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Abstract We consider a certain infinite product of random 2×2 matrices appear-
ing in the solution of some 1 and 1+1 dimensional disordered models in statistical
mechanics, which depends on a parameter ε > 0 and on a real random variable
with distribution µ. For a large class of µ, we prove the prediction by B. Derrida
and H. J. Hilhorst (J. Phys. A 16, 1641–2654 (1983)) that the Lyapunov exponent
behaves like Cε2α in the limit ε ↘ 0, where α ∈ (0, 1) and C > 0 are determined
by µ. Derrida and Hilhorst performed a two-scale analysis of the integral equation
for the invariant distribution of the Markov chain associated to the matrix product
and obtained a probability measure that is expected to be close to the invariant
one for small ε. We introduce suitable norms and exploit contractivity properties
to show that such a probability measure is indeed close to the invariant one in a
sense which implies a suitable control of the Lyapunov exponent.
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1 Introduction

1.1 Products of random matrices, Lyapunov exponents and statistical mechanics

Products of random 2 × 2 matrices have appeared in the physics literature since
Schmidt [22] introduced them to analyse a finite-difference equation with random
coefficients proposed by Dyson [8] to study disordered harmonic chains. In the
following years, probabilists and analysts began to investigate more general ran-
dom matrix products, obtaining powerful results such as Furstenberg’s theorem
(regarding the existence and implicit characterization of the leading Lyapunov ex-
ponent [9]) and Osoledets’ multiplicative Ergodic theorem [20], many of which also
hold in the more general context of linear cocycles (see [26] for a recent review).
The same difference equation studied by Dyson occurs as the Schrödinger equa-
tion for the Anderson tight-binding model in one dimension, and Furstenberg’s
work played an important role in the first rigorous proofs of localization in this
model (e.g. [14,19]); random matrix product theory provides a unified framework
for these otherwise disparate treatments [2]. Random-matrix-product studies of
the one-dimensional Schrödinger equation have seen continued use in recent years
to obtain further results about localization [3,4].

The present work considers random matrices of the form

Mε
n :=

(
1 ε

εZn Zn

)
, (1.1)

where ε ∈ (0, 1) is a constant and {Zn}n=1,2,... a sequence of positive, indepen-
dent random variables with identical distribution µ. We will write Z for a random
variable with distribution µ. This product of random variables, and the associ-
ated Lyapunov exponent(s), appear in various statistical mechanics models. For
example, up to an unimportant factor, Mε

n is the transfer matrix of the 1D Ising
model with ε = e2βJ , Z = e2βh. Here randomness in Z corresponds to a random
magnetic field and the free energy density (in the thermodynamic limit) is the
leading Lyapunov exponent [5, Chapter 4] defined by

L(ε) := lim
n→∞

1

n
E log ‖Mε

nM
ε
n−1 · · ·Mε

1‖ , (1.2)

where ‖·‖ denotes an operator norm (the limit is independent of the norm chosen);
our results apply to part of the frustrated regime, where the magnetic field can
have either sign with nonzero probability. Moreover, the free energy of the McCoy-
Wu model in the thermodynamic limit can be expressed as an integral of the free
energy of this model with respect to a parameter q – which maps to ε in our
notation – and the singular behavior comes from the values of q (i.e. ε) close to
zero [23]. A similar matrix product also appears in the original treatment of the
McCoy-Wu model [16].

1.2 Working definitions and main result

The classical theory of products of random matrices provides a technique for cal-
culating L(ε) as an ergodic average [2,10]. Since det(Mε

1) = (1− ε2)Z1 > 0,

Aε
n :=

Mε
n√

det (Mε
n)

, (1.3)
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is a an element of SL(2,R), and assuming that ε > 0 and that µ is absolutely
continuous with bounded support, it is easy to confirm that it satisfies the as-
sumptions of [2, Chapter II, Prop. 4.3 and Th. 4.1], which shows that the Markov
process on P(R2) defined by

x, Aε
1x, Aε

2A
ε
1x, . . . , Aε

nA
ε
n−1 · · ·Aε

1x, . . . (1.4)

has a unique (and therefore ergodic) invariant probability measure mε. As already
remarked for example in [7,16], special features of the specific random matrices in
question allow us to simplify the expression for L(ε). Firstly, since all the matrix
elements are positive and (for fixed µ and ε, also assuming the support of µ is
bounded away from 0) bounded from above and below, the limit is unchanged if
we replace the vector norm ‖ · ‖ in the last line of (1.2) with the scalar product
with a fixed matrix element [10], i.e.

L(ε) = lim
n→∞

1

n
E log [Mε

nM
ε
n−1 · · ·Mε

1 ]11 , (1.5)

and using the pointwise ergodic theorem we can rewrite this

L(ε) = lim
n→∞

1

n
E log [Aε

nA
ε
n−1 · · ·Aε

1]11 +
1

2
E log det (Mε

1)

= lim
n→∞

1

n

n∑
m=1

E

log
[
Amx(m−1)

]
1

x
(m−1)
1

+
1

2
log det (Mε

m)


=

∫
E log

[Mε
1 x̂]1
x̂1

mε( dx) ,

(1.6)

where x(m) := Aε
mAε

m−1 · · ·Aε
1

(
1
0

)
and x̂ is an arbitrarily chosen vector in R2

from the equivalence class x.
Secondly, since the elements of the first row of Mε

1 are deterministic, the first
component of Mε

1 x̂ is a deterministic function of x̂, and the E in the last line above
is trivial. Parameterizing P(R2) by σ ∈ (−∞,∞] with the choice x̂ = (ε, σ), for
the M under consideration we have explicitly

L(ε) =

∫
log(1 + σ) ω̄ε( dσ) , (1.7)

where ω̄ε is obtained from mε by a change of variables; a simple computation
shows that the Markov process defined by (1.4) corresponds to the one defined by
the iteration

σn+1 = Zn
ε2 + σn

1 + σn
; (1.8)

ω̄ε is then the unique stationary measury of this process.
All we have outlined up to now depends heavily on ε ∈ (0, 1). The case of

ε ∈ (−1, 0) can be dealt with just observing that M−ε
n is conjugate to Mε

n under
the action of the diagonal matrix with eigenvalues +1 and −1, and therefore
L(ε) = L(−ε). The case ε = 0 is however different: the invariant probability is not
unique. In fact, all the invariant probabilities can be written as convex combination
of the Dirac deltas at 0 and ∞, as can be seen by elementary arguments, and it is
straightforward to see that L(0) = max(0,E logZ).
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Another fact that provides important context for our result is that, by applying
the general result in [21], we see that L(ε) is real analytic (see also [12,15] that
show C∞ behavior and Hölder continuity). The singular character of the matrices
for ε = 0 is, as we just pointed out, apparent, but sharp results on the behavior of
L(ε) for ε approaching zero are lacking in the mathematical literature. However
Derrida and Hilhorst [7] claim that when E [Z] > 1 and E [logZ] < 0

L(ε) ε↘0∼ Cµε
2α , (1.9)

where Cµ is a positive constant and α ∈ (0, 1) is the unique positive real solution
of

E [Zα] = 1 . (1.10)

Existence and uniqueness of α follow from the convexity of the function β 7→ E[Zβ ],
which takes value one with derivative E [logZ] < 0 at β = 0 and value E [Z] > 1
at β = 1.

The main result of the present work is a proof of (1.9), in the following form:

Theorem 1.1. Let L(ε) and Mε
n be as defined above, with Z satisfying

1. E[Z] > 1 and E[logZ] < 0;
2. There exist c− and c+ with 0 < c− < c+ < ∞ such that P(Z ∈ [c−, c+]) = 1,

and there is no smaller closed interval so that this is true;
3. The distribution µ of Z is absolutely continuous with respect to the Lebesgue

measure, and its density is a continuously differentiable function.

Then there exist κ > 0 and Cµ > 0 such that

L(ε) = Cµε
2α +O

(
ε2α+κ

)
, (1.11)

for ε ↘ 0 and α the positive real solution of (1.10).

Note that assumption (1) implies that c− < 1 < c+. As we shall see, κ can
be expressed explicitly given some information about the complex roots of (1.10),
and our expression for Cµ is in agreement with [7].

The difficulty in proving Theorem 1.1 comes of course from the implicit char-
acterization of mε. Identifying mε is identifying the invariant measure of a Markov
chain which does not have any special properties which would allow an explicit
expression. What has been exploited in [7] for (1.9) is, in a sense, the solvable
character of the model for ε = 0, but this limit is singular and taking advantage
of it is by no means trivial, as we shall now explain.

1.3 The Derrida-Hilhorst approach

Let us review now the main argument of [7]. In view of (1.7), we look at the
evolution of σ under the random iteration (1.8). Recalling that Z is supported on
[c−, c+], we see that the mapping (1.8) takes (−∞,∞] into [0,∞), and [0,∞] into
[c−ε

2, c+], and therefore

ω̄ε

(
[c−ε

2, c+]
{
)

= 0 . (1.12)
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Incidentally, it is straightforward to see also that ω̄ε has a density (e.g. by the
argument used in Proposition 3.1 below); we will always denote the density of a
measure with the same symbol, i.e. ω̄ε( dσ) = ω̄ε(σ) dσ.

The Derrida-Hilhorst approach is based on a two regime argument:

I. In the limit ε ↘ 0, the random recursion (1.8) takes the form

σ 7→ Z
σ

1 + σ
, (1.13)

which defines a Markov chain whose unique invariant probability is concen-
trated at zero, since σn < Zn · · ·Z1σ0 which, for E logZ < 0, converges almost
surely to 0. However this chain has other invariant measures which cannot be
normalized. If instead of considering the stationary probability measures ω̄ε we
consider the stationary measures ωε with the normalization ωε ((y,∞)) = 1 for
some suitable fixed y, these should have a nontrivial limit given by one of the
non-probability stationary measures of the limiting process (1.13), which we
denote by ω0. That is, for σ > 0 fixed and ε small, ω̄ε(σ) should be close to
a(ε)ω0(σ), for some positive a(ε), and a(ε) = o(1) because the limit for ε ↘ 0
of ωε concentrates in zero (see Figure 1 and (1.17)-(1.18)). For σ ↘ 0, the re-
cursion (1.8) formally converges to the linear map σ 7→ Zσ, and the asymptotic
behavior of ω0 should match that of a stationary measure of this map.

II. Derrida and Hilhorst then analyse ωε by blowing up the scale by ε−2. Namely,
they consider

s = Z
1 + s

1 + ε2s
. (1.14)

with stationary probability denoted by νε, which, by (1.12), is supported in
[c−, ε

−2c+]. By taking the ε ↘ 0 limit we get to s 7→ Z(1 + s), which is linear
but not straightforward to analyse. The claim for this chain is that it does have
a unique invariant probability ν0, supported on [c−,∞), whose tail behavior
(s large) can be understood by studying the simpler map s 7→ Zs.

