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ON THE PRIMAL AND DUAL FORMULATIONS
OF THE DISCRETE MUMFORD-SHAH FUNCTIONAL

Nelly Pustelnik

ENSL, CNRS, Laboratoire de Physique, F-69342 Lyon, France.

ABSTRACT

This work focuses on the discrete Mumford-Shah (D-MS)
functional which aims to perform jointly image reconstruc-
tion and contour detection but at the price of minimizing a
non-convex objective function. This functional was of main
interest during the 90’s but was then forsaken in order to focus
on the unique restoration task relying on non-smooth convex
minimization. Recent advances about D-MS were dedicated
to alternative objective functions for which efficient numeri-
cal solution based on proximal iterations can be designed. In
the 90’s literature about D-MS, equivalences between primal
and dual formulations were derived. However, in the frame-
work obtained by more recent developments dedicated to D-
MS such an equivalence was not yet derived and it is the goal
of this work. By providing both a primal and dual formula-
tion, a large panel of algorithms can be employed including
recent proximal-based algorithms benefiting of good conver-
gence behavior, especially due to KL properties and also most
standard methods such as BFGS.

Index Terms— Image restoration, contour detection, Dis-
crete Mumford-Shah, proximal algorithms, dual formulation.

1. INTRODUCTION

The resolution of an inverse problem in image processing
consists in finding an image û ∈ R|Ω| as close as possible
from an (unknown true) image u ∈ R|Ω| using information
contained in the observation z = Au+ϵ (where A ∈ RM×|Ω|

models a linear degradation and ϵ denotes a random, possibly
Gaussian, perturbation). This inversion task is generally a
prelimininary step before other processing such as segmenta-
tion or interface detection [1, 2]. In this work, we focus on
the second type of post-processing when it is combined with
the inversion step, that is of main interest for physics appli-
cation, for instance to extract contact surfaces when studying
multiphasic flows [3].

During the 90’s, an important research effort was dedi-
cated to joint image denoising and interface detection, start-
ing with the contribution of Mumford and Shah (MS) [4] and
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similar ideas formulated by Geman and Geman in a proba-
bilistic and discrete setting [5]. The main advantages of these
formulations is to favor piece-wise smooth images.

In [6], the authors proposed an extension of Geman and
Geman energy expressed as

min
u∈R|Ω|

e∈[0,1]|E|

1

2
∥Au− z∥22 +

λ2

2

∑
s=(i,j)

s′∈Ns

ϕ(us − us′)φ(es,s′) +
∑
s,s′

ψ(es,s′),

(1)where u = (us)s∈Ω denotes the variable associated with the
image to recover, e = (es,s′)(s,s′)∈E is the variable modeling
the edges located on the lattice E, Ns denotes the neighboring
pixels of the pixel located at s, and ϕ, φ, and ψ are functions
from R to ] − ∞,+∞]. The first term is the standard data-
fidelity term, the second one aims to insure smoothness ev-
erywhere except at the location where φ(es,s′) = 0, and the
third term penalizes the edges in order to control the length of
the contours. Interestingly, when ϕ models a quadratic form,
and for specific choices of ψ, equivalences have been estab-
lished between the so-called primal formulation (1) and the
dual formulation (2) involving a penalization ϕ̃:

min
u∈R|Ω|

1

2
∥Au− z∥22 +

λ2

2

∑
s=(i,j)

s′∈Ns

ϕ̃(us − us′) (2)

whose first term is still the data-term insuring that the estimate
is close to the data z and the second term is a penalization
term over the difference between neighboring pixels. Table 1
lists several functions encountered in the literature [7, 8, 6, 9]
allowing to establish this link between primal and dual for-
mulations.
Algorithmic procedure – The benefit of this twofold pri-
mal or dual formulations is to offer a large panel of algo-
rithmic strategies to perform joint restoration and contour de-
tection. Geman and Reynold [6] performed minimization by
stochastic relaxation with annealing (Gibbs sampling). In
[9], a Gauss-Seidel alternating minimization strategy is de-
signed. An acceleration based on conjugate gradient is pro-
vided in [10]. Recently, Storath and Weimann [11] provided
several interesting scheme to deal with Blake-Zisserman or
Potts model (i.e. ϕα = ∥ · ∥0) based on dynamic program-
ming allowing them to provide a fast and convergent algorith-
mic solution to the global minimum in 1D. An extension to
dimension 2 by having recurse to ADMM iterations is also
provided, at the price of weaker convergence guarantees.



