then, the change of basis
induced by a conformal transformation may fail to be orthogonal
even when full bases are used.

Of course, we raise the previous two issues precisely because our
method uses non-orthogonal reduced bases. Thus, Lemma 4 does
not offer a full guarantee of conformal invariance for our energy.
Still, the bases that we use turn out to be very nearly orthogonal and
thus the energy that we employ remains approximately conformally
invariant. Obtaining a truly conformally invariant energy (at least
up to basis truncation) is a subject for future work.

6. Solving the Problem

In this section, we propose an efficient approach for the optimiza-
tion problem posed in Eq. (14). Our approach is inspired by a dis-
crete optimization strategy, first suggested in [MRR*19] and re-
cently extended to other general energies [RMWO21]. The general
idea is to recast the problem in a way that makes every iteration of
the optimization into a nearest-neighbor search. The overall process
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then consists of two qualitatively different parts. First, an initial
guess of the correspondence is obtained. Then, the correspondence
is refined via the iterative process mentioned above. These steps are
explained in Secs. 6.1 and 6.2, respectively.

6.1. Initial Correspondence

In this section we explain how we obtain an initial guess of
the functional maps FMN and FNM . A common way to initial-
ize functional maps with landmarks is via descriptor preservation
[OBS*12; RPWO18]. However, common descriptors such as HKS
or WKS [SOG09; ASC11] strongly rely on the isometry assump-
tion and moreover the initial functional map is not guaranteed to
respect landmark correspondences exactly. To overcome this, we
propose a simple and lightweight initialization scheme.

Recall that our approach upgrades landmark correspondence to
landmark circle correspondence. Moreover, in the smooth setting,
we require this correspondence to be a diffeomorphism. We now
make the assumption that the correspondence between landmark
circles can be seen as a rotation of one circle to match the other.

Specifically, we label the vertices of each landmark circle in
counter-clockwise order using the outward-facing normal orienta-
tion. We can then assign each vertex in a landmark circle coordi-
nates in [0,1). All that remains is to ensure that the origin of this
coordinate system is placed consistently on both shapes. In other
words, the matching of two corresponding landmark circles reduces
to finding an appropriate shift of one of the parametrizations.

We propose to align the parametrizations of the boundary circles
such that the landmark circles are consistently oriented relative to
the other landmarks. In order to do so, we construct functions on the
landmark circles that have maxima in directions roughly pointing
towards other landmarks. Consider the following problem:

∆hi = 0 , i = 1...k ,

hi

∣

∣

Γ j
= δi j .

(15)

This results in k harmonic functions, one for each landmark, where
each function hi equals 1 on the boundary of landmark circle i, and
zeros on the boundaries of other circles. As they stand, these func-
tions are constant on each landmark circle. Their normal deriva-
tives, however, are not. In essence, we use ∂n

∣

∣

Γi

h j as an indication

of the direction one should take from Γi to reach Γ j. See Fig. 8
for an illustration. This is similar in spirit to the Geodesics in Heat
construction [CWW13], where gradients of solutions to the heat
transfer problem are used to construct approximate geodesics.

Denoting the landmark circle coordinates on ΓM

i by θi, we select
the optimal shift αi by solving:

αi = argmin
α

(

∑
j 6=i

∥

∥

∥
∂n

∣

∣

ΓM
i

hM

j (θi)

−∂n

∣

∣

ΓN
i

hN

j (mod(θi −α,1))
∥

∥

∥

2

L2(ΓM
i )

)

.

(16)

In this problem, we consider each landmark i and examine direc-
tions to all other landmarks (via normal derivatives). We then align
the coordinates of landmarks on M and N so that these directions
align in the best possible way. This problem can be solved simply

Figure 8: Harmonic function satisfying Eq. (15) corresponding to
the top landmark on a disk with three landmark circles. Notice that
the gradient of the function roughly points towards the top land-
mark. Hence, its normal derivatives at the bottom landmark circles
can be seen as specifying the direction towards the top landmark.

by directly examining all possible shifts and taking the optimum.
In order to gain robustness to changes in triangulation, we first
project the normal derivatives (as circular functions ∂n

∣

∣

ΓM
i

hM

j (θ))

onto the reduced basis in order to remove spurious high frequency
components. Recall that this makes sense as the Dirichlet-Steklov
eigenfunctions belonging to landmark Γi form a basis for L2(Γi).

Converting the optimal shifts αi into vertex-to-vertex correspon-
dences on the landmark circles is a matter of a nearest-neighbor
search between the circular coordinates of the vertices of ΓM

i and
the αi-shifted coordinates of the vertices of ΓN

i .

It remains to convert the resulting vertex-to-vertex map into a
functional map. Once again, recall that our reduced basis contains
an L2 basis for each landmark circle. Thus, by using an expression
of the form of Eq. (10) we can construct functional maps between
Hi(M) and Hi(N ). Assembling the resulting maps into block-
diagonal matrices gives our initial guesses of FMN and FNM .

In App. G, we compare this approach to two alternative initial-
ization strategies, and demonstrate its relative advantages.

6.2. Energy Minimization via Nearest Neighbor Search

The procedure described in Sec. 6.1 provides a descriptor-free ini-
tial guess for the functional map. In this section we describe a re-
finement method that significantly improves the map.

Recall that we are looking for a vertex-to-vertex map by mini-
mizing an energy that depends on both the point-to-point and the
associated functional map (pullback). In [MRR*19] it is observed
that a particular case of such problems can be efficiently solved
by considering the two maps as being independent variables. This
observation was recently extended to a wide range of energies in
[RMWO21]. Following this line of work we will move all of the
difficult optimization on the side of the vertex-to-vertex map and
use Eq. (10) to restore the relationship between the maps.

Our main tool is the following result, standard in functional maps
literature [EB17; RMWO21], which allows one to reduce optimiza-
tion problems of a certain form to nearest neighbor searches.
Lemma 5. Let A be a symmetric positive-definite matrix inducing

the matrix norm ‖M‖2
A = Tr(MT AM). Let Φ be a reduced basis

orthogonal with respect to A, that is ΦT AΦ = I. Then, given n pairs

of matrices Xi and Yi, the following two expressions are equal:
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1. ∑
n
i

(

‖ΦT AΠXi −Yi‖2
F +‖(I −ΦΦT A)ΠXi‖2

F

)

2. ∑
n
i ‖ΠXi −ΦYi‖2

A

Moreover, if A is diagonal, minimizing the above expressions over

matrices Π that reflect point-to-point maps (i.e., binary matrices

that contain exactly one 1 per row) is equivalent to

min
Π

n

∑
i

‖ΠXi −ΦYi‖2
F . (17)

This problem can be solved via nearest-neighbor search between

the rows of the concatenated matrices [X1 ... Xn] and [ΦY1 ... ΦYn].

Proof. See [EB17] for a proof of a special case and [RMWO21]
(Lemma 4.1) for the general statement.

We first convert the energy of Eq. (14) into the form used in the
above lemma. For brevity’s sake, we will only develop the expres-
sion for FMN and ΠNM . The expression for the pair FNM and
ΠMN is analogous. As mentioned in Sec. 4.4, we approximate the
functional bases ΦM and ΦN to be orthonormal with respect to the
Dirichlet form. Then, the energy minimized by the desired FMN

and ΠNM becomes:

EMN = ac

∥

∥

∥
I − (FMN )T

FMN

∥

∥

∥

2

F

+ap

∥

∥

∥
(ΦN )T

WN ΠNMΦM −FMN

∥

∥

∥

2

F

+aI ‖FMN FNM − I‖2
F .