Therefore both the behavior of ω0(σ) for small σ and the behavior ν0(s) for
large s are expected to be captured by the invariant measures of the random map
on (0,∞) given by multiplication by Z. These measures have densities f(·) that
satisfy f(x) =

∫∞
0

f(y/x)µ(y)y−1 dy and a simple computation shows that they
can be written as

f(x) =
∑
i

Aix
−1−αi , (1.15)

and where Ai ≥ 0 and αi ∈ C are such that E[Zαi ] = 1. Derrida and Hilhorst set
forth arguments suggesting that the asymptotic behaviors we are after are given
by the case that contains only αi = α, unique positive solution of E[Zα] = 1, so

ν0(s)
s→∞∼ cν

s1+α
and ω0(σ)

σ↘0∼ cω
σ1+α

, (1.16)

where cν and cω are positive constants: cν is fixed by the requirement that ν0 is a
probability, cω is fixed by the normalization of the ωε. Now the claim is that

ω̄ε(σ) ∼=

{
a(ε)ω0(σ) for σ ≥ ε ,

ε−2ν0
(
ε−2σ

)
for σ < ε ,

(1.17)
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0

0

1 s

σ

ωε(σ)

c
−

c+

νε(s)

νε(s) ≈ cνs
−(1+α)

ωε(σ) ≈ cωσ
−(1+α)

ε
2

Fig. 1. A schematic view of the invariant measure at fixed small ε. This
plot shows the density σ 7→ ωε(σ) (not a probability) and the probabil-
ity density s 7→ νε(s). The larger plot corresponds to regime I, while in
the inset the horizontal coordinate is blown up by a factor ε−2 and we
are therefore in regime II. The intermediate regime (ε2 � σ � 1 or,
equivalently, 1 � s � ε−2), where we expect to have at the same time
ωε(s) ≈ ω0(s), νε(t) ≈ ν0(t) and that the asymptotic expressions give good
approximations, is highlighted by thick dashed curves.

where the symbol ∼= stands for approximately equal and a(ε) can be evaluated by
noting that the two terms should be essentially the same near σ = ε, which using
(1.16) gives

a(ε)
ε↘0∼ cν

cω
ε2α . (1.18)

Now we can go back to (1.7), which can be computed using (1.17): for ε small,

L(ε) =

∫ ε

c−ε2
log(1 + σ) ω̄ε(σ) dσ +

∫ c+

ε

log(1 + σ) ω̄ε(σ) dσ

∼= Cµε
2α +O

(
ε1+α

)
, with Cµ =

cν
cω

∫ c+

0

log(1 + σ) ω0(σ) dσ .

(1.19)

1.4 Strategy of the proof and structure of the paper

The strategy for our proof is very much inspired by [7]. In short: we will construct
a family of probability measures γε by pasting together ν0 and ω0 (essentially,
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the right-hand side of (1.17)) and use this to obtain an estimate of the Lyapunov
exponent L(ε) which can be shown to be correct to within a remainder term which
is of the order indicated in Theorem 1.1 as ε ↘ 0.

But this approach faces two main difficulties: the rigorous construction and
analysis of ν0 and ω0 to get to a definition of γε and (worse!) the fact in any case
γε is not the invariant probability. Let us elaborate on this:

1. To define the right-hand side of (1.17) one needs to construct and control ν0
and ω0. This work is in part already done for ν0 [6], but it is lacking for ω0.
Nevertheless, the road is paved for this analysis – notably, we are going to use
Mellin transform techniques similar to those of [6] – and the difficulty that one
needs to face are of technical nature.

2. More substantially, γε is not the invariant probability: we certainly expect it
to be close to it, but in which sense and for what reasons? This step will be
performed by introducing a family of norms that allows us to state in a precise
and quantitative fashion that γε is one step approximately invariant. To use
this to obtain meaningful estimates, we will show these norms are contracted
by the action of the Markov Kernel; this provides an explicit estimate on the
distance between γε and the invariant probability νε and, more important for
us, the control is fine enough to pass to the functional of the invariant we are
after: the Lyapunov exponent L(ε).

Now we are going to go more deeply into the strategy and, in particular, we
explain the tools and the fundamental ideas to deal with item (2) of the list. For
this we find more practical to work in the scale of regime II, even if this is to a
large extent arbitrary. We introduce the map Tε defined by∫

f(τ)Tεν( dτ) =

∫ ∫
f (tgε(s)) ν( ds)µ( dt) (1.20)

for all measurable bounded f where

gε(s) :=
1 + s

1 + ε2s
. (1.21)

One readily checks that Tε is the one step transition map for the law of the chain
defined in (1.14), and hence Tενε = νε.

Later on we will need the analog of Tε, but in regime I. So we introduce Sε:
given a (finite) measure ω on (0,∞) we write Sεω for the (dual) action of Sε on
ω, i.e. Sεω(B) =

∫
Sε(σ,B)ω( dσ) for every Borel subset of (0,∞). Letting

hε(σ) :=
ε2 + σ

1 + σ
, (1.22)

we have ∫
f(σ)Sεω( dσ) =

∫ ∫
f (zhε(s))ω( ds)µ( dz) , (1.23)

for all measurable bounded f and this is of course an alternative way to define
Sεω.
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We now introduce for all measures ν supported on [0,∞)

Lε[ν] :=

∫
log(1 + ε2s)ν( ds) (1.24)

and observe that Lε[νε] = L(ε) (cf. (1.7))

We also introduce the family of functionals on signed measures

|||η|||β :=

∫ ∞

0

τβ−1 |Gη(τ)| dτ , (1.25)

where we have used the standard notation for the cumulative (tail) distribution G
and we take the occasion to introduce also the companion quantity F :

Gν(t) := ν((t,∞)) and Fν(t) := ν((−∞, t]) , (1.26)

where, in general, ν is again a signed measure on R. Let us underline that, as is
customary, by signed measure we mean a signed measure of finite total variation,
that is the difference of two finite non negative measures.

We have the following:

Lemma 1.2. For every ε ∈ (0, 1), β ∈ [0, 1] and all probability measures ν1 and
ν2, supported in [0,∞), with Lε[ν2] and Lε[ν1] finite, we have

|Lε[ν1]− Lε[ν2]| ≤ ε2β |||ν1 − ν2|||β . (1.27)

Moreover if 0 < β < α there exists cβ = cβ(µ) independent of ε such that for every
ν with |||ν|||β < ∞

|||νε − ν|||β ≤ cβ |||Tεν − ν|||β . (1.28)

Lemma 1.2 will be proven in Section 2 below. We draw the attention of the
reader on the fact that the important estimate (1.28) is a contractivity property
of Tε with respect to |||·|||β for 0 < β < α. In fact

|||νε − ν|||β = |||Tενε − ν|||β ≤ |||Tε(νε − ν)|||β + |||Tεν − ν|||β , (1.29)

from which it is apparent that (1.28) follows once we have the claimed contractive
property of Tε.

It should also be quite clear at this stage that the key is to find a test measure
ν that makes |||Tεν − ν|||β suitably small, so we can apply (1.28) and then (1.27),
with ν1 = νε and ν2 = ν. The test measure of course corresponds to γε presented
informally in Section 1.3, although we will need to make a more precise definition,
and we will find it convenient to do so in terms of distribution functions rather
than densities since these appear more naturally in our arguments. In any case,
building γε requires building first ν0 and ω0 and establishing properties of these
two measures. This is done in Section 3 and Section 4: we postpone the overview of
these two sections and complete the argument that we are outlining. In Section 5
we show in a rather straightforward way that

Lε[γε] = Cµε
2α +O

(
ε1+α

)
, (1.30)
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and in Section 5.1 we prove, on the basis of a much less straightforward computa-
tion, that

|||Tεγε − γε|||β = O
(
ε2α−β

)
+O

(
εα+δ−β

)
(1.31)

for all β ∈ (0, 1) and for any δ > 0 chosen so that E[Zz] = 1, cf. (1.10), is solved
in the strip <z ∈ [α, α + δ] only by z = α (as we shall see, the hypothesis that µ
has a density largely suffices for the existence of such a δ). Hence by using the two
inequalities in Lemma 1.2 we get to

|L(ε)− Lε[γε]| ≤ ε2β |||νε − γε|||β ≤ cβε
2β |||Tεγε − γε|||β

= O
(
ε2α+β

)
+O

(
εα+β+δ

)
,

(1.32)

and then choosing β so that

α > β > (α− δ) ∧ 0, (1.33)

we obtain Theorem 1.1 with κ = min(β, β + δ − α, 1 − α) > 0 . This therefore
concludes the argument.

Let us spend a few words on the content of Section 3 and Section 4: in Sec-
tion 3 we show the existence of the fixed points ν0 and ω0 as weak limits: νε is a
probability, but ω0 is instead an infinite measure which inherits the normalization
ωε((y,∞)) = 1 for an appropriately chosen y > 0. As we have already pointed out
in Section 1.3, the characterization of ν0 (existence, uniqueness and asymptotic
properties of Gν0) is well known [13], but we provide a (simple) proof for complete-
ness and to introduce the methods used to show the existence of ω0. In Section 4 we
characterize the behaviour of Gν0(s) for s large and Gω0(s) for s small, including
some control on the subdominant terms (thereby improving on the result of [13],
which only applies to ν0 and only gives the leading order behavior): an explicit
control of the type O(s−δ) (for some δ > 0) on the ratio of the remainder to the
leading term is crucial for our approach, as is clear from (1.29)-(1.32). The proof is
based on the characterization of the domain of analyticity of the Mellin transforms
of Gν0 and Gω0 . As shown in [6], the poles of the Mellin transform of Gν0(s) are
either roots of (1.10) or at integer translates of those roots (the latter are not
important for our result); the relevant argument is summarized in Section 4.1 for
completeness. We are not able to control the behavior of the Mellin transform well
enough to use it to directly obtain an asymptotic expression for Gν0 with control
on the remainder, but we are instead able to do this (in Section 4.2) at the level of
the primitive of Gν0 and then then recover the desired result on Gν0 by reinjecting
the estimate into the fixed point equation satisfied by Gν0 . We will also verify that
there is a positive δ such that (1.10) has no other roots with <z ∈ [α, α+δ], so that
the subleading terms in the expansion are in fact smaller then the leading term
by a factor O

(
s−δ
)
. In Section 4.3 we use the same techniques as in Sections 4.1

and 4.2 to obtain similar results for the behavior of Gω0 near 0.

1.5 Perspectives

Before embarking on the proof, we shall make a few remarks about the assumptions
of Theorem 1.1 and perspectives for generalizations.
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– When (1.10) has complex roots a with <a = α (not covered by the present
result: as shown in Section 4, assumptions (2) and (3) of Theorem 1.1 ensure
that complex roots have real part larger than α), the behavior in the intermedi-
ate regime can be given by a linear combination with the associated stationary
measures, without violating the monotonicity of Gν0 . In this situation the lead-
ing Lyapunov exponent may instead behave like

L(ε) ε↘0∼ ε2αHµ(log ε) , (1.34)

where Hµ is a nonconstant periodic function, which has been obtained by an
exact calculation for a specific choice of µ in [7].

– It is probably natural to expect that Theorem 1.1 holds without conditions
(2) and (3), assuming instead that there is a δ > 0 such that (1.10) has no
complex solutions with <a ∈ [α, α+δ] (rather than deriving this using condition
(3)), and that E [Za] < ∞ for some a > 0. Generalizing our approach in this
fashion would at least complicate many of the estimates used and require, in
particular, a new approach to the results in Section 4 on asymptotic behavior
of Gω0 and Gν0 would be needed. If this could be done, the same methods
might also be used to show that the log-periodic behavior in (1.34) holds for
other distributions µ besides the special case where it has been obtained so far
[6,7]. All of this however is not straightforward.

