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Abstract
A compiler consists of a sequence of phases going from
lexical analysis to code generation. Ideally, the formal verifi-
cation of a compiler should include the formal verification
of each component of the tool-chain. The Compcert project,
a formally verified C compiler, comes with associated tools
and proofs that allow to formally verify most of those com-
ponents. However, some components, in particular the lexer,
remain unverified. In order to contribute to the end-to-end
verification of compilers, we implemented a verified lexer
generator whose usage is similar to OCamllex. Our software,
called Coqlex, reads a lexer specification and generates a
lexer equipped with Coq proofs of its correctness. It pro-
vides a formally verified implementation of most features
that standard lexer generators (that are not formally veri-
fied) usually have. We also give a performance evaluation,
comparing Coqlex to OCamllex and Verbatim++.
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1 Introduction
A lexer is a tool that is in charge of the lexical analysis, one of
the first phases of compilers and interpreters. Lexers take a
sequence of characters (such as source code or command) as
input and produce a sequence of tokens (parts of that input
sequence of characters associated with meaning) that can
be easily processed by parsers. During that process, lexers
can ignore comments or white spaces, and also equip tokens
with source position information (such as line numbers) to
enable useful error messages during lexical analysis (lexing),
parsing or later compilation stages.

Implementing a lexer from scratch can be difficult and
time-consuming. This has lead researchers to build tools,
libraries and generators to help implementing optimized lex-
ers. Most of the existing implementations of those libraries
and generators, such as OCamllex [19], do not come with a
formal proof of correctness.
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This is the starting point for our work onCoqlex, a formally
verified lexer generator. Our goal was to provide a tool that is
as versatile as OCamllex and that at the same time is formally
verified, so that it can be integrated into formally verified
compiler tool-chains, such as Compcert [12].

The main issues with the formal verification of tools such
as lexers are related to (i) the execution time, (ii) the inte-
gration with existing parsers and (iii) the usability. This
document presents techniques we used to tackle those chal-
lenges. Our contributions are as follows:

1. The verification of lexical rule selection. Most
lexer generators produce lexers from lexer specifica-
tion files. Those specifications defines a lexer using
lexing rules that are pairs of input patterns, defined
via regular expressions [9, 21] (regexp), and seman-
tic actions that are in charge of production tokens.
Depending on the selection policy and the text to anal-
yse, the lexer selects a pair by analysing its regexps.
When a pair is selected, the token to produce is han-
dled by its semantic action. Coqlex implements two
selection policies (the longest match and the shortest
match associated to the priority rules) and provides
the Coq proof of their correctness.

2. The Coqlex generator. Coqlex also provides a small
preprocessor (the Coqlex generator) that lets users
specify lexers in user-friendly syntax, inspired by the
one of OCamllex. There is no simple specification for
this input syntax itself. Instead, the Coqlex genera-
tor translates it to a human-readable Coq file with
(heavier notation but) the same structure, and the cor-
rectness statement is given in terms of this translated
source. This is similar to the “Coq production” mode
of the Menhir parser generator [8].

After having finished this work, we discovered the indepen-
dent research on the Verbatim++ [5, 6] formally verified lexer.
For this reason, we will here also include a

3. Comparison with other lexer generators. More
precisely, we compare Coqlex to OCamllex (because
it is a standard tool) and to Verbatim++ (because it
is the only other formally verified lexer generator
we are aware of), with respect to execution time and
usability.

In OCamllex, lexical rules are compiled into a non-deter-
ministic automaton represented by a compact table of transi-
tions, with backtracking and semantic actions. The generated
lexer code simply follows the automaton transition by re-
peated table lookups. In contrast, Coqlex contains no such
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compilation, it interprets the user-provided regular expres-
sions against the input by using Brzozowski derivatives [3].
This allows to have a simpler formalization, and leads to
surprisingly good performance: roughly 100x slower than
OCamllex, but more than 10x faster than Verbatim++. This is
reasonable for a pure program extracted directly from Coq,
compared to an efficient implementation, and is more than
fast enough in practice. For example, the lexer of the Co-
qlex generator is implemented in Coq, using the Coqlex data
structures and functions. That generator is used without any
noticeable slowness.

The Verbatim++ lexer (also verified in Coq) implements
regexps using Brzozowski derivatives[3] and then compiles
those regexps into deterministic finite automata[2] for fast
regexp matching. Even though significant emphasis in the
work [5, 6] is put on optimization, Verbatim++ remains sub-
stantially slower than Coqlex in our experiments (which
used the benchmarks provided by Verbatim++).

Our work highlights the fact that a simple model and
implementation can contribute sensitively to the reduction of
execution time, leading to good performance. It also provides
a complete lexer generator (a software) and library that allow
to implement lexers easily in Coq and then extract them into
OCaml code. Those lexers, written in Coq, come with proven
lemmas that allow developers to prove specific properties
on them. In addition, associated with menhir[16] verified
parsers, Coqlex verified lexers allow to write fully formally
verified front-ends for formally verified compilers such as
Compcert[12].

This paper is organized as follows: In section 2 we dis-
cuss the representation of a lexer in Coq. In section 3 we
present the Coqlex generator and discuss its specification and
correctness in section 4. Section 5 presents implementation
details of Coqlex. Section 6 compares the features and per-
formance of Coqlex with OCamllex and Verbatim++. Finally,
we discuss future work and conclude in section 7.

2 Representing a lexer in Coq
From a functional point of view, lexers are in charge of pro-
ducing tokens (user-defined type that we will note T) from
text (string). A natural type would be

lexer(T) := string -> list T

Instead of processing a list of tokens, most parsers like
ocamlyacc[19] produce tokens one by one, and are called
by the parser on demand. A function that performs one step
of lexical analysis (lexing) consumes a string and returns a
token and the remaining string. The type of such a function is

lex1(T) := string -> T * string

Lexing can fail for various reasons. In case of failure, lex-
ers should provide useful error messages. For that reason,
we defined a position data type and an error data type to
encapsulate the lexing result. A function that performs one

step of lexing becomes a function that takes an input string,
a start position and in case of success, returns a token, the
remaining string and the end position. Consequently, the
type of one step of lexing becomes

lex1(T) := string ->
position ->
Result(T * string * position)

Most lexer generators generate lexers using a set of lexical
rules that are regular expressions[9, 21] (regexp) associated
with semantic actions that are in charge of producing the lex-
ing result. The semantic action that will produce the returned
lexing result is the first one associated to the regexp that
matches the longest prefix of the input string (the lexeme):
this is the longest match and the priority rules. Semantic
actions have access to the lexing buffer (lexbuf), a data struc-
ture containing the lexeme, the start position (the position
of the first letter of the lexeme), the end position (the posi-
tion of the letter after the last letter of the lexeme) and the
remaining string (the input string without the lexeme). The
semantic action also specifies how the internal state of the
lexer (at type S) should be updated. So, a natural type for
semantic actions would be:

action(T) := lexbuf ->
Result(T * string * position)

Those semantic actions can perform various operation, in-
cluding recursive calls to the lexer that calls them. This could
then lead to an infinite loop.1 As Coq forbids the implemen-
tation of functions that loop[4], Coqlex had to find a solution
to deal with those kinds of situations. We explored two
possibilities:

1. Making restrictions on semantic actions that ensure
termination. For example we could require that each
semantic action discards at least one character from
the input string.