(18)

Here, we used the approximation of basis orthonormality in two
ways. First, we used it to evaluate the inner products in the confor-
mality term (first line of the above equation). Second, we used it to
express (ΦN )+ = (ΦN )T

WN , where WN is the so-called cotan-
gent Laplacian on N , which also corresponds to the piecewise lin-
ear finite element discretization of the Dirichlet form. We are still a
few modifications away from being able to apply Lemma 5 to this
problem.

We obtain the desired form for the expression by replacing cer-
tain instances of FMN with its expression in terms of the vertex-
to-vertex map ΠNM : (ΦN )T

WN ΠNMΦM . By using the fact that
‖I −FT F‖2

F = ‖FFT − I‖2
F and making this replacement, we ob-

tain:

EMN = ac

∥

∥

∥(ΦN )T
WN ΠNMΦM (FMN )T − I

∥

∥

∥

2

F

+ap

∥

∥

∥(ΦN )T
WN ΠNMΦM −FMN

∥

∥

∥

2

F

+aI

∥

∥

∥(ΦN )T
WN ΠNMΦMFNM − I

∥

∥

∥

2

F
.

(19)

Now, all of the terms of the above are of the form ‖ΦT AΠXi−Yi‖2
F ,

with WN playing the role of the matrix A. Our energy is thus of
the form of line (1) of Lemma 5, up to three terms of the form
‖(I−ΦΦT A)ΠXi‖2. Notice that (I−ΦΦT A) is the orthogonal pro-
jection onto the orthogonal complement of the reduced (approxi-
mately) orthonormal basis Φ. Thus, this term can be seen as a regu-
larizer penalizing solutions lying outside of the considered reduced
basis. Indeed, this is how this term is was originally introduced

in [EB17]. Consequently, by implicitly introducing the appropri-
ate regularizers we can use the first part of Lemma 5 to obtain the
following expression for the energy:

EMN = ac

∥

∥

∥ΠNMΦM (FMN )T −ΦN

∥

∥

∥

2

WN

+ap ‖ΠNMΦM −ΦN FMN ‖2
WN

+aI ‖ΠNMΦMFNM −ΦN ‖2
WN .

(20)

At this point we are forced to make an approximation. Namely, we
assume that the second part of the lemma applies, which would nor-
mally require WN to be diagonal. In other words, we convert the
problem into a nearest neighbor search without having the guaran-
tee of the equivalence of solutions. Despite this approximation, we
have observed that the resulting approach works remarkably well
in practice.

This finally brings us to the procedure that we use to minimize
the energy. As mentioned above, we will consider the functional
and vertex-to-vertex maps as independent variables. Thus, given
functional maps FMN and FNM , the point-to-point map ΠNM can
be found by solving the nearest-neighbor search problem:

ΠNM = NNS
(

[

ΦM (FMN )T ΦM ΦMFNM

]

,

[

ΦN ΦN FMN ΦN
]

)

.
(21)

Here NNS(A,B) denotes a set of nearest neighbor problems: for
each row of B among the rows of A. The vertex-to-vertex map
ΠMN can be obtained analogously. In sum, minimizing the energy
with respect to the vertex-to-vertex maps is also a recipe for con-
verting functional maps into vertex-to-vertex maps, while taking
into account the original functional map energy.

We are now ready to formulate the optimization algorithm. Fol-
lowing [MRR*19], the overall procedure is based on an iterative
spectral upsampling of the functional map. Specifically, we itera-
tively convert the functional map into a vertex-to-vertex map while
increasing the size of the reduced basis. As explained earlier (see
Fig. 7), the Dirichlet-Steklov functions are concentrated near the
landmark circles. Thus, increasing their number does not provide
much additional information about the map in the bulk of the
shapes. Thus, we only increase the number of Dirichlet Laplacian
eigenfunctions.

Beginning from the initial functional maps FMN and FNM ob-
tained in Sec. 6.1, we proceed as follows.

1. Convert FMN and FNM into ΠNM and ΠMN via Eq. (21).
2. Increase the reduced bases ΦM and ΦN by including kstep ad-

ditional Dirichlet Laplacian eigenfunctions.
3. Update the functional maps to the new basis size via FMN =

(ΦN )+ ΠNMΦM and FNM = (ΦM)+ ΠMN ΦN .
4. Iterate steps (1) to (3) until the desired basis size is reached.
5. Repeat step (1) using only the original non-landmark ver-

tices. This produces a vertex-to-vertex map between the original
meshes, landmarks excluded.

6. Insert the landmark correspondence into the vertex-to-vertex
map.

A Fast Approximation. We conclude this section by proposing an
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acceleration strategy to perform the nearest-neighbor search. The
method proposed here is unprincipled, but is validated by both the
overall quality of our results and explicit tests found in App. G. The
method proposed below is the only one used in the main text of this
paper.

In the language of Lemma 5, we propose to replace the nearest
neighbor search between the concatenated matrices [X1 ... Xn] and
[ΦY1 ... ΦYn] by a nearest neighbor search between the summed
matrices X1 + ...+ Xn and ΦY1 + ...+ΦYn. This corresponds to
solving the following problem:

min
Π

∥

∥

∥

∥

∥

n

∑
i

ΠXi −ΦYi

∥

∥

∥

∥

∥

2

F

. (22)

This reformulation helps to decrease the dimensionality of the near-
est neighbor searches. Essentially, we assume that the different en-
ergy terms will not cancel each other. The payoff for this approxi-
mation is that the matrices involved in the nearest-neighbor search
become n times smaller. In our case, there are n = 3 energy terms.
The experiments in App. G show that this reduction in matrix size
results in a slightly more than threefold speed-up.

7. Evaluation

We evaluate our method† on standard shape matching datasets,
which we describe in Sec. 7.1. We first analyze the parameters
involved in our computations (Sec. 7.2). Second, we conduct an
in-depth evaluation to compare our method to state-of-the-art ap-
proaches on shape matching benchmarks (Sec. 7.3).

For our quantitative evaluation in Fig. 12 (right), Fig. 14, Fig. 16
and Fig. 18, we follow the commonly-used protocol, introduced in
[KLF11] by plotting the percentage of correspondences below a
certain geodesic distance threshold from the ground truth.

7.1. Datasets

We perform all our experiments on the following datasets.

FAUST [BRLB14]. This dataset contains models of ten differ-
ent humans in ten poses each. Despite the variability in the body
types of said humans, this dataset is typically considered as near-
isometric. We remesh the shapes of the dataset to shapes with ap-
proximately 5K vertices and use 300 shape pairs following the pro-
cedure of the authors of [RPWO18]. Note that the shapes in ques-
tion are remeshed independently and do not share the same connec-
tivity.

TOSCA [BBK08]. This dataset consists of meshes of humans
and animals. Following [RPWO18], we split this dataset into iso-
metric and non-isometric shape pairs. We call the resulting datasets
TOSCA isometric (284 shape pairs) and TOSCA non-isometric (95
shape pairs) respectively. The shapes of these datasets are remeshed
independently to count around 5K vertices per shape. Once again,
the remeshed shapes have distinct connectivity.

† Our code is available at https://github.com/mpanine/

DirichletSteklovLandmarkMatching
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Figure 9: Impact of the r f parameter on the shape matching quality.
The mean geodesic error is averaged on the 95 shape pairs of the
TOSCA non-isometric dataset (remeshed to 5K vertices). Notice
how stable our method remains, even for extreme values of r f .

SHREC’19 [MMR*19b]. This challenging dataset is composed
of human shapes with high variability in pose, vertex count (rang-
ing from 5K to 200K vertices) and topology (some shapes are wa-
tertight manifold meshes whereas other have holes and other sur-
face noise sources).