– The cases excluded by assumption (1) are discussed in [7]: by replacing Z with
1/Z, as a corollary of Theorem 1.1 we obtain a similar result for distributions
with E [logZ] > 0 and E [1/Z] > 1. The case E [logZ] = 0 remains of con-
siderable interest, since it corresponds to the critical point of the statistical
mechanical models discussed above, and obtaining more control over the be-
havior of L(ε) as this condition is approached (along the lines of the discussion
in [23]) appears to be worthwhile. The case where E [Z] ≤ 1, on the other hand,
should merely exhibit a weakening of the singularity at ε = 0.

– Finally, although we have focused on a concrete example of physical relevance,
the method used here has the potential to generalize to matrices of other forms,
most immediately other 2× 2 matrices whose off-diagonal entries are O (ε).

2 Estimating the Lyapunov exponent with almost-stationary points of
Tε

In this section we will prove Lemma 1.2. The assertions in (1.27) and (1.28) are
separate. For brevity, we will take absolutely continuous to mean absolutely con-
tinuous with respect to the Lebesgue measure on (0,∞). Recall that we denote
absolutely continuous measures and their densities with the same symbol.

Proof of (1.27).

For any signed measure ν such that Gν(x) is bounded and Lε(|ν|) < ∞, we
can integrate (1.24) by parts to obtain

Lε[ν] = ε2
∫ ∞

0

Gν(x)

1 + ε2x
dx . (2.1)
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This applies to ν1 − ν2, giving

|Lε[ν1]− Lε[ν2]| = ε2
∣∣∣∣∫ ∞

0

Gν1(x)−Gν2(x)

1 + ε2x
dx

∣∣∣∣ ≤ ε2
∫ ∞

0

|Gν1(x)−Gν2(x)|
1 + ε2x

dx .

(2.2)
Noting that

1

1 + z
≤ zβ−1 , (2.3)

for all β ∈ [0, 1] and z > 0, this implies

|Lε[ν1]− Lε[ν2]| ≤ ε2β |||ν1 − ν2|||β , (2.4)

that is, (1.27).

We now move to (1.28). The bulk of the proof is in the following lemma.

Lemma 2.1. For any probability measures ν1, ν2 supported on [0,∞) such that
both |||ν1||| and |||ν2||| are finite and any β ∈ (0, 1),

|||Tεν1 − Tεν2|||β < E
[
Zβ
]
|||ν1 − ν2|||β . (2.5)

Proof. Choosing f(x) = 1(τ,∞)(x), (1.20) becomes

GTεν(τ) =

∫
Gµ

(
τ

gε(s)

)
ν( ds) . (2.6)

Letting ν := ν1 − ν2, we have Gν(0) = Gν(∞) = 0. We can use this and the fact
that µ is absolutely continuous to integrate by parts, obtaining

|GTεν(τ)| =
∣∣∣∣∫ ∞

0

τ
1− ε2

(1 + s)2
µ

(
τ

gε(s)

)
Gν(s) ds

∣∣∣∣
≤
∫ ∞

0

τ

(1 + s)2
µ

(
τ

gε(s)

)
|Gν(s)| ds

(2.7)

so that

|||Tεν|||β ≤
∫ ∞

0

|Gν(s)|
(1 + s)2

∫ ∞

0

τβµ

(
τ

gε(s)

)
dτ ds . (2.8)

Noting that∫ ∞

0

τβµ

(
τ

gε(s)

)
dτ = (gε(s))

β+1
∫ ∞

0

zβµ(z) dz = (gε(s))
β+1 E

[
Zβ
]
, (2.9)

and
(gε(s))

β+1

(1 + s)2
=

(1 + s)β−1

(1 + ε2s)β+1
< (1 + s)β−1 < sβ−1 , (2.10)

for β ∈ (0, 1) and s > 0, we have

|||Tεν|||β ≤ E
[
Zβ
]
|||ν|||β . (2.11)

Since
GTεν1(τ)−GTεν2(τ) = GTεν(τ), (2.12)

the conclusion follows immediately.
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Proof of (1.28). To complete the proof of (1.28), we note that |||·|||β satisfies the
triangle identity, and apply this along with Lemma 2.1 to obtain

|||νε − ν|||β = |||Tενε − ν|||β ≤ |||Tενε − Tεν|||β + |||Tεν − ν|||β
≤E

[
Zβ
]
|||νε − ν|||β + |||Tεν − ν|||β .

(2.13)

Then noting that E
[
Zβ
]
< 1 exactly for β ∈ (0, α), we have the desired bound

with

cβ =
(
1− E

[
Zβ
])−1

. (2.14)

3 Existence of the limiting fixed points ν0 and ω0

As alluded to in Section 1, the definitions of the maps Tε and Sε are perfectly valid
for ε = 0, and their fixed points in this limiting case play an important role in
our proof. However, in this case the relationship of these operators to the random
matrix product becomes singular, and we can no longer use the same techniques
to establish the existence and uniqueness of these fixed points.

In this section, we use compactness and continuity arguments to establish these
results. As already pointed out in the introduction, ν0 has already been built and
(partly) studied elsewhere. Our indirect approach to ν0, i.e. via νε, may appear
a bit convoluted since ν0 can be approached directly as the invariant probability
of a Markov chain. We draw however the attention of the reader on the fact
that standard approaches, like Foster-Lyapunov criteria (see e.g. [17]), are rather
involved – above all in the case of a non-countable state space – and yield a
lot of information that we do not need. That is, following [17], we can find a
Lyapunov function starting from the monotonicity properties of xβ1(0,∞)(x), β ∈
(0, α) under the action of the Markov kernel, as we do below for ε > 0; but then the
completion of the proof requires verifying a “petite sets condition” (which is rather
straightforward if one assumes that for every η > 0 small mint∈[c−+η,c+−η] µ(t) > 0,
but in general becomes rather laborious) and the final result includes uniqueness
and (time!) mixing properties. The approach in [11], on the other hand, cannot
in general be directly applied to our Markov kernel: some iterated version of the
kernel should be used. Once again the method also yields mixing. Our approach is
not constructive and a priori it does not yield even uniqueness (for ν0 uniqueness
is easily recovered, but uniqueness in reality is not even required for the rest of
our proof to go thorough), but it is very concise, self-contained and it shoots for
the information we really need. More importantly, a similar method also applies
to the treatment of ω0, which is not a probability measure, and which is therefore
not covered by the more usual techniques.

Here and in the rest of this section all measures are Borel measures supported
on (0,∞).

Proposition 3.1. There is a probability measure ν0 such that T0ν0 = ν0, and ν0
is absolutely continuous.
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Proof. Recall (1.12). We apply (1.20) to f(x) = xβ to obtain∫
τβνε( dτ) =

∫ ∫
(tgε(s))

βνε( ds)µ( dt) =

∫
tβµ( dt)

∫
(gε(s))

β
νε( ds). (3.1)

Noting that (gε(s))
β < (1 + s)β < 1 + sβ for β ∈ (0, 1) and s, ε > 0, we see that∫
τβνε( dτ) <

(∫
zβµ( dz)

)(
1 +

∫
τβνε( dτ)

)
(3.2)

which, for β ∈ (0, α), gives
∫
τβνε( dτ) < k(β) := E[Zβ ]/(1−E[Zβ ]) for all ε. Then

by Markov’s Inequality, we also have Gνε(x) < k(β)x−β , which implies that the
νε are a tight family. As a result, Prohorov’s theorem implies that there is some
sequence εn → 0 such that νεn converges weakly. Calling the limit ν0, we see that
ν0 is a probability measure. For readability, we will denote Tn := Tεn , νn := νεn ,
gn := gεn in the following.

We now need to confirm that T0ν0 = ν0. We will do so by showing that
Tnνn → T0ν0 weakly. We do this in two parts, by showing that T0νn converges
weakly to T0ν0 and that FT0ν(τ)−FTnν(τ) tends to zero for every τ , uniformly in
the choice of the probability measure ν.

Using (A.4) we write

FT0ν0(τ)− FT0νn(τ) =

∫ [
Fν0

(
τ

g0(s)

)
− Fνn

(
τ

g0(s)

)]
µ( ds) . (3.3)

The integrand on the right hand side is bounded above by one and goes to zero
(Lebesgue-)almost surely, hence also µ almost surely. Then by dominated conver-
gence the right hand side goes to 0 for all τ , and indeed T0νn → T0ν0 weakly.

Then recalling (2.6), for any probability measure ν we have

|FT0ν(τ)− FTnν(τ)| =
∫

µ

([
τ

g0(s)
,

τ

gn(s)

))
ν( ds)

≤ τ ‖µ‖∞

(
1

gn(s)
− 1

g0(s)

)
≤ τ ‖µ‖∞ ε2n, (3.4)

where we recall that ‖µ‖∞ is the maximum of the density of µ and we have used
the explicit definition (1.21) of gε(s) to obtain

1

gn(s)
− 1

g0(s)
= ε2n

s

1 + s
< ε2n. (3.5)

Since this bound is uniform in ν, it also implies that T0νn − Tnνn → 0 weakly.
Together with T0νn → T0ν0, this implies that Tnνn → T0ν0, and since Tnνn =
νn → ν0 we see that T0ν0 = ν0.

This in turn implies that ν0 is absolutely continuous. Use the first identity in
(A.4): noting that g0(s) = 1 + s and

d

dτ
Fµ

(
τ

1 + s

)
=

1

1 + s
µ

(
τ

1 + s

)
≤ ‖µ‖∞ , (3.6)
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and that ‖µ‖∞ is finite (since the density µ is a continuous function with compact
support), then from (2.6) we see that FT0ν0 is continuously differentiable with

F ′
T0ν0

(τ) =

∫
1

1 + s
µ

(
τ

1 + s

)
ν0( ds) < ∞. (3.7)

The situation will be similar for ω0, once we have fixed the normalization to
obtain a nontrivial limit. As a preliminary,

Lemma 3.2. For any y < c+ − 1 and ε > 0, Gνε(ε
−2y) > 0 .

Proof. By (A.4)

Gνε(τ) =

∫
Gνε

(
g−1
ε

(τ
t

))
µ( dt)− Fµ(ε

2τ) =

∫ ∞

ε2τ

Gνε

(
g−1
ε

(τ
t

))
µ( dt) .

(3.8)
Set bε := inf {τ : Gνε(τ) = 0}. By (1.12) we know that bε ≤ ε−2c+, but one can
see also that bε ≤ ε−2(c+ − δ) for some δ ∈ (0, c+). Observe in fact that (3.8)
implies that

Gνε(ε
−2(c+ − δ)) =

∫ c+

c+−δ

Gνε

(
g−1
ε

(
ε−2(c+ − δ)

t

))
µ( dt) , (3.9)

but g−1
ε (ε−2(c+ − δ)/t) ≥ g−1

ε (ε−2(c+ − δ)/c+) = (ε−2c+/δ)((1−(δ/c+))−ε2) for
t in the range of integration. But since we know thatGνε(t) = 0 for every t > ε−2c+
we obtain that Gνε(ε

−2(c+ − δ)) is zero if (ε−2c+/δ)((1− (δ/c+))− ε2) > ε−2c+,
that is if δ < (1− ε2)c+/(c+ + 1).

We now claim that

bε = c+gε(bε) . (3.10)

In fact for τ > bε we have Gνε(τ) = 0 (we can choose τ < ε−2(c+ − δ) for some
δ > 0), which, by (3.8), implies that Gνε(g

−1
ε (τ/t)) = 0 for almost every t > ε2τ

in the support of µ, that is for almost every t ∈ [c− ∨ ε2τ, c+]. But since Gνε(·) is
non increasing, we have that Gνε(s) = 0 for every s > g−1

ε (τ/c+). This holds for
every τ ∈ (bε, ε

−2(c+−δ)), so we obtain that Gνε(s) = 0 for every s > g−1
ε (bε/c+),

that is g−1
ε (bε/c+) ≥ bε.