Contributions and outline – In this work, we focus on a
more recent alternative formulation of (1), improving over the
references listed before, inspired from the discrete Ambrosio-
Tortorelli formulation provided in [12, 13, 14] which is de-
scribed in Problem 1 (Section 2) and for which we establish
the dual formulation. By providing both a primal and dual
formulation, a large panel of algorithms can be employed,
thus Section 3 will discuss the pros and cons of both formu-
lations through the optimization point of view and lists algo-
rithms including recent proximal-based algorithms benefiting
of good convergence behavior, especially due to KL proper-
ties but also most standard methods. Section 4 illustrates the
numerical behavior of the algorithms for minimizing either
the primal or the dual formulation. A BFGS strategy is also
implemented and compared in order to illustrate the benefit to
go beyond first order schemes. Conclusions are provided in
Section 6. Proof are detailed in Section 7.

2. RELATION BETWEEN PRIMAL AND DUAL
FORMULATIONS.

The primal minimization formulation considered in this work
is provided in Problem 1.

Problem 1 Let A ∈ RM×|Ω| and z = D(Ax) ∈ RM , where
D denotes a stochastic perturbation1, D ∈ R|E|×|Ω| and such
as the ℓ-row of D is denoted Dℓ, λ > 0, and α > 0. We as-
sume that f(·, z) : RM →]−∞,+∞] is convex, continuous,
and proper, ϕ : R →] − ∞,+∞], and ψ : R →] − ∞,+∞]
are proper, l.s.c such that inf ψ = 0, ψ(0) = 0 and inf ϕ = 0.
We aim to solve

(û, ê) ∈ Argmin
u∈R|Ω|,
e∈R|E|

f(Au, z)+
λ2

2

|E|∑
ℓ=1

ϕ(Dℓu)(1−eℓ)2+α
∑
ℓ

ψ(eℓ).

(3)
λ > 0 and α > 0 are the regularization parameters. The main
advantage of this alternative formulation of (1) relies on the
implicit assumption that eℓ ≤ 1 imposed by the term (1− ·)2
and eℓ ≥ 0 imposed by the definition of ψ allowing us to relax
the dynamic range constraint on eℓ.

Proposition 1 establishes the dual formulation of Prob-
lem 1 providing a new relation between ϕ, ψ, and ϕ̃. The dual
expression appears to be simply formulated by making use of
proximity operator.

Proposition 1 The minimization Problem 1 is equivalent to

û ∈ Argmin
u∈R|Ω|

f(Au, z) + λ2
|E|∑
ℓ=1

ϕ̃α/λ2 (ϕ(Dℓu)) ,

and ê = (êℓ)ℓ∈E with

êℓ =

{
prox α

λ2ϕ(Dℓû)
ψ(1) if ϕ (Dℓû) > 0,

0 otherwise,

1not only restricted to additive Gaussian noise

ϕ̃(t) ψ(w) φ(u)

Geman&McClure t2

1+t2
w − 2

√
w + 1 u

Hebert&Leavy log(1 + t2) w − logw − 1 u

Charbonnier et al. 2
√
1 + t2 − 2 w + 1

w
− 2 u

Geman&Reynold −1
1+|t|

w−3
√
w

2
u3/2

2(1−
√

b)

Table 1. Choice of ϕ̃, ψ and φ encountered in the literature
leading to the equivalence between (1) and (2) when ϕ = (·)2.

where, for every η > 0,

ϕ̃α/λ2(η) =
η

2
(1− prox α

λ2η
ψ(1))

2 +
α

λ2
ψ(prox α

λ2η
ψ(1))

and 0 otherwise.

To facilitate the interpretation of the penalization ϕ̃α/λ2 ,
we propose to focus on specific choices of ϕ and ψ. Lemma 1
focuses on D-MS-ℓ1 proposed in [13] while Lemma 2 allows
us to establish the link with Blake-Zisserman functional [15].