FAUST “Wild” [SACO20]. This dataset is a variant of FAUST
in which challenging differences in connectivity are introduced via
remeshing. We use the following types of remeshing of the dataset:
a uniform isotropic remeshing (iso), a remeshing where randomly
sampled regions are refined (dense), and the remeshing proposed
in [GH97] (qes). Finally, we consider correspondences across the
20 template models of the dataset instead of solely considering the
initial template shape as the source shape.

SHREC’20 [DLR*20]. This dataset proposes a collection of
14 animal shapes with a set of landmarks determined by experts.
The animal pairs contain parts in correspondence with highly non-
isometric deformations. We only consider the correspondences be-
tween full shapes for our experiments (test sets 1 to 4).

7.2. Parameter Study

We present here the main results concerning the parameters of our
method. Other minor experiments on this topic are presented in
App. H (influence of the weights in the energy, qualitative illustra-
tion of the impact of landmark placement, near-orthogonality as-
sessment for our basis and study of the effect of basis size).

7.2.1. Radius r f

The construction of the landmark boundaries Γi explained in
App. C relies on the user-defined scalar parameter r f ∈ (0,1). In
Fig. 9, we study the influence of r f on the geodesic matching error
averaged on the TOSCA non-isometric dataset, with 7 landmark
correspondences at their standard locations (see App. I). It demon-
strates empirically that this parameter has no significant impact on
the matching performance. We therefore set r f = 0.5 in all our other
experiments.

7.2.2. Landmark placement

In order to study the influence of landmark placement on our
method, we conduct the following experiment on 10 shapes of the
TOSCA Isometric dataset (cat category). We consider an increas-
ing number of landmark correspondences, ranging from 3 to 100,
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Figure 10: Error summary when increasing the number of land-
marks k for different surface sampling strategies. The mean
geodesic error on 10 cat shapes of the TOSCA Isometric dataset
is reported. “FPS” stands for Farthest Point Sampling.
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Figure 11: Error summary when increasing the number of land-
marks k for two surface sampling strategies. The mean geodesic
error on 95 shape pairs of the TOSCA non-isomatric dataset with 3
different seed initializations for each pair is displayed. “FPS” and
“std dev.” respectively stand for Farthest Point Sampling and stan-
dard deviation.

placed according to four standard surface sampling strategies: (i)
random, (ii) euclidean farthest point (iii) geodesic distance farthest
point (iv) Poisson disk (as implemented in [Jac*18]). The outcome
of these experiments is illustrated in Fig. 10. The farthest point
sampling strategies result in the fastest decrease of the error, Pois-
son disk is slightly slower and random placement is predictably the
slowest. This indicates that our method performs best when the ex-
tremities of the shapes are prioritized for landmark placement. The
landmark placement used in the benchmarks of Sec. 7.3 makes use
of this observation (see App. I for details).

To complement the above experiment, we show the variance of
our method when initializing two sampling strategies with 3 differ-
ent seeds in Fig. 11 on the full TOSCA non-isomtric dataset.

7.2.3. Remeshing invariance

In order to show that our method remains applicable on shapes with
different triangulations, we remesh independently the target pair of
each FAUST shape pair and compute the mean geodesic error in
Fig. 12 (left). We additionally experiment with the FAUST “Wild”
dataset created in [SACO20] to assess invariance to the remeshing
proposed by the authors. Fig. 12 (right) and Tab. 1 present the out-
put of this experiment. We observe marginal difference when con-
sidering the various remeshing approaches tested, which highlights
the insensitivity of the proposed approach to the shape connectiv-
ity. Fig. 13 illustrates qualitatively the median transfer obtained on
this dataset.
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Figure 12: Left: remeshing stability when varying the triangle re-
duction factor r of the target shape. The geodesic error, averaged
over 300 test pairs of the FAUST data set, slightly increases when
the target mesh becomes coarse (low value of r). Right: stability of
our method when performing resmeshings on the FAUST dataset
(Remeshed to 5K vertices and FAUST “Wild” (see Sec. 7.1) ). The
geodesic error is measured in mean geodesic distance ×100 after
normalizing by the geodesic diameter. The mean values, mean ex-
ecution times and vertex counts for each remeshing is presented in
Tab. 1.

Figure 13: Qualitative illustration of the median map quality ob-
tained with our method on three types of remeshing in the FAUST
“Wild” dataset (see Sec. 7.1). Despite the great disparity of the un-
derlying meshes, our method provides smooth transfers.

7.3. Benchmarks

In this section, we describe the competing state-of-the-art methods
that we employ (Sec. 7.3.1) and present our main results for shape
matching (Sec. 7.3.2).

7.3.1. Setup

We compare our method against three competitors that lever-
age landmark information to compute correspondences between
shapes. The detailed setup for each method, including the landmark
placement is provided in App. I. The competing methods are:

vtx5k iso dense qes

Geo. Err. 13.7 14.3 14.1 14.2
nv 5001 7117 13399 14002

Exec. t. (s) 7.3 8.35 13.75 14.1

Table 1: Stability of our method when performing resmeshings on
the FAUST dataset. The geodesic error (geo. err.) is measured in
mean geodesic distance ×100 after normalizing by the geodesic
diameter. The corresponding error curves are displayed in Fig. 12
(right). The execution time (exec. t.) is also reported, along with the
mean number of vertices for each remeshing type (nv).
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Figure 14: Error summary on the FAUST (left) and TOSCA Iso-
metric dataset (right). The geodesic error is measured in mean
geodesic distance ×100 after normalizing by the geodesic diam-
eter.

Hyperbolic Orbifold Tutte Embeddings (hyperOrb) [AL16]
constructs a parameterization of each surface by embedding the
points to the hyperbolic plane. The surfaces are cut along the in-
put correspondences, which are de facto preserved.

Weighted Averages (WA) [PBDS13] also defines a parameteri-
zation of the input surfaces that preserves landmarks exactly: each
point at the surface is expressed as a weighted average of its dis-
tance to a set of landmarks.

Functional Maps With ZoomOut Refinement (FMap

ZO) [MRR*19] computes correspondences between shapes by
leveraging a functional basis defined on the source and target
shapes. While the method does not allow to retrieve exact corre-
spondence between user-specified landmarks, it constitutes the cur-
rent state-of-the-art method for isometric shape matching.

7.3.2. Results

In this section, we present our main results on shape matching.

Isometric shape matching. The evaluation on FAUST and
TOSCA Isometric are illustrated in Fig. 14, with averaged er-
rors and runtimes displayed in Tab. 2. On the FAUST data set,
our approach remains competitive with a mean geodesic error of
1.40 × 10−2 and a mean computation time of 8.83 s. On the
TOSCA isometric data set, we obtain a slightly better average
geodesic error score than competitors. Qualitatively, our method
produces smooth texture transfers on both data sets, as highlighted
in Fig. 15.

Non-isometric shape matching. We run an evaluation of our
method on the TOSCA non-isometric and the SHREC’20 datasets
(Fig. 16). The mean error values and timings are showed in Tab. 3.
In this challenging setup, our method has the best results in terms
of mean geodesic error, while being the second best in terms of
computation time. Fig. 17 presents a qualitative evaluation using a
texture transfer on a pair of shapes for each data set.

SHREC’19 benchmark. The quantitative evaluation is reported
in Fig. 18, with the associated averaged geodesic errors on the right
of the figure. Our method obtains the best mean geodesic error
score for this difficult benchmark. In addition, a qualitative evalua-
tion via texture transfer is depicted in Fig. 19. Our method’s strong

Method Data Set Av. Geo. Err. Av. Time (in s.)