On the other hand, if τ < bε thenGνε(τ) > 0, which requiresGνε(g
−1
ε (τ/t)) > 0

for some t ∈ [c−∨ε2τ, c+], which in turn implies that we have Gνε(g
−1
ε (τ/c+)) > 0,

because Gνε(·) is non increasing and g−1
ε (·) is increasing. So for every τ < bε we

have Gνε(g
−1
ε (τ/c+)) > 0, that is g−1

ε (bε/c+) ≤ bε. Therefore (3.10) is established.
We can then explicitly solve (3.10) to obtain

bε =
c+ − 1 +

√
(c+ − 1)2 + 4ε2c+

2ε2
>

c+ − 1

ε2
, (3.11)

which completes the proof.
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We then fix a
y ∈

(
0, (c+ − 1) ∧ c+

2

)
, (3.12)

and define ωε by choosing the normalization

Gωε(σ) =
Gνε(ε

−2σ)

Gνε(ε−2y)
, (3.13)

so that Gωε(y) = 1 for all ε > 0.
We now consider the space of positive σ-finite measures supported on (0,∞)

equipped with the weak topology with respect to the bounded continuous functions
whose support is bounded away from 0, that is the functions in C0

b ((0,∞);R) that
vanish in a neighborhood of zero. We do so because, while ωε((0,∞)) < ∞ as we
will see the limit point has total mass +∞ because of a singular behavior at zero.

We have the following crucial estimate:

Lemma 3.3. There exist m ∈ (1,∞), a > 1 and a decreasing sequence {xn}n=0,1,...

of positive numbers, with xn ≤ ya−n, y defined in (3.12), such that Gωε(xn) ≤ mn

for all n and all ε > 0.

Proof. To begin with, note that for any ε > 0 and any x, z > 0,

Gωε(z) =

∫
Gµ

(
z

hε(s)

)
ωε( ds) ≥ Gµ

(
z

hε(x)

)
Gωε(x)

≥ Gµ

(
z(1 + x)

x

)
Gωε(x) ,

(3.14)

where we have first used that both sinceGµ(·) and 1/hε(·) are non increasing, so the
composition of the two is non decreasing, and then that hε(x) > h0(x) = x/(1+x)
(and, again, the monotonicity of Gµ(·)).

We now define a sequence {xn}n=0,1,... by setting x0 = y and, for n ≥ 1,
xn := xn−1/(k − xn−1) for a k chosen in (y+1∨(y/2), c+): note that y+1∨(y/2) <
c+ by (3.12). Note also that the map x 7→ x/(k−x) has 0 and k/2 as fixed points:
they are both hyperbolic, 0 is attractive while k/2 is repulsive. By (3.12) we have
y < k/2, hence {xn}n=0,1,... decreases to zero exponentially fast: xn ≤ y/an,
a := k − y > 1. Moreover by (3.14) (with z = xn−1 and x = xn) we have for
n = 1, 2, . . .

Gωε(xn) ≤ Gωε(xn−1)

(
Gµ

(
xn−1

1 + xn

xn

))−1

, (3.15)

so that by observing that xn−1(1 + xn)/xn = k, by setting m−1 := Gµ(k) ∈ (0, 1]
and recalling Gωε(x0) = 1 yields

Gωε(xn) ≤ mn , (3.16)

and the proof is complete.

Here is the main result about {ωε}ε>0:
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Proposition 3.4. The family {ωε}ε>0 is compact and every limit point ω0 satisfies
S0ω0 = ω0, the support of ω0 is in (0, c+) and Gω0(y) = 1. Moreover there exists
U < ∞ such that for every limit point ω0 we have∫ ∞

0

xUω0( dx) = U

∫ ∞

0

xU−1Gω0(x) dx < ∞ . (3.17)

Proof. The compactness of {ωε}ε>0 can be obtained by the Helly-Bray Lemma as
follows: Consider in fact a decreasing sequence {xn}n=0,1,... of numbers in (0, c+)
that tends to 0. For every Borel subset B of R we set

ωε,n(B) :=
ωε(B ∩ (xn,∞))

Mn
, (3.18)

with Mn := maxε ωε((xn,∞)) and Mn < ∞ by Lemma 3.3. Therefore {ωε,n}ε>0

is a family of sub-probabilities; hence it is relatively compact by the Helly-Bray
Lemma, so also {Mnωε,n}ε>0 is relatively compact and of course Mnωε,n(B) is just
ωε(B ∩ (xn∞)). Via a diagonal procedure we can therefore extract from any se-
quence tending to zero a subsequence {εj}j=1,2,... such that limj

∫
h(σ)ωεj ( dσ) =∫

h(σ)ω0( dσ) for every bounded continuous h whose support is bounded away
from 0.

The proposed properties of ω0 can now be confirmed directly, notably S0ω0 =
ω0 follows by the same argument used in Proposition 3.1 with the obvious changes,
in particular noting that

1

h0(σ)
− 1

hn(σ)
=

ε2n
1 + s

≤ ε2n , (3.19)

and U is easily found by using Lemma 3.3. Note in fact that Lemma 3.3 implies
the practical formulation

Gω(x) ≤


1, x ≥ y
m, y

a ≤ x < y
m2, y

a2 ≤ x < y
a

...
...

≤

{
1, x ≥ y

m
(

x
y

)− logm/ log a

, x < y
(3.20)

and we see that any U > logm/ log a will do: explicit values of the positive constant
a and m are given in the proof of Lemma 3.3.

Finally, we note that

Lemma 3.5. ω0 defined in Proposition 3.4 is absolutely continuous.

Proof. From (1.23), we obtain

GSεω(τ) =

∫
Gµ

(
τ

hε(s)

)
ω( ds) (3.21)

and, setting ε = 0, ω = ω0, this becomes

Gω0(τ) =

∫
Gµ

(
τ

h0(s)

)
ω0( ds). (3.22)
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Noting that

d

dτ
Gµ

(
τ

h0(s)

)
=

1

h0(s)
µ

(
τ

h0(s)

)
≤ c+

τ
‖µ‖∞1(h−1

0 (τ/c+),∞)(s)1(0,c+)(τ) ,

(3.23)
we see that Gω0 is differentiable on (0,∞) with the bound

G′
ω0
(τ) =

∫
1

h0(s)
µ

(
τ

h0(s)

)
ω0( ds) ≤

c+
τ
‖µ‖∞Gω0

(
h−1
0 (τ/c+)

)
1(0,c+)(τ) < ∞ .

(3.24)

4 Asymptotic behaviour of ν0 and ω0

This section culminates in Lemmas 4.5 and 4.10, which will allow us to control
the asymptotics of a number of integrals containing Gν0 and Gω0 , which appear
in Section 5 below. We will do this by using Mellin transform techniques (see [1]
for a review), which were applied to ν0 in [6]; the calculation is reproduced in
Section 4.1.

Generically, the poles of the Mellin transform of a function correspond to the
powers appearing in its asymptotic expansion at 0 or ∞; however, except when
it is known a priori that such an expansion exists, proving this requires some
control on the behaviour of the Mellin transform for large imaginary argument.
No suitable control is available here, but we shall see that the expansion holds
in a distributional sense which will be adequate for our purposes, as proven in
Section 4.2.

Finally, in Section 4.3, we show that the techniques of the previous two sections
can be adapted with minor changes to obtain similar results for ω0.

4.1 Mellin analysis of ν0

Let

M(u) =

∫
tuµ( dt) . (4.1)

As noted in Section 1.4, we need δ > 0 to be such that δ ≤ α, δ ≤ 1 − α,
and M(u) 6= 1 for all complex u with <u ∈ [α, α + δ] other than u = α. Let us
confirm that there is actually a positive number satisfying these conditions. As a
preliminary, we will need the following version of the Riemann-Lebesgue lemma:

Lemma 4.1. Let µ be a continuously differentiable function with support [c−, c+] ⊂
(0,∞), let C ⊂ R be a compact interval, and let zj be a sequence of complex num-
bers such that |zj | → ∞ and <zj ∈ C. Then∫ c+

c−

tzjµ(t) dt → 0. (4.2)
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Proof. Integrating by parts,∣∣∣∣∣
∫ c+

c−

tzµ(t) dt

∣∣∣∣∣ =
∣∣∣∣∣ 1

z + 1

∫ c+

c−

tz+1µ′(t) dt

∣∣∣∣∣ ≤ 1

|z + 1|

∫ c+

c−

t<z+1
∣∣µ′(t)

∣∣ dt (4.3)

and the last integral is bounded uniformly given <z ∈ C.

Lemma 4.2. There is a δ > 0 such that

{z ∈ C | <z ∈ [α, α+ δ] and M(z) = 1} = {α}. (4.4)

Proof. For any A > α, let ZA := {z ∈ C|M(z) = 1 and <z ∈ (α,A]}. ZA cannot
have any finite accumulation points, since M is entire and not constant, so if ZA

is infinite it must also be unbounded. This would then imply the existence of
a sequence zj such that <zj ∈ [α,A], |zj | → ∞, and M(zj) ≡ 1, which is in
contradiction with Lemma 4.1.

We therefore know that ZA is finite for any A > α, and since <z > α for any
z ∈ ZA we conclude that infz∈ZA <z−α > 0, and the result holds for any δ smaller
than this quantity.

Define a measure ξ by
Fν0(x) = Fξ(x+ 1), (4.5)

and let

X(u) :=

∫
tuξ( dt). (4.6)

X is, up to a shift of the coordinate u which we find convenient, the Mellin transform
of ξ. Among the calculations in [6], we find the following:

Lemma 4.3. X is analytic on the the set of complex numbers u with <u ≤ α+ δ,
except for u = α, which is a simple pole.

Proof. Since ξ is a probability measure whose support is contained in [1,∞), it is
clear that

|X(u)| =
∣∣∣∣∫ tuξ( dt)

∣∣∣∣ ≤ ∫ t<uξ( dt) ≤ 1 (4.7)

for all complex u with <u ≤ 0; then on this region X is given by a uniformly abso-
lutely convergent integral of an analytic function and is therefore itself analytic.
Similarly, recalling

M(u) =

∫
tuµ( dt), (4.8)

we see that M is an entire function (using the fact that the support of µ is bounded)
with |M(u)| ≤ M(<u).