2. Using the fuel technique: this technique consists into
ensuring the termination of lexers using a natural
number (nat) that decreases at every recursive call.

Requiring that each semantic action discards at least one
input character is too strict in practice. Studying lexers in
the wild, we have found many cases of lexers designed to
“skip” an optional part of the input, that accept the empty
string if nothing needs to be skipped. For example, the lexer
of the OCaml compiler contains the following lexer:
rule skip_hash_bang = parse

| "#!" [ˆ '\n']* '\n' { new_line lexbuf }
| "" { () } (* accepts the empty string *)

We thus chose to express general, potentially non-terminating
lexers using fuel. Consequently, the type of one step of lexing

1Section 6.1 provides a typical OCamllex example of a lexer that can loop
due to recursive calls.
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becomes
lex1(T) := nat ->

lexbuf ->
Result(T * string * position)

To make it simple to call a lexer from a semantic action, we
replace the separate arguments string and position by
the more informative lexbuf type already used by semantic
actions.

lex1(T) := nat ->
action(T)

action(T) := lexbuf ->
Result(T * lexbuf)

3 Coqlex in practice
Coqlex comes with a Coq library that allow to write lexers
using sets of lexical rules. It also provides a text processor
that will convert a markup language (.vl syntax), that is simi-
lar to the OCamllex[19] specification language (.mll syntax),
into its equivalent Coq code (.v file). Figure 1 presents the
.vl version of the mini-cal (a micro language for arithmetic
expressions : numbers, idents, + * - / and parentheses) lexer.
This .vl definition has four parts:

1. The header section: The header section is arbitrary
Coq text enclosed in curly braces. If present, the
header text is copied as it is at the beginning of the
output file. Typically, the header section contains
the Coq Require Import directives, possibly some
auxiliary functions and token definitions used for
lexer definitions.

2. The regexp definition section: This section allows to
give names to frequently-occurring regular expres-
sions. This is done using the syntax let 𝑖𝑑𝑒𝑛𝑡 =
𝑟𝑒 to associate the name 𝑖𝑑𝑒𝑛𝑡 to the regexp 𝑟𝑒 . The
syntax of regexp is defined in Figure 2.

3. The lexer definition section: This section allows to de-
fine lexers using sets of rules. A rule is defined using
the syntax | 𝑝 {𝑎} (the ‘|‘ symbol is not mandatory
for the first rule) to associate the pattern 𝑝 to the Coq
text representing a semantic action 𝑎. This pattern is
either a regexp or a string -> bool function (de-
fined using the syntax $(𝑓 ) where 𝑓 is the Coq code
of this function). Typically, this kind of pattern is
used to detect situations in which the lexing must
stop (e.g when the input string is empty). When the
pattern is a regexp, the semantic rule is said to be
regexp based. Otherwise, the semantic rule is said to
be function based.

4. The trailer section: This section is similar to the header
section, except that its text is copied as it is at the end
of the output file. Typically, this section contains Coq
extraction directives.

(* header section *)

{

Require Import TokenDefinition.

}

(* regexp definitions *)

let ident = ['a'-'z']+

let numb = ['0'-'9']+

(* lexer definitions*)

rule minlexer = parse

| '\n' { sequence [new_line; minlexer] }

| ident {ret_l ID}

| numb { ret_l Number }

| '+' { ret PLUS }

| '-' { ret MINUS }

| '*' { ret TIMES }

| '(' { ret LPAREN }

| ')' { ret RPAREN }

| eof { ret Eof }

| _ { raise_l "unknown token :"}

(* trailer section *)

{}

Figure 1. mini-cal.vl file

𝑟𝑒 ::=
’𝑐’ Character constant
| ”𝑠𝑡𝑟𝑖𝑛𝑔” String constant
| Char wildcard
| [𝑠1𝑠2 ...𝑠𝑛] Union of character sets
| [ˆ𝑠1𝑠2 ...𝑠𝑛] Union of negation of character sets
| 𝑟𝑒1 |𝑟𝑒2 Alternative
| 𝑟𝑒1 𝑟𝑒2 Concatenation
| 𝑟𝑒1 − 𝑟𝑒2 Difference
| 𝑟𝑒∗ Kleene star
| 𝑟𝑒+ Strict repetition
| 𝑟𝑒? Option

𝑠 ::=
’𝑐’ Character constant
| ’𝑐1’ - ’𝑐2’ Character range

Figure 2. Syntax of Coqlex regexps

Remarks:
• A .vl file allows to define multiple lexers. Those lexers

are gathered in groups (made of mutually recursive
3



Preprint, , Wendlasida Ouedraogo, Lutz Straßburger, and Gabriel Scherer

Require Import TokenDefinition.

Definition ident := Cat ((CharRange "a"%char "z"%char ))

(Star ((CharRange "a"%char "z"%char ))).

Definition numb := Cat ((CharRange "0"%char "9"%char ))

(Star ((CharRange "0"%char "9"%char ))).

Fixpoint minlexer {Storage: Set} fuel lexbuf storage

{struct fuel} := match fuel with

| 0 => (AnalysisNoFuel lexbuf, storage)

| S n => (match generalizing_elector

(Action := semantic_action (Storage := Storage))

LexerDefinition.longest_match_elector (

[(Char "010"%char , sequence [new_line; (minlexer n)]);

(ident, ret_l ID);

(numb, ret_l Number );

(Char "+"%char , ret PLUS );

(Char "-"%char , ret MINUS );

(Char "*"%char , ret TIMES );

(Char "("%char , ret LPAREN );

(Char ")"%char , ret RPAREN );

(RValues.regex_any, raise_l "unknown token : ")],

[(CoqlexUtils.EOF, ret Eof )]) (remaining_str lexbuf) with

| Some elt => exec_sem_action elt lexbuf storage

| None => (AnalysisFailedEmptyToken lexbuf, storage)

end)

end.

Figure 3. mini-cal.v

lexers) using the keyword and. To define non mutu-
ally recursive lexers, the user must use the keyword
then instead.

• Coqlex generator users do not need to worry about
the management of fuel when writing .vl files.

• For each lexer defined in the .vl file, the Coqlex gener-
ator produces a lexer function with same name.

Using the code in Figure 1, the Coqlex generator outputs
the Coq code in Figure 3. Typically, the generator translates
the regexp written in .vl syntax into the Coqlex regexp data
type. The generated lexing function also calls Coqlex func-
tions such as generalizing elector, longest match elector
and exec sem action. It also recurses over the fuel explic-
itly; we could instead generate a call to a fixpoint combinator,
but this would be difficult to scale to mutually-recursive lex-
ers.