FMap ZO
FAUST 1.23×10−2 5.93

TOSCA Iso. 1.95×10−2 6.27

HyperOrb
FAUST 2.19×10−2 26.8

TOSCA Iso. 2.10×10−2 10.5

WA
FAUST 4.08×10−2 59.3

TOSCA Iso. 5.26×10−2 81.0

Ours
FAUST 1.40×10−2 8.83

TOSCA Iso. 1.90×10−2 11.3

Table 2: Quantitative evaluation results on the remeshed FAUST
and TOSCA Isometric (TOSCA Iso.) data sets. The average
geodesic error (Av. Geo. Err.) and average execution time (Av.
Time) on both data sets are displayed for our method and com-
peting approaches.

FAUST

TOSCA

Source HyperOrb WA FMap ZO Ours

Figure 15: Qualitative evaluation of our method and competing ap-
proaches on isometric shapes. The first row corresponds to shapes
from the FAUST data set. The bottom row consists of shapes from
the TOSCA isometric data set. The shape pair is selected such that
the geodesic error of our method is median over the dataset. The
best and worst cases are illustrated in App. G.
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Figure 16: Error summary on the TOSCA non-isometric (left) and
on the SHREC’20 lores dataset (right).
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TOSCA

SHREC’20

Source HyperOrb WA FMap ZO Ours

Figure 17: Qualitative evaluation of our method and competing approaches on non-isometric shapes. The first row corresponds to shapes
from the TOSCA non-isometric data set. The bottom row consists of shapes from the SHREC’20 lores data set. Each shape pair is selected
such that the geodesic error of our method is median over the dataset. The best and worst cases are illustrated in App. G.

Method Data Set Av. Geo. Err. Av. Time (in s.)

FMap ZO
TOSCA n-i. 1.10×10−1 7.78

SHREC’20 7.86×10−2 27.9

HyperOrb
TOSCA n-i. 4.33×10−2 17.8
SHREC’20 5.78×10−2 270

WA
TOSCA n-i. 6.50×10−2 79.7
SHREC’20 7.62×10−2 140

Ours
TOSCA n-i. 4.11×10−2 13.5
SHREC’20 5.09×10−2 63.8

Table 3: Quantitative evaluation results on the TOSCA non-
isometric (n-i.) and the SHREC’20 lores (without partial shapes)
data sets. The average geodesic error (Av. Geo. Err.) and average
execution time (Av. Time) on both data sets are displayed for com-
peting approaches and our method.
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Method Av. Geo. Err.

FMap ZO 3.84×10−2

HyperOrb 3.26×10−2

Ours 2.48×10−2

Figure 18: Error summary on 165 shapes of the SHREC’19 data
set. The average geodesic error (Av. Geo. Err.) is displayed for our
method and competing approaches.

performance on this dataset is indicative of its stability and appli-
cability across diverse changes in shape topology, such as the in-
troduction of small holes. This is a general feature of the functional
maps methods, which our approach inherits.

Source HyperOrb FMap ZO Ours

Figure 19: Qualitative evaluation of our method and competing ap-
proaches on a shape pair from the SHREC’19 data set, selected
such that the geodesic error of our method is median over the
dataset. The best and worst cases are illustrated in App. G.

8. Conclusion, Limitations and Outlook

We have proposed an efficient functional maps-based shape match-
ing approach that promotes conformal maps and exactly preserves
landmark correspondences. This was achieved via the introduction
of a novel functional basis and an energy promoting bijective con-
formal maps. The efficiency of our solution comes from an adapta-
tion of the ZoomOut procedure [MRR*19; RMWO21] using our
energy and novel basis. The resulting method exhibits state-of-
the-art performance on non-isometric benchmark datasets and near
state of the art performance on isometric ones.

Recall, however, that our usage of the ZoomOut procedure was
not fully principled. Indeed, we needed to make some approxima-
tions in order to use Lemma 5, which converts certain optimiza-
tion problems into nearest-neighbor searches. The quality of our
results indicates that our approximations were justified, suggest-
ing that Lemma 5 could likely be rigorously extended to suit our
needs. In fact, extending Lemma 5 would be of general interest
to the functional maps community, as it would enable the efficient
minimization of various other energies.

The construction of our landmark-adapted basis required us to
upgrade the landmarks to proper boundaries. We did so by cutting
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out small disks centered at the landmarks, resulting in the introduc-
tion of landmark circles. The landmark circles offer an intriguing
possibility that we have not explored here. Namely, one could
augment landmark correspondence to include a user-specified
matching of the landmark circles. This could allow for greater
semantic or artistic control of the resulting map. Our initialization
procedure of Sec. 6.1 can be seen as an automated implementation
of a similar idea.

Furthermore, since our present work has demonstrated the fruit-
fulness of landmark-adapted bases, it is natural to ask whether bet-
ter performance can be achieved by improving upon basis con-
struction. In particular, we have noted that the Dirichlet-Steklov
eigenfunctions have their amplitude intensely concentrated near the
landmark circle equipped with the Steklov boundary condition (see
Fig. 7). It seems likely that an analogous basis with less concen-
trated functions could be better suited to describe the behavior of
the functional map near the landmarks. Notice that this dovetails
with the idea of user-specified landmark circle correspondence,
as the user-provided information would have impact further away
from the landmarks.
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[Sah20] SAHILLIOĞLU, YUSUF. “Recent advances in shape correspon-
dence”. The Visual Computer 36.8 (2020), 1705–1721 2.

[SCBK20] SCHMIDT, PATRICK, CAMPEN, MARCEL, BORN, JANIS, and
KOBBELT, LEIF. “Inter-surface maps via constant-curvature metrics”.
ACM Transactions on Graphics (TOG) 39.4 (2020), 119–1 3, 15, 21.

[SOG09] SUN, JIAN, OVSJANIKOV, MAKS, and GUIBAS, LEONIDAS. “A
concise and provably informative multi-scale signature based on heat dif-
fusion”. Computer graphics forum 28.5 (2009), 1383–1392 2, 9.

[SP04] SUMNER, ROBERT W and POPOVIĆ, JOVAN. “Deformation trans-
fer for triangle meshes”. ACM Transactions on Graphics (TOG) 23.3
(2004), 399–405 2.

[vKZHC11] Van KAICK, OLIVER, ZHANG, HAO, HAMARNEH, GHAS-
SAN, and COHEN-OR, DANIEL. “A Survey on Shape Correspondence”.
Computer Graphics Forum 30.6 (2011), 1681–1707. DOI: https://
doi.org/10.1111/j.1467-8659.2011.01884.x 2.

submitted to COMPUTER GRAPHICS Forum (5/2022).

https://doi.org/https://doi.org/10.1111/cgf.12064
https://doi.org/https://doi.org/10.1111/cgf.12064
https://doi.org/https://doi.org/10.1111/cgf.13389
https://casual-effects.com/data
https://doi.org/https://doi.org/10.1111/cgf.13309
https://doi.org/https://doi.org/10.1111/cgf.13309
https://doi.org/https://doi.org/10.1111/cgf.13124
https://doi.org/https://doi.org/10.1111/cgf.13124
https://doi.org/https://doi.org/10.1111/cgf.12429
https://doi.org/https://doi.org/10.1111/cgf.12429
https://doi.org/https://doi.org/10.1111/j.1467-8659.2010.01764.x
https://doi.org/https://doi.org/10.1111/j.1467-8659.2010.01764.x
https://doi.org/https://doi.org/10.1111/j.1467-8659.2011.01884.x
https://doi.org/https://doi.org/10.1111/j.1467-8659.2011.01884.x


M. Panine & M. Kirgo & M. Ovsjanikov / Non-Isometric Shape Matching via Functional Maps 17

[WBPS18] WANG, YU, BEN-CHEN, MIRELA, POLTEROVICH, IOSIF, and
SOLOMON, JUSTIN. “Steklov Spectral Geometry for Extrinsic Shape
Analysis”. ACM Transactions on Graphics (TOG) 38.1 (2018), 1–21 3,
5.