From the definition of ξ as a translation of ν0, we see that (1.20) implies∫
f(t)ξ( dt) =

∫ ∫
f (1 + tz)µ( dz)ξ( dt) (4.9)

for all ξ−integrable f (note that this is the stationarity condition of the iteration
ti+1 = 1 + tizi, cf. (1.14)).
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Letting f(t) = tu we have

X(u) =

∫ ∫
(1 + tz)uµ( dz)ξ( dt). (4.10)

The right hand side of (4.10) can be rewritten using the Mellin-Barnes integral

(1 + tz)u =
1

Γ (−u)

1

2πi

∫ w0+i∞

w0−i∞
Γ (−w)Γ (w − u)(tz)w dw, (4.11)

valid for <u < w0 < 0, giving us

X(u) =
1

Γ (−u)

1

2πi

∫ w0+i∞

w0−i∞
Γ (−w)Γ (w − u)X(w)M(w) dw (4.12)

where we have used the exponential decay of the Gamma function in the imaginary
direction to change the order of integration. This decay is also more than enough
to allow us to move the contour of integration. For <w ≤ 0, the only poles of the
integrand are those of Γ (w − u), i.e. it has simple poles at w = u, u− 1, . . . . The
residue of Γ (w − u) at w = u is 1, so we have

X(u) = X(u)M(u) +
1

Γ (−u)

1

2πi

∫ w0+i∞

w0−i∞
Γ (−w)Γ (w − u)X(w)M(w) dw (4.13)

for <u− 1 < w0 < <u < 0, which we further rewrite as

X(u) =
1

Γ (−u)[1− M(u)]

1

2πi

∫ w0+i∞

w0−i∞
Γ (−w)Γ (w − u)X(w)M(w) dw. (4.14)

As a function of u, the integral on the right hand side can be analytically continued
into the right half-plane, so long as we maintain the condition <u− 1 < w0 < <u
and w0 < 0 which prevents the contour of integration from encountering the poles
of the Gamma functions. The right hand will have singularities only at the zeros
of 1 − M(u), i.e. the solutions of (1.10). We have already seen that X is analytic
for <u ≤ 0 (indeed the apparent singularity in (4.14) at u = 0 is removable, since
Γ (−u) also has a simple pole there). Since 0 and α are the only such zeros with
0 ≤ <u ≤ α+ δ, all that remains is to prove that α is not removable (it is obvious
from (4.14) that it is then a simple pole).

Suppose that X can be analytically continued at α. Then the Taylor series of X
is absolutely convergent at some real u with u > α, giving

∞∑
n=0

(u− α)n

n!

∫
tα(log t)nξ( dt) =

∫ ∞∑
n=0

(u− α)n

n!
tα(log t)nξ( dt)

=

∫
tuξ( dt) < ∞ , (4.15)

where the fact that all terms are positive on the support of ξ has allowed us to
exchange the sum and the integral. Then X(u) is given by a well-defined integral,
and we can apply (4.10) to obtain

X(u) =

∫ ∫
(1 + tz)uµ( dz)ξ( dt) ≥ M(u)X(u), (4.16)

which is impossible if X(u) ∈ (0,∞), since M(u) > 1 for u > α. Since X(u)
manifestly positive, we have obtained a contradiction.
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4.2 Asymptotics of ν0

Returning to the definition of X, (4.6), we can integrate by parts to obtain

X(u) = u

∫ ∞

1

tu−1Gξ(t) dt+Gξ(1) (4.17)

for <u ≤ 0. Noting furthermore that Gξ(1) = X(0) we have

X(u)− X(0)

u
=

∫ ∞

1

tu−1Gξ(t) dt, (4.18)

so that [X(u)− X(0)]/u is the Mellin transform of 1[1,∞)Gξ with fundamental strip
containing <u ≤ 0. We can use the inverse Mellin formula to convert this into a
formula for Gξ, noting that by [25, Theorem 28] this formula is valid since Gξ is
a continuous function (by Proposition 3.1) with bounded local variation (being
bounded and monotone). This gives

Gξ(t) =
1

2πi

∫ u0+i∞

u0−i∞
t−u X(u)− X(0)

u
du (4.19)

for all u0 ≤ 0 and t > 1.
To get asymptotics from this expression we will need to displace the contour

of integration further to the right, which requires some control on the growth of
X. We can obtain this from (4.14) as follows:

Lemma 4.4. For |=u| large,

|X(u)| = O
(
|=u|1/2|

)
(4.20)

uniformly for u0 ∈ [0, U ] for any U < 1.

Proof. Fix some w0 ∈ (−1/2, 0) so that u0−1 < w0. Then recalling |X(w0+ix)| ≤ 1
(see (4.7)), (4.14) yields

|X(u)| ≤ |M(w0)|
|1− M(u)|

1

|Γ (−u)|
1

2π

∫ ∞

−∞
|Γ (−w0 − ix)Γ (w0 + ix− u)| dx. (4.21)

Lemma 4.1 shows that M(u) → 0 as =u → ±∞, and examining the proof we see
that the convergence is in fact uniform, so the first ratio on the right hand side is
uniformly O(1).

Using Stirling’s series and then the expansion arctan(x)−π/2+1/x = O(1/x3)
for x → ∞, we have

log |Γ (z)| = <LogΓ (z) =

1

2
log 2π +

(
<z − 1

2

)
log |z| − <z − (=z) arg z +O

(
1

=z

)
=

1

2
log 2π +

(
<z − 1

2

)
log |z| − π

2
|=z|+O

(
1

=z

)
, (4.22)
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where the first expression holds for =z large uniformly in <z [24] and the second
holds uniformly over compact sets. Thus for =u large,∫ ∞

−∞
|Γ (−w0 − ix)Γ (w0 + ix− u)| dx =

O

(∫ ∞

−∞
|x|−w0−

1
2 |x−=u|w0−u0−

1
2 exp

(
−π

2
[|x|+ |x−=u|]

)
dx

)
= O

(
exp

(
−π

2
|=u|

)
|=u|−u0

)
(4.23)

uniformly for <u ∈ [0, U ]. Plugging this into (4.21) and estimating Γ (−u) using
(4.22), we obtain the desired result.

Along with Lemma 4.3, this allows us to displace the contour in (4.19) to obtain

Gξ(t) =
resX(α)

α
t−α +

1

2πi

∫ u0+i∞

u0−i∞
t−u X(u)− X(0)

u
du , (4.24)

for all t > 1 and any u0 ∈ (α,U ] where resX(a) denotes the residue of X at a and for
some U > α+ δ. If the integral on the right hand side were absolutely convergent,
it would be O(t−α−δ). Unfortunately this is not the case; however all is not lost.

Denoting the value of this integral by Rξ(t) and noting that it is independent
of u0 within the specified interval, for any s ∈ (α,U) we can choose u0 ∈ (α, s)
and obtain∫ ∞

0

ts−1Rξ(t) dt

=
1

2πi

[ ∫ 1

0

∫ u0+i∞

u0−i∞
ts−u−1 X(u)− X(0)

u
du dt

+

∫ ∞

1

∫ U+i∞

U−i∞
ts−u−1 X(u)− X(0)

u
du dt

]
=

1

2πi

[∫ u0+i∞

u0−i∞
ts−u X(u)− X(0)

u(s− u)
du dt−

∫ U+i∞

U−i∞
ts−u X(u)− X(0)

u(s− u)
du dt

]

=
X(s)− X(0)

s
,

(4.25)

noting that the t integrals are uniformly convergent and recognizing the resulting
expression as an integral around a closed contour. This establishes that the Mellin
transorm of Rξ on the strip containing α+δ is X(u)−X(0)

u , and [18, Theorem 11.10.1]
gives an expression for the unique distribution with that property:

Rξ(t) =
d2

dt2

[
1

2πi

∫ α+δ+i∞

α+δ−i∞

X(u)− X(0)

u(u− 1)(u− 2)
t2−u du

]
. (4.26)

The bounds on the growth of X form Lemma 4.4 are sufficient to take one of the
derivatives inside the integral, giving Rξ(t) = Q′

ξ(t) where

Qξ(t) :=
1

2πi

∫ α+δ+i∞

α+δ−i∞

X(u)− X(0)

u(1− u)
t1−u du, (4.27)
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and Lemma 4.4 suffices for this integral to be absolutely convergent. As a result
there is a constant Cξ such that

|Qξ(t)| ≤ Cξt
1−α−δ (4.28)

for all t > 0.
Noting that the definition of ξ is such that Gν0(t) = Gξ(t+ 1), can use this to

obtain:

Lemma 4.5. There is a function Rν : R+ → R and a constant Cν 6= 0 such that

Gν0(t) = Cν

[
t−α +Rν(t)

]
(4.29)

where
Rν(t) = O

(
t−α−δ

)
(4.30)

for t → ∞.

Proof. Taking (4.29) as a definition of Rν with Cν = resX(α)/α, then we obtain
Equation (4.29) with Rν(t) =

1
Cν

Q′
ξ(t + 1). Then recalling that Gν0 = GT0ν0 and

writing out the action of T0 as in Equation (A.6), we obtain

t−α +Rν(t) =

∫ [(
t

z
− 1

)−α

+Q′
ξ

(
t

z

)]
µ( dz) , (4.31)

where we have used g−1
0 (x) = x − 1 and cancelled a factor of Cν . Using the

generalized binomial theorem,(
t

z
− 1

)−α

=
(z
t

)α (
1− z

t

)−α

=
(z
t

)α ∞∑
k=0

(
−α

k

)(z
t

)k
, (4.32)

where the series on the right-hand side is absolutely convergent for t > z; then us-
ing the fact that µ is a probability measure with support (c−, c+) and

∫
zαµ( dz) =

1,∫ (
t

z
− 1

)−α

µ( dz) = t−α +
∞∑

k=1

(
−α

k

)
t−α−k

∫
zk+αµ( dz) = t−α +O

(
t−1−α

)
,

(4.33)
where the sum is absolutely convergent for τ > c+.

As for the other term in Equation (4.31), we can make the change of variables
x = t/z, use the fact that µ has a C1 density to integrate by parts, and estimate
Qξ using Equation (4.28) to obtain∫ c+

c−

Q′
ξ

(
t

z

)
µ( dz) = t

∫ t/c−

t/c+

Q′
ξ(x)µ

(
t

x

)
dx

x2

= t

∫ t/c−

t/c+

Qξ(x)

[
2

x3
µ

(
t

x

)
+

2t

x4
µ′
(
t

x

)]
dx = O

(
t−α−δ

)
.

(4.34)

Substituting this and Equation (4.33) into Equation (4.31), we obtain Equa-
tion (4.30).
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4.3 Asymptotics of ω0

Defining a measure ζ by applying the change of variables τ = h0(σ) = σ/(1+σ) to
ω0, or in other words Gζ(

σ
1+σ ) = Gω0(σ), then from the corresponding properties

of ω0 it is clear that ζ is absolutely continuous and supported within [0, c+/(1+c+).

Letting

Z(u) :=

∫
τuζ( dτ), (4.35)

we will show the following counterpart of Lemma 4.3:

Lemma 4.6. There is a U > 0 such that Z(u) is analytic for <u > U , and has an
analytic continuation for 0 ≤ <u ≤ U apart from the points where M(u) = 1 with
u 6= 0.

Proof. The control on the growth of ω0 at the origin demonstrated in Theorem 3.4
there is some U > 0 such that for all u ∈ C with <u > U the integral in the
definition (4.35) of Z is absolutely convergent, and therefore defines an analytic
function of u.

Equation (A.1) with f(x) = xu implies that ζ satisfies∫
τuζ( dτ) =

∫ ∫ (
zτ

1 + zτ

)u

µ( dz)ζ( dτ). (4.36)

Then using the identity(
zτ

1 + zτ

)u

=
1

Γ (u)

1

2πi

∫ w0+i∞

w0−i∞
(zτ)wΓ (u− w)Γ (w) dw (4.37)

(obtained from the formula for the Mellin transform of the Beta function, and
valid for 0 < w0 < <u), (4.36) can be rewritten

Z(u) =
1

Γ (u)

1

2πi

∫ w0+i∞

w0−i∞
Γ (u− w)Γ (w)Z(w)M(w) dw. (4.38)

Displacing the contour of integration to the right across the pole of Γ (u − w) at
u = w and rearranging, we obtain the counterpart of (4.14),

Z(u) =
1

Γ (u)[1− M(u)]

1

2πi

∫ w0+i∞

w0−i∞
Γ (u− w)Γ (w)Z(w)M(w) dw, (4.39)

for U < <u < w0 < <u+1. The integral on the right-hand side can be analytically
continued in u so long as the contour of integration is displaced to maintain the
condition <u < w0 < <u + 1 and w0 > 0, allowing the whole expression to be
analytically continued as well, apart from the zeros of 1−M(u). Note that although
1− M(0) = 0, the associated pole is removable, thanks to the factor of Γ (u).