Remark: Similarly to OCamllex, Coqlex also allows to choose
the semantic action by matching the shortest prefix. In that
case, the function longest match elector is replaced by
the function shortest match elector.

4 Coqlex generator specification
Given a set of regexp-based rules 𝑙𝑟 , a set of function based
rules 𝑙𝑓 , and a matching policy 𝑒 , the generated Coq code
implements a lexer — a function that takes a fuel 𝑛𝑓 , lexbuf
𝑏, a storage 𝑠 and returns a lexing result — that works as
follows:

1. If 𝑛𝑓 is equal to 0, then the result is an error. This
error is a direct consequence of the fuel technique.

2. Otherwise, from the input string, 𝑙𝑟 , 𝑙𝑓 and 𝑒 , the
lexer chooses a rule whose semantic action will be in
charge of returning the lexing result.
a. if the selected rule is a function-based one, made

up with a function 𝑓 associated with a semantic
action 𝑎, then there is no consumption. Conse-
quently, the lexing result is the result of 𝑎 called
with 𝑏 and 𝑠 .

b. if the selected rule is a regexp-based rule 𝑐 – made
up with a regexp 𝑟 associated with a semantic
action 𝑎 – and if the length of the prefix matched
by 𝑟 using the policy 𝑒 is a natural number 𝑛, then
the lexing result is the result of 𝑎 applied with the
updated lexbuf 𝑏𝑢 and the input storage 𝑠 . The
updated lexbuf is defined as follows:

• the lexeme of 𝑏𝑢 is the 𝑛 first characters of
the input string.

• the remaining string of 𝑏𝑢 is the input string
without the lexeme.

• the end position of 𝑏𝑢 is the end position of
𝑏 where the column number is incremented
by 𝑛.

• the start position of 𝑏𝑢 is the end position
of 𝑏.

c. if no rule is selected, the lexer must return an error
meaning that the input string contains elements
that cannot be analysed by the lexer.

Except for the use of fuel, the functioning of the generated
lexer defined above is standard.

A .vl file provides the description of lexers using lexical
rules. That description is processed by the Coqlex lexer gen-
erator whose architecture is detailed in Figure 4. It has three
components:

1. The lexer, that is in charge of generating a set of
tokens from the text of the .vl file, is written in Coq
using the Coqlex library and is formally verified.

2. The parser, that is in charge of generating an abstract
representation from the set of token produced by the
lexer, is implemented using menhir[16] with --coq
switch to generate verified parsers.

3. The code printer, that is in charge of generating the
.v file from the abstract representation produced by
the parser, is written in OCaml and is not formally
verified.
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Figure 4. General structure of the Coqlex lexer generator.

The code printer does not include formal semantics equiv-
alence between the representation of the .vl code and the
generated .v code. This means that, a priori, a critical user
should review the generated .v code. This does not take great
efforts because the transformation does not include a com-
plex compilation process: the .vl and .v files have similar
structures and are human readable.

By comparison, Verbatim++ does not provide such gener-
ation tool, and OCamllex generates an OCaml code in which
the patterns of the lexical rules are compiled into a non de-
terministic automaton[2] represented by a compact table of
transitions, making the generated code non human readable.

In our case, the regexps, rule selection and associated poli-
cies used in the generated file are implemented and proved
correct in Coq. Consequently, the attention of the critical
user who wants to check the generated .v file must be focused
on the following elements:

• The translation of regexps: The user must be assured
of the correspondence between the regexps written in
the input .vl files and those generated in the output.v
files. This requires to read and understand the regexps
constructors that will be defined in Section 5.

• The matching policy: The user has to make sure that
matching policy corresponds to the one that is de-
scribed in the .vl file. The keyword parse must cor-
respond to longest match elector and shortest
must correspond to shortest match elector.

• For every lexer, the user must be assured that the right
regexps are associated to the right semantic actions
and in the same order. In the Coq code, a difference
is made between lexical rules made up with regexps
associated with semantic actions (regexp-based rules)
and those made up with string -> bool functions as-
sociated with semantic actions (function-based rules).

In a nutshell, a potential user has to (i) review the Coq
implementation and verification of regexps, the rule selection
together with the associated policies and helpers, that are
written and proved in Coq, once; and (ii) either review the
code printer of the Coqlex generator once, or review the
elements listed above at every generation.

𝑟𝑒𝑔𝑒𝑥 ::=
∅𝑟 The empty regexp

𝐿(∅𝑟 ) = ∅
| 𝜖𝑟 The empty string regexp

𝐿(𝜖𝑟 ) = {𝜖}
| [[𝑎]] The one-symbol regexp (𝑎 ∈ A)

𝐿( [[𝑎]]) = {𝑎}
| 𝑒1 + 𝑒2 The alternative

𝐿(𝑒1 + 𝑒2) = 𝐿(𝑒1) ∪ 𝐿(𝑒1)
| 𝑒1 · 𝑒2 The concatenation

𝐿(𝑒1 · 𝑒2) = {𝑠1 ++ 𝑠2 |𝑠1 ∈ 𝐿(𝑒1) ∧ 𝑠2 ∈ 𝐿(𝑒2)}
| 𝑒∗ The Kleene star

𝐿(𝑒∗) = {𝑠𝑛 |𝑠 ∈ 𝐿(𝑒) ∧ 𝑛 ∈ N}

Figure 5. Definition of regular expressions associated with
the language they describe. Variables 𝑒 , 𝑒1 and 𝑒2 are regular
expression. The symbol {𝑎} denotes the set containing a
unique string that is made up with a unique symbol which
is 𝑎.

5 Coqlex implementation details
Most lexer generators such as OCamllex speed up lexical
analysis by compiling lexical rules into finite automata dur-
ing lexer generation. In Coqlex, lexical rules are interpreted
on the fly, using Brzozowski derivatives[3] for regexps and
simple functions for matching policies.

5.1 Brzozowski derivatives for regexps matching
Given an alphabet (set of symbols or characters) A, the sym-
bol 𝜖 that refers to the empty string, the operator ++ that
refers to string concatenation, the notation 𝑠𝑛 (with 𝑛 ∈ N)
that refers to the concatenation of 𝑛 copies of the string 𝑠

and the notation 𝐿(𝑟 ) that refers to the language described
by the regexp 𝑟 , we can provide an inductive definition of
regexp constructions as described in Figure 5.

Using all the notation above, we say that a regular expres-
sion 𝑟 matches a string 𝑠 if 𝑠 ∈ 𝐿(𝑟 ). Similarly, when 𝑠 ∉ 𝐿(𝑟 )
we say that 𝑟 does not match 𝑠 .