[Wra21] WRAP. RUSSIAN3DSCANNER: Wrap 2020.12.2. Oct. 2021.
URL: https://www.russian3dscanner.com/ 1.

[WZ14] WEBER, OFIR and ZORIN, DENIS. “Locally injective
parametrization with arbitrary fixed boundaries”. ACM Transac-

tions on Graphics (TOG) 33.4 (2014), 1–12 2.

[XLZ21] XIANG, RUI, LAI, RONGJIE, and ZHAO, HONGKAI. “A Dual It-
erative Refinement Method for Non-Rigid Shape Matching”. Proceed-

ings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR). IEEE, June 2021, 15930–15939 3.

[ZRKS05] ZAYER, RHALEB, RÖSSL, CHRISTIAN, KARNI, ZACHI, and
SEIDEL, HANS-PETER. “Harmonic Guidance for Surface Deformation”.
Computer Graphics Forum 24.3 (2005), 601–609. DOI: https : / /
doi.org/10.1111/j.1467-8659.2005.00885.x 3, 5.

Appendix A: Weak Form of the Dirichlet-Steklov Eigenproblem

In this appendix, we derive the weak form of the Dirichlet-Steklov
eigenproblem (Eq. (3)), in which it becomes very similar to the
weak form of the more familiar Laplacian eigenproblem. For suffi-
ciently smooth functions f and u, Stokes’ theorem implies that

∫
M

f (∆u) dM=
∫
M

∇ f ·∇u dM

−
∫

∂M
f (∂nu) d (∂M) .

(23)

Applying this to a ui satisfying the Dirichlet-Steklov eigenproblem
(Eq. (2)) and a smooth test function f vanishing on D yields

∫
M

∇ f ·∇ui dM=
✘

✘
✘
✘
✘
✘
✘
✘✿

0∫
M

f (∆ui) dM

+
∫

∂M
f (∂nui) d(∂M)

=
✘

✘
✘
✘
✘
✘
✘
✘✘✿

0∫
D

f (∂nui) d(∂M)

+
∫

S
f (∂nui) d(∂M) ,

(24)

where the first cancellation arises from the harmonicity of ui and
the second one from f vanishing on D. Finally, using the third line
of Eq. (2) results in the weak form of the Dirichlet-Steklov prob-
lem:

∫
M

∇ f ·∇ui dM= σi

∫
S

f ui d(∂M) . (25)

This can be readily discretized on triangle meshes, as discussed in
App. B.

Appendix B: Discretization of the Eigenproblems

In this appendix, we briefly discuss the discretization on triangle
meshes of the eigenproblems used in our approach.

Discretization of the Dirichlet Laplacian eigenproblem We be-
gin with the familiar Dirichlet Laplacian eigenproblem (Eq. (5)).
We discretize this problem using the well-known cotangent scheme
(piecewise-linear finite elements). The problem then becomes

WMψi = λiA
Mψi ,

ψi

∣

∣

∂M
= 0 ,

(26)

where WM denotes the so-called cotangent Laplacian and AM de-
notes the lumped mass matrix. See [BHKB20], among many others,
for a definition of these objects.

Discretization of the Dirichlet-Steklov eigenproblem We use
piecewise linear finite elements to discretize the weak form of the
Dirichlet-Steklov eigenproblem (Eq. (25)). The left-hand side of
the expression becomes the familiar cotangent Laplacian, denoted
by WM . The discretization of the integral on the right-hand side
requires a mass matrix defined strictly on the boundary. Similarly
to the mass matrix used in the Laplacian eigenproblem, it can be
discretized either according to a piecewise-linear finite element
scheme, or as a lumped mass matrix. Regardless of the chosen dis-
cretization, we call this mass matrix SM . Note that SM is of the
same size as WM .

We begin by the lumped discretization. The boundary is one-
dimensional. Thus, a vertex p ∈ ∂M, has (at most) two neighbors
that are also in ∂M, which we denote p− 1 and p+1. The length
of the edges (p− 1, p) and (p, p+ 1) are denoted rp−1 and rp+1,
respectively. The lumped Steklov mass matrix is given by

SM
pq =

{

1
2 (rp−1 + rp+1) , p = q and p,q ∈ ∂M

0 , elsewhere.
(27)

The non-lumped mass matrix is computed from a piecewise lin-
ear finite element discretization on the boundary. This discretiza-
tion corresponds to the restriction of the piecewise linear finite el-
ements of the mesh to the boundary edges. Whenever vertices p

and q are distinct endpoints of the same edge, we write p ∼ q.
The length of the edge connecting p and q is denoted rpq. Af-
ter a straightforward computation which we omit, the non-lumped
Steklov mass matrix is given by

SM
pq =











1
3 (rp−1 + rp+1) , p = q and p,q ∈ ∂M
1
6 rpq , p ∼ q and p,q ∈ ∂M

0 , elsewhere.

(28)

In sum, no matter the version of SM chosen, the discretization of
the Dirichlet-Steklov problem becomes

WMui = σiS
Mui ,

ui

∣

∣

D
= 0 ,

(29)

which is quite similar to the more familiar Laplacian eigenvalue
problem with Dirichlet boundary conditions (Eq. (26)).
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A Word of Warning As a final note on the discretization of the
considered eigenproblems, we would like to warn the reader of a
small issue one may encounter when numerically solving them.
Recall that we want the Dirichlet-Steklov eigenfunctions to be nor-
malized with respect to the boundary mass matrix SM . Solvers for
generalized eigenvalue problems, such as Matlab’s eigs routine,
which we use in our implementation, will typically do so automat-
ically. However, according to our observations, sometimes this au-
tomated process will not happen. This seems to be related to the
fact that SM is a positive semi-definite matrix rather than a positive
definite one. Thus, one needs to explicitly normalize the solutions
with respect to SM . In fact, we suggest explicitly normalizing even
the Laplacian eigenfunctions, despite the fact that there the mass
matrix AM is positive definite on (good quality) triangle meshes.
Indeed, AM can fail to be positive-definite on pathological inputs.
Consider for instance an otherwise good mesh with an isolated ver-
tex belonging to no triangle. Functions vanishing everywhere ex-
cept on said vertex have norm 0 with respect to AM , despite being
nonzero.

Appendix C: Boundary Circles on Triangle Meshes

In Sec. 4.4, small disks centered at the landmarks are removed in
order to create new boundaries for the shapes under study. Here,
we describe in detail how this is achieved on triangle meshes.
Crucially, we do not want to unduly disturb the geometry of the
shapes. In order to achieve this we construct the new boundaries
entirely within the triangles adjacent to the landmarks.

Let’s say that we are constructing the boundary circle for the
landmark γi. We begin by selecting the radius ri of the disk to be
removed. This is done by finding the length si of the shortest edge
connected to γi. The minimum is taken over both shapes, which are
scaled to be of identical surface area and thus of comparable size.
Then, we set ri = r f · si, where r f ∈ (0,1) is a user-set parameter.
The (surprisingly low) impact of this parameter is studied in
Sec. 7.2.1.