The fact that we have little control over the value of U will make using this
result inconvenient when we attempt to repeat the analysis of Section 4.2, but we
can refine the result as follows:
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Lemma 4.7. The integral ∫
σuζ( dσ) (4.40)

is absolutely convergent whenever <u > α.

Proof. Let

A := inf

{
u ∈ R

∣∣∣∣ ∫ σuζ( dσ) < ∞
}
. (4.41)

Suppose A > α. Then from Lemma 4.6, α is the only pole of Z on the positive real
axis, so Z is analytic at A and there is a u > A such that the Taylor series of Z at
u converges on an open disk containing A. The Taylor series of Z at u is

∞∑
n=0

(u− v)n

n!

∫
σu(− log σ)nζ( dσ). (4.42)

Since log σ < 0 on the support of ζ, we can exchange the sum and integral whenever
the Taylor series is absolutely convergent. In particular, there is some v < A for
which this is true, and we have∫

σvζ( dσ) =

∫ ∞∑
n=0

(u− v)n

n!
(− log σ)nσuζ( dσ) < ∞, (4.43)

contradicting the definition of A.
This proves convergence on the real line; to extend to complex numbers, we

simply note that ∫
|σu| ζ( dσ) =

∫
σ<uζ( dσ). (4.44)

We can confirm that α actually is a pole of Z in the same way as we did for X
in the previous section, using (4.36) to obtain∫

σuζ( du) ≥ M(u)

∫
σuζ( du), (4.45)

so that since M(u) < 1 for u ∈ (0, 1) the integral must diverge there.
The relationship of Z to Gζ is slightly simpler than what we saw in the previous

sections: for <u > U we can integrate (4.35) by parts to obtain

Z(u) = u

∫ ∞

0

σu−1Gζ(σ) dσ. (4.46)

Repeating the proof of Lemma 4.7 we see that the integral on the right hand side
is absolutely convergent for all <u > α and this expression holds everywhere on
that half-plane by analytic continuation.

Remark 4.8. In particular, since α < 1,∫ ∞

0

Gζ(σ) dσ < ∞, (4.47)

and since Gζ is a nonnegative, nonincreasing function this implies Gζ(σ) = o(1/σ)
(and therefore also Gω0(σ) = o(1/σ)) for σ ↘ 0.
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Noting that Gζ is continuous and monotone, we can apply the inverse Mellin
formula to obtain

Gζ(σ) =
1

2πi

∫ u0+i∞

u0−i∞

1

u
σ−u

Z(u) du (4.48)

for all σ ≥ 0 where Gζ is continuous and all u0 > α.
In order to displace the contour of integration in (4.48) as we did with (4.19),

we again need a little control over the growth of Z for large imaginary arguments.
This can be obtained in nearly the same way as was done for X in Lemma 4.4:

Lemma 4.9. For =u large with <u = u0 > α− 1 fixed,

|Z(u)| = O
(
|=u|1/2

)
. (4.49)

Proof. Fixing some w0 ∈ (α, u0 + 1), (4.39) implies

|Z(u)| ≤ M(w0)

|1− M(u)|
Z(w0)

|Γ (u)|
1

2π

∫ ∞

−∞
|Γ (w0 + ix)Γ (u− w0 − ix)| dx, (4.50)

where we note that Lemma 4.7 implies |Z(w0 + ix)| < Z(w0) < ∞. Then using the
estimates in the proof of Lemma 4.4 with the signs of u, w0 and x reversed we
arrive at the same estimate.

Then we can displace the contour in (4.48) to obtain

Gζ(σ) = Z(0) +
resZ(α)

α
σ−α +

1

2πi

∫ u0+i∞

u0−i∞

1

u
σ−u

Z(u) du, (4.51)

valid for some u0 < 0, since Lemma 4.7 implies that α is the only pole of Z in the
right half plane.

As before, the integral on the right hand side of (4.51) is not absolutely conver-
gent, but is equal to the derivative of a function given by an absolutely convergent
integral, in this case

Qζ(σ) =
1

2πi

∫ u0+i∞

u0−i∞

1

u(1− u)
σ1−u

Z(u) du. (4.52)

This expression is manifestly is O(σ1−u0) (in particular o(σ), since u0 < 0), and
we can use this to obtain the counterpart of Lemma 4.5:

Lemma 4.10. There is a function Rω : R+ → R and a constant Cω 6= 0 such that

Gω0(σ) = Cω

[
σ−α +Rω(σ)

]
(4.53)

and

Rω(σ) = O (1) (4.54)

as σ ↘ 0.

The proof is the same as Lemma 4.5, apart from a few details.
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Proof. Letting Cω := resZ(α)/α and Rω(σ) := C−1
ω

[
Z(0) +Q′

ζ(σ/(1− σ))
]
and

recalling that Gζ(
σ

1+σ ) = Gω0(σ), we obtain the expansion (4.53) from Equa-
tion (4.51). Then using writing out the stationarity condition ω0 = S0ω0 as
in (A.3), we have

σ−α +Rω(σ) =

∫ ∞

σ

[(z − σ

σ

)α
+Q′

ζ

(σ
z

)]
µ( dz) + Z(0)Gµ(σ) (4.55)

after cancelling a factor of Cω and noting that h−1
0 (y) = y/(1− y). By the gener-

alized binomial theorem,

(z − σ

σ

)α
=

zα

σα

∞∑
k=0

(
α

k

)(
−σ

z

)−α

, (4.56)

where the sum is absolutely convergent for σ < z; then we have∫ ∞

σ

(z − σ

σ

)α
µ( dz) = σ−α +

∞∑
k=1

(−1)k
(
α

k

)
σk−α

∫ ∞

σ

zα−kµ( dz)

= σ−α +O
(
σ1−α

) (4.57)

for σ ↘ 0.

As for the other integral in (4.55), for σ < c− we can make the change of
variables x = σ/z, use the fact that µ has C1 density to integrate by parts, and
use the observation that Qζ(σ) = o(σ) to obtain∫ ∞

σ

Q′
ζ

(σ
z

)
µ( dz) = σ

∫ σ/c−

σ/c+

Q′
ζ(x)µ

(σ
x

) dx

x2

= σ

∫ σ/c−

σ/c+

Qζ(x)

[
2

x3
µ
(σ
x

)
+

σ

x4
µ′
(σ
x

)]
dx = o(1)

(4.58)

as σ ↘ 0. Inserting this and (4.57) into (4.55), and noting that Gµ(σ) → 1 as
σ → 0, we obtain Equation (4.54).

5 An approximately stationary point

This section is devoted to the proof of Theorem 1.1. Following the strategy out-
lined in Section 1.4 we introduce a measure γε which is changed only slightly (as
measured by |||·|||β) by the action of Tε. Applying Lemma 1.2, we see that this
implies that γε is close to the stationary measure νε in a way which allows us to
use it to estimate the Lyapunov exponent L(ε).

Proof of Theorem 1.1. For each ε, in view of introducing the probability γε define
a measure γ̂ε by

Gγ̂ε(x) =

{
a(ε)Gω0(ε

2x), x ≥ 1
ε

a(ε)Gω0(ε) +Gν0(x)−Gν0(1/ε), x < 1
ε

(5.1)
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or equivalently

Fγ̂ε(x) =

{
Fν0(x), x < 1

ε

Fν0(1/ε) + a(ε)
[
Gω0(ε)−Gω0(ε

2x)
]
, x ≥ 1

ε

, (5.2)

where a(ε) := (Cν/Cω)ε
2α, so that (see (4.29) and (4.53))

Gν0(t)− a(ε)Gω0(ε
2t) = Cν

[
Rν(t)− ε2αRω(ε

2t)
]
. (5.3)

In Section 5.1 below, we will show that

|||Tεγ̂ε − γ̂ε|||β = O
(
ε2α−β

)
+O

(
εα+δ−β

)
. (5.4)

This will be done by using the definition of γ̂ε as a piecewise expression in terms
of the stationary measures ν0 = T0ν0 and ω0 = S0ω0 to write out the above
distance as an integral of terms with approximate calculations due to the presence
of differences either of the form Tε − T0 or Sε −S0, or of the form of the left hand
side of Equation (5.3).

We cannot apply Lemma 1.2 immediately, because γ̂ε is not a probability
measure. However using Lemma 4.5 and Lemma 4.10,

Gγ̂ε(0) = a(ε)Gω0(ε) + 1−Gν0(1/ε) = 1 +O (εα) , (5.5)

and thus if we define a probability measure

γε =
γ̂ε

Gγ̂ε(0)
(5.6)

we have

|||Tεγε − γε|||β = [1 +O (εα)] |||Tεγ̂ε − γ̂ε|||β = O
(
ε2α−β

)
+O

(
εα+δ−β

)
. (5.7)

Now we write

Lε[γ̂ε] =

∫
log(1 + ε2s)γ̂ε( ds)

=

∫
log(1 + ε2s)1[0,1/ε)(s)ν0( ds) + a(ε)

∫
log(1 + σ)1[ε,∞)(σ)ω0( ds)

= a(ε)

∫
log(1 + σ)ω0( dσ) +

∫ 1/ε

0

log
(
1 + ε2s

)
ν0( ds)

− a(ε)

∫ ε

0

log(1 + σ)ω0( dσ) . (5.8)

The last two terms can be bounded as follows:

0 ≤
∫ 1/ε

0

log
(
1 + ε2s

)
ν0( ds) ≤ ε2

∫ 1/ε

0

s ν0( ds)

= −ε2
1

ε
Gν0 (1/ε) + ε2

∫ 1/ε

0

Gν0(s) ds = O
(
εα+1

)
,

(5.9)
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where we have used Lemma 4.5 for the last estimate, and similarly

0 ≤
∫ ε

0

log(1 + σ)ω0( dσ) ≤
∫ ε

0

σω0( dσ) = −εGω0(ε) +

∫ ε

0

Gω0(σ) dσ

= O
(
ε1−α

)
(5.10)

using Remark 4.8 to conclude that the other boundary term is zero and using
Lemma 4.10 to estimate the final integral. Combining the last three equations and
taking into account the correction from (5.5), we obtain

Lε(γε) = (1 +O (εα)) a(ε)

∫
log(1 + σ)ω0( dσ) +O

(
ε1+α

)
. (5.11)

The integral appearing here is finite:∫
log(1 + σ)ω0( dσ) = −

∫
log(1− τ)ζ( dτ) <

(1 + c+) log(1 + c+)

c+

∫
τζ( dτ)

=
(1 + c+) log(1 + c+)

c+
Z(1) < ∞

(5.12)

for ζ and Z defined in Section 4.3 (noting in particular that the support of ζ is
contained in [0, c+

1+c+
]). We can then apply Lemma 1.2, using (5.7) and (5.11), and

the proof of Theorem 1.1 is complete, modulo of course establishing (5.4) to which
all the rest of the section is devoted, with

Cµ :=
Cν

Cω

∫
log(1 + σ)ω0( dσ). (5.13)

Remark 5.1. Any change in the normalization of ω0 is cancelled by a change in
Cω, so this definition of Cµ is indeed independent of this normalization.