Coqlex uses regexp constructions and matching algorithms
based on the concept of Brzozowski derivatives. This concept
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nullable ∅𝑟 = false
nullable 𝜖𝑟 = true
nullable [[𝑎]] = false
nullable (𝑒1 + 𝑒2) = nullable 𝑒1 ∨ nullable 𝑒2
nullable (𝑒1 · 𝑒2) = nullable 𝑒1 ∧ nullable 𝑒2
nullable 𝑒∗ = true

Figure 6. Definition of the nullable function. The variable
𝑎 stands for a symbol and variables 𝑒 , 𝑒1 and 𝑒2 for regular
expressions.

∅𝑟/𝑐 = ∅𝑟

𝜖𝑟/𝑐 = ∅𝑟

[[a]] / c =

{
𝜖 if 𝑎 = 𝑐

∅𝑟 otherwise
(𝑒1 + 𝑒2)/𝑐 = (𝑒1/𝑐) + (𝑒2/𝑐)

(𝑒1 · 𝑒2)/𝑐 =

{
(𝑒1/𝑐 · 𝑒2) + 𝑒2/𝑐 if nullable 𝑒1 = true

(𝑒1/𝑐 · 𝑒2) otherwise
𝑒∗/𝑐 = (𝑒/𝑐) · 𝑒∗

Figure 7. Definition of the derivative of a regexp. The vari-
ables 𝑎 and 𝑐 stand for symbols and variables 𝑒 , 𝑒1 and 𝑒2 for
regular expression.

𝑟 ∥𝜖 = 𝑟

𝑟 ∥𝑎𝑧 = (𝑟/𝑎)∥𝑧

Figure 8. Extension of the derivative of a regexp to strings.
Variables 𝑟 , 𝜖 , 𝑎 and 𝑧 denote, respectively, a regex, the empty
string, a symbol and a string. The operator / refers to the
derivative operation described in Figure 7. The notation 𝑎𝑧

denotes the string composed of the symbol 𝑎 as first element
and the string 𝑧.

introduces two functions: the nullable function and the
derivative of a regexp.

The nullable function takes a regexp 𝑟 and returns the
boolean true if 𝑟 matches 𝜖 (the empty string) and false
otherwise. Its inductive definition is given in Figure 6.

Using the notation 𝑎𝑧 to denote the string built from the
symbol 𝑎 as first element and the string 𝑧, the derivative of
a regular expression 𝑟 by a symbol 𝑎 is the regexp 𝑟/𝑎 that
denotes the language {𝑧 |𝑎𝑧 ∈ 𝐿(𝑟 )}. Its inductive definition
is given in Figure 7.

Brzozowski [3] extended the derivative operation to strings
(denoted by ∥) as described in Figure 8, and showed that for
every regular expression 𝑟 and every string 𝑠

𝑠 ∈ 𝐿(𝑟 ) ⇐⇒ nullable (𝑟 ∥𝑠) = true

Coqlex uses an existing Coq implementation[13] of Br-
zozowski derivatives for regexp matching. That implemen-
tation provides a Coq proof showing that this Brzozowski
derivative implementation is a Kleene algebra[1, 10] and de-
fines an equivalence relation (≡) for regexps whose formal
definition is 𝑒0 ≡ 𝑒1 ⇐⇒ 𝐿(𝑒0) = 𝐿(𝑒1). It also pro-
vides additional regex constructors such as the conjunction
and negation constructors that are not used in the regexp
constructors that are provided by the Coqlex generator (see
Figure 2). On the other hand, some of the constructions
of regexps presented in Figure 2 are missing. For this rea-
son, we modified the existing Coq implementation [13] of
Brzozowski derivatives as follows:

1. We removed the conjunction and negation regexp
constructors

2. We added four regexp constructors:
• the char wildcard: The notation 𝜔𝑟 denotes a

regexp that matches any 1-length-string. This
regexp is defined by the following two proper-
ties: nullable 𝜔𝑟 = false and for all symbol
𝑠 , 𝜔𝑟/𝑐 = 𝜖 . Then, we proved that for all strings
𝑠 , we have 𝑠 ∈ 𝐿(𝜔𝑟 ) if and only if 𝑠 consists of a
single character.

• the character set: The notation Σ𝑢
𝑙

(where 𝑙 and
𝑢 are symbols) denotes a regexp whose language
is 𝐿(Σ𝑢

𝑙
) = {𝑐 |𝑙 ≤ 𝑐 ∧ 𝑐 ≤ 𝑢 ∧ 𝑐 ∈ A} (where ≤ is

a reflexive, anti-symmetric and transitive order
relation on symbols). This constructor is defined
using the following two properties: nullable Σ𝑢

𝑙

= false and for all symbol 𝑐

Σ𝑢
𝑙
/𝑐 =

{
𝜖𝑟 if 𝑙 ≤ 𝑐 ∧ 𝑐 ≤ 𝑢

∅𝑟 otherwise

We proved that if ¬(𝑙 ≤ 𝑢), then Σ𝑢
𝑙
≡ ∅𝑟 and that

for every string 𝑠 , 𝑠 ∈ 𝐿(Σ𝑢
𝑙
) if and only if 𝑠 con-

sists of only one symbol 𝑐 such that 𝑙 ≤ 𝑐 ∧ 𝑐 ≤ 𝑢.
• the negation of character set: The notation

Σu
l (where 𝑙 and 𝑢 are symbols) denotes a regexp

whose language is 𝐿(Σu
l ) = {𝑐 |¬(𝑙 ≤ 𝑐 ∧ 𝑐 ≤

𝑢) ∧ 𝑐 ∈ A}. This constructor is defined using the
following two properties: nullable Σu

l = false
and for all symbol 𝑐

Σu
l /𝑐 =

{
𝜖𝑟 if ¬(𝑙 ≤ 𝑐 ∧ 𝑐 ≤ 𝑢)
∅𝑟 otherwise

We proved that if ¬(𝑙 ≤ 𝑢), then Σu
l ≡ 𝜔𝑟 and

that for every string 𝑠 , 𝑠 ∈ 𝐿(Σu
l ) if and only if

𝑠 consists of only one symbol 𝑐 such that ¬(𝑙 ≤
𝑐 ∧ 𝑐 ≤ 𝑢).

• the difference: The notation 𝑒1 − 𝑒2 (where 𝑒1
and 𝑒2 are regexps) denotes a regexp whose lan-
guage is 𝐿(𝑒1 − 𝑒2) = {𝑠 |𝑠 ∈ 𝐿(𝑒1) ∧ 𝑠 ∉ 𝐿(𝑒2)}.
This construction is defined using the following
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𝐸𝑓 ( [], 𝑠) = ⊥
𝑓 𝑠 = true

𝐸𝑓 ((𝑓 , 𝑎) :: 𝑡, 𝑠) = (𝑓 , 𝑎)
𝑓 𝑠 = false

𝐸𝑓 ((𝑓 , 𝑎) :: 𝑡, 𝑠) = 𝐸𝑓 (𝑡, 𝑠)

Figure 9. The formal description of the selection of a func-
tion based-rule. This description uses the list notation: []
denotes the empty list and ℎ :: 𝑡 denotes a list whose first
element is ℎ and whose tail is 𝑡 . The symbol ⊥ means that
no rule is selected.

two properties: nullable 𝑒1 − 𝑒2 = (nullable
𝑒1) ∧¬(nullable 𝑒2) and for all symbol 𝑐 , (𝑒1 −
𝑒2)/𝑐 = 𝑒1/𝑐−𝑒2/𝑐 . We proved that for all strings 𝑠 ,
we have 𝑠 ∈ 𝐿(𝑒1−𝑒2) ⇐⇒ 𝑠 ∈ 𝐿(𝑒1)∧𝑠 ∉ 𝐿(𝑒2).

These constructors have also been added for performance
reasons. In fact, the regexp Σ𝑐𝑛+𝑚𝑐𝑛 could be written as [[𝑐𝑛]] +
[[𝑐𝑛+1]]+...+[[𝑐𝑛+𝑚]]. However, using the first representation
(Σ𝑐𝑛+𝑚𝑐𝑛 ), the derivation function will perform 2 comparisons,
while the second one will perform𝑚 + 1 comparisons (see
Figure 7).

5.2 Matching policies
Coqlex defines two types of rules: the function based and the
regexp based ones. During the lexical analysis, the generated
lexer has to select a rule. This selection starts by the choice
of a function based rule (noted 𝐸𝑓 ). This function based
rule selection, whose formal definition is given in Figure 9,
consists of finding the first rule that is made of a function
whose application with the input string returns true.

If no such function based rule is found, then lexer has to
choose a regexp based rule.

Most lexers perform regexp based rule election using a
longest match selection policy based on the longest match
and priority rules. That selection policy allows to select the
first lexical rule whose regexp matches the longest prefix of
the input string.

The Coqlex definition of this policy uses two concepts:
prefix: A string 𝑝 is said to be a prefix of a string 𝑠 if

and only if there exists a string 𝑠′ such that 𝑠 = 𝑝 ++𝑠′.
For example 𝜖 is a prefix of any string.

l-score: Given a regexp 𝑟 , a string 𝑠 and a natural num-
ber 𝑛, we say that the 𝑙-score of 𝑟 on 𝑠 is 𝑛 (we write
this as S𝑙 (𝑟, 𝑠) = 𝑛) if and only if the length of longest
prefix of 𝑠 that 𝑟 can match is 𝑛. For example, the
l-score of [[𝑎]]∗ in ‘aabaaaa‘ is 2 as the longest prefix
of ‘aabaaaa‘ that [[𝑎]]∗ can match is ‘aa‘ whose length
is 2. There exists cases where there is no score (e.g:
S𝑙 ( [[𝑎]], ‘𝑏𝑎𝑐‘)). In that case, we note S𝑙 (𝑟, 𝑠) = −∞.

The inductive definition of our implementation of l-score
computation is given in Figure 10.

nullable 𝑟 = true

S𝑙 (𝑟, 𝜖) = 0
nullable 𝑟 = false

S𝑙 (𝑟, 𝜖) = −∞
S𝑙 (𝑟/𝑎, 𝑧) = 𝑛

S𝑙 (𝑟, 𝑎𝑧) = 𝑛 + 1
S𝑙 (𝑟/𝑎, 𝑧) = −∞ nullable 𝑟 = true

S𝑙 (𝑟, 𝑎𝑧) = 0
S𝑙 (𝑟/𝑎, 𝑧) = −∞ nullable 𝑟 = false

S𝑙 (𝑟, 𝑎𝑧) = −∞

Figure 10. The formal description of l-score computation.

To prove the correctness of S𝑙 , we used the Coq substring
function of Coq string module[20] to define the prefix. This
function takes two natural numbers 𝑛 𝑚 and a string 𝑠 and
returns the substring of length𝑚 of 𝑠 that starts at position
𝑛 denoted by 𝛿𝑚𝑛 (𝑠). Here, the position of the first character
is 0. If 𝑛 is greater than the length |𝑠 | of 𝑠 then 𝜖 is returned.
If 𝑚 > ( |𝑠 | − 𝑛), then 𝛿𝑚𝑛 (𝑠) = 𝛿

|𝑠 |−𝑛
𝑛 (𝑠). Consequently,

if 𝑚 ≤ |𝑠 |, then 𝛿𝑚0 (𝑠) is the prefix of length 𝑚 of 𝑠 . For
all strings 𝑠 and regexps 𝑟 , we provided Coq proofs of the
following theorems:

1. if there exists a natural number 𝑛 such that S𝑙 (𝑟, 𝑠) =
𝑛, then 𝑛 ≤ |𝑠 |. This helps to make sure that 𝑛 can be
used with 𝛿 to extract the prefix of length 𝑛.

2. if there exists a natural number 𝑛 such that S𝑙 (𝑟, 𝑠) =
𝑛, then 𝛿𝑛0 ∈ 𝐿(𝑟 ). This means that the input regexp
matches the prefix of length 𝑛 of 𝑠 .

3. if there exists a natural number 𝑛 such that S𝑙 (𝑟, 𝑠) =
𝑛, then for all𝑚 such that 𝑛 < 𝑚 ≤ |𝑠 |, 𝛿𝑚0 (𝑠) ∉ 𝐿(𝑟 ).
This means that l-score is maximal. Therefore, there
exists no prefix of length higher than 𝑛 that 𝑟 can
match.

4. S𝑙 (𝑟, 𝑠) = −∞ if and only if for all natural number 𝑚,
𝛿𝑚0 (𝑠) ∉ 𝐿(𝑟 ).

Properties 1, 2 and 3 show that S𝑙 is correct. This means
that if a score is returned, this score is the length of the
longest prefix of the input string that the input regexp can
match. Property 4 shows the completeness and the sound-
ness of S𝑙 . This means that if no score is found, then there is
no score, and if there exists a score, S𝑙 will return it.

Using S𝑙 , the longest match policy (noted 𝐸𝑙 ) consists in
choosing the regexp based rule whose regexp has the highest
l-score. The Coqlex formal definition of that policy is defined
in Figure 11.

To prove the correctness of 𝐸𝑙 , we proved with Coq that
for every string 𝑠 and list 𝑙𝑟 of regexp based rules:

1. if 𝐸𝑙 (𝑙𝑟 , 𝑠) = ⊥ then for every regexp 𝑟 and semantic
action 𝑎 such that (𝑟, 𝑎) ∈ 𝑙𝑟 , S𝑙 (𝑟, 𝑠) = −∞

2. if there exists a regexp 𝑟 , a semantic action 𝑎 and a
natural number 𝑛 such that 𝐸𝑙 (𝑙𝑟 , 𝑠) = (𝑟, 𝑎, 𝑛) then
for every regexp 𝑟 ′, semantic action 𝑎′ and natural
number 𝑛′ such that (𝑟 ′, 𝑎′) ∈ 𝑙𝑟 and S𝑙 (𝑟 ′, 𝑠) = 𝑛′,
𝑛′ ≤ 𝑛
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𝐸𝑙 ( [], 𝑠) = ⊥
S𝑙 (𝑟, 𝑠) = −∞

𝐸𝑙 ((𝑟, 𝑎) :: 𝑡, 𝑠) = 𝐸𝑙 (𝑡, 𝑠)

S𝑙 (𝑟, 𝑠) = 𝑛 𝐸𝑙 (𝑡, 𝑠) = (𝑟𝑡 , 𝑎𝑡 , 𝑛𝑡 ) 𝑛𝑡 > 𝑛

𝐸𝑙 ((𝑟, 𝑎) :: 𝑡, 𝑠) = (𝑟𝑡 , 𝑎𝑡 , 𝑛𝑡 )

S𝑙 (𝑟, 𝑠) = 𝑛 𝐸𝑙 (𝑡, 𝑠) = ⊥
𝐸𝑙 ((𝑟, 𝑎) :: 𝑡, 𝑠) = (𝑟, 𝑎, 𝑛)

S𝑙 (𝑟, 𝑠) = 𝑛 𝐸𝑙 (𝑡, 𝑠) = (𝑟𝑡 , 𝑎𝑡 , 𝑛𝑡 ) 𝑛𝑡 ≤ 𝑛

𝐸𝑙 ((𝑟, 𝑎) :: 𝑡, 𝑠) = (𝑟, 𝑎, 𝑛)

Figure 11. The formal description of the longest match
selection policy. The symbol ⊥ means that no rule is selected.

nullable 𝑟 = true

S𝑠 (𝑟, 𝑠) = 0
nullable 𝑟 = false

S𝑠 (𝑟, 𝜖) = ∞
S𝑠 (𝑟/𝑎, 𝑧) = 𝑛 nullable 𝑟 = false

S𝑠 (𝑟, 𝑎𝑧) = 𝑛 + 1
S𝑠 (𝑟/𝑎, 𝑧) = ∞ nullable 𝑟 = false

S𝑠 (𝑟, 𝑎𝑧) = ∞

Figure 12. The formal description of s-score computation.

3. for every regexps 𝑟 and 𝑟 ′, semantic actions 𝑎 and
𝑎′ and natural number 𝑛, if 𝐸𝑙 (𝑙𝑟 , 𝑠) = (𝑟, 𝑎, 𝑛) and
S𝑙 (𝑟 ′, 𝑠) = 𝑛 then 𝐸𝑙 ((𝑟 ′, 𝑎′) :: 𝑙𝑟 , 𝑠) = (𝑟 ′, 𝑎′, 𝑛)

Besides the longest match policy, Coqlex defines the short-
est match policy that allows to select the first regexp based
rules whose regexp matches the shortest prefix of the input
string. The implementation technique of the shortest match
policy is similar to the longest match policy. This implemen-
tation starts by the definition of the s-score (noted: S𝑠 ) that
allows to compute the length of the shortest prefix that a reg-
exp can match. The formal definition of s-score is described
in Figure 12.

Similarly to the S𝑙 , we proved the correctness and com-
pleteness of S𝑠 through Coq proofs of the following theo-
rems:

1. if there exists a natural number 𝑛 such that S𝑠 (𝑟, 𝑠) =
𝑛, then 𝑛 ≤ |𝑠 |. This helps to make sure that 𝑛 can be
used with 𝛿 to extract the prefix of length 𝑛.

2. if there exists a natural number 𝑛 such that S𝑠 (𝑟, 𝑠) =
𝑛, then 𝛿𝑛0 ∈ 𝐿(𝑟 ). This means that the input regexp
matches the prefix of length 𝑛 of 𝑠 .

3. if there exists a natural number 𝑛 such that S𝑠 (𝑟, 𝑠) =
𝑛, then for all𝑚 such that𝑚 < 𝑛, 𝛿𝑚0 (𝑠) ∉ 𝐿(𝑟 ). This
means that s-score is minimal. Therefore, there exists
no prefix of length lower than 𝑛 that 𝑟 can match.

4. S𝑠 (𝑟, 𝑠) = ∞ if and only if for all natural number 𝑚,
𝛿𝑚0 (𝑠) ∉ 𝐿(𝑟 ).

𝐸𝑠 ( [], 𝑠) = ⊥
S𝑠 (𝑟, 𝑠) = ∞

𝐸𝑠 ((𝑟, 𝑎) :: 𝑡, 𝑠) = 𝐸𝑠 (𝑡, 𝑠)

S𝑠 (𝑟, 𝑠) = 𝑛 𝐸𝑠 (𝑡, 𝑠) = (𝑟𝑡 , 𝑎𝑡 , 𝑛𝑡 ) 𝑛𝑡 < 𝑛

𝐸𝑠 ((𝑟, 𝑎) :: 𝑡, 𝑠) = (𝑟𝑡 , 𝑎𝑡 , 𝑛𝑡 )

S𝑠 (𝑟, 𝑠) = 𝑛 𝐸𝑠 (𝑡, 𝑠) = ⊥
𝐸𝑠 ((𝑟, 𝑎) :: 𝑡, 𝑠) = (𝑟, 𝑎, 𝑛)

S𝑠 (𝑟, 𝑠) = 𝑛 𝐸𝑠 (𝑡, 𝑠) = (𝑟𝑡 , 𝑎𝑡 , 𝑛𝑡 ) 𝑛𝑡 ≥ 𝑛

𝐸𝑠 ((𝑟, 𝑎) :: 𝑡, 𝑠) = (𝑟, 𝑎, 𝑛)

Figure 13. The formal description of the shortest match
selection policy.

Using S𝑠 , the shortest match policy consists into choosing
the regexp based rule whose regexp has the lowest s-score.
The Coqlex formal definition that policy is defined in Fig-
ure 13.

5.3 Coqlex rule selection
Using 𝐸𝑓 , 𝐸𝑙 and 𝐸𝑠 , the formal definition of the rule selection
𝐸 can be defined as follows:

𝐸 (𝐸′, 𝑙𝑟 , 𝑙𝑓 , 𝑠) =
{
𝐸𝑓 (𝑙𝑓 , 𝑠) if 𝐸𝑓 (𝑙𝑓 , 𝑠) ≠ ⊥
𝐸′ (𝑙𝑟 , 𝑠) otherwise

where 𝐸′ is either 𝐸𝑙 or 𝐸𝑠 . In the Coq code presented
in Figure 3, 𝐸 is represented by generalizing elector,
𝐸𝑙 is represented by longest match elector. The imple-
mentation of 𝐸𝑠 in the Coqlex library is represented by
shortest match elector.

5.4 Optimization
The naive implementation suggested by the formal definition
of S𝑙 and 𝐸𝑙 has a time complexity that is at least quadratic
in the size of the input string. In fact, the implementation of
l-score requires reading all the characters of the input string
for every regexp based lexical rule and thus for every token.
However, this is not necessary in some cases (e.g for all string
𝑠 with S𝑙 (∅𝑟 , 𝑠) = −∞).

To increase the performance of S𝑙 , S𝑠 , 𝐸𝑙 and 𝐸𝑠 , we im-
plemented a regexp simplification function which is based
on the following properties:

The alternative: 𝑟 + ∅𝑟 ≡ 𝑟 and ∅𝑟 + 𝑟 ≡ 𝑟

The concatenation: 𝑟 · ∅𝑟 ≡ ∅𝑟 , ∅𝑟 · 𝑟 ≡ ∅𝑟 , 𝑟 · 𝜖𝑟 ≡ 𝑟 ,
𝜖𝑟 · 𝑟 ≡ 𝑟 and 𝑟 ∗ · 𝑟 ∗ ≡ 𝑟 ∗

The Kleene star: ∅∗
𝑟 ≡ 𝜖𝑟 , (𝑟 ∗)∗ ≡ 𝑟 ∗ and 𝜖∗𝑟 ≡ 𝜖𝑟

The difference: 𝑟 − ∅𝑟 ≡ 𝑟 and ∅𝑟 − 𝑟 ≡ ∅𝑟

These simplifications aim to detect when a given regexp is
equivalent to a regexp whose score is trivial (e.g ∅𝑟 or 𝜖𝑟 ).
We proved these properties in Coq and then used the smart
constructor technique[7] to write an optimized version of
the regexp derivative function. That function works similarly
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to the original one, except that it returns a simplified version
of the derivative. Then, we also rewrote the s-score and
l-score functions to use the optimized version of the regexp
derivative function and return the result for trivial cases. For
example, we proved that for every 𝑟 and 𝑠 ,

S𝑠 (𝑟 ∗, 𝑠) = S𝑠 (𝜖𝑟 , 𝑠) = S𝑙 (𝜖𝑟 , 𝑠) = 0
S𝑠 (∅𝑟 , 𝑠) = ∞ S𝑙 (∅𝑟 , 𝑠) = −∞

We proved that the optimized s-score and l-score are
equal to the original ones. We propagated this optimization
to 𝐸𝑙 and 𝐸𝑠 and obtained performance in linear time in the
size of the input string (see Section 6 below). In fact, during
lexical analysis, the number of tokens is high, and the number
of symbol reads required to produce each of them can be low.
Before those optimizations, the l-score computation required
to read the whole input string to produce a token, whereas
in the optimized version we stop reading when the score
is trivial, typically when the input string is equivalent to
∅𝑟 or 𝜖𝑟 . This allows to reduce drastically the number of
character read and so the execution time.

6 Evaluation
We are now going to compare Coqlex with OCamllex, the
OCaml standard lexer generator, and Verbatim++, the only
other research work on lexer verification that we are aware of.

First, we noticed three conceptual differences between
Verbatim++, Coqlex and OCamllex:

1. Verbatim++ lexers are functions that take a input
string and return a list of tokens. This means that
either those lexers perform the full lexical analysis of
the input string, or return nothing (failure). In Coqlex
and OCamllex, lexers return a token (see Section 2).
This means that even if the lexer cannot perform the
full lexical analysis of the input string, Coqlex can
provide a partial lexical analysis. It also allows to
compute the next token only if it is needed.

2. Verbatim++ uses the notion of label, a data-type re-
turned after the election. Semantic actions are func-
tions that take that label and lexeme to return a token.
Therefore, semantic actions do not have access on the
remaining string and thus, cannot perform recursive
calls. A consequence of this is that Verbatim++ lex-
ers cannot ignore parts of the input string (such as
comments and extra spaces).

3. In Coqlex, regexps are interpreted on the fly while
Verbatim++ and OCamllex compile them into finite
automata [2] for fast regexps matching.

Second, we evaluated the execution time of the generated
lexical analysers in two phases. For the first phase, we evalu-
ated their performance on the Verbatim++ JSON benchmark.

We started with analysing a JSON lexer implemented by
the Verbatim++ developers using Verbatim++ Coq source
code, then we used Coqlex and OCamllex generators to gen-
erate lexers with very close specifications. We compared the

Verbatim++ Coqlex OCamllex
Tokens per sec. 1.5 × 103 2.2 × 104 2.8 × 107

Time to process 50ko. 30 s 2 s 1.8 × 10−3 s

Figure 14. Comparison of execution time in seconds for Co-
qlex, OCamllex and Verbatim++ lexers on Verbatim++ JSON
benchmark. The benchmark file contains 56154 characters
and its lexical analysis should return 17424 tokens.

Coqlex OCamllex
Time to process 1.6Mo MiniML 0.45 s 0.04 s

Time to process 1.6Mo JSON 1.5 s 0.03 s

Figure 15. Comparison of execution time in seconds for
Coqlex and OCamllex lexers on Miniml and JSON benchmark.
The Miniml benchmark file contains 1599999 characters (for
28800 tokens) and the JSON benchmark file contains 1620948
characters (for 160489 tokens).

time performance and noticed a huge difference between the
OCamllex and Coqlex generated lexers and the Verbatim++
lexer as presented in Figure 14.

The analysis of this Figure shows linear performance for
all three lexers. Generally, lexers implemented using Verba-
tim++ components are around 15 times slower than those
generated using Coqlex and OCamllex. A similar study with
XML files showed equivalent results.

For the second phase of the evaluation of the execution
time, we evaluated the performance of Coqlex and OCamllex
generated lexers by implementing the lexer of 2 languages:
JSON[15, 18] and the first version of MiniML[17], a toy subset
of OCaml. We could not perform an evaluation of those
languages with Verbatim++ because their definitions imply
recursive calls, a feature that is not handled by Verbatim++.
The results of those evaluations are presented in Figure 15.

Generally, Coqlex executes faster when the number of
characters divided by the number of token is higher. In fact,
in our measurements, Coqlex has better performance for
the MiniML analysis where the number of characters per
token is ≈55.55 (see Figure 15). For a similar number of
characters, this performance is three times slower for the
JSON benchmark where the number of characters per token
is five times lower (≈10.10).

9



Preprint, , Wendlasida Ouedraogo, Lutz Straßburger, and Gabriel Scherer

We can observe that OCamllex generated lexers execute
faster than Coqlex ones. However, Coqlex generated lexer
performance is surprisingly good and does not pose limita-
tions to its usefulness in real-world settings. In fact, Coqlex
has been used to generate the lexer for an Ada-to-Ada op-
timizing compiler by Siemens mobility. This compiler is
used in an industrial setting to process thousands of source
code files with not a too noticeable difference with respect
to OCamllex. Furthermore, the use of the Coqlex generator,
whose lexer is implemented using the components of the
Coqlex library, does not show noticeable slowness.

In regard to regexp specification, Coqlex allows to gener-
ate richer regular expressions than Verbatim++ and OCam-
llex. In fact, OCamllex allows to perform the regexp minus-
operation only for charsets, while Coqlex allows to per-
form this operation on general regexps. In addition, Co-
qlex also allows to define function based rules other than
end-of-file. Verbatim++ does not allow such operations.
However, OCamllex allows to bind substrings matched by a
regexp to identifiers, but neither Coqlex or Verbatim++ have
this feature.

In regard to the syntax of the .vl files, the Coqlex generator
is built to process a language that is very close to OCamllex.
This means that there are only few differences between .vl
files and their equivalent .mll files. For example, Figures 18
in the Appendix presents the OCamllex equivalent of the
Coqlex lexer presented in Figure 1.

6.1 Looping lexers
Another advantage of Coqlex is that it provides protections
against infinite loops. Let us consider the Coqlex lexer spec-
ified in Figures 16 and the OCamllex lexer specified in 17.
Regarding those specifications, the lexers are supposed to
work as follows:

• If the remaining string is 𝜖 then 1 is returned.
• Else if the longest prefix of the input string in lexbuf

matches [[𝑏]] · [[𝑎]]∗ · [[𝑏]] then 0 is returned
• Else if it matches [[𝑎]]∗ it performs a recursive call

on the remaining string of lexbuf (updated after the
election). This is a common technique used to ignore
elements such as comments during lexical analysis.

When such lexer is called with a string 𝑠 that starts with
a character that is different from ‘a‘ and ‘b‘, the election
choose the semantic action that is associated to the regex
[[𝑎]]∗ with a score of 0. This means that the lexeme is 𝜖 and
the remaining string is 𝑠 . As the semantic action associated
to this regexp is a recursive call, it leads to an infinite loop.
The lexer generated by OCamllex from the code in Figure 17
loops when the input string is ‘c‘, whereas the lexer gener-
ated by Coqlex from the code in Figure 16 returns an error.
Verbatim++ does not handle this kind of problems because
semantic actions do not allow recursive calls.

Furthermore, the simplicity of the Coqlex implementa-
tion allows to write proofs on Coqlex lexers. For example,

rule my_lexer = parse

| 'b' 'a'* 'b' { ret 0 }

| 'a'* { my_lexer }

| EOF { ret 1 }

Figure 16. The Coqlex example of a lexer whose execution
can loop

rule my_lexer = parse

'b' 'a'* 'b' { 0 }

| 'a'* { my_lexer lexbuf }

| EOF { 1 }

Figure 17. The OCamllex example of a lexer whose execu-
tion can loop

we have proven that the looping lexer defined in Figure 16
always returns an error related to the fuel when the first
character of the input string is different from ‘a‘ and ‘b‘.

7 Conclusion
The formal correctness of lexing does not seem to be exten-
sively studied in the literature. For instance, even for the
formally proven compiler CompCert [12], lexing is one of
the phases which are not formally verified. In existing ap-
proaches to verify lexers, like in CakeML [11], the lexer is
implemented by hand (without using a generator) and proven
equal to a simple and deterministic function. Most lexers are
more complicated and it can be hard to find a simple and
deterministic function that is equal to the lexer. Nipkow[14]
proved the correctness of a regex-to-DFA translation and
an accompanying lexer, but the implementation is not im-
mediately suitable for programmatic lexing because that
implementation does not correspond to an executable pro-
gram. Only Coqlex and Verbatim++ suggest almost complete
verified approach for lexer implementation and verification.

This work showed that implementing a lexer using simple
data types and functions can have better performance than
compiling lexical rules into deterministic finite automata (e.g
Verbatim++ vs Coqlex performance). The low performance
of Verbatim++ compared to OCamllex that also uses deter-
ministic automata are due to the way the automata is stored.
In OCamllex, the automata is computed one and stored using
built-in data-types while in Verbatim++, that automata is
computed at every lexical analysis.

In future work, the performance of our generator could
be enhanced in several ways, for instance by speeding up

10
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the election process by using finite automata as in OCam-
llex, allowing users to bind substrings matched by regexps,
implementing a static analyzer to detect potential looping
cases, implementing a .mll to .vl converter, etc.

Even if the execution time performance of Coqlex can
be increased, it lays strong foundations for verified lexer
generation. It is an alternative to non formally proven lexer
generators, it allows to make one more step in proving end-
to-end correctness of compilers, and it has already found
applications in the real world.
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A Appendix
A.1 Source code organization
The Coqlex source code is organized as follows:

The directory regexp opt: contains the implementa-
tion of Coqlex extended version of regular expression
based on Brzozowski derivatives.

RValues.v: contains the definition of usual regex (string,
character, identifiers, numbers…)

RegexpSimpl.v contains the implementation of regexp
simplification described in section 5.4.

MachLen.v: contains the implementation of the score
used to perform the longest match rule. Similarly,
ShortestLen.v contains the score function of the short-
est match rule.

MachLenSimpl.v: contains the optimized version of
the longest match rule score computation. Similarly,
ShortestLenSimpl.v contains the optimized score func-
tion of the shortest match rule.

LexerDefinition.v: contains the Coqlex election sys-
tem and data-type definition.

CoqlexUtils.v: contains the definition of usual seman-
tic action.

CoqlexLexer.v: contains definition of the lexer of the
Coqlex generator.

Extraction.v: contains the extraction directives of the
.v files above.

Parser.vy: contains definition of the parser of the Co-
qlex generator.

coqlex.ml: contains Coqlex generator main function.
ParserUtils.ml and LexerUtils.ml: contains OCaml

function that facilitates the use of the OCaml ex-
tracted code of Coqlex lexers.

The directory example: contains examples of Coqlex
lexer specified by .vl files, their OCamllex equivalent
and benchmark data.

The directory Comparison: contains JSON benchmark
data, Verbatim++, OCamllex and Coqlex lexers and a
python code that allowed to plot the Figure 14.

A.2 OCamllex version of mini-cal

(* header section *)
{
open Lexing
open TokenDefinition.
}

(* regexp definitions *)
let ident = ['a'-'z']+
let numb = ['0'-'9']+

(* lexer definitions*)
rule minlexer = parse
| '\n' { new_line lexbuf; minlexer lexbuf }
| ident {ID (Lexing.lexeme lexbuf)}
| numb { Number (Lexing.lexeme lexbuf)}
| '+' { PLUS }
| '-' { MINUS }
| '*' { TIMES }
| '(' { LPAREN }
| ')' { RPAREN }
| eof { Eof }
| _ { failwith ("unknown token : " ˆ (Lexing.lexeme lexbuf))}

(* trailer section *)
{}

Figure 18. mini-cal.mll file
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