We are now ready to construct the boundary Γi. This process is

best understood by looking at its illustration in Fig. 20. First, we
split each triangle adjacent to the landmark into ns wedges of equal
angle, which introduces ns −1 new vertices at the opposite edge of
the original triangle, as well as edges connecting them to the land-
mark. Then, we introduce ns + 1 new vertices situated on the new
edges at a distance ri away from the landmark γi. We then connect
these vertices in a way that creates an approximation of a sector
of a disk of radius ri. Doing so produces ns quadrilaterals in the
part of the original triangle far from the landmark. We split those
quadrilaterals into triangles along their diagonals. This concludes
the refinement of the triangles adjacent to the landmark. It remains
to refine the triangles adjacent to them across the edges opposite
to the landmark. There, the common edges between the triangles
contains ns − 1 new vertices. On each triangle, we connect these
new vertices to the original vertex not on the common edge. This
concludes the refinement process. Note that all of the new triangles
are contained within the original ones. An example of a mesh

Input Step 1 Output

Figure 20: Illustration of the creation of a landmark boundary. The
landmark position is indicated by a green dot. The triangles com-
posing the landmark disk are shown in light red. The boundary cir-
cle is highlighted as a red line. Note that a gap of connectivity ap-
pears when creating the boundary around the landmark. This gap is
closed when the process finishes producing the boundary.

with landmark circles constructed in this manner is shown in Fig. 5.

The construction of the boundaries associated to different land-
marks is done sequentially over the landmarks. This requires some
additional care if the landmarks are placed too close to each other.
Indeed, during the construction of Γi, new faces are created in what
was originally the 2−ring neighborhood of the landmark γi. Thus,
if a different landmark γ j is closer than 4 rings away from γi, there
will be overlap between the newly created mesh faces. The result-
ing mesh will then be dependent upon the order in which the bound-
ary circles Γi and Γ j are created. In the present paper, we avoid this
issue by disallowing such landmark placement. If such landmark
placement becomes necessary in a given application, we suggest
locally refining the mesh via, say,

√
3−subdivision [Kob00] such

that the landmarks are no longer closer than 4 triangle rings from
one another. We do not pursue this here.

Appendix D: Proof of Lemma 1 and Discussion on its Meaning

Lemma 1. The function space W (M) admits the following decom-

position:

W (M) = G(M)⦹





k⊕
j=1

H j(M)



 , (30)

where ⊕ denotes direct sums and ⦹ denotes orthogonal direct

sums.

Proof. Recall that, by construction, W (M) is the completion of
smooth functions modulo constants with respect to the Dirichlet
form. Thus, we begin our analysis on smooth functions.

Let u be smooth and W (M)-orthogonal to all of the Dirichlet-
Laplacian eigenfunctions {ψi}∞i=1. Then, by Stokes’ theorem,

0 =
∫
M

∇ψi ·∇u dM

=
∫
M

ψi (∆u) dM+
✘
✘
✘
✘
✘
✘

✘
✘

✘✘✿
0∫

∂M
ψi (∂nu) d(∂M) ,

(31)
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where the cancellation results from ψi vanishing at the boundary.
Since the {ψi}∞i=1 form an orthogonal basis for L2(M), this
implies that ∆u = 0. Thus, smooth functions can be W (M)-
orthogonally decomposed into a part that lies in G(M) (the closed
span of {ψi}∞i=1) and a harmonic part.

Recall that each H j(M) spans harmonic functions that vanish

on all landmark boundaries, but the jth one. Since harmonic func-
tions are uniquely determined by their values at the boundaries,
the harmonic part of u can be naturally expressed as an element in
⊕k

j=1H j(M).

Since W (M) is complete by construction and smooth functions
are dense in W (M), the desired result is achieved by taking the
closure of the subspaces.

Notice that in the above lemma, the subspaces H j(M) are not
marked as W (M)-orthogonal. Indeed, by Stokes’ theorem,

〈u(p)
i ,u

(q)
l

〉
W (M) =

∫
M

∇u
(p)
i ·∇u

(q)
l

dM

=
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘✿

0∫
M

u
(p)
i

(

∆u
(q)
l

)

dM

+
∫

∂M
u
(p)
i

(

∂nu
(q)
l

)

d(∂M)

=
k

∑
µ=1

∫
Γµ

u
(p)
i

(

∂nu
(q)
l

)

d(∂M)

=
∫

Γp

u
(p)
i

(

∂nu
(q)
l

)

d(∂M)

(32)

The above expression yields different results depending on whether
p and q coincide or not. We begin by considering p = q.

〈u(p)
i ,u

(p)
l

〉
W (M) =

∫
Γp

u
(p)
i

(

∂nu
(p)
l

)

d(∂M)

= σ
(p)
l

∫
Γp

u
(p)
i u

(p)
l

d(∂M)

= σ
(p)
l

δil .

(33)

Here δil denotes the Kronecker delta. Thus, for every p, the

Dirichlet-Steklov basis {u
(p)
i }∞i=1 is composed of W (M)-

orthogonal functions. Notice that said eigenfunctions can be
W (M)-normalized by dividing them by the square root of the
corresponding eigenvalue.

Now, consider p 6= q. In that case, Eq. (32) can no longer be
evaluated by substituting the Dirichlet-Steklov eigenvalue for
the normal derivative, as it is evaluated on the wrong boundary

component. Moreover, the normal derivative ∂nu
(q)
l

has no reason
to vanish on Γp, which implies that the subspaces spanned by

{u
(p)
i }∞i=1 and {u

(q)
i }∞i=1 are not W (M)-orthogonal.

Appendix E: Proof of Lemma 2

Lemma 2 (Structure of FMN ). Let FMN : W (M)→W (N ) be the

pullback of a conformal diffeomorphism that preserves the land-

mark circles. Then, FMN maps

1. G(M) to G(N ),
2. H j(M) to H j(N ) for all j.

Proof. Since ϕ : N → M is a diffeomorphism, we can express
everything on the surface N . Thus, instead of thinking of M
as separate manifold, we treat N as being equipped with two
Riemannian metrics: its original metric gN and the pullback metric
gM . In this representation, the pullback acts as the identity. In
particular, this means that FMN : W (M) → W (N ) is a bounded
operator.

Since ϕ is conformal, there exists a positive function ω such
that gM = ωgN and ∆M = (1/ω)∆N . Let u be a harmonic func-
tion on M. Then, ∆N FMN u = ω∆Mu = 0. Thus, FMN maps har-
monic functions to harmonic functions. Furthermore, since FMN is
the pullback of a map that preserves the landmark circles, it maps
smooth functions that vanish on all landmark circles of M but ΓM

j

to smooth functions that vanish on all landmark circles of N but
ΓN

j and so for any fixed j. Statement 2. then follows from the com-
pleteness of W (M) and W (N ) and the boundedness of FMN by
taking the closure of the relevant subspaces.

Now consider f ∈ G(M). By Lemma 1, for all harmonic u,

〈u, f 〉
W (M) = 0 . (34)

By Theorem 3, the conformality of ϕ allows us to replace the inner
product on W (M) with that on W (N ) up to the introduction of two
functional maps:

〈FMN u,FMN f 〉
W (N ) = 0 . (35)

Since FMN maps harmonic functions to harmonic functions and
is invertible, FMN u can be any desired harmonic function of N .
Thus, FMN f is W (N )-orthogonal to harmonic functions of N , that
is FMN f ∈ G(N ). This concludes the proof of statement 1.

Appendix F: Definition of the Dirichlet Energy

Consider a smooth map ϕ : M→N between two smooth Rieman-
nian manifolds. The Dirichlet energy of the map is

D(ϕ) =
1
2

∫
M

‖dϕ‖2
dM, (36)

where dϕ is the differential of ϕ. Informally speaking, the Dirichlet
energy measures the oscillation of the map ϕ. The larger the
energy, the more oscillatory the map. Maps minimizing the
Dirichlet energy are known as harmonic maps. Such maps are a
simultaneous generalization of geodesics and harmonic functions.
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See [Jos08] for the relevant theory.