5.1 Quasi-stationarity estimates for γ̂ε: proof of (5.4)

Writing out the definitions of |||·|||β and γ̂ε and using the stationarity properties
ν0 = T0ν0 and ω0 = S0ω0 we obtain

|||Tεγ̂ε − γ̂ε|||β =

∫ c+ε−2

c−

τβ−1 |[FTεγ̂ε(τ)− Fγ̂ε(τ)]| dτ

=

∫ c+ε−2

c−

τβ−1
∣∣∣{1[1/ε,∞](τ)

[
a(ε)GS0ω0(ε

2τ)−GTεγ̂ε(τ)
]

+ 1[0,1/ε)(τ) [FTεγ̂ε(τ)− FT0ν0(τ)]
} ∣∣∣∣ dτ , (5.14)
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and by (A.6) and (A.4) we can rewrite (5.14) as

|||Tεγ̂ε − γ̂ε|||β =∫ c+ε−2

c−

τβ−1

∣∣∣∣1[1/ε,∞](τ)

∫ ∞

ε2τ

[
a(ε)Gω0

(
h−1
0

(
ε2τ

t

))
−Gγ̂ε

(
g−1
ε

(τ
t

))]
µ( dt)

+ 1[0,1/ε)(τ)

{∫ [
Fγ̂ε

(
g−1
ε

(τ
t

))
− Fν0

(
g−1
0

(τ
t

))]
µ( dt)

+ [Fγ̂ε(∞)− 1]Fµ(ε
2τ)

}∣∣∣∣ dτ. (5.15)

We can simplify this somewhat by restricting to ε ≤ c−; then ε2τ ≤ c− whenever
τ < 1/ε, and therefore 1[0,1/ε)(τ)Fµ(ε

2τ) = 0. Then writing out the definition of
γ̂ε in (5.1) and (5.2), we have

|||Tεγ̂ε − γ̂ε|||β =∫ c+ε−2

c−

τβ−1

∣∣∣∣∫ {1[1/ε,∞)(τ)1[ε2τ,ετ ](t)

×
[
a(ε)Gω0

(
h−1
0

(
ε2τ

t

))
− a(ε)Gω0

(
ε2g−1

ε

(τ
t

))]
+ 1[1/ε,∞)(τ)1(ετ,∞)(t)

×
[
a(ε)Gω0

(
h−1
0

(
ε2τ

t

))
− a(ε)Gω0(ε)−Gν0

(
g−1
ε

(τ
t

))
+Gν0

(
ε−1
)]

+ 1[0,1/ε)(τ)1[0,ετ ](t)

×
[
Fν0

(
1

ε

)
+ a(ε)Gω0(ε)− a(ε)Gω0

(
ε2g−1

ε

(τ
t

))
− Fν0

(
g−1
0

(τ
t

))]
+ 1[0,1/ε)(τ)1(ετ,∞)(t)

[
Fν0

(
g−1
ε

(τ
t

))
− Fν0

(
g−1
0

(τ
t

))]}
µ( dt)

∣∣∣∣ dτ,
(5.16)

where we have used the observation that g−1
ε (τ/t) ≥ 1/ε is equivalent to t ≤ ετ

since gε(1/ε) = 1/ε to simplify the indicator functions.
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Rewriting the F s as Gs, and using ε2g−1
ε (τ/t) = h−1

ε (ε2τ/t) (which can be
checked from (A.5) and (A.2)) in the first line

|||Tεγ̂ε − γ̂ε|||β =∫
τβ−1

∣∣∣∣∫ {1[1/ε,∞)(τ)1[ε2τ,ετ ](t)

×
[
a(ε)Gω0

(
h−1
0

(
ε2τ

t

))
− a(ε)Gω0

(
h−1
ε

(
ε2τ

t

))]
+ 1[1/ε,∞)(τ)1(ετ,∞)(t)

×
[
a(ε)Gω0

(
h−1
0

(
ε2τ

t

))
− a(ε)Gω0(ε)−Gν0

(
g−1
ε

(τ
t

))
+Gν0

(
1

ε

)]
+ 1[0,1/ε)(τ)1[0,ετ ](t)

×
[
Gν0

(
g−1
0

(τ
t

))
−Gν0

(
1

ε

)
+ a(ε)Gω0(ε)− a(ε)Gω0

(
ε2g−1

ε

(τ
t

))]
+ 1[0,1/ε)(τ)1(ετ,∞)(t)

[
Gν0

(
g−1
0

(τ
t

))
−Gν0

(
g−1
ε

(τ
t

))]}
µ( dt)

∣∣∣∣ dτ.
(5.17)

We can then use the Triangle inequality to split up the integrals into four parts,
obtaining

|||Tεγ̂ε − γ̂ε|||β ≤

a(ε)

∫ c+ε−2

1/ε

τβ−1

∫ ετ

ε2τ

[
Gω0

(
h−1
ε

(
ε2τ

t

))
−Gω0

(
h−1
0

(
ε2τ

t

))]
µ( dt) dτ

+

∫ 1/ε

c−

τβ−1

∫ ∞

ετ

[
Gν0

(
g−1
0

(τ
t

))
−Gν0

(
g−1
ε

(τ
t

))]
µ( dt) dτ

+

∫ c+ε−2

1/ε

τβ−1

∣∣∣∣∫ ∞

ετ

×
[
a(ε)Gω0

(
h−1
0

(
ε2τ

t

))
− a(ε)Gω0(ε)−Gν0

(
g−1
ε

(τ
t

))
+Gν0

(
1

ε

)]
× µ( dt)

∣∣∣∣ dτ
+

∫ 1/ε

c−

τβ−1

∣∣∣∣∫ ετ

0

×
[
Gν0

(
g−1
0

(τ
t

))
−Gν0

(
1

ε

)
+ a(ε)Gω0(ε)− a(ε)Gω0

(
ε2g−1

ε

(τ
t

))]
× µ( dt)

∣∣∣∣ dτ
(5.18)

where the fact that h−1
ε (y) ≤ h−1

0 (y) and g−1
ε (y) ≥ g−1

0 (y) for the relevant y
implies that the first two integrands are non negative.



Lyapunov exponent of a product of random 2× 2 matrices 31

Let us now examine the four terms in (5.18) in turn. The first one can be
rewritten (mainly using the fact that the integrand is nonnegative)

a(ε)

∫ c+ε−2

1/ε

τβ−1

∫ ετ

ε2τ

[
Gω0

(
h−1
ε

(
ε2τ

t

))
−Gω0

(
h−1
0

(
ε2τ

t

))]
≤ a(ε)

∫ ∫ ∞

1/ε

τβ−1

[
Gω0

(
h−1
ε

(
ε2τ

t

))
−Gω0

(
h−1
0

(
ε2τ

t

))]
dτ µ( dt)

= a(ε)

∫ ∫ ∫ ∞

1/ε

[
1[0, t

ε2
hε(σ)](τ)− 1[0, t

ε2
h0(σ)](τ)

]
τβ−1 dτ ω0( dσ) µ( dt)

= a(ε)

∫ ∫ [
1(h−1

ε (ε/t),∞)(σ)

∫ tε−2hε(σ)

1/ε

τβ−1 dτ

− 1(h−1
0 (ε/t),∞)(σ)

∫ tε−2h0(σ)

1/ε

τβ−1 dτ

]
× ω0( dσ)µ( dt)

=

(
1

ε

)β
a(ε)

β

∫ [
Gω0

(
h−1
ε

(ε
t

))
−Gω0

(
h−1
0

(ε
t

))]
µ( dt)

+
a(ε)

βε2β

∫
tβ
∫ [

1(h−1
ε (ε/t),∞)(σ) (hε(σ))

β − 1(h−1
0 (ε/t),∞)(σ) (h0(σ))

β
]

× ω0( dσ) µ( dt) .

(5.19)

As for the first integral on the right hand side, noting that

h−1
0

(ε
t

)
− h−1

ε

(ε
t

)
=

tε2

t− ε
,

it can be estimated using Lemma 4.10 as

∫ [
Gω0

(
h−1
ε

(ε
t

))
−Gω0

(
h−1
0

(ε
t

))]
µ( dt)

= Cω

∫ [(
h−1
ε

(ε
t

))−α

−
(
h−1
0

(ε
t

))−α

+Rω

(
h−1
ε

(ε
t

))
−Rω

(
h−1
0

(ε
t

))]
× µ( dt)

≤ Cω

∫ [
α

tε2

t− ε

(
t− ε

ε

)α+1

+Rω

(
h−1
ε

(ε
t

))
−Rω

(
h−1
0

(ε
t

))]
µ( dt) = O (1)

(5.20)

for ε ↘ 0. Multiplying by a(ε)/εβ , we see that the first term in (5.19) is O(ε2α−β).
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The second integral on the rightmost side of (5.19) can be written as

∫
tβ
∫ [

1(h−1
ε (ε/t),∞)(σ) (hε(σ))

β − 1(h−1
0 (ε/t),∞)(σ) (h0(σ))

β
]
ω0( dσ)µ( dt)

=

∫
tβ
∫ [

1(h−1
ε (ε/t),h−1

0 (ε/t)](σ)hε(σ)
β + 1(h−1

0 (ε/t),∞)(σ)
{
hε(σ)

β − h0(σ)
β
}]

× ω0( dσ)µ( dt)

≤ cβ+

∫ [
hε

(
h−1
0

(ε
t

))]β [
Gω0

(
h−1
ε

(ε
t

))
µ( dt)−Gω0

(
h−1
0

(ε
t

))]
µ( dt)

+ βcβ+

∫ ∫
1(h−1

0 (ε/t),∞)(σ)

(
ε2

1 + σ

)(
ε2 + σ

1 + σ

)β−1

ω0( dσ)µ( dt)

(5.21)

The first integral in the final expression is similar to the one estimated in (5.20),
apart from the presence of a factor of order εβ , and so the whole term is O(εβ).
As for the second term, by integrating by parts and then applying Lemma 4.10 in
the same fashion as (5.20), it can be bounded in the following way:

∫ ∫
1(h−1

0 (ε/t),∞)(σ)

(
ε2

1 + σ

)(
ε2 + σ

1 + σ

)β−1

ω0( dσ) µ( dt)

≤ ε2(c+ + ε2)β−1

∫
Gω0

(
h−1
0

(ε
t

))
µ( dt) = O

(
ε2−α

)
. (5.22)

Then the right hand side of (5.21) is O(εβ) (since β < 1 < 2 − α), and so the
second term on the right hand side of (5.19) is O(ε2α−β) when the prefactor is
included. We already obtained an estimate of the same order for the first term, so
we arrive at the estimate

a(ε)

∫ c+ε−2

1/ε

τβ−1

∫
1[0,1/ε)

(
g−1
ε

(τ
t

))
×
[
Gω0

(
h−1
ε

(
ε2τ

t

))
−Gω0

(
h−1
0

(
ε2τ

t

))]
µ( dt) dτ

= O
(
ε2α−β

)
(5.23)

for the first term on the right hand side of (5.18).
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The next term is fairly similar:∫ 1/ε

c−

τβ−1

∫ ∞

ετ

[
Gν0

(
g−1
0

(τ
t

))
−Gν0

(
g−1
ε

(τ
t

))]
µ( dt) dτ

≤
∫ ∫ 1/ε

0

[
Fν0

(
g−1
ε

(τ
t

))
− Fν0

(
g−1
0

(τ
t

))]
τβ−1 dτ µ( dt)

=

∫ ∫ [
1[0,g−1

ε (1/tε)](s)