Lemma 1 Let ψ = | · | and ϕ = | · |2, the minimization
Problem 1 can be reformulated as

û ∈ Argmin
u∈R|Ω|

f(Au, z) + λ2

2

∑|E|
ℓ=1 ϕ̃α/λ2

(
(Dℓu)

2
)
,

(∀ℓ) êℓ =

{
prox α

λ2(Dℓû)2
|·|(1) if (Dℓû)

2 > 0,

0 otherwise,

where

(∀η ≥ 0) ϕ̃α/λ2(η) =


α
λ2 (2− α

λ2η ) if η > α
λ2 ,

η if 0 < η ≤ α
λ2 ,

0 if η = 0.

Lemma 2 When ψ(η) = {1 if η ̸= 0 and 0 if η = 0} (i.e.∑
ℓ ψ denotes the ℓ0 penalization), the minimization Problem

1 can be reformulated as
û ∈ Argmin

u∈RN
f(Au, z) + λ2

2

∑
ℓmin(ϕ(Dℓu),

2α
λ2 )

(∀ℓ ∈ {1, . . . , |E|}) êℓ =


0 if ϕ(Dℓû) <

2α
λ2 ,

1 if ϕ(Dℓû) >
2α
λ2 ,

[0, 1] if ϕ(Dℓû) =
2α
λ2 .

When ϕ = | · |2, the resulting non-convex but smooth pe-
nalization is known as truncated-ℓ2 penalization, and can also
refer to Blake-Zisserman functional [15].

3. MINIMIZATION STRATEGIES

In this section, we propose minimization algorithms dedi-
cated to both primal and dual formulations in the context of



Lemma 1 when ϕ = | · |2 and ψ = | · |. We assume that
f ◦A can be either activated considering its gradient (assum-
ing Lf -smooth functions f ) or its proximity operator. Algo-
rithmic strategies relying either on alternating minimization
(for solving the primal problem) or gradient-based iterations
(for the dual) are derived. All algorithmic procedures ben-
efit from global convergence to a critical point considering
Kurdyka-Łojasiewicz properties [16, 17, 18]. Proximal meth-
ods could be useful in order to either handle with non-smooth
functions but also in order to make the algorithmic procedure
faster than gradient based approaches when smooth functions
are involved [?].

Both minimization problems either the primal or the dual
ones involved non-convex objective functions with different
levels of complexity. On the other hand, the primal formula-
tion is non-convex, however when ϕ = | · |2 and ψ = | · |,
this problem turns out to be biconvex and is generally solved
by an alternate minimization procedure. On the other hand, in
the context of Lemma 1 and when f is a quadratic function,
typically encountered in restoration problem with Gaussian
noise, the dual problem turns out to be smooth and make the
resolution even simpler according to the exhaustive literature
dedicated to this subject [19].
Alternating Minimization for the primal – The semi-
linearized PAM procedure [16, 17] can be formulated either
by a gradient activation of the data-fidelity term or by a prox-
imal activation. In both cases, the sequence {u[k], e[k]}k∈N
converges to a critical point of the primal problem.
• Primal-SLPAM

u[k+1] = prox 1
ck

f(A·,z)

(
u[k] − 2λ2

ck
D∗Λe[k]Du[k]

)
e[k+1] =

(
prox αψ

λ2(Dℓu
[k+1])2+dk

(λ2(Dℓu
[k+1])2 + dke

[k]
ℓ

λ2(Dℓu[k+1])2 + dk

))
ℓ

where Λe[k] is a diagonal matrix with diagonal values set to
(1 − e

[k]
ℓ )2, dk > 0, and ck > 0 and upper bounded by the

local Lipschitz constant of the coupling term.
• Gradient update for u[k] (Primal-SLPAM-GD)

u[k+1]= u[k] − 1

ck
A∗∇f(Au[k], z)− 2λ2

ck
D∗Λe[k]Du[k]

e[k+1]=

(
prox αψ

λ2(Dℓu
[k+1])2+dk

(λ2((Du[k+1])ℓ)
2 + dke

[k]
ℓ

λ2(Dℓu[k+1])2 + dk

))
ℓ

where dk > 0, and ck > 0 and upper bounded by the local
Lipschitz constant of the sum of the data-fidelity term and the
coupling term.
Gradient based algorithm for the dual – Under specific
assumptions of Lemma 1, the dual formulation reads:

û = argmin
u
f(Au, z) +

λ2

2

|E|∑
ℓ=1

q(Dℓu) (4)

where, for every η ∈ R,

q(η) =

{
α
λ2 (2− α

λ2η2 ) if η2 > α
λ2 ,

η2 if 0 ≤ η2 ≤ α
λ2 ,

which turns to be a non-convex but smooth minimization
problem. We can derive a gradient based and a proximal-
gradient based iterations, such that the sequences {u[k], e[k]}k∈N
converge to a critical point of the dual problem [18].
• Dual gradient descent (Dual-GD):

u[k+1] = u[k]−τA∗∇f(Au[k], z)−τD∗(q′(Dℓu
[k]))1≤ℓ≤|E|

with τ < (Lf∥A∥2 + Lq∥D∥2)−1.
• Dual proximal gradient descent (Dual-PG):

u[k+1] = prox 1
ck
f(A·,z)

(
u[k] − τD∗(q′(Dℓu

[k]))1≤ℓ≤|E|

)
with τ < (Lq∥D∥2)−1.

4. NUMERICAL EXPERIMENTS
We focus on image denoising or restoration problems where
the degradation model is z = Ax + ϵ where ϵ ∼ N (0, σ2I).
We illustrate the performance of the different algorithmic
strategies in this context.

Additionally to the algorithms described in the previous
section having convergence guarantees using KL properties,
we also include a minimisation of the dual function relying
on BFGS to highlight the benefice of considering higher order
optimization schemes.

We display in Fig. 1 the convergence behavior of the pri-
mal objective function with respect to time in a context of
(top) denoising with σ = 1 and where hyperparameters are
set to extract meaningful contours such that λ =

√
1.4 and

α = 0.0015 (bottom) restoration with Gaussian blur of stan-
dard deviation of 3 and Gaussian noise with standard devia-
tion set to 0.1 where λ =

√
12 and α = 0.009.

Among first order methods (Dual-GD, Dual-GP, Primal-
SLPAM-GD, and Primal-SLPAM), the procedures relying on
proximal activation of the data-fidelity term are always faster.
Additionally, we observe that primal-SLPAM is always the
faster one.

Now, when focusing on the first order method Primal-
SLPAM and Dual-BFGS, we observe that both have very
close performance as the fastest one depends on the configu-
ration (denoising or restoration).

5. CONCLUSIONS AND FUTURE WORKS
This work derives the dual formulation of D-MS formulated
as in [12, 13]. In the context where ϕ = | · |2 and ψ = | · |,
the dual formulation leads to a smooth non-convex objec-
tive function adapted to several optimization schemes. We
numerically compared several optimization schemes either
solving the primal or the dual formulation. Primal-SLPAM
and Dual-BFGS appear to be comparably efficient. A future
work would be to establish, at the instar of [20], convergence
rates in the context of strongly convex functions, to identify
regimes where a method could be preferable to another one.
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Fig. 1. Estimation and evolution of the primal objective function with several algorithmic schemes either applied on the dual functional or
the primal one. (top) denoising with σ = 1. (bottom) restoration with Gaussian blur of standard deviation of 3 and Gaussian noise with
standard deviation set to 0.1.

Additionally, deep learning is more and more focused
on model-based architecture involving a minimization proce-
dure. Consequently, for D-MS formalism, having a flexibility
relying on either primal and dual formulation offer a larger
range of possible architectures.
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7. ANNEX

7.1. Proof of Proposition 1
The minimization Problem 1 can be equivalently written as

min
u
f(Au, z)+

λ2

2

∑
ℓ

inf
eℓ

{
ϕ(Dℓu)(1− eℓ)

2 +
2α

λ2
ψ(eℓ)

}
︸ ︷︷ ︸

ψ̃(eℓ,ϕ(Dℓu))

.

From proximity operator definition, we can write:

argmin
eℓ

ψ̃(eℓ, ϕ(Dℓu)) =

prox αψ(·)
λ2ϕ(Dℓu)

(1) if ϕ(Dℓu) > 0,

0 otherwise,

and thus, if ϕ(Dℓu) > 0,

inf
eℓ
ψ̃(eℓ, ϕ(Dℓu)) = ϕ(Dℓu)

(
1− prox αψ(·)

λ2ϕ(Dℓu)

(1)
)2

+
2α

λ2
ψ
(
prox αψ(·)

λ2ϕ(Dℓu)

(1)
)

(5)

and 0 if ϕ(Dℓu) = 0. This yields, for η > α
λ2 , to

prox α
λ2η

|·|(1) = 1− α

λ2η

and to 0 if 0 < η ≤ α
λ2 leading to the established result.
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