In the discrete setting, we use the same method as in [ESB19] to
compute the Dirichlet energy. Namely, the expression becomes

D(ϕ) =
1
4 ∑
(u,v)∈E(M)

wM
uv D

2
N
(ϕ(u),ϕ(v)) , (37)

where E(M) denotes the edges of the mesh M, wM
uv denotes the

cotangent weight of the edge (u,v) and D2
N
(·, ·) is the matrix of

square geodesic distances on N .

Appendix G: Additional Experiments

Analysis of Alternative Initialization Methods

The iterative optimization procedure detailed in Sec. 6.2 requires
as an input an initial guess of the functional map. In Sec. 6.1,
we thus introduce an initialization procedure for this initial guess
based on the landmark correspondence and the normal derivatives
of certain landmark-dependent harmonic functions. In this section
we compare this approach to two alternatives.

For the purposes of this discussion, the approach of Sec. 6.1
shall be referred to as the “normal derivatives” method. The
two alternatives described below will be termed “trivial” and the
“conformal energy”, for reasons that should soon become apparent.

The landmark circles can be seen as lists of vertices ordered
counter-clockwise as seen from outside the shape. The choice
of the first element of this list carries no particular meaning and
is left to the whims of the indexing of the faces of the mesh.
Thus, the first elements of two corresponding boundary circles
need not match. The “trivial” approach consists in assuming that
the first elements of the boundary circles do indeed match. This
correspondence is then proportionally extended to the rest of the
landmark circle.

The “conformal energy” approach stems from the observation
that mapping the landmark circles ΓN

i → ΓM

i induces a restricted
functional map Hi(M) → Hi(N ). The conformal term of the
energy (Eq. (9)) can be easily evaluated on these subspaces.
The “conformal energy” approach consists in choosing the shifts
{αi}k

i=1 (see Sec. 6.1) such that they minimize the conformal
energy of the resulting Hi(M)→Hi(N ) map.

Fig. 21 (left) depicts the performance of the three initializations
in terms of geodesic error on the SHREC’20 dataset (lores), using
7 landmarks. Tab. 4 provides quantitative evaluations for the same
experiment in terms of averaged geodesic error and Dirichlet en-
ergy. The “normal derivatives” approach slightly outperforms the
other two on all metrics, which is why it is the one used in the main
text.

0 10 20 30
·10−2

0

20

40

60

80

100

Geodesic Error

%
C
o
rr
es
p
o
n
d
en

ce
s

Norm. De.

Conf. En.

Trivial

0 10 20 30
·10−2

0

20

40

60

80

100

Geodesic Error

%
C
o
rr
es
p
o
n
d
en

ce
s

Fast

Principled

Figure 21: Left: comparison of initializations for our method,
where “Norm. De.” and “Conf. En.” respectively stand for “Normal
Derivative” and “Conformal Energy”. Right: comparison of the
“fast” and “principled” energy formulations of our method. Both
experiments are performed on the SHREC’20 lores dataset (partial
shapes excluded).

Method Av. Geo. Err. Dir. E. Av. Time (in s.)

Trivial 6.36×10−2 16.8 41.4
Conf. En. 6.36×10−2 16.7 53.2

Norm. De. 6.26×10−2 16.2 40.4

Table 4: Quantitative evaluation results on the SHREC’20 lores
(without partial shapes) data sets. The average geodesic error (Av.
Geo. Err.), the Dirichlet energy (Dir. E.) and average execution time
(Av. Time) on both data sets are displayed for the three initializa-
tion methods that we tried: Trivial, Conformal Energy (“Conf. En.”)
and Normal Derivatives (“Norm. De.”). Normal Derivatives is the
method used in the rest of the paper.

Comparison of the “Principled” and “Fast” Energy

Optimization

At the end of Sec. 6.2, we introduced an unprincipled way to accel-
erate the nearest neighbor search used in the solution of our prob-
lem. In this section, we quantitatively compare this “fast” method to
the “principled” one on the SHREC’20 data set (partial shapes ex-
cluded). The output of this evaluation is displayed in Fig. 21 (right)
and Tab. 5. While very similar in terms of matching performance,
the “fast” method is more than three times faster to compute. We
therefore employ it instead of the “principled” approach. Note that
the more than threefold speedup is consistent with the fact that the
matrices used in the “fast” method are three times smaller.

Method Av. Geo. Err. Av. Time (in s.)

Principled 4.96×10−2 184
Fast 5.13×10−2 48.7

Table 5: Average geodesic error (Av. Geo. Err.) and average execu-
tion time (Av. Time) associated to the comparison of the “princi-
pled” and “fast” computation methods.
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Complementary benchmark on SHREC’20 lores

As a complement to our main evaluation on SHREC’20 lores, we
conducted an evaluation using only 8 pairs from the initial bench-
mark to compare against the method proposed in [SCBK20] (In-
terSurf). InterSurf, WA, HyperOrb FMap ZO and our approach
obtain a geodesic error (scaled by a factor ×100) of respectively
11.9, 5.41, 5.99, 8.69 and 5.2. The restricted number of shapes on
which we evaluate is due to the fact that InterSurf does not han-
dle shapes with complex topologies well. In particular, the method
assumes that the meshes are watertight and share the same genus,
in strong contrast to our approach that does not make such assump-
tions. However, we note that this method was not primarly designed
for shape matching.

Additional Qualitative Evaluations

We provide additional qualitative evaluations on isometric and non-
isometric shape pairs in order to show best- and worst-case shape
matching scenarios for our method.

For isometric shapes, the best pairs are depicted in Fig. 22 and
the worst pairs in Fig 23.

For non-isometric shapes, the best pairs are illustrated in Fig. 24
and the worst pairs in Fig. 25.

Finally, in Fig. 26, we show the best and worst pairs for the
SHREC’19 benchmark.

FAUST

TOSCA

Source HyperOrb WA FMap ZO Ours

Figure 22: Qualitative evaluation of our method and competitors
on isometric shapes from the FAUST dataset (top row) and the
TOSCA isometric dataset (bottom row). The shape pair is selected
such that the geodesic error of our method is the best over the
dataset.

Appendix H: Additional Parameter Study

Study of the Weights in the Energy

We define three weights to compute a point-to-point map between
two shapes based on the energy (Eq. (14)): the conformal, the
properness and the invertibility weights, denoted respectively aC,
aP and aI . Since we normalize the weights, their absolute value is
unimportant.

To study how their relative value influences the quality of the
output map we conduct a dedicated experiment on the SHREC’20

FAUST

TOSCA

Source HyperOrb WA FMap ZO Ours

Figure 23: Qualitative evaluation of our method and competitors
on isometric shapes from the FAUST dataset (top row) and the
TOSCA isometric dataset (bottom row). The shape pair is selected
such that the geodesic error of our method is the worst over the
dataset.

TOSCA

SHREC’20

Source HyperOrb WA FMap ZO Ours

Figure 24: Qualitative evaluation of our method and competitors on
non-isometric shapes. The first row corresponds to shapes from
the TOSCA non-isometric data set. The bottom row consists of
shapes from the SHREC’20 lores data set. The shape pair is se-
lected such that the geodesic error of our method is the best over
the dataset.

dataset, with shapes remeshed to count 1K vertices and exclud-
ing partial shapes. 8 landmarks in ground-truth correspondence are
placed on each shape, in the locations described in App. I. For each
set of weight values, the geodesic error and the Dirichlet energy
(see App. F), averaged over all shape pairs (in both directions) in
the dataset, are computed.