∫ 1/ε

tgε(s)

τβ−1 dτ

−1[0,g−1
0 (1/tε)](s)

∫ 1/ε

tg0(s)

τβ−1 dτ

]
ν0( ds)µ( dt)

=
1

β

∫ ∫ {
1[0,g−1

ε (1/tε)](s)
[
ε−β − (tgε(s))

β
]

−1[0,g−1
0 (1/tε)](s)

[
ε−β − (tg0(s))

β
]}

ν0( ds)µ( dt)

=
1

βεβ

∫ [
Gν0

(
g−1
0

(
1

tε

))
−Gν0

(
g−1
ε

(
1

tε

))]
µ( dt)

−
∫

tβ
{∫ [

1[0,g−1
ε (1/tε)](s) (tgε(s))

β − 1[0,g−1
0 (1/tε)](s) (tg0(s))

β
]
ν0( ds)

}
µ( dt)

(5.24)

Noting that

g−1
ε

(
1

tε

)
− g−1

0

(
1

tε

)
=

1− tε

ε(t− ε)
− 1− tε

tε
=

1− tε

t(t− ε)

and so(
g−1
0

(
1

tε

))−α

−
(
g−1
ε

(
1

tε

))−α

≤ α
1− tε

t(t− ε)

(
tε

1− tε

)α+1

= α
tαεα+1

(t− ε)(1− tε)α
, (5.25)

the first integral on the right hand side of (5.24) can be estimated as follows:∫ [
Gν0

(
g−1
0

(
1

tε

))
−Gν0

(
g−1
ε

(
1

tε

))]
µ( dt) =

Cν

∫ [(
g−1
0

(
1

tε

))−α

−
(
g−1
ε

(
1

tε

))−α

+Rν

(
g−1
0

(
1

tε

))
−Rν

(
g−1
ε

(
1

tε

))]
× µ( dt)

≤ αCνε
α+1

∫
tα

(t− ε)(1− tε)α
µ( dt)

+ Cν

∫ [
Rν

(
g−1
0

(
1

tε

))
−Rν

(
g−1
ε

(
1

tε

))]
µ( dt) = O

(
εα+δ

)
, (5.26)

where we have used Lemma 4.5 and observed that g−1
ε (1/tε) = O

(
ε−1
)
, g−1

0 (1/tε) =

O
(
ε−1
)
as ε ↘ 0, uniformly for t ∈ [c−, c+]. Consequently, the corresponding term

in (5.24) is O
(
εα+δ−β

)
.
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The inner part of the second integral on the rightmost side of (5.24) can be
rewritten as∫ [

1[0,g−1
0 (1/tε)](s) (tg0(s))

β − 1[0,g−1
ε (1/tε)](s) (tgε(s))

β
]
ν0( ds)

= tβ
∫ {

1[0,g−1
ε (1/tε)](s)

[
g0(s)

β − gε(s)
β
]
− 1[g−1

0 (1/tε),g−1
ε (1/tε)](s) (gε(s))

β
}

× ν0( ds)

≤ tβ
∫

1[0,g−1
ε (1/tε)](s)

[
g0(s)

β − gε(s)
β
]
ν0( ds)

≤ βε2tβ
∫

1[0,g−1
ε (1/tε)](s)s (1 + s)

β
ν0( ds)

≤ βε2tβ

(t− ε)

∫
(1 + s)βν0( ds) ≤ 4βεtβ−1

∫ (
1 + sβ

)
ν0( ds) = O (ε) ,

(5.27)

where the second to last inequality uses the observation that g−1
ε (1/(tε)) ≥ s

implies s ≤ 1/(ε(t− ε)), and the final estimate uses
∫
sβν0( ds) < ∞ (cf. (3.2) and

line right after). With this we see that the right hand side of (5.24) is O
(
εα+δ−β

)
(noting α+ δ − β < α+ δ < 1).

We rewrite the third term in (5.18) using Lemmas 4.5 and 4.10 and the triangle
inequality,

∫ c+ε−2

1/ε

τβ−1

∣∣∣∣∫ ∞

ετ

×
[
a(ε)Gω0

(
h−1
0

(
ε2τ

t

))
− a(ε)Gω0(ε)−Gν0

(
g−1
ε

(τ
t

))
+Gν0

(
1

ε

)]
× µ( dt)

∣∣∣∣ dτ
≤ Cν

∫ ∞

1/ε

τβ−1

∣∣∣∣∣
∫ ∞

ετ

[(
1

ε2
h−1
0

(
ε2τ

t

))−α

−
(
g−1
ε

(τ
t

))−α
]
µ( dt)

∣∣∣∣∣ dτ
+ Cνε

2α

∫ ∞

1/ε

τβ−1

∣∣∣∣∫ ∞

ετ

Rω

(
h−1
0

(
ε2τ

t

))
dµ(t)

∣∣∣∣ dτ
+ Cνε

2α

∫ ∞

1/ε

τβ−1

∣∣∣∣∫ ∞

ετ

Rω(ε) dµ(t)

∣∣∣∣ dτ
+ Cν

∫ ∞

1/ε

τβ−1

∣∣∣∣∫ ∞

ετ

Rν

(
g−1
ε

(τ
t

))
µ( dt)

∣∣∣∣ dτ
+ Cν

∫ ∞

1/ε

τβ−1

∣∣∣∣∫ ∞

ετ

Rν(1/ε) dµ(t)

∣∣∣∣ dτ
(5.28)

Noting that

1

ε2
h−1
0

(
ε2τ

t

)
=

τ

t− ε2τ
≥ τ − t

t− ε2τ
= g−1

ε

(τ
t

)
(5.29)
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and thus∣∣∣∣∣
(

1

ε2
h−1
0

(
ε2τ

t

))−α

−
(
g−1
ε

(τ
t

))−α
∣∣∣∣∣ ≤ α

t(t− ε2τ)α

(τ − t)α+1
≤ α

tα+1

(τ − t)α+1
, (5.30)

we see that∣∣∣∣∣
∫ ∞

ετ

[(
1

ε2
h−1
0

(
ε2τ

t

))−α

−
(
g−1
ε

(τ
t

))−α
]
µ( dt)

∣∣∣∣∣
≤ α

∫
1[0,t/ε](τ)

tα+1

(τ − t)α+1
µ( dt) ≤ αcα+1

+ (τ − c+)
−1−α , (5.31)

and therefore the first term on the right hand side of (5.28) is O
(
ε1+α−β

)
.

The remaining terms in (5.28) can be estimated easily using Lemmas 4.5
and 4.10, and they are either O

(
ε2α−β

)
or O

(
εα+δ−β

)
. In the second and third

terms, due to the bounded support of µ the inner integral is nonzero unless
τ < c+/ε. The integrands are both O (1) uniformly on the domain of integra-
tion for ε ↘ 0, so both terms are of order

O

(
ε2α

∫ c+/ε

1/ε

τβ−1 dτ

)
= O

(
ε2α−β

)
. (5.32)

In the last two terms, the inner integral is again zero unless τ < c+/ε, but the
integrand is now of order O

(
εα+α

)
, so these terms are of order

O

(
εα+δ

∫ c+/ε

1/ε

τβ−1 dτ

)
= O

(
εα+δ−β

)
. (5.33)

Summing up, the right hand side of (5.28) is O
(
ε2α−β

)
+O

(
εα+δ−β

)
.

The last term in (5.18) is quite similar to the previous one. We first rearrange
as in (5.28),∫ 1/ε

c−

τβ−1

∣∣∣∣ ∫ ετ

0

×
[
Gν0

(
g−1
0

(τ
t

))
−Gν0

(
1

ε

)
+ a(ε)Gω0(ε)− a(ε)Gω0

(
ε2g−1

ε

(τ
t

))]
µ( dt)

∣∣∣∣ dτ
= Cν

∫ 1/ε

c−

τβ−1

∣∣∣∣∫ ετ

0

[(
g−1
0

(τ
t

))α
−
(
g−1
ε

(τ
t

))α]
µ( dt)

∣∣∣∣ dτ
+ Cν

∫ 1/ε

c−

τβ−1

∣∣∣∣∫ ετ

0

Rν

(
g−1
0

(τ
t

))
µ( dt)

∣∣∣∣ dτ
+ Cν

∫ 1/ε

c−

τβ−1

∣∣∣∣∫ ετ

0

Rν

(
1

ε

)
µ( dt)

∣∣∣∣ dτ
+ Cνε

2α

∫ 1/ε

c−

τβ−1

∣∣∣∣∫ ετ

0

Rω

(
ε2g−1

ε

(τ
t

))
µ( dt)

∣∣∣∣ dτ
+ Cνε

2α

∫ 1/ε

c−

τβ−1

∣∣∣∣∫ ετ

0

Rω(ε)µ( dt)

∣∣∣∣ dτ.
(5.34)
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Noting that

g−1
0

(τ
t

)
=

τ − t

t
<

τ − t

t− ε2τ
= g−1

ε

(τ
t

)
(5.35)

and so ∣∣∣(g−1
0

(τ
t

))α
−
(
g−1
ε

(τ
t

))α∣∣∣ ≤ α
ε2tα

(τ − t)α(t− ε2τ)
, (5.36)

which behaves like ε2τ−α for τ on the order of ε−1, the first term in (5.34) is
O
(
ε2+α−β

)
. The remaining terms are easy to estimate, giving either

O

(
εα+δ

∫ 1/ε

0

τβ−1 dτ

)
= O

(
εα+δ−β

)
, (5.37)

or

O

(
ε2α

∫ 1/ε

0

τβ−1 dτ

)
= O

(
ε2α−β

)
. (5.38)

Combining this with the estimates for (5.19), (5.24) and (5.28) we conclude that

|||Tεγ̂ε − γ̂ε|||β = O
(
ε2α−β

)
+O

(
εα+δ−β

)
. (5.39)

A Some useful identies

Here are some useful identities: recall the definitions (1.20), (1.26) and (1.23). Setting f =
1(−∞,σ]), we obtain

FSεω(σ) =

∫
Fω

(
h−1
ε

(σ

z

))
µ( dz) + Fω(∞)Fµ(σ) , (A.1)

for all σ, and this is another way to define the action of Sε on ω. Of course Fω(∞) is one if
ω is a probability measure, but in general ω is not normalized. In making use of (A.1) it is
helpful to note that

h−1
ε (y) =

y − ε2

1− y
. (A.2)

Observing that h−1
ε (y) < 0 for y > 1, we also see that

GSεω(σ) =

∫ ∞

σ
Gω

(
h−1
ε

(σ

z

))
µ( dz) . (A.3)

Moreover

FTεν(τ) =

∫
Fµ

(
τ

gε(s)

)
ν( ds) =

∫
Fν

(
g−1
ε

( τ

t

))
µ( dt) + Fν(∞)Fµ(ε

2τ) , (A.4)

where

g−1
ε (y) =

y − 1

1− ε2y
. (A.5)

In fact, Tεν is defined also by the first equality in (A.4), or by equating the left-most and right-

most expressions. It is useful to note that (A.4) and (A.1) can be rewritten (using h−1
ε (y) < 0

for y > 1 and g−1
ε (y) < 0 for y > 1/ε2)

GSεω(σ) =

∫ ∞

σ
Gω

(
h−1
ε

(σ

t

))
µ( dt) and GTεν(τ) =

∫ ∞

ε2τ
Gν

(
g−1
ε

( τ

t

))
µ( dt) , (A.6)

for every ε ≥ 0.
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