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DISORDER AND DENATURATION TRANSITION IN THE

GENERALIZED POLAND-SCHERAGA MODEL

QUENTIN BERGER, GIAMBATTISTA GIACOMIN, AND MAHA KHATIB

Abstract. We investigate the generalized Poland-Scheraga model, which is used in the
bio-physical literature to model the DNA denaturation transition, in the case where
the two strands are allowed to be non-complementary (and to have different lengths).
The homogeneous model was recently studied from a mathematical point of view in
[35, 7], via a 2-dimensional renewal approach, with a loop exponent 2 + α (α > 0): it
was found to undergo a localization/delocalization phase transition – which corresponds
to the denaturation transition – of order ν = min(1, α)−1, together with – in general –
other phase transitions. In this paper, we turn to the disordered model, and we address
the question of the influence of disorder on the denaturation phase transition, that is
whether adding an arbitrarily small amount of disorder (i.e. inhomogeneities) affects the
critical properties of this transition. Our results are consistent with Harris’ predictions
for d-dimensional disordered systems (here d = 2). First, we prove that when α < 1
(i.e. ν > d/2), then disorder is irrelevant : the quenched and annealed critical points are
equal, and the disordered denaturation phase transition is also of order ν = α−1. On the
other hand, when α > 1, disorder is relevant : we prove that the quenched and annealed
critical points differ. Moreover, we discuss a number of open problems, in particular the
smoothing phenomenon that is expected to enter the game when disorder is relevant.

1. Introduction of the model and results

The analysis of the DNA denaturation phenomenon, i.e. the unbinding at high temper-
ature of two strands of DNA, has lead to the proposal of a very elementary model, the
Poland-Scheraga (PS) model [52], that turns out to be relevant not only at a conceptual
and qualitative level [29, 32], but also at a quantitative level [17, 18]. This model can
naturally embody the inhomogeneous character of the DNA polymer, which is a monomer
sequence of four different types (A,T, G and C). The binding energy for A-T pairs is
different from the binding energy for G-C pairs. The quantitative analysis is then based
on finite length chains with a given sequence of pairs, but in order to analyse general
properties of inhomogeneous chains bio-physicists focused on the cases in which the base
sequence is the realization of a sequence of random variables, that is often referred to as
disorder in statistical mechanics. The PS model is limited to the case in which the two
strands are of equal length and the nth base of one strand can only bind with the nth base
of the other strand: it does not allow mismatches or, more generally, asymmetric loops,
see Fig. 1a. A less elementary model, the generalized Poland-Scheraga model (gPS) [35]
allows asymmetric loops, and different length strands are allowed too, see Fig. 1b.

A remarkable feature of the non disordered PS model (this corresponds to the case
in which all the bases are the same: for example a strand AAA... and a second strand
TTT...) is its solvable character. Notably, one can show that the model has a denaturation
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(a) Standard PS model. (b) Generalized PS model.

Figure 1. Standard v. Generalized Poland-Scheraga models. The figure on the left
represents the standard PS model: the two strands of DNA have the same length (there
are 14 base pairs in Fig. 1a), loops are symmetric (there are 5 loops of lengths 1, 1 loop
of length 3 and 1 loop of length 5). The figure on the right represents the generalized PS
model: the two strands may have a different number of bases (22 for the ’top’ one, and
16 for the ’bottom’ one), and loops are allowed to be asymmetric and can be encoded by
two numbers (n,m) where n is the length the ’top’ strand and m of the ’bottom’ strand
(the loops in Fig. 1b are from left to right (1, 1), (1, 1), (13, 5), (1, 1), (1, 1), (3, 5), (1, 1)).

transition in the limit of infinite strand length, and one can identify the critical point (the
critical temperature) and the critical behavior, i.e. the nature of the singularity of the
free energy at the critical value. Somewhat surprisingly, also the gPS model is exactly
solvable, in spite of the fact that it is considerably more complex than the PS model. This
has been pointed out first in [30, 31, 49] and a mathematical treatment can be found in
[35]. Let us stress that the higher complexity level of the gPS model is however reflected
in a richer behavior. Notably, in the gPS model, other phase transitions exist, beyond the
denaturation transition. Another relevant remark is that PS and gPS models contain a
parameter – the loop exponent – that, in a mathematical or theoretical physics perspective,
can be chosen arbitrarily and on which depends the critical behavior. In fact in this class of
models the critical exponent depends on this parameter, and arbitrary critical exponents
can be observed by tuning the loop exponent.

Stepping to the disordered model is not (at all) straightforward. One way to attack the
problem is by looking at it as a stability issue: is the transition – and we will focus on the
denaturation one – still present in the model if we introduce some disorder, for example a
small amount? And, if it does, what is the new critical value and is the critical behavior
the same as without disorder? We refer to [32, Ch. 5] for an outline on this general very
important issue in statistical mechanics and on the renormalization group ideas that lead
to the so called Harris criterion of disorder irrelevance. We speak of disorder relevance
when the disorder, irrespective of its strength, makes the critical behavior of the model
different from the one of the non disordered model. Disorder is instead irrelevant if the two
critical behaviors coincide for a small disorder strength. In the relevant (resp. irrelevant)
case one can argue that applying a coarse graining procedure makes the disorder stronger
(resp. weaker). Harris’ idea is that disorder (ir)relevance, can be read out of the critical
exponent in the non disordered model.

More precisely, Harris criterion says that, if ν denotes the correlation length exponent
of the non-disordered system and d the dimension, ν > 2/d implies disorder irrelevance,
at least if the disorder is not too strong. One also expects disorder relevance if ν < 2/d.
The case ν = 2/d is dubbed marginal and deciding whether disorder is relevant or not is
usually a delicate issue, even leaving aside mathematical rigor. The PS and gPS models,
with their wide spectra of critical behaviors, therefore become an ideal framework for
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testing the validity of the physical predictions. In fact, the mathematical activity on the
PS model (which is one-dimensional) has been very successful. Results include:

• Very complete understanding of the PS model when disorder is irrelevant [1, 34,
47, 55];
• Precise estimates on the disorder induced shift of the critical point (with respect

to the annealed model) in the relevant disorder case [3, 26], and a proof of the fact
that disorder does change the critical exponent [39, 24] (without determining the
new one: this is an open problem also in the physical literature, even if consensus is
starting to emerge about the fact that pinning model in the relevant disorder regime
should display a very smooth localization transition, see [27, 6] and references
therein);
• Determination of whether or not there is a disordered induced critical point shift in

the marginal case, and precise estimates of this shift: this issue was controversial
in the physical literature [11, 37]. In absence of critical point shift, the critical
exponent has also been shown to be unchanged by the noise. Showing that disorder
does change the critical behavior when there is a critical point shift at marginality
is an open issue, and determining the critical behavior in presence of disorder does
not appear to be easier than attacking the same issue in the relevant case [27].

Our aim is to analyze the disordered gPS model and to understand the effect of disorder
on the denaturation transition for this generalized, 2-dimensional, model.

1.1. The generalized Poland-Scheraga model. Let τ = {τn}n > 0 = {(τ (1)
n , τ

(2)
n )}n > 0

to be a bivariate renewal process, i.e. τ0 = (0, 0) and {τn − τn−1}n > 1 are identically
distributed N2-valued random vectors. We denote by P the law of τ , and we assume that
it has inter-arrival distribution P(τ1 = (n,m)) = K(n+m), where

K(n) :=
L(n)

n2+α
, (1.1)

for some α ≥ 0 and some slowly varying function L(·). Let µ := E[τ
(1)
1 ] = E[τ

(2)
1 ] ∈ (1,∞].

Without loss of generality, we assume that τ is persistent, i.e.
∑

n,mK(n+m) = 1. A set

τ = {τn}n > 0 is then interpreted as a two-strand DNA configuration: the τ
(1)
n ’s monomer

of the first strand is attached to the τ
(2)
n ’s monomer of the second strand. Put differently,

the nth loop in the double strand is encoded by (τ
(1)
n − τ (1)

n−1, τ
(2)
n − τ (2)

n−1), see Figure 1a
and its caption. We refer to [35] for further details.

Let ω := {ωn,m}n,m∈N be a sequence of IID centered random variables (the disorder),

taking values in R, with law denoted P. We assume that the variables ωn,m are centered,
have unit variance and exponential moments of all order, and we set for β ∈ R

Q(β) := E[exp(βω)] <∞ . (1.2)

This choice of disorder is discussed in detail in Section 1.3.
Given β > 0, h ∈ R (the pinning parameter) and N,M ∈ N, we define Pβ,h,ω

N,M a measure
whose Radon-Nikodym derivative w.r.t. P is given by

dPβ,h
N,M,ω

dP
(τ) :=

1

Zβ,hN,M,ω

exp
( N∑
n=1

M∑
m=1

(βωn,m + h)1(n,m)∈τ

)
1(N,M)∈τ , (1.3)
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where Zβ,hN,M,ω is the constrained partition function (the normalization constant)

Zβ,hN,M,ω := E
[

exp
( N∑
n=1

M∑
m=1

(βωn,m + h)1(n,m)∈τ

)
1(N,M)∈τ

]
. (1.4)

This corresponds to giving a reward βωn,m + h (or a penalty if it is negative) if the nth

monomer of the first strand and the mth monomer of the second strand meet. Note that
the presence of 1(N,M)∈τ in the right-hand side means that we are considering trajectories
that are pinned at the endpoint of the system (at a technical level it is more practical to
work with the system pinned at the endpoint, see the proof of Theorem 1.1). Note that,
by definition, there are at most min(N,M) renewals in the region {1, . . . , N}×{1, . . . ,M}.

We also define the free partition function, where the endpoints are free

Zf,β,hN,M,ω = E
[

exp
( N∑
n=1

M∑
m=1

(βωn,m + h)1(n,m)∈τ

)]
, (1.5)

that can be compared to the constrained partition function (1.4), see Lemma 2.2. For
notational convenience, we will sometimes suppress the β, h from the partition function.

One then defines the quenched free energy of the system. We prove the following
theorem in Section 2.

Theorem 1.1. For all γ > 0, h ∈ R, β ≥ 0 and every choice of {M(N)}N=1,2,... such
that limN→∞M(N)/N = γ we have

lim
N→∞

1

N
logZβ,hN,M(N),ω = lim

N→∞

1

N
E logZβ,hN,M(N),ω =: fγ(β, h) , (1.6)

where the first limit exists P( dω)-almost surely and in L1(P). The same result holds for

the free model, that is fγ(β, h) = limN→∞
1
N logZf,β,hN,M(N),ω P( dω)-a.s. and in L1(P).

The function (β, h) 7→ fγ(β, h) is convex, h 7→ fγ(β, h) and β 7→ fγ(β, h) are nonde-
creasing, and γ 7→ fγ(β, h) is nondecreasing and continuous.

The homogeneous model corresponds to the case β = 0: let us drop the β and ω
dependence in the partition function that will be simply denoted ZhN,M . The homogeneous

model is exactly solvable and sharp estimates of fγ(0, h) near criticality are given in [35].

Theorem 1.2 ([35]). For every γ ≥ 1, when β = 0 we have hc(0) := sup{h : fγ(0, h) =
0} = 0. Moreover there is a slowly varying function Lα,γ(·) such that as h↘ 0 one has

fγ(0, h) ∼ Lα,γ(h)h1/min(1,α) . (1.7)

Moreover, if
∑

n n
2K(n) <∞ (i.e. µ <∞), then Lα,γ(h)−1 = c−1 := 1

2

∑
n n(n−1)K(n).

In fact, the disordered system also presents this transition: we define the critical point

hc(β) := sup{h : fγ(β, h) = 0} = min{h : fγ(β, h) > 0} . (1.8)

Let us note that hc(β) does not depend on γ > 0, thanks to (2.3) below.
On the other hand, we define the annealed free energy as

faγ(β, h) := lim
N→∞,

M(N)/N→γ

1

N
logEZβ,hN,M(N),ω = fγ(0, h+ logQ(β)) . (1.9)
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This link with the homogeneous model and the fact that hc(0) = 0 allow immediately to
identify the annealed critical point:

hac (β) := min{h : faγ(β, h) > 0} = − logQ(β) . (1.10)

Now observe that by Jensen’s inequality, we have that E logZN,M,ω ≤ logEZN,M,ω and
hence fqγ(β, h) ≤ faγ(β, h). Moreover, since β 7→ fγ(β, h) is non-decreasing, we have that

fγ(0, h) ≤ fqγ(β, h). Therefore for every β we have

hac (β) ≤ hc(β) ≤ hc(0) . (1.11)

One can show, by adapting the argument of proof of [34, Th. 5.2], that the second in-
equality is strict for every β 6= 0. The first inequality may or may not be strict and this
is an important issue which is directly linked to disorder relevance and irrelevance.