We first fix the conformality weight to 1 and vary the two re-
maining weights within a range of energy values in Fig. 27 left
(geodesic error) and Fig. 28 left (Dirichlet energy). Second, we let
one weight vary and fix the two remaining values either to 0 or to
1, as illustrated in Fig. 27 right (geodesic error) and Fig. 28 right
(Dirichlet energy). Finally, we report in Tab. 6 the average geodesic
error and Dirichlet energy on the data set, obtained when fixing one
weight to 1 and setting the two others to 0. This experiment allows
to measure which term carries the greatest influence on the final
map quality.

These quantitative evaluations highlight the existence of a trade-
off between the accuracy of the map (minimization of the geodesic
error) and the smoothness of the map (minimizing the Dirichlet en-
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TOSCA

SHREC’20

Source HyperOrb WA FMap ZO Ours

Figure 25: Qualitative evaluation of our method and competitors on
non-isometric shapes. The first row corresponds to shapes from
the TOSCA non-isometric data set. The bottom row consists of
shapes from the SHREC’20 lores data set. The shape pair is se-
lected such that the geodesic error of our method is the worst over
the dataset.

Best

Worst

Source HyperOrb FMap ZO Ours

Figure 26: Qualitative evaluation of our method and competitors
on the SHREC’19 data set. The first row corresponds to the best

shape pair, while the bottom row corresponds to the worst shape
pair on this data set.

ergy) when choosing the weight configuration. Roughly speaking,
the invertibility and properness terms promote accuracy, while the
conformality term promotes smoothness.

Since this trade-off is application-dependent, we leave the fine-
tuning of the energy weights to the end-user and set all weights to
1 in the remaining of our experiments as it provides a satisfactory
balance in practice.

Non-Zero Weight Av. Geo. Err. Dir. E.

Conformality (aC) 5.91×10−2 6.82
Properness (aP) 7.06×10−2 7.82
Invertibility (aI) 5.42×10−2 11.4

Table 6: Quantitative evaluation results on the SHREC’20 data set
(full shapes remeshed to 1K vertices) when fixing one weight to
1 (Non-Zero Weight) and setting the remaining weights to 0. The
average geodesic error (Av. Geo. Err.) and Dirichlet Energy (Dir.
E.) is given for each.
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Figure 27: Weight study on the SHREC’20 data set (full shapes
remeshed to 1K vertices). The error measure is the mean geodesic

error, averaged on the data set. aC, aP and aI are the Conformality,
Properness and Invertibility weights. On the left, we fix the confor-
mality weight aC and vary the properness and invertibility weights
aP and aI . On the right, we vary one weight aC/P/I and fix the
remaining weights either to 0 or to 1.
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Figure 28: Weight study on the SHREC’20 data set (full shapes
remeshed to 1K vertices). The error measure is the Dirichlet en-

ergy, averaged on the data set. aC, aP and aI are the Conformality,
Properness and Invertibility weights. On the left, we fix the confor-
mality weight aC and vary the properness and invertibility weights
aP and aI . On the right, we vary one weight aC/P/I and fix the
remaining weights either to 0 or to 1.

Landmark Sampling Qualitative Illustration

We visualize qualitatively the interest of introducing more land-
mark correspondences in Fig. 29. In this visualisation, since “Hy-
perOrb” does not support less than 5 landmark correspondences,
no map for 3 and 4 landmark correspondences can be computed for
this method.

Note how the regions around the mouth and the eyes are accu-
rately mapped with our approach compared to the two other ap-
proaches.

Basis Near-Orthogonality

For each shape M of the SHREC’19 data set [MMR*19a], we

compute the matrix with entries mi, j =
∣

∣

∣〈ΦM

i ,ΦM

j 〉
W (M)

∣

∣

∣, where

ΦM

i designates the i-th basis vector. We use 7 landmarks, 10
Dirichlet-Steklov eigenfunctions, leading to a Dirichlet-Steklov
block of size 70×70, and 120 Dirichlet Laplacian eigenfunctions.
Since we are only interested in the computation of the basis itself in
this setup, the landmarks were placed at random locations to max-
imize the diversity of situations encountered. The average of all
matrices is displayed in Fig. 30. Note the clear diagonal behavior,
that is in agreement with our observations on a simple sphere shape
(Fig. 5).
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Figure 29: Qualitative comparison of our method to competitors
when increasing the number of landmarks on the same shape pair
as for our teaser (Fig. 1). The ground truth landmark locations are
denoted by green dots. In the case of FMapZO (no exact landmark
preservation), the blue dots indicate the location of the mapped
landmarks.
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Figure 30: Average of the absolute values of the inner product ma-
trix of each shape in the SHREC’19 data set. Except for the first
few Dirichlet-Steklov eigenfunctions, the off-diagonal inner prod-
ucts are negligible. This validates the approximation of orthogo-
nality. We highlight that this computation also sheds light on the
robustness of our basis computation to complex triangulation and
partiality setups.

Number of Basis Functions

To select the number of basis functions for G(M) and each H j(M)
(see Sec. 4.4), we study their respective size NLB and NDS separately,
as illustrated in Fig. 31.

Increasing the size of G(M) slightly increases the matching per-
formance up to NLB = 120. In contrast, varying NDS above 10 de-
creases the quality of the maps. Hence, we fix the following basis
sizes throughout the rest of the article: NLB = 120 and NDS = 10.
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Figure 31: Effect of varying the size of our basis on the G(M)
space (left) and on the H j(M) space (right). Both figures are an
average over all pairs of the TOSCA non-isometric dataset.

Appendix I: Evaluation Setup Details

Landmark Position

The benchmark datasets that we use contain either humanoid
shapes (humans and gorillas) or four-legged animals. Depending
on the type of creature, we place our landmarks at either 7 or 8
semantically compatible locations:

1. Top of the head
2. Bottom of the right (hind) leg
3. Bottom of the left (hind) leg
4. Bottom of the right front leg / extremity of the third finger on

the right hand
5. Bottom of the left front leg / extremity of the third finger on the

left hand
6. Middle of the belly/umbilicus
7. Middle of the back
8. Tip of the tail (Four-legged animals only)

The last landmark is only used on the TOSCA and SHREC’20 data
sets. Notice that our landmark placement is reminiscent of farthest
point sampling. The landmark placement is common to all consid-
ered methods. The other parameters depend on the method used.

Method Configuration

Hyperbolic Orbifold Tutte Embeddings (hyperOrb) and

Weighted Averages (WA). These methods do not require any ad-
ditional parameters.

Functional Maps With ZoomOut Refinement (FMap ZO). A
20 × 20 functional map is computed for each source-target pair
in setup 1 and 2, following the setup of [MRR*19]. In particu-
lar, we use wave kernel signature and wave kernel map functions
as descriptors. The descriptor functions are computed at the same
ground truth landmark positions used for the other methods. At
each landmark location, 12 wave kernel map functions are com-
puted using a basis of 120 LB-eigenfunctions.

The energy employed to compute the functional map lever-
ages the descriptor preservation, descriptor commutativity and LB-
commutativity terms. Contrary to [MRR*19], we did not employ
the orientation term in the energy. Indeed, with a high number of
landmarks as in our setup, the symmetry ambiguities are easily
solved by the functional maps pipeline.
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Ours. We use the provided landmark locations together with the
settings specified previously. We summarize them here for conve-
nience.

• Energy weights: aC = aP = aI = 1.
• Number of Dirichlet-Steklov eigenfunctions per landmark:

NDS = 10.
• Number of Dirichlet Laplacian eigenfunctions: NLB = 120.
• Landmark circle size factor: r f = 0.5.

Moreover, recall that we use the acceleration strategy described at
the end of Sec. 6.2.
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