Harris’ criterion predicts that disorder is irrelevant if ν > 2/d. Here, Theorem 1.2 sug-
gests that ν = 1/min(1, α), if we admit that the correlation length of the non-disordered
system can be given by the reciprocal of the free energy, as it is the case for the PS
model, see [33]. Since the model is 2-dimensional (contrary to the PS model which is
1-dimensional), it would mean that disorder is irrelevant when ν > 1, that is when α < 1.

And in fact our first result states that the first inequality in (1.11) is an equality if
α < 1 and β is not too large. For the same values of β we can also show that the critical
behavior is the same as for the β = 0 case (disorder irrelevance). Our second result
asserts that the inequality is strict for α > 1. We interpret this critical point shift, with
a certain abuse, as disorder relevance. We however refer to the discussion in Section 1.3
(in particular Conjecture 1.5) regarding the change in the critical behavior. We therefore
prove that disorder is irrelevant if α < 1, and relevant (in terms of critical points) if α > 1,
confirming Harris’ prediction.

1.2. Relevance and irrelevance of disorder. Let us define σ := τ ∩ τ ′, where τ and τ ′

are two independent copies of τ : σ is another bivariate renewal process, and Proposi-
tion A.3 tells that σ is terminating if α ∈ (0, 1) and persistent if α > 1 – the case α = 1
is discussed in Remark A.7.

Theorem 1.3. Assume that σ is terminating ( this includes α < 1 and excludes α > 1).
Then there exists β1 > 0 (see (3.5)), such that for every β ∈ (0, β1) we have hc(β) = hac (β),
and moreover

lim
h↘hc(β)

log fγ(β, h)

log(h− hc(β))
=

1

α
. (1.12)

Hence, the order of the phase transition is unchanged when σ is terminating (which is
the case if α < 1), at least when β is small enough. We prove Theorem 1.3 in Section 3. We
mention that when the disorder distribution is infinitely divisible (for instance Gaussian),
one can get sharper bounds regarding the critical behavior of fγ(β, h), via a replica-
coupling method, as done in [55] or [56]. For a statement and a detailed proof, we refer
to [44].

On the other hand, when α > 1, we show that the quenched and annealed critical points
differ, and we give a lower bound on the critical point shift.

Theorem 1.4. For α > 1 we have hc(β) > hac (β) for every β > 0. Moreover, for every
ε > 0, there exists βε > 0 such that for any β 6 βε we have

hc(β)− hac (β) ≥ ∆ε
β :=

{
β

2α
α−1

+ε if α ∈ (1, 2] ,

β4| log β|−6 if α > 2 .
(1.13)
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Moreover, there is a slowly varying function L̃(·) such that

hc(β)− hac (β) ≤ L̃(1/β)β
2α
α−1
∨4 . (1.14)

We add that β 7→ hc(β) − hac (β) is a non decreasing function of β: this result can be
proven by the exact same procedure as the one used to prove Proposition 6.1 in [38]. It is
to be interpreted that disorder relevance is non-decreasing in β.

1.3. On the results, perspectives and related work.

On the main theorems. A two replica computation plays a central role in the proof of
Theorem 1.3 and in the proof of (1.14) of Theorem 1.4: the intersection renewal σ therefore
emerges naturally, like in the PS model. In the PS context, we now know that disorder
is irrelevant (for small values of β) if and only if the intersection renewal is terminating
[11]. For the gPS model our results go in the same direction, but it is not sharp in the
marginal case α = 1: we only show disorder irrelevance when the intersection renewal σ
is terminating. We refer to Remark A.7 for further discussion on the case α = 1, where
more technicalities arise.

The proof of (1.13) is based on coarse graining techniques and fractional moment
method: we have chosen to adapt the method proposed in [26] and the difficulties in
its generalization come from dealing with the richness of a multidimensional path with
respect to the one dimensional structure of the PS models. A keyword for these difficulties
is off-diagonal estimates. It can certainly be improved in the direction of getting rid of
the ε in the exponent for α ∈ (1, 2] and of the logarithmic term in the case α > 1 by using
more sophisticated coarse graining techniques (see [34, Ch. 6] and references therein). One
could probably aim also for sharp estimates, like in [11], but the estimates are technically
rather demanding already to obtain (1.13). We have chosen to stick to these simplified
non-optimal (but almost optimal) bounds because sharper results would have required
a substantially heavier argument of proof. The techniques developed in [11, 10] should
transfer to this model: at the expense of a high level of technicality, we expect that, in
analogy with the PS model, the necessary and sufficient condition for a critical point shift
is the persistence of the intersection renewal σ = τ ∩ τ ′.

Discussion on the presence of a smoothing phenomenon. Of course, a fully satisfactory
result on disorder relevance would include showing that the critical exponent is modified
by the disorder. We do not have such a result, but let us make one observation and
formulate a conjecture.

The observation is that Theorem 1.3 may appear at first surprising in view of the
smoothing inequality [39, 24] for PS models that ensures that the free energy exponent
cannot be smaller than 2 in presence of disorder: for the gPS model the free energy
exponent can go down to 1, since in (1.12) we can choose α arbitrarily close to 1. The
reason of the difference is that the PS model is 1-dimensional whereas the gPS model is
2-dimensional: Harris criterion tells that disorder should be irrelevant if ν > 2 for the PS
model, and ν > 1 for the gPS model. In the gPS model, the irrelevant disorder regime
therefore holds even if ν (= min(1, α)−1) is arbitrarily close to 1: hence one should not
hope for a general smoothing inequality valid whatever α is.

It is however worthwhile attempting to sketch the argument in [39], in the simplified
set-up of Gaussian charges [32, Ch. 5, Sec. 4]. This is useful both to understand were the
argument fails and because we can realize that a suitable generalization of the argument
naturally leads to a conjecture that we state just below.
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Figure 2. Schematic view of the coarse graining
procedure proposed for a smoothing inequality.
The environment is divided in blocks of size `,
called `-boxes. A `-box is good (shadowed in
the figure) if the partition function in this block
grows at an exponential rate that is larger than
the free energy of the system. The good `-boxes
will be rare, but we can choose n such that in a
system of linear size n`, with positive probability,
there will be at least one good `-box. A lower
bound on the partition function follows by the
limitation to trajectories that visit only a given
good `-box (say, the closest).

The argument [39] is based on introducing a coarse graining scale ` ∈ N and considering
the environment in terms of `-boxes, see Figure 2. We argue for the case γ = 1 (M = N)
and we consider the system at criticality, that is h = hc(β):

(1) A good `-box is a box for which the pinned partition function (i.e. pinned at the
south-west and north-east corners of the `-box) is larger than exp

(
1
2 ` f1(β, h+δ)

)
,

with δ > 0. For `→∞ this is a rare event. The probability of such an event can
be estimated from below by shifting the environment of δ/β, that is ωi,j is replaced
with ωi,j + δ/β, and by performing a relative entropy estimate [34, Ch. 5]. This
shows that the probability of such a rare event is at least exp(−δ2`2/(2β2)): note
the `2 term, with respect to ` in the PS case [39].

(2) We then make a lower bound on the partition function of the system by discarding
renewal trajectories that visit `-boxes that are not good, and keeping only trajec-
tories that enter good `-boxes through the south-west corner and exit through the
north-east corner.

The trajectories are therefore alternated jumps to a good box, visit of the box, and
then a new jump to another good box. Jumps are long because good boxes are rare.
The analysis in [39] is ultimately reduced to see what happens in one jump and visit: by
exploiting super-additivity one can even just choose N = n` such that there is (say, with
probability at least 1/2), at least one good box in the system (like it is done in [8]). We
therefore see that we need n2 exp(−δ2`2/(2β2)) ≈ 1, so that n ≈ exp(−δ2`2/β2): with this

level of precision, jumping to enter such a box costs K(n`) = (n`)−(2+α) (let us consider
the case in which L(·) is a constant, but the computation goes through in the same way
also in the general case). In the box there will be a contribution exp

(
1
2 ` f1(β, h + δ)

)
.

The net contribution to the logarithm of the partition function, divided by the size n` of
the system, is then

1

n`

(
logK

(
exp(−δ2`2/β2)`

)
+
`

2
(f1(β, h+ δ))

)
≥ 1

n

(
− c

β2
δ2`+

1

2
f1(β, h+ δ)

)
, (1.15)

with c a positive constant that we have left implicit (it depends on more accurate compu-
tations, and can be in principle just reduced to 2 + α).

Now let us choose h = hc(β). So the argument we just outlined goes in the direction of
saying that

0 = f1(β, hc(β)) ≥ 1

n

(
− c

β2
δ2`+

1

2
f1(β, hc(β) + δ)

)
, (1.16)
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so that

f1(β, hc(β) + δ) ≤ 2c

β2
δ2` . (1.17)

At this stage choosing ` arbitrarily large is of no help. The steps we have performed
up to now require that `δ is large (so that the good boxes we have chosen are really

sparse). On the other hand we need to have chosen the size of the boxes so that Zβ,h`,`,ω ≥
exp(`(f1(β, hc(β)+δ))/2). This is a delicate issue, but it definitely appears that for this to
hold, `f1(β, hc(β) + δ) needs to be sufficiently large (say, larger than a suitable constant):
see for example the discussion on the notion of correlation length given in [34, Ch. 2] and
references therein, notably [40], where the correlation length is identified by the reciprocal
of the free energy. But if ` is (a constant times) 1/f1(β, hc(β) + δ) then from (1.17) we
obtain

f1(β, hc(β) + δ) ≤ Cδ , (1.18)

for some C > 0. But such a bound is trivial: it holds with C = 1 just because the contact
density cannot exceed one! On the other hand, as we have already pointed out, we could
not have hoped for a better bound valid for any α > 0.

In spite of the fact that it leads to a trivial result, we insist that the argument we have
just outlined can be made rigorous: the delicate step is the last one, where one has to use
arguments developed in [40]. It can therefore be taken as a starting point to push things
further. Indeed, it appears useless to modify the environment in the whole `-box, at least
if α > 1. In fact if α > 1 one can show that for q > 1/max(α, 2)

lim
N→∞

P
(
τ ∩ [0, N ]2 ⊂ {(i, j) ∈ Z2 : |i− j| ≤ N q}

)
= 1 . (1.19)

We can then consider modifying only the environment that is close to the diagonal, that
is in a subset of the `-box with |i − j| 6 `q. This would improve the lower bound on the
probability of a good `-box to exp(−c′ δ2`q+1), and (1.17) would become

f1(β, hc(β) + δ) 6
c′′

β2
δ2`q.

Taking ` a constant times 1/f1(β, hc(β) + δ) as in the argument leading to (1.18), and
then taking q arbitrarily close to 1/min(α, 2) supports the following:

Conjecture 1.5. For every α > 0 and every β > 0

lim sup
δ↘0

log f1(β, hc(β) + δ)

log δ
≥

{
2α
α+1 for α ∈ (1, 2) ,
4
3 for α ≥ 2 .

(1.20)

We stress that a natural concern arises from performing the change of measure only in
a subset of the environment, close to the diagonal. One indeed needs to be sure that the
trajectories contributing to (a fraction of) 1

` logZ`,`,ω ≈ f1(β, hc(β)+δ) can be constrained

to stay in the region {(i, j) ∈ Z2 : |i−j| ≤ `q}: if it is the case, one can “force” trajectories
to visit sites where the environment has indeed been shifted.

An important modeling issue: the choice of the disorder. There is no doubt that the first
disorder that comes to mind when thinking of DNA modeling is not the one we have
used. One would rather choose ωi,j = f(ωi, ωj) for a suitable choice of a function f and
a sequence {ωj}j=1,2,... of random variables (let us say IID for simplicity, but if we want
to stick to DNA problems very closely it appears that some sort of strongly correlated
sequence may be more appropriate [50]). For example, we could choose ωj taking only
two values eAT and eGC and then make a choice for f that reflects the fact that AT bounds
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are weaker than GC bounds, and that all other possible bounds are even weaker. Even
restricting to {ωj}j=1,2,... that is IID, this model is highly non trivial (gPS model with this
type of disorder has been considered at a numerical level in [30, 31], see also [28, 54] for
related work). But one could also choose to consider the binding of two sequences that are
not complementary (the case considered in [49] goes in this direction, even if only heuristics

and numerics are presented): choose for example two independent sequences {ω(1)
j }j=1,2,...

and {ω(2)
j }j=1,2,... and use ωi,j = f(ω

(1)
i , ω

(2)
j ). This is somewhat closer to what we are using

(though it can be considered as a one-dimensional disorder), but it is still very difficult to
deal with. The problem is in any case due to correlations in the disorder field ωi,j , which
can be dealt with in some cases, see e.g. [9, 12] or [2, 21]. Our choice is in a sense a toy
choice, but we stress that it is conceptually similar to the simplification made for example
in [20] in the RNA context. Moreover it recovers importance once we leave somewhat the
DNA context and focus rather on moving toward understanding mathematically Harris’
theory of disorder (ir)relevance—in particular for 2-dimensional systems, compared to the
PS model, which is 1-dimensional.

We also point out that this disordered version of the gPS model gives a bridge between
pinning model and directed polymers in random environment [22, 46], in particular, to
the long range directed polymer [22, 57]. Moreover a different class of two-strand polymer
problems (the random walk pinning model) is treated in [13, 15, 16].

Open questions and perspectives. Several natural issues remain open: let us list some of
them.

(1) Prove a smoothing inequality, thus showing disorder relevance in the original sense
of Harris, for α > 1 (see Conjecture 1.5).

(2) What is the effect of disorder on the other phase transitions? Here we have ad-
dressed only the denaturation transition, but in [35] other transitions are shown
to exist. Do they withstand the introduction of disorder? If so, does the corre-
sponding critical behavior differ from the homogeneous case? This is the question
(quickly) addressed [49] where a rather bold conjecture is set forth.

(3) We have dealt only with free energy estimates, but, like for the standard PS
model, obtaining precise estimates on the gPS process (i.e. establish properties
of trajectories) is very challenging, see [34, Ch.8] and references therein. The
problem comes of course from the inhomogeneous nature of the disorder and the
fact that on rare regions atypical disorder behaviors appear (this is ultimately also
the problem we face at the free energy level, but it becomes particularly explicit
when one analyses the trajectories). A precise analysis of the trajectories of the
non disordered gPS model can be found in [7]: this analysis is substantially more
demanding than the corresponding one for the PS model.

(4) Dealing with the marginal case α = 1 is open, mostly because of the additional
technical difficulties (more complicated coarse-graining procedure, more technical
estimates for bivariate renewals, etc.). This appears to be a problem at reach, but
a very substantial amount of technical work is certainly needed.

Organization of the rest of the work. The issues of existence and self-averaging of the
free energy, i.e. the proof of Theorem 1.1, are treated in Section 2. In Section 3 we
prove Theorem 1.3, as well as the upper bound (1.14) of Theorem 1.4. The rest of the
Theorem 1.4 is proven in Section 4. We collect in Appendix A a number of statements
and proofs about bivariate renewals.
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1.4. Some further notations. We stress that τ is symmetric and in the domain of at-
traction of a min(α, 2)-stable distribution: we denote (bn)n > 1 be the recentering sequence
and (an)n≥0 the renormalizing sequence for τn, that is such that 1

an
(τn − (bn, bn)) con-

verges to a min(α, 2) stable distribution, whose density is denoted gα(·, ·). For bn, we have
bn = µn if α > 1, bn = nE[min(X1, n)] if α = 1, and bn = 0 if α ∈ (0, 1). The asymptotic
behavior of an is characterized by

L(an)(an)−α ∼ 1/n if α < 2

σ(an)(an)−2 ∼ 1/n if α > 2
(1.21)

where σ(n) := E[min(X1, n)2]. If α = 2 and E[X2] = +∞, then σ(n) grows to infinity
as a slowly varying function (and verifies σ(n)/L(n)→ +∞), whereas if E[X2] < +∞ (in
particular when α > 2) an is proportional to

√
n.

In any case, there exists some slowly varying function ψ(·) such that

an = ψ(n)n1/min(α,2) . (1.22)

We provide some useful results on bivariate renewals in Appendix A, in particular on the
renewal mass function P((n,m) ∈ τ).

2. Free Energy: existence and properties

In this section we often assume γ ∈ Q: in this case we write it as γ = p/q with p and q
relatively prime positive integer numbers.

Proposition 2.1. For every γ > 0 and every {M(N)}N=1,2,... such that limN→∞M(N)/N =
γ we have that

lim
N→∞

1

N
logZβ,hN,M(N),ω = lim

N→∞

1

N
E logZβ,hN,M(N),ω =: fγ(β, h) , (2.1)

where the first limit is meant P( dω)-a.s. and in L1(P). fγ(·, ·) is convex and fγ(β, ·) is non-
decreasing, and also fγ(·, h) is non-decreasing on the positive semi-axis, non-increasing in
the negative one. Moreover if γ = p

q ∈ Q

fγ(β, h) = sup
N : N

q
∈N

1

N
E logZβ,hN,γN,ω . (2.2)

Finally we have the bound: for every γ2 ≥ γ1 > 0

fγ1(β, h) ≤ fγ2(β, h) ≤ γ2

γ1
fγ1(β, h) , (2.3)

which implies that γ 7→ fγ(β, h) is locally Lipschitz (hence continuous).

Proof. The proof is divided into several steps:

(1) We first show that for γ ∈ Q, along a subsequence with N/q ∈ N, logZN,γN,ω is
super-additive in an ergodic sense, which implies the existence of the free energy
limit (2.1) along this subsequence.

(2) The restriction γN ∈ N is then removed by a direct estimate, for what concerns
the existence of the free energy limit, still with γ ∈ Q.

(3) We then prove a comparison estimate between ZN,γ1N,ω and ZN,γ2N,ω and use it
to establish the existence of the free energy limit for ZN,γN,ω, every γ > 0.

(4) The same comparison estimate yields also (2.3), and the fact that one can take
the limit along an arbitrary sequence satisfying M(N) ∼ γN , for N →∞.
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(5) Finally, we prove the convexity and monotonicity statements.

Step 1. With γ = p/q set Zj(ω) := Zjq,jp,ω. Then one directly sees that

Zj1+j2(ω) ≥ Zj1(ω)Zj2 (Θj1q,j1pω) , (2.4)

where (Θq,pω)n,m = ωq+n,p+m. Since ω is an IID sequence of L1 random variables, it is
straightforward to see that logZj ∈ L1(P). Also, | logZj | 6 hn+β supγ∈Γ

∑
(n,m)∈γ |ωn,m|,

where Γ is the set of nearest-neighbors up-right paths: a Last Passage Percolation ob-
servation then tells us that a sufficient condition for having supn

1
nE| logZj | < +∞ is

E[ω2
1,1] < +∞, see [48]. Hence we see that {− logZj(ω)}j=1,2,... satisfies the hypothe-

ses of Kingman sub-additive ergodic theorem (see for example [32, Sec. A.7]), and we
get that {1

j logZj(ω)}j=1,2,... converges P( dω)-a.s. and in L1(P). Moreover (2.4) di-

rectly tells us that {E logZj(ω)}j=1,2,... is super-additive, so that limj→∞
1
jE logZj(ω) =

supj∈N
1
jE logZj(ω). This establishes (2.2), and also (2.1), but only for M(N) = γN with

γ ∈ Q and along the subsequence satisfying γN ∈ N.

Step 2. Still with γ = p/q, the restriction to γN ∈ N can be removed by observing that
we can write N = jq + r, with r ∈ {0, 1, . . . , q − 1}, and for r 6= 0

ZN,bγNc,ω ≥ Zjq,jp,ω exp(βωN,bγNc + h)K
(
r +

⌊
jp+

p

q
r
⌋
− jp

)
≥ c(p, q) exp(βωN,bγNc + h)Zjq,jp,ω ,

(2.5)

where c(p, q) > 0.
In the same way

Z(j+1)q,(j+1)p,ω ≥ ZN,bγNc,ω exp(βω(j+1)q,(j+1)p + h)K
(
q − r + (j + 1)p−

⌊
jp+

p

q
r
⌋)

≥ c(p, q) exp(βω(j+1)q,(j+1)p + h)ZN,bγNc,ω ,
(2.6)

possibly redefining c(p, q) > 0. From (2.5) and (2.6) one easily removes the restriction to
γN ∈ N and establishes (2.1) for M(N) = bγNc with γ ∈ Q.

Step 3. We now establish (2.1) for M(N) = bγNc for an arbitrary γ > 0, by proving the
announced comparison bounds, upper and lower.

The upper bound is more general: if M2 > M1 and if there exists c > 0 such that
M2 ≤ cN we see that

ZN,M1,ω =
N−1∑
n=0

M1−1∑
m=0

Zn,m,ωK(N − n+M1 −m) exp (βωN,M1 + h)

≤ cKN
cK exp (β(ωN,M1 − ωN,M2))

N−1∑
n=0

M1−1∑
m=0

Zn,m,ωK(N − n+M2 −m) exp (βωN,M2 + h)

≤ cKN
cK exp (β(ωN,M1 − ωN,M2))ZN,M2,ω ,

(2.7)

where in the first inequality we have used that K(·) is regularly varying and that M2 ≤ cN
to see that there exists cK > 0 such that

K(N − n+M1 −m)

K(N − n+M2 −m)
≤ cKN

cK , (2.8)
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for every N . For the second inequality we have relaxed the constrained m < M1 to
m < M2.

On the other hand, we prove a comparison lower bound only for M of the form bγNc.
Let us choose γ2 > γ1 > 0. Note that for

N ′ :=
⌊γ1

γ2
N
⌋
−
⌈ 2

γ2

⌉
, (2.9)

we have bγ2N
′c+ 1 ≤ bγ1Nc so that

ZN,bγ1Nc,ω ≥ K
(
N −N ′ + bγ1Nc − bγ2N

′c
)

exp
(
βωN,bγ1Nc + h

)
ZN ′,bγ2N ′c,ω

≥ (cKN
cK )−1 exp

(
βωN,bγ1Nc + h

)
ZN ′,bγ2N ′c,ω ,

(2.10)

possibly changing the value of cK > 0.
We now choose 0 < γ1 < γ2 ∈ Q. Then (2.7) implies that P( dω)-a.s.

lim sup
N→∞

1

N
logZN,bγ1Nc,ω ≤ fγ2(β, h) , (2.11)

and (2.10) implies that P( dω)-a.s.

lim inf
N→∞

1

N
logZN,bγ1Nc,ω ≥ lim

N→∞

1

N ′
logZN ′,bγ2N ′c,ω =

γ1

γ2
fγ2(β, h) , (2.12)

and the proof of (2.1) is achieved in the P( dω)-a.s. sense for M(N) = bγ1Nc, by choosing
a sequence of values for γ2 converging to γ1, defining thus Fγ1(β, h) also by this limit
procedure. Note that a byproduct is that (2.3) holds, hence γ 7→ fγ(β, h) is non de-
creasing and (locally) Lipschitz continuous. To upgrade (2.1) to the L1(P) sense one
simply applies the expectation E[ · ] to the log of (2.10) and (2.7) so that one obtains
limN→∞(1/N)E logZN,bγNc,ω = fγ(β, h) for every γ > 0, and the first limit in (2.1) holds

in the L1(P) sense by Scheffé’s Lemma.

Step 4. The generalization to a sequence M(N) ∼ γN is just made by observing that given
arbitrary γ1 < γ2 with γ ∈ (γ1, γ2) for N0 sufficiently large we have bγ1Nc < M(N) <
bγ2Nc for every N ≥ N0. At this point we can apply the comparison bounds like in the
previous step and conclude by an approximation procedure.

Step 5. The function (β, h) 7→ fγ(β, h) is convex because it is the limit of a sequence
of convex functions. Monotonicity in h for β fixed is also evident from the finite N
expression. The fact that β 7→ fγ(β, h) is non increasing for β ≤ 0 and non decreasing for

β ≥ 0 follows from convexity and the fact that ∂βE logZβ,hN,M,ω = 0 (by direct computation,

since the ω variables are centered), so ∂βfγ(β, h)|β=0 = 0. This completes the proof of
Proposition 2.1. �

We now compare the constrained and the free partition function:

Lemma 2.2. For any α+ > α, there exists C such that for every N,M ∈ N and

ZcN,M,ω ≤ Z
f
N,M,ω ≤

ZcN,M,ω ×
(

1 + C(N +M)3+α+e−βωN,M sup
1≤n≤N
1≤m≤M

{eβωn,M , eβωN,m}
)
. (2.13)

Proof. The lower bound is trivial: we have ZfN,M,ω > ZfN,M,ω((N,M) ∈ τ) = ZcN,M,ω,

where we introduced the notation ZfN,M,ω(A) = E
[

exp
(∑N

n=1

∑M
m=1(βωn,m+h)1(n,m)∈τ

)
1A
]
.
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On the other hand, for N,M ≥ 1, we have

ZfN,M,ω =

N∑
n=0

M∑
m=0

ZfN,M,ω

(
τ ∩ [n,N ]× [m,M ] = {(n,m)}

)
6 ZcN,M,ω +

N−1∑
n=0

M−1∑
m=0

Zcn,m,ω +

N−1∑
n=0

Zcn,M,ω +

M−1∑
m=0

ZcN,m,ω . (2.14)

Now, observe that for any n 6 N − 1, m 6M − 1,

Zcn,m,ω ≤ C1(N +M)2+α+e−h−βωN,MZcN,M,ωK(M +N − n−m)eh+βωN,M (2.15)

for any α+ > α, so that

N−1∑
n=0

M−1∑
m=0

Zcn,m,ω 6 C1(N +M)2+α+ZcN,M,ωe
−h−βωN,M . (2.16)

For n < N and m = M , there exists C2 such that

Zcn,M,ω ≤ C2N
2+α+ ZcN,M,ω exp (βωn,M − βωN,M ) , (2.17)

and we obtain

N−1∑
n=0

Zcn,M,ω ≤ C2N
3+α+ sup

1≤n≤N
{exp(βωn,M )} e−βωN,M ZcN,M,ω . (2.18)

The analogous holds for the last term in (2.14), and the proof is therefore complete. �

From Lemma 2.2, and using also that limN→∞
1
N sup1 6 n 6 N ωn,M = 0 P-a.s. (note that

P(|ω1| > x) = o(1/x), since E[|ω1|] < +∞), it follows that Theorem 1.1 also holds for the
free model, namely:

fγ(β, h) = lim
N→∞

1

N
logZf,β,hN,M(N),ω P( dω)-a.s. and in L1(P) . (2.19)

We now introduce some notation that is used later in the paper: for positive integers
a1 < a2 and b1 < b2, we define the partition function of the system on [a1, a2]× [b1, b2] by

Z(a1,b1),(a2,b2),ω := E

[
exp

( a2∑
n=a1+1

b2∑
m=b1+1

(βωn,m + h)1(n,m)∈τ

)
1(a2,b2)∈τ

∣∣∣∣ (a1, b1) ∈ τ
]
,

(2.20)
with the convention that Z(a1,b1),(a1,b1),ω = 1 and Z(a1,b1),(a1,b2),ω = Z(a1,b1),(a2,b1),ω = 0.

3. Upper bound on the critical point shift

The arguments in this section follow the line of proof of H. Lacoin in [47], and is mainly
based on a second moment computation. We start with some preliminary results.

Proposition 3.1. If {Zf,β,h
a
c (β)

N,M(N),ω}N is uniformly integrable , there exists ζ > 0 such that

for every sequence of events {AN}N=1,2,... satisfying limN P(AN ) = 0 there is N0 ∈ N such
that

inf
N≥N0

P
(
P
f,β,hac (β)
N,M(N),ω(AN ) ≤ 1

2
and Z

f,β,hac (β)
N,M(N),ω >

1

2

)
≥ ζ . (3.1)
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Proof. We set h = hac (β). It is sufficient to prove that there exists ζ > 0 such that

inf
N

P
(
Z
f,β,hac (β)
N,M,ω >

1

2

)
≥ 2ζ . (3.2)

and

lim
N→∞

P
(
P
f,β,hac (β)
N,M,ω (AN ) >

1

2
and Z

f,β,hac (β)
N,M(N),ω >

1

2

)
= 0 . (3.3)

Since E[Z
f,β,hac (β)
N,M,ω ] = 1, and because {Zf,β,h

a
c (β)

N,M,ω }
N

is uniformly integrable, then (3.2)

follows immediately from [34, Lemma 4.6].
For (3.3) we observe that the Fubini-Tonelli Theorem implies

E
[
Z
f,β,hac (β)
N,M,ω P

f,β,hac (β)
N,M,ω (AN )

]
= EE

[
exp

( N∑
n=1

M∑
m=1

(βωn,m− logQ(β))δn,m

)
1AN

]
= P(AN ) ,

with δn,m := 1(n,m)∈τ . Hence limN→∞ E
[
Z
f,β,hac (β)
N,M,ω P

f,β,hac (β)
N,M,ω (AN )

]
= 0 and (3.3) follows

because

P
(
Z
f,β,hac (β)
N,M,ω >

1

2
and P

f,β,hac (β)
N,M,ω (AN ) >

1

2

)
= P

(
Z
f,β,hac (β)
N,M,ω 1{Pf,β,h

a
c (β)

N,M,ω (AN )> 1
2
} >

1

2

)
≤ 2E

[
Z
f,β,hac (β)
N,M,ω 1{Pf,β,h

a
c (β)

N,M,ω (AN )> 1
2
}

]
≤ 4E

[
Z
f,β,hac (β)
N,M,ω P

f,β,hac (β)
N,M,ω (AN )

]
. (3.4)

�

We now prove that {Zf,β,h
a
c (β)

N,M(N),ω}N is uniformly integrable (and this holds for an arbitrary

choice of M(N)) provided that the intersection renewal σ = τ∩τ ′ is terminating – τ and τ ′

are two independent copies of τ – and β is small enough. Let us point out that, since σ is
a terminating renewal then the total number |σ| of renewal points (except the origin), that

is |σ| =
∑

(n,m)∈N2 δ̃n,m with δ̃n,m = 1(n,m)∈σ, is a geometric random variable of parameter

P⊗2(σ1 < ∞), where σ1 < ∞ simply means that both components of σ1 are finite. This
in particular implies that P⊗2(σ1 < ∞) = 1/E⊗2[|σ|]. Moreover it is straightforward to
see that E⊗2[|σ|] =

∑
n,mP((n,m) ∈ τ)2.

Lemma 3.2. If σ := τ ∩ τ ′ is terminating, then defining

0 < β1 := sup
{
β : logQ(2β)− 2 logQ(β) < − logP⊗2(σ1 <∞)

}
, (3.5)

we have that for every β ∈ (0, β1) the sequence {Zf,β,h
a
c (β)

N,M(N),ω}N is bounded in L2(P), and is

therefore uniformly integrable.

Proof. We write M = M(N) and we compute the second moment of the partition function:

E
[(
Z
f,β,hac (β)
N,M,ω

)2]
= E⊗2

[
E
[

exp
( N∑
n=1

M∑
m=1

(βωn,m − logQ(β))(δn,m + δ′n,m)
)]]

= E⊗2
[

exp
( N∑
n=1

M∑
m=1

(logQ(2β)− 2 logQ(β))δ̃n,m

)]
.

(3.6)

The sequence {Zf,β,h
a
c (β)

N,M,ω }
N

is bounded in L2(P) if

E⊗2
[

exp
( ∞∑
n,m=1

(logQ(2β)− 2 logQ(β))δ̃n,m

)]
<∞ . (3.7)
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Since |σ| is a geometric random variable of parameter P⊗2(σ1 <∞), (3.7) holds if

logQ(2β)− 2 logQ(β) < − logP⊗2(σ1 <∞) . (3.8)

�

Proof of Theorem 1.3. In view of what we want to prove and of Proposition 2.1, notably
the explicit continuity estimate (2.3), it suffices to establish the result for γ ∈ Q and for
M = bγNc, which we shall assume till the end of the proof, even if this explicit choice is
used in full only at the very end.

Because of Lemma 3.2, we have that the sequence {Zf,β,h
a
c (β)

N,M,ω }
N

is uniformly integrable

for β < β1. Now for all 0 < η < α (recall that if σ is terminating, it implies that α 6 1),
we set

AN := {|τ ∩ ((0, N ]× (0,M ]) | ≤ Nη} . (3.9)

From Lemma A.2, we have that limN P(AN ) = 0. Observe also that

Z
f,β,hac (β)+h
N,M,ω = Z

f,β,hac (β)
N,M,ω E

f,β,hac (β)
N,M,ω [exp (h|τ ∩ ((0, N ]× (0,M ]|))]

≥ Zf,β,h
a
c (β)

N,M,ω P
f,β,hac (β)
N,M,ω (AcN ) exp (hNη) .

(3.10)

Let us call EN the event whose probability is estimated from below in (3.1). Then on
EN , whose probability is at least ζ > 0, we have

Z
f,β,hac (β)+h
N,M,ω ≥ 1

2

(
1−P

f,β,hac (β)
N,M,ω (AN )

)
exp (hNη) ≥ 1

4
exp (hNη) . (3.11)

Therefore we obtain

P
(
Z
f,β,hac (β)+h
N,M,ω ≥ 1

4
exp (hNη)

)
≥ P (EN ) ≥ ζ . (3.12)

Our aim is to prove that fγ(β, h+ hac (β)) > 0 or more precisely give a lower bound for
fγ(β, h + hac (β)). We aim at using (2.2), this is why we have chosen γ ∈ Q, and now we
choose also N such that γN ∈ N, so N = jq, j ∈ N (γ = p/q). Since the first part of
the proof exploits the free partition function, and not the constrained one for which (2.2)
holds, we use Lemma 2.2 that guarantees that

logZ
f,β,hac (β)+h
N,M,ω ≤ logZ

c,β,hac (β)+h
N,M,ω + c1

(
1 + log(N +M) + β|ωN,M |

)
. (3.13)

Since there exists c2 > 1 such that β|ωN,M | < c2 log(N + M) with probability at least
1− ζ/2, and recalling that M ∼ γN , we get that there exists c3 > 0 such that

P
(

logZ
c,β,hac (β)+h
N,M,ω ≤ logZ

f,β,hac (β)+h
N,M,ω − c3 logN

)
6
ζ

2
.

Combining this with (3.12), we get that

P
(

logZ
c,β,hac (β)+h
N,M,ω ≥ 1

2
hNη − c3 logN

)
≥ ζ

2
. (3.14)

Now using the uniform bound Z
c,β,hac (β)
N,M,ω ≥ K(N +M)eβωN,M−logQ(β) on the event Ecn, we

arrive at

E logZ
c,β,hac (β)+h
N,M,ω ≥ ζ

4
hNη − c3ζ

2
logN + logK(N +M)− βE[|ω1,1|]− logQ(β)

≥ c4hN
η − c5 logN ,

(3.15)

for suitably chosen c4, c5 > 0.
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At this point the choice γ = p/q and M = γN ∈ N enters the game. By (2.2) we have

fγ(β, hac (β) + h) > sup
N=jq: j=j0,j0+1,...

{
c4hN

η−1 − c5N
−1 logN

}
, (3.16)

and the fact that j has to be chosen larger than a certain j0 just reflects the fact that the
estimates in this proof have been performed for a N larger than a suitable N0. We now

estimate from below the right-hand side in (3.16) by choosing N = h
− 1+ε

η (for some ε > 0

fixed): this means that we have chosen h = (jq)−η/(1+ε). With this choice

fγ(β, hac (β) + h) > c4h
−εN−1 − c5

1 + ε

η
N−1 log

1

h
> N−1 = h

1+ε
η , (3.17)

where the last inequality holds provided that h is small enough. This is the estimate
we were after since we can choose η arbitrarily close to α and ε close to 0, but we have
established it only for h of the form (jq)−η/(1+ε), j = j0, j0 + 1, · · · . However, we can use
that h 7→ fγ(β, hac (β)+h) is non decreasing: having demonstrated that fγ(β, hac (β)+h) ≥
h

1+ε
η for h = hj := (jq)−η/(1+ε) implies that fγ(β, hac (β)+h) ≥ 1

2h
1+ε
η for every sufficiently

small h ( this can be verified by checking that 1
2h

1+ε
η

j is smaller than h
1+ε
η

j+1). This completes
the proof of Theorem 1.3. �

The technique used to prove Theorem 1.3 could be adapted for α > 1 to deduce the
upper bound for the difference between quenched and annealed critical points.

Proposition 3.3. Let α > 1. There exists a slowly varying function L̃(·) such that

hqc(β)− hac (β) ≤ L̃(1/β)β
2α
α−1
∨4 , (3.18)

for β ≤ 1.

Proof. As in the previous proof, it suffices to work with the case γ = p/q ∈ Q and
M = bγNc. We set

Nβ := max
{
N ∈ qN : E

[(
Z
f,β,hac (β)
N,M,ω

)2]
≤ 2
}
. (3.19)

(Note that in view of (3.23) below, E
[(
Z
f,β,hac (β)
N,M,ω

)2]
is non-decreasing in N).

Using Paley-Zygmund inequality, we therefore get that P(Z
f,β,hac (β)
N,M,ω > 1/2) > 1/8 for

any N 6 Nβ, and we can then adapt the proof of Proposition 3.1.
Let us take AN := {|τ ∩ ((0, N ]× (0,M ]) | ≤ N/2µ}. Since limN→∞P(AN ) = 0, and

P(Z
f,β,hac (β)
N,M,ω > 1/2) > 1/8 for N 6 Nβ, we find, exactly as in the proof of Proposition 3.1,

that there exists N0 ∈ N such that for every N0 ≤ N ≤ Nβ we have

P
(
P
f,β,hac (β)
N,M,ω (AN ) ≤ 1

2
and Z

f,β,hac (β)
N,M,ω >

1

2

)
≥ 1

20
. (3.20)

Following the proof of Theorem 1.3 (see (3.16)), provided Nβ > N0, and since Nβ ∈ qN,
we get that

fγ(β, h) >
{
c6(h− hac (β))− c7N

−1
β logNβ

}
. (3.21)

We therefore observe that if h− hac (β) > c7/c6N
−1
β logNβ then fγ(β, h) > 0. Hence we

get that

hqc(β)− hac (β) ≤ c7

c6
·

logNβ

Nβ
. (3.22)
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It therefore boils down to estimating Nβ, namely obtaining a lower bound. Recall from
(3.6) that

E
[ (
Z
f,β,hac (β)
N,M,ω

)2 ]
= E⊗2

[
exp

(
(logQ(2β)− 2 logQ(β))HN,M (σ)

)]
, (3.23)

with HN,M (σ) =
∑N

n=1

∑M
m=1 1(n,m)∈σ, and σ = τ ∩ τ ′ the intersection renewal. Recall

that σ is persisting for α > 1, see Proposition A.3.
Note that for β ≤ 1, there exists c8 such that logQ(2β)− 2 logQ(β) ≤ c8 β

2, and that
HN,M 6 HM,M ifM > N . The question is therefore reduced to estimating E⊗2 [exp(tHM,M (σ))],
with t = c8β

2. We have

E⊗2
[

exp(tHM,M (σ))
]

= 1 +
M∑
k=1

(
etk − et(k−1)

)
P⊗2 (HM,M (σ) ≥ k)

≤ 1 + (et − 1)

M∑
k=1

etkP⊗2 (HM,M (σ) ≥ k) .

(3.24)

In order to obtain an upper bound, we use the following fact

P⊗2 (HM,M (σ) ≥ k) = P⊗2
(
σk ∈ (0,M ]2

)
≤ P⊗2

(
σ1 ∈ (0,M ]2

)k
. (3.25)

Then we get

E⊗2 [exp(tHM,M (σ))] ≤ 1 + (et − 1)

M∑
k=1

exp
[
k
(
t+ logP⊗2

(
σ1 ∈ (0,M ]2

) )]
. (3.26)

Let σ := σ(1) + σ(2). An elementary observation is that P⊗2
(
σ1 /∈ (0,M ]2

)
is of the same

order as P⊗2 (σ1 > M): indeed, for every M ∈ N we have

P⊗2 (σ1 > 2M) ≤ P⊗2
(
σ1 /∈ (0,M ]2

)
≤ P⊗2 (σ1 > M) . (3.27)

Therefore, using that log(1− x) 6 − x for x ∈ [0, 1], we get that

logP⊗2
(
σ1 ∈ (0,M ]2

)
≤ −P⊗2 (σ1 > 2M) 6 − c9/UM,M , (3.28)

where we used Lemma A.6 to estimate P⊗2 (σ1 > 2M) (provided that M is large enough),

with UN,M =
∑N

n=0

∑M
m=0 P((n,m) ∈ τ)2. Since M 6 γN and UN,N is regularly varying,

see Proposition A.3, we get that

E⊗2 [exp(tHM,M (σ))] ≤ 1 + (et − 1)

N∑
k=1

exp
(
k(t− c10/UN,N )

)
. (3.29)

We therefore choose N such that c10/UN,N ≥ 3t = 3c8β
2. By Proposition A.3, for α > 1,

we can choose

N = ψ̃(1/β)β−( 2α
α−1
∨4) , (3.30)

for some slowly varying function ψ̃(·). For this choice of N , we therefore get that

E
[(
Z
f,β,hac (β)
N,M,ω

)2
]
≤ 1 + (ec8β

2 − 1)
N∑
k=1

exp(−2c8β
2k) ≤ 1 +

ec8β
2 − 1

1− e−2c8β2 , (3.31)

which is smaller than 2 provided that β is small enough. It therefore implies that there
exists some β1 > 0 such that

Nβ ≥ ψ̃(1/β)β−( 2α
α−1
∨4) for β 6 β1 . (3.32)
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The proof is therefore complete by putting (3.32) in (3.22). �

4. Lower bound on the critical point shift

From now on, Li(·) will denote slowly varying functions and Ci positive constants for
i = 1, 2, ... Also, we sometimes treat certain large quantities as if they were integers, simply
to avoid the integer-part notation; in all cases these can be treated as if the integer-part
notation were in use.

Our proof is based on combining the fractional moment method and a change of measure
argument, following the same strategy adopted in [26]. Let

zn,m := exp (βωn,m + h) . (4.1)

Choose k ≤ N and M such that M ∼ γN and decompose the partition function (1.4)
as follows, see Figure 3:

ZN,M,ω = Z1
N,M,ω + Z2

N,M,ω + Z3
N,M,ω , (4.2)

with (recall the notation (2.20))

Z1
N,M,ω =

N∑
n=k

M∑
m=k

ZN−n,M−m,ω

k−1∑
i=0

k−1∑
j=0

K(n− i+m− j)zN−i,M−jZ(N−i,M−j),(N,M),ω ,

Z2
N,M,ω =

k−1∑
n=1

M∑
m=k

ZN−n,M−m,ω

n−1∑
i=0

k−1∑
j=0

K(n− i+m− j)zN−i,M−jZ(N−i,M−j),(N,M),ω ,

Z3
N,M,ω =

N∑
n=k

k−1∑
m=1

ZN−n,M−m,ω

k−1∑
i=0

m−1∑
j=0

K(n− i+m− j)zN−i,M−jZ(N−i,M−j),(N,M),ω .

Note that Z(N−i,M−j),(N,M),ω has the same law as Zi,j,ω and that ZN−n,M−m,ω, zN−i,M−j
and Z(N−i,M−j),(N,M),ω are independent for i < n and j < m.

M

m

n

i

j k

k

N

Figure 3. Fixing a value k, the partition func-
tion is decomposed by summing over the values
of the last renewal epoch outside the corner block
(N −k,N ]× (M −k,M ], and the first one inside
that block. We distinguish three cases: either
the last renewal epoch is in [0, N−k]× [0,M−k]
(which is the case represented in the figure, giv-
ing Z1

N,M,ω), or it is in (N − k,N ] × [0,M − k]

(Z2
N,M,ω) or in [0, N−k]× (M−k,M ] (Z3

N,M,ω).

Let δ ∈ (0, 1) (that will be chosen close to 1 later in the proof), and define

AN,M := E
[
(ZN,M,ω)δ

]
for every N,M ∈ N2, (4.3)

with A0,0 = 1, and Ai,0 = A0,i = 0 for every i ≥ 1. We apply the inequality (
∑
ai)

δ ≤∑
ai
δ (which holds for any finite and countable collection of positive real numbers) to the

decomposition (4.2) to get

AN,M ≤ A1
N,M +A2

N,M +A3
N,M , (4.4)
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where

A1
N,M ≤ E[zδ1,1]

N∑
n=k

M∑
m=k

AN−n,M−m
k−1∑
i=0

k−1∑
j=0

K(n− i+m− j)δAi,j .

A2
N,M ≤ E[zδ1,1]

k−1∑
n=1

M∑
m=k

AN−n,M−m
n−1∑
i=0

k−1∑
j=0

K(n− i+m− j)δAi,j .

A3
N,M ≤ E[zδ1,1]

N∑
n=k

k−1∑
m=1

AN−n,M−m
k−1∑
i=0

m−1∑
j=0

K(n− i+m− j)δAi,j .

(4.5)

The key idea of the proof is to the following proposition.

Proposition 4.1. For fixed β and h, if there exists k ∈ N such that ρ1 + ρ2 + ρ3 ≤ 1 with

ρ1 + ρ2 + ρ3 := E[zδ1,1]

 ∞∑
n=k

∞∑
m=k

k−1∑
i=0

k−1∑
j=0

+
k−1∑
n=1

∞∑
m=k

n−1∑
i=0

k−1∑
j=0

+
∞∑
n=k

k−1∑
m=1

k−1∑
i=0

m−1∑
j=0


K(n− i+m− j)δAi,j , (4.6)

then fγ(β, h) = 0.

Proof. Define A := max
{
{Ai,j ,Ai,s,At,j}, 1 ≤ i, j ≤ k − 1, s, t ≥ k

}
. Note that by

Jensen’s inequality we have Ai,j 6 E[Zi,j,ω]δ 6 exp(δhmin{i, j}), since there are at most

min{i, j} renewals in the region {1, . . . , i} × {1, . . . , j}: we get that A 6 ehk. Then from
(4.4) and the fact that ρ1 + ρ2 + ρ3 ≤ 1, we deduce (by induction) that AN,M ≤ A 6 ekh
for all N,M . Then by Jensen’s inequality

fqγ(β, h) = lim
N→∞
M/N→γ

1

δN
E log (ZN,M,ω)δ ≤ lim

N→∞
M/N→γ

1

δN
logAN,M = 0 . (4.7)

�

Our aim is therefore to prove that for h = hac (β) + ∆ε
β (where ∆ε

β is defined in Theo-

rem 1.4) we have that fq1(β, h) = 0 (provided that β is small enough), by showing that
ρ1, ρ2, ρ3 are smaller than 1/3 for such h, for some k = kβ wisely chosen. For the choice
of k, we pick k proportional to the correlation length of the annealed system, that is
k ∝ f(0,∆ε

β)−1, and in view of Theorem 1.2 (here α > 1), we can take

k = kβ =
1

∆ε
β

=

{
β−(1+ε) 2α

α−1 if α ∈ (1, 2] ,

β−4| log β|6 if α > 2.
(4.8)

Note that, in view of (4.6) and (1.1), provided that δ is close to 1 so that (2 +α)δ > 2,
we have

ρ1 ≤
k−1∑
i=0

k−1∑
j=0

L1(2k − i− j)
(2k − i− j)(2+α)δ−2

Ai,j , (4.9)

and

ρ2 ≤
k−1∑
i=0

k−1∑
j=0

L2(k − j)
(k − j)(2+α)δ−2

Ai,j . (4.10)

The ρ3 case being symmetric to ρ2, we can therefore focus on ρ1 and ρ2.
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4.1. Finite-volume fractional moment estimate. To estimate (4.9) and (4.10), we
need a good control over the fractional moment Ai,j for any i, j 6 k, and we provide
estimates in this section.

First of all, using Jensen’s inequality, we have that Ai,j ≤ (EZi,j,ω)δ. Moreover, because
h = hac (β) + ∆ε

β, we get that for any i, j 6 k

EZi,j,ω = E
[
exp

(
∆ε
β|τ ∩ {1, ..., i} × {1, ..., j}|

)
1(i,j)∈τ

]
≤ eP((i, j) ∈ τ) ,

since |τ ∩{1, ..., i}×{1, ..., j}| 6 k and thanks to of our choice of k = (∆ε
β)−1. We therefore

get that,
Ai,j 6 eδP((i, j) ∈ τ)δ, (4.11)

and P((i, j) ∈ τ) can be estimated thanks to Theorems A.4-A.5.
However, this estimate is rather rough, especially when i, j is close to the diagonal (that

is for example i 6 j 6 i+ai where (an)n≥0 is the scaling sequence for τn, defined in Section

1.4). We therefore prove the following proposition:

Proposition 4.2. Let h = hac (β) + ∆ε
β and k = (∆ε

β)−1. Then, define also

`i :=

{
i(1+ε3)/α if α ∈ (1, 2],

C
√
i log i if α > 2,

(4.12)

so in any case `i � ai. There exists some k0 such that, provided that k > k0 then for all√
k 6 i 6 k and i 6 j 6 i+ `i we have that

Ai,j 6 L10(i)
(
iδ(1−

1
α∧2 )(`i)

−δα +
i−δ(1+α)`δi

β2δ
+ i−

δ
α∧2 e−cδ(β

2i/`i)
1/2
)
. (4.13)

This result is the core of the proof, and is based on a change of measure argument. With
this result in hand, we are able to show that ρ1 and ρ2 are small, for α > 2 in Section 4.2
and for α ∈ (1, 2] in Section 4.3. Let us apply this proposition to get bounds on Ai,j in
the different cases.

Case α > 2. We get that uniformly for k/2 6 i 6 k and i 6 j 6 i+ C ′
√
k log k

Ai,j 6 L11(k)k
δ
2

(1−α) + L12(k)
k−δ(1+α)(k log k)δ/2

β2δ
+ L13(k)k−δ/2e−c(β

4k/ log k)1/4

6 L14(k)
(
k
δ
2

(1−α) + k−δα + k−δ/2e−c(log k)5/4
)
6 L15(k)k−

δ
2

(α−1) ,

(4.14)

where the choice (4.8) of k = (∆ε
β)−1 = β−4| log β|6 is crucial, to get that β4k/ log k > c(log k)5.

For the last inequality, we observe that the first term dominates.

Case α ∈ (1, 2]. We use also the choice (4.8) of k = (∆ε
β)−1 = β−(1+ε)2α/(α−1) to get

that uniformly for k1−ε2 6 i 6 k, we have provided that ε is small enough

β2i/`i = k
− α−1

(1+ε)α i
α−1−ε3

α > k
1

(1+ε)α
(ε(α−1)+O(ε2)) > kε(α−1)/2α . (4.15)

Therefore, using also that for i 6 k, β−2`i 6 k
α−1

(1+ε)αk(1+ε3)/α 6 k (if ε has been fixed small

enough), we have that uniformly for k1−ε2 6 i 6 k and i 6 j 6 i+ `i,

Ai,j 6 L10(i)i−δ(
1
α

+ε3) + L10(i)i−δαkδ + L10(i)i−δ/αe−ck
ε(α−1)/4α

6 L16(k)k−δ(1−ε
2)( 1

α
+ε3) 6 L16(k)k−

δ
α

(1+ε2/2)
(4.16)

where again, for the second to last inequality, we observe that the first term dominates,
since 1/α > α and ε can be fixed arbitrarily small.



THE DISORDERED GENERALIZED POLAND-SCHERAGA MODEL 21

Proof of Proposition 4.2. The idea is to use a change of measure argument. We define a
strip Ji,j in which we will tilt the environment by some quantity λ (to be chosen wisely):

Ji,j :=
{

(n,m) ∈ J0, iK× J0, jK ; |n−m| 6 2`i

}
, (4.17)

and hence #Ji,j 6 2i`i. The width 2`i of the strip is chosen because of the scaling of the
bivariate renewal: it is very unlikely that the renewal deviates from the diagonal by more
than `i, see Theorem A.5.

Now, for λ ∈ R and i, j ∈ N, we define a new probability measure Pi,j,λ, under which
the ωn,m are still independent variables, but tilted by λ in the strip Ji,j :

dPi,j,λ
dP

(ω) =
1

Q(−λ)#Ji,j
exp

(
− λ

∑
(n,m)∈Ji,j

ωn,m

)
, (4.18)

where Q(·) is defined in (1.2). Observe now that by Hölder inequality

Ai,j = Ei,j,λ
[
(Zi,j,ω)δ

dP
dPi,j,λ

(ω)
]
≤ Ei,j,λ

[
Zi,j,ω

]δ Ei,j,λ[( dP
dPi,j,λ

(ω)

)1/(1−δ)]1−δ
. (4.19)

The second term in the right-hand side of (4.19) is equal to

Ei,j,λ
[(

dP
dPi,j,λ

(ω)

)1/(1−δ)]1−δ

=
(
Q(−λ)δQ(λ/(1− δ))1−δ

)#Ji,j
. (4.20)

Observe that there exists c11 > 0 such that 0 ≤ logQ(x) ≤ c11x
2 for |x| ≤ 1. Therefore

for |λ| ≤ 1− δ 6 1 and by (4.19) and (4.20), we get

Ai,j ≤ Ei,j,λ
[
Zi,j,ω

]δ
exp

(
c11

(δ(1− δ) + 1

1− δ

)
λ2#Ji,j

)
. (4.21)

Now, we choose λ := (i`i)
−1/2, so that λ2#Ji,j 6 2, and

Ai,j 6 e4c11/(1−δ)Ei,j,λ
[
Zi,j,ω

]δ
, (4.22)

so that we are left with estimating Ei,j,λ
[
Zi,j,ω)

]
for λ := (i`i)

−1/2.

Recall (1.10) and the definition (4.18) of Pi,j,λ. Using that Ei,j,λ[eβωn,m ] equals Q(β) =

e−h
a
c (β) if (n,m) /∈ Ji,j and Q(β − λ)/Q(−λ) if (n,m) ∈ Ji,j , we have that for every β, h,

λ and (i, j)

Ei,j,λ
[
Zi,j,ω

]
= E

[
e(h−hac (β))|τ∩J0,iK×J0,jK|

( Q(β − λ)

Q(β)Q(−λ)

)|τ∩Ji,j |
1(i,j)∈τ

]
6 eE

[( Q(β − λ)

Q(β)Q(−λ)

)|τ∩Ji,j |
1(i,j)∈τ

]
,

(4.23)

where we used that |τ ∩ J0, iK× J0, jK| 6 k and h− hac (β) = ∆ε
β = k−1.

Now, observe that Q(β−λ)
Q(β)Q(−λ) = 1 − λβ + O(λ2 + β2) as λ, β ↓ 0. Here, because of our

choice (4.8) of k = (∆ε
β)−1, we have that k > β−4. Since we are considering i >

√
k, and

using that `i >
√
i, we have that λ := (i`i)

−1/2 6 i−3/4 6 k−3/8, and hence we have that
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λ 6 β3/2 6 β. Therefore, there exists a constant c12 > 0 such that provided that β is
small enough (or k is large enough) we have

Q(β − λ)

Q(β)Q(−λ)
≤ exp(−c12βλ) , (4.24)

and we end up with

e−1Ei,j,λ
[
Zi,j,ω

]
6 E

[
e−c12βλ|τ∩Ji,j |1(i,j)∈τ

]
6 P (∃s, τs /∈ Ji,j , (i, j) ∈ τ) + E

[
e−c12λβ|τ∩{1,...,i}×{1,...,j}|1(i,j)∈τ

]
, (4.25)

where in the last term we dropped the indicator function that all renewals occur in the
strip Ji,j . We now estimate these two terms separately.

Lemma 4.3. There exists a slowly varying function L4 such that, for every 1 6 i 6 j 6 i+
`i we have

P (∃s, τs /∈ Ji,j , (i, j) ∈ τ) 6 L4(i) i1−1/α∧2 (`i)
−α . (4.26)

Proof. Let us first observe that by symmetry, we get that

P (∃s, τs /∈ Ji,j , (i, j) ∈ τ) = 2P
(
∃s, τs /∈ Ji,j , τ (1)

s 6 i/2 , (i, j) ∈ τ
)

6 2
∑

(a,b)∈Ji,j

∑
(k,l); (a+k,b+l)/∈Ji,j

a+k 6 i/2

P((a, b) ∈ τ)K(k + l)P ((i− a− k, j − b− l) ∈ τ) . (4.27)

From Theorem A.5, we see that the last term in the double sum of (4.27) is bounded
above by c7/ai (since i− a− k > i/2). We get that (4.27) is bounded above by

c13

ai

i/2∑
a=1

`i∑
r=0

P ((a, a+ r) ∈ τ)

i/2−a∑
k=1

∑
l≥`i−a−r

K(k + l) ≤ c14

ai
P
(
∃t ≤ i/2, τt /∈ J i

)
, (4.28)

with J i :=
{

(a, b) ; |a− b| 6 `i
}
.

Let us now define

Sk = τ
(1)
k − τ

(2)
k , (4.29)

Then we see that

P
(
∃t ≤ i/2, τt /∈ J i

)
= P

(
max
t≤i/2

|St| ≥ `i
)
. (4.30)

Observe that {Sk} is a centred random walk in the domain of attraction of a stable law
of index α > 1. From the Lemma in [53] for the case α ∈ (1, 2] (and infinite variance) and
[51, Corollary 1] or equation (12) in [19] for the case α > 2 (or α = 2 and finite variance)
we get that

P
(

max
t≤i/2

|St| ≥ `i
)
≤ i L3(i) (`i)

−α . (4.31)

Therefore by (4.28), (4.30) and (4.31), we obtain (4.26). �

Lemma 4.4. Assume that i 6 j and α > 1. There exist constants c15, c16 > 0 such that,
for any sequence ui 6 1 (we may take ui → 0 as i→ +∞), we have

Zi,j(−ui) := E
[
e−ui |τ∩{1,...,i}×{1,...,j}|1(i,j)∈τ

]
6 c15

K(i+ j)

u2
i

+ P((i, j) ∈ τ) e−c16iui .
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In particular, we always have

Zi,j(−ui) 6
L5(i)i−(2+α)

u2
i

+ L6(i)i−1/α∧2e−c16iui

Proof. The last inequality comes from the fact that for i 6 j we haveK(i+j) 6 cL(i)i−(2+α),

and the fact that Theorem A.5 give P((i, j) ∈ τ) 6 c14/ai with ai = ψ(i)i1/α∧2.
We write

Zi,j(−ui) =

i∑
k=1

e−kuiP(τk = (i, j)) =
( i/2µ∑
k=1

+

i∑
k=i/2µ

)
e−kuiP

(
τk = (i, j)

)
.

For the first sum, we use Theorem A.1 to get that P(τk = (i, j)) 6 c15kK(i + j) for
k 6 i/2µ ( 6 j/2µ), so

i/2µ∑
k=1

e−kuiP(τk = (i, j)) 6 c15
K(i+ j)

u2
i

+∞∑
k=1

uikuie
−kui 6 c15

K(i+ j)

u2
i

, (4.32)

where for the last inequality we bounded the sum by a constant times
∫
R+
xe−x dx (thanks

to a Riemann-sum approximation for sequences ui → 0).
For the second sum we simply bound k by i/2µ to get that it is smaller than

e−iui/2µ
i∑

k=i/2µ

P(τk = (i, j)) ≤ P((i, j) ∈ τ)e−c16iui . (4.33)

Combining (4.32) and (4.33), we obtain Lemma 4.4. �

Using Lemma 4.3 and Lemma 4.4 in (4.25), and with ui = c17λβ = c17β(i`i)
−1/2 6 1,

Ei,j,λ
[
Zi,j,ω

]
6 L7(i)i1−1/α∧2(`i)

−α + L8(i)
i−(1+α)`i

β2
+ L9(i)i−1/α∧2e−c17βi

1/2`
−1/2
i . (4.34)

Finally, this concludes the proof of Proposition 4.2 thanks to (4.22), using that (a+ b+
c)δ 6 aδ + bδ + cδ for δ ∈ (0, 1).

�

4.2. Conclusion of the proof of Theorem 1.4 in the case α > 2. Let δ < 1 be
sufficiently close to 1 to have

(2 + α)δ > 4 , (4.35)

which implies that δ(α− 1) > 1.
We start by estimating ρ1. Let R be a large constant and split the sum in (4.9) as

S1 + S2 :=

( k−R−1∑
i,j=0

+
k−1∑

i,j=k−R

)
L1(2k − i− j)

(2k − i− j)(2+α)δ−2
Ai,j , (4.36)

and

S3 + S4 :=

( k−R−1∑
i=0

k−1∑
j=k−R

+

k−1∑
i=k−R

k−R−1∑
j=0

)
L1(2k − i− j)

(2k − i− j)(2+α)δ−2
Ai,j . (4.37)

Using the fact that Ai,j ≤ eδ from (4.11), we get

S1 ≤
L17(R)

R(2+α)δ−4
, (4.38)
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and the right-hand side of (4.38) can be made small by (4.35) and because R is large.
For S2, there exists C4 such that S2 ≤ C4 maxk−R≤i,j<kAi,j , and from (4.11), combined

with Theorem A.5, there exists C5 such that

max
k−R≤i,j<k

Ai,j ≤ eδ max
k−R≤i,j<k

P((i, j) ∈ τ)δ ≤ C5

kδ/2
, (4.39)

then S2 is arbitrarily small for k large.
Since S3 and S4 are the same quantity, we just focus on S3. Since Ai,j ≤ eδ from (4.11),

we obtain

S3 ≤
L18(R)

R(2+α)δ−4
, (4.40)

which again can be made small in view of the condition (4.35) and because R is large.
Hence ρ1 can be made arbitrarily small by choosing R large and k large (i.e. β small).

Let us now look at ρ2 in (4.10). We split the sum to:

S5 + S6 =

( k−1∑
i=0

i∑
j=0

+
k−1∑
i=0

k−1∑
j=i+1

)
Ai,j

L2(k − j)
(k − j)(2+α)δ−2

. (4.41)

Let us first study S5:

S5 =
k−1∑
j=0

k−1∑
i=j

Ai,j
L2(k − j)

(k − j)(2+α)δ−2

=

( k/2∑
j=0

k−1∑
i=j

+
k−1∑

j=k/2+1

k−1∑
i=j

)
Ai,j

L2(k − j)
(k − j)(2+α)δ−2

:= S5a + S5b .

(4.42)

Using that Ai,j ≤ eδ from (4.11), we get

S5a ≤
L19(k)

k(2+α)δ−4
. (4.43)

For S5b, we use (4.11) and Theorem A.5 which gives that if i > j Ai,j 6 cst.j−δ/2 to get

S5b ≤
k−1∑

j=k/2+1

k−1∑
i=j

C6

jδ/2
L2(k − j)

(k − j)(2+α)δ−2
≤ C7

kδ/2
. (4.44)

Then S5 can be made small for k large and from condition (4.35).
Now we split S6 as

S6a + S6b =

( k/2∑
i=0

+

k−1∑
i=k/2+1

) k−1∑
j=(i+`i+1)∧(k−1)

Ai,j
L2(k − j)

(k − j)(2+α)δ−2
. (4.45)

and

S6c + S6d =

( k/2∑
i=0

+

k−1∑
i=k/2+1

) (i+`i)∧(k−1)∑
j=i+1

Ai,j
L2(k − j)

(k − j)(2+α)δ−2
. (4.46)
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Using (4.11) and Theorem A.5, we see that

S6a ≤
k/2∑
i=0

3k/4∑
j=1

L20(k − j)
(k − j)(2+α)δ−2

+

k/2∑
i=0

k−1∑
j=3k/4

C8i
δL(j − i)δ

(j − i)(1+α)δ

L2(k − j)
(k − j)(2+α)δ−2

≤ L21(k)

k(2+α)δ−4
+
L22(k)

kαδ−1
,

(4.47)

and

S6b ≤
k−1∑

i=k/2+1

k−1∑
j=(i+c

√
k log k)∧(k−1)

C8i
δL(j − i)δ

(j − i)(1+α)δ

L2(k − j)
(k − j)(2+α)δ−2

≤ C8k
δ
k−1∑
j=k/2

∑
x > c

√
k log k

L(x)δ

x(1+α)δ

L2(k − j)
(k − j)(2+α)δ−2

6
L23(k) kδ

k
1
2 ((1+α)δ−1)

=
L23(k)

k
1
2 ((α−1)δ−1)

.

Hence, both S6a and S6b are arbitrarily small for k large, by the condition (4.35).

By (4.11), and since provided that k is large enough we have i +
√
i log i 6 3k/4 for

i 6 k/2, we obtain

S6c ≤ C9

k/2∑
i=0

√
i log i

L2(k)

k(2+α)δ−2
≤ L24(k)

k(2+α)δ−7/2
, (4.48)

which is arbitrarily small for k large.
For the term S6d, since for every j ∈ {k/2 + 2, . . . , k− 1} there are at most C10

√
k log k

corresponding terms in the sum over i, we have

S6d ≤ C11

√
k log k max

k/2≤i≤k
i≤j≤i+

√
i log i

Ai,j . (4.49)

Then we use Proposition 4.2, and more precisely (4.14), to get that

S6d ≤ L25(k)k−
1
2

(δ(α−1)−1) (4.50)

In view of the condition (4.35), S6d can be made arbitrarily small for k large. This
completes the proof of (1.13) in the case α > 2.

4.3. Conclusion of the proof of Theorem 1.4 in the case α ∈ (1, 2]. Fix ε > 0 small
and let 0 < δ < 1 such that

δ
[
(2 + α) + (1− ε2)/α

]
> 4− ε2 . (4.51)

which implies in particular that δ(2 + α) > 3. We also assume that

δα > 1 , δ
(
1 + (1 + α)ε4

)
> 1 + ε4 , and δ > (1 + ε4)/(1 + ε2/2) . (4.52)

Let us start with showing that ρ1 is small: we split the sum in (4.9) to

T1 + T2 :=

( k1−ε
2∑

i,j=0

+

k−1∑
i,j=k1−ε2+1

)
L1(2k − i− j)

(2k − i− j)(2+α)δ−2
Ai,j , (4.53)
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and

T3 + T4 :=

( k1−ε
2∑

i=0

k−1∑
j=k1−ε2+1

+
k−1∑

i=k1−ε2+1

k1−ε
2∑

j=0

)
L1(2k − i− j)

(2k − i− j)(2+α)δ−2
Ai,j . (4.54)

For α 6 2, we know that there exists a slowly varying function ψ(·) such that ai =

ψ(i)i1/α. For T1, using (4.11) and Theorem A.5, we get

T1 ≤
L26(k)

k(2+α)δ−2

k1−ε
2∑

i,j=0

1

(amin(i,j))δ
6

L27(k)

k(1−ε2)(δ/α−2)+(2+α)δ−2
, (4.55)

and from the condition (4.51), T1 can be made small for k large.
For T2, since (2 + α)δ − 2 ∈ (1, 2), we have

T2 ≤ L28(k)k−(2+α)δ+4 max
k1−ε2≤i,j≤k

Ai,j <
L29(k)

k(1−ε2)δ/α+(2+α)δ−4
, (4.56)

where for the last inequality we used (4.11) and Theorem A.5. Then T2 is small for k large
thanks to (4.51).

For T3 (which is equal to T4), since for the range of i, j considered we have 2k − i −
j > k/2, we get using (4.11) and Theorem A.5

T3 ≤
k1−ε

2∑
i=0

1

(ai)δ
L30(k)

k(2+α)δ−3
6

L31(k)

k(2+α)δ−3+(1−ε2)(δ/α−1)
, (4.57)

which can be made small by taking k large, thanks to (4.51). In the end, we get that ρ1

is bounded from above by a small constant for k large.

As far as ρ2 is concerned, we split the right-hand side of (4.10) to

T5 + T6 =

k−1∑
i=0

k−1∑
j=i+1

Ai,j
L2(k − j)

(k − j)(2+α)δ−2
+

k−1∑
i=0

i∑
j=0

Ai,j
L2(k − j)

(k − j)(2+α)δ−2
. (4.58)

Recall the definition of `i in Proposition 4.2, and define ¯̀
i = i(1+ε4)/α � `i. We split

T5 as

T5a + T5b =

( k/2∑
i=0

+

k−1∑
i=k/2+1

) k−1∑
j=(i+¯̀

i)∧(k−1)

Ai,j
L2(k − j)

(k − j)(2+α)δ−2
. (4.59)

and

T5c + T5d =

( k1−ε
2∑

i=0

+

k−1∑
i=k1−ε2+1

) (i+¯̀
i)∧(k−1)∑
j=i+1

Ai,j
L2(k − j)

(k − j)(2+α)δ−2
. (4.60)
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From (4.11) and Theorem A.5, we get that (using that (2 + α)δ − 2 > 1 for the second
line)

T5a ≤
k/2∑
i=0

( 3k/4∑
j=i+¯̀

i

+

k−1∑
j=3k/4+1

)
C12iδL(j − i)δ

(j − i)(1+α)δ

L2(k − j)
(k − j)(2+α)δ−2

≤ L32(k)

k(2+α)δ−2

k/2∑
i=1

iδ
L33(¯̀

i)

(¯̀
i)(1+α)δ−1

+ L34(k)kδ+1 1

k(1+α)δ

≤ L35(k)k1+δ

k(2+α)δ−2+
1+ε4

α ((1+α)δ−1)
+
L34(k)

kδα−1
6

L35(k)

k
1+ε4

α ((1+α)δ−1)−δ
+
L34(k)

kδα−1
,

(4.61)

and also (using also here that (2 + α)δ − 2 > 1 for the third line)

T5b ≤
k−1∑

i=k/2+1

k−1∑
j=(i+c¯̀k)∧(k−1)

C12i
δL(j − i)δ

(j − i)(1+α)δ

L2(k − j)
(k − j)(2+α)δ−2

≤ C12k
δ
k−1∑
j=k/2

L2(k − j)
(k − j)(2+α)δ−2

∑
x > c¯̀k

L(x)

x(1+α)δ

≤ L36(k)kδ(¯̀
k)

1−(1+α)δ =
L36(k)

k
1+ε4

α ((1+α)δ−1)−δ
.

(4.62)

Then the condition (4.52) guarantees that T5a, T5b can be made arbitrarily small by
choosing k large.

Using (4.11) and Theorem A.5, we get

T5c ≤
k1−ε

2∑
i=0

(i+¯̀
i)∧(k−1)∑
j=i+1

C13

aδi

L2(k − j)
(k − j)(2+α)δ−2

≤ L37(k)

k(2+α)δ−2

k1−ε
2∑

i=0

L38(i)i(1+ε4)/α−δ/α

≤ L39(k)

k(2+α)δ−2
k(1−ε2)((1+ε4−δ)/α+1) .

(4.63)

Again, (4.51) insures that T5c can be made arbitrarily small by choosing k large.

Finally, it remains to bound T5d. As for (4.49), there are at most ¯̀
k terms in the sum

over i (and (2 + α)δ − 2 > 1), so that

T5d ≤ C14
¯̀
k max
k1−ε

2≤i<k−1
i≤j≤i+`i

Ai,j . (4.64)

Then we use Proposition 4.2, and more precisely (4.16), to get that

T5d ≤ L40(k)k(1+ε4)/αk−δ(1+ε2/2)/α, (4.65)

which can be made arbitrarily small by choosing k large, because of condition (4.52).
For T6, we have

T6 ≤
k−1∑
j=0

k−1∑
i=j

Ai,j
L2(k − i)

(k − i)(2+α)δ−2
. (4.66)

By following the same procedure adopted for T5, T6 is bounded above by a small term
when k is large. The proof of (1.13) in the case α ∈ (1, 2] is therefore complete and, with
it, also the proof of the lower bound part of Theorem 1.4.
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Appendix A. Bivariate renewal theory, important estimates

We present here some results on the bivariate renewal process τ defined in Section 1.1,
and in particular Proposition A.3 which gives some conditions on the transience/recurrence
of the intersection renewal σ = τ∩τ ′. Recall the notations of Section 1.4 for the recentering
sequence (bn)n > 0 and for the scaling sequence (an)n > 0.

A.1. Local large deviations and a useful Lemma. We first present some local large
deviation estimate, which is used in the proof of Lemma 4.4.

Theorem A.1 (Theorem 2.4 in [4]). Assume that µ < +∞. We have that there exists a
constant C > 0 such that uniformly for (n,m) such that n− µk > ak ∧ (C

√
k log k),

P(τk = (n,m)) 6 C kK(|n− µk|+ |m− µk|) .

We give another useful lemma, that controls the number of renewals in (0, N ]× (0,M ],
in the case α ∈ (0, 1).

Lemma A.2. Assume α ∈ (0, 1). Given δ > 0 there exists ε > 0 such that for N
sufficiently large and M ∼ γN we have

P
(
|τ ∩ (0, N ]× (0,M ]| ≥ εNα/L(N)

)
≥ 1− δ . (A.1)

Proof. Set n = n(ε,N) = εNα/L(N) and BN,M := (0, N ]× (0,M ]. We want to prove

P (τn /∈ BN,M ) ≤ δ . (A.2)

Let us define τ̃n = (τ̃
(1)
n , τ̃

(2)
n ) with

τ̃ (1)
n :=

n∑
i=1

(τ
(1)
i − τ

(1)
i−1)1{τ (1)i −τ

(1)
i−1≤N}

, τ̃ (2)
n :=

n∑
i=1

(τ
(2)
i − τ

(2)
i−1)1{τ (2)i −τ

(2)
i−1≤M}

. (A.3)

Then we have

P (τn /∈ BN,M ) ≤ P (τ̃n /∈ BN,M ) + P (∃i ≤ n; (τi − τi−1) /∈ BN,M ) . (A.4)

Note that the marginals τ
(1)
n and τ

(2)
n have the same distribution: as N →∞ we have

P(τ
(1)
1 = N) = P(τ

(2)
1 = N) ∼ 1

(1 + α)
L(N)N−(1+α) . (A.5)

Therefore, we can bound the second term in (A.4) by

n
(
P(τ

(1)
1 > N) + P(τ

(2)
1 > M)

)
≤ n

(
CαL(N)N−α + CαL(M)M−α

)
≤ εCα,γ , (A.6)

which is smaller than δ/2 if ε 6 δ/(2Cα,γ).

The first term in (A.4) is bounded by P(τ̃
(1)
n > N) + P(τ̃

(2)
n > M). Observe that for

every choice of λ1 > 0 we have

P(τ̃ (1)
n > N) ≤ e−λ1NE[eλ1τ̃

(1)
n ] ≤ en logE[eλ1τ̃

(1)
1 ]−λ1N . (A.7)

Using the fact that τ̃
(1)
1 = τ

(1)
1 1{τ (1)1 6 N} 6 N , we get that for any s ≥ 1

E[(τ̃
(1)
1 )s] ≤ N s−1E[τ

(1)
1 1{τ (1)1 6 N}] ≤ cαL(N)N−αN s , (A.8)
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where we used that P(τ
(1)
1 = N) 6 cst.L(N)N−(1+α) with α ∈ (0, 1) to estimate the

second expectation. In the end, expanding the exponential and using the above bound,
we get

logE
[
eλ1τ̃

(1)
1

]
≤ log

(
1 + cαL(N)N−α(eλ1N − 1)

)
≤ cαL(N)N−αeλ1N . (A.9)

We pick k0 such that δk0−1 6 e−1/4, and choose λ1 = k0N
−1 log(1/δ), then with the

definition of n = εL(N)−1Nα, we get n logE[eλ1τ̃
(1)
1 ] ≤ cαεδ

−k0 , and choosing ε 6 c−1
α δk0

we get from (A.7)

P(τ̃ (1)
n > N) ≤ eδk0 6 δ/4 . (A.10)

Using the same reasoning and choosing λ2 = k0M
−1 log(1/δ) , we have that if ε 6 c−1

α,γδ
k0

(for some constant cα,γ),

P(τ̃ (2)
n > M) ≤ eδk0 6 δ/4 . (A.11)

The proof is therefore complete by taking ε = min{δ/(2Cα,γ), c−1
α δk0 , c−1

α,γδ
k0}. �

A.2. Renewal theorems, and the intersection of two independent copies. The
goal of this section is to estimate the mean overlap of two copies τ and τ ′ in the region
(0, N ] × (0,M ]. We leave aside the case α = 1 which is more technical (in particular if
µ = +∞): we refer to Remark A.7 for more comments on this case. We define

UN,M := E [|σ ∩ ([0, N ]× [0,M ])|] =
N∑
n=0

M∑
m=0

P((n,m) ∈ τ)2 , (A.12)

and for any λ > 0

Û(λ) :=

+∞∑
n,m=0

e−λ(n+m)P((n,m) ∈ τ)2 . (A.13)

Proposition A.3. If α < 1, then supN,M∈N UN,M < +∞.
If α > 1, then set ρ := 1−min(α, 2)−1 ∈ [0, 1/2]. We have

N∑
n=1

1

an
∼ ϕ(N)Nρ → +∞ as N →∞, (A.14)

for some slowly varying function ϕ(·). Moreover,

UN,N ∼ 2cαϕ(N)Nρ as N →∞,

Û(λ) ∼ 21−ρcα
Γ(1 + ρ)

ϕ(1/λ)λ−ρ as λ ↓ 0,
(A.15)

with cα =
∫∞

0 cα(t)2dt, cα(t) being the constant appearing in Theorem A.5.
As a consequence, σ = τ ∩ τ ′ is terminating if α < 1, and persistent if α > 1.

This proposition is based on renewal theorems (see Theorems A.4-A.5 below), that can
be found in [4] (in a more general setting), giving sharp asymptotics along the favorite
direction, and general upper bounds away from it. The case α = 1 can also be found in
[4] but we do not include it here, see Remark A.7.

Theorem A.4. If α ∈ (0, 1), then for n→ +∞ and r such that r/n→ t ∈ R+, we have

P ((n, n+ r) ∈ τ)
n→∞∼ Cα(t)L(n)−1n−(2−α) , (A.16)
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with Cα(t) := α
∫ +∞

0 x1−αgα(x, (1 + t)x) dx. Moreover, for any δ > 0 there is a constant
Cδ > 0 such that for any r > n,

P
(
(n, n+ r) ∈ τ

)
6 CδL(n)−1n−(2−α) ×

( r
n

)−(1+α)+δ
. (A.17)

Theorem A.5. If α > 1, for n→∞ and r such that r/an → t ∈ R+, we have that

P ((n, n+ r) ∈ τ)
n→∞∼ cα(t)

1

an
, (A.18)

where cα(t) = µα
∫ +∞
−∞ gα(x, x + µαt)dx with µα := µ1/min(α,2) and gα the density of the

limiting distribution of (τn−µn)/an (α-stable if α ∈ (1, 2) or normal if α > 2). Moreover,
for any δ > 0 there exists a constant Cδ > 0 such that for any r > an,

P
(
(n, n+ r) ∈ τ

)
6
C

an

( r
an

)−(1+α)+δ
. (A.19)

Theorems A.4 and A.5 are extracted from [4], Theorems 3.1, 4.1 and Theorems 3.3, 4.2
respectively,: we refer to Equations (3.4), (4.2) and (3.7), (4.5) in [4] respectively, for a
statement in the symmetric setting we are considering here.

Proof of Proposition A.3. Case α < 1. Notice that by symmetry, for M > N ,

UN,M 6 UM,M 6 2
M∑
n=1

M−n∑
r=0

P((n, n+ r) ∈ τ)2 .

We therefore need to control the last sum. Let us denote

Wn :=
∑
r > 0

P((n, n+ r) ∈ τ)2 .

Using Theorem A.4 (and properties of slowly varying functions), we get that there is a
constant c such that for all n > 1

Wn 6 c
n∑
r=1

L(n)−2n−2(2−α) + c
∑
r > n

L(n)−2n−2(2−α)(r/n)−2 6 C ′L(n)−2n2α−3,

where we used that
∑

r > n(r/n)−2 ∼ n
∫∞

1 x−2 as n→∞. Therefore, since α < 1, we get

sup
N,M

UN,M 6
+∞∑
n=1

Wn < +∞ .

Case α > 1. First of all, it is immediate that
∑N

n=1 1/an diverges as a regularly varying

function with exponent ρ, since an ∼ ψ(n)n
1

min(α,2) , see (1.22): it directly gives (A.14).
We now prove (A.15). We fix ε > 0, and denote, in complement to the definition of Wn

above

W (ε)
n :=

b 1
ε
anc∑

r=0

P((n, n+ r) ∈ τ)2 .

As a preliminary, we show that there exists some nε such that, provided that n > nε

(1− ε) cα
an
6W (ε)

n 6Wn 6 (1 + ε)
cα
an
. (A.20)

Note that we also have that Wn 6
∑+∞

r=0 P((n, n+ r) ∈ τ) 6 1 for any n, since there is at
most one renewal in the column {n} × N.
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To prove (A.20), we use Theorem A.5 to get that uniformly for 0 6 r 6 1
εan, we have

P((n, n+ r) ∈ τ)2 ∼ (an)−2cα(r/an)2 as n→∞. Hence, provided that n is large enough,
we get that

anW
(ε)
n > (1− ε2)

1

an

b 1
ε
anc∑

r=0

cα(r/an)2 > (1− 2ε2)

∫ 1/ε

0
cα(t)2dt ,

the last inequality holding by Riemann-sum approximation. Note that a similar upper
bound, with 1 − 2ε2 replaced with 1 + 2ε2 holds. Now, thanks to (A.19) (and since
1 + α− δ > 3/2), there exists a constant c > 0 such that

an(Wn −W (ε)
n ) = an

+∞∑
r> 1

ε
an

P((n, n+ k) ∈ τ)2 6 c
1

an

∑
r> 1

ε
an

( r
an

)−3
6 c′ε2,

where the last inequality also comes from a Riemann-sum approximation. Finally, note

that cα −
∫ 1/ε

0 cα(t)2dt is positive, and thanks to (A.19) smaller than
∫∞

1/ε ct
−3dt 6 c′′ε2.

In the end, we get that, provided that n is large enough,

(1− 2ε2)(cα − c′′ε2) 6 anW
(ε)
n 6 anWn 6 (1 + 2ε2)cα + c′ε2, (A.21)

which gives (A.20) provided that ε has been fixed small enough.

We are now ready to estimate UN,N . We write

UN,N = 2

N∑
n=0

N−n∑
r=0

P((n, n+ r) ∈ τ)2 −
N∑
n=0

P((n, n) ∈ τ)2.

The second sum is negligible compared to
∑N

n=1
1
an
∼ ϕ(N)Nρ, since P((n, n) ∈ τ)2 ∼

c(an)−2, with an → +∞. We therefore focus on the first sum.
An upper bound is simply

N∑
n=0

N−n∑
r=0

P((n, n+ r) ∈ τ)2 6
N∑
n=0

Wn,

and since we have that Wn ∼ cα/an together with (A.14), we get that for n large enough

N∑
n=0

N−n∑
r=0

P((n, n+ r) ∈ τ)2 6 (1 + 2ε)cα

N∑
n=1

1

an
6 (1 + 3ε)ϕ(N)Nρ .

For a lower bound, because aN 6 εN provided that N is large enough, we have

N∑
n=0

N−n∑
k=0

P((n, n+ k) ∈ τ)2 >
(1−ε)N∑
n=nε

W (ε)
n > (1− 2ε)cα

(1−ε)N∑
n=1

1

an
> (1− cε)cαϕ(N)Nρ,

where we used the lower bound (A.20) valid for n large enough, together with (A.14) for
the last inequality.

We now turn to estimating Û(λ) as λ ↓ 0. By symmetry, we can write that

Û(λ) = 2

+∞∑
n=0

e−2λn
+∞∑
r=0

e−λrP((n, n+ r) ∈ τ)2 −
+∞∑
n=0

e−2λnP((n, n) ∈ τ)2.
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The second term is negligible compared to ϕ(1/λ)λ−ρ as λ ↓ 0, since
∑N

n=0 P((n, n) ∈ τ)2

is negligible compared to ϕ(N)Nρ, by standard properties of Laplace transforms, and we
again focus on the first term.

First of all, an upper bound is

+∞∑
n=0

e−2λn
+∞∑
r=0

e−λrP((n, n+ r) ∈ τ)2 6
+∞∑
n=0

e−2λnWn .

Since
∑N

n=0Wn ∼ cαϕ(N)Nρ, we get by standard properties of Laplace transforms (see
Corollary 1.7.3 in [14]) that

+∞∑
n=0

e−2λnWn ∼
cα

Γ(1 + ρ)
ϕ(1/2λ)(2λ)−ρ as λ ↓ 0 .

For a lower bound, we get that

+∞∑
n=0

e−2λn
+∞∑
r=0

e−λrP((n, n+ r) ∈ τ)2 >
+∞∑
n=0

e−2λne−λan/εW (ε)
n .

Now, we use that there is some nε such that for n > nε we have that W
(ε)
n > (1− ε)cα/an

(see (A.20)), and that an/ε 6 εn. We therefore get that

+∞∑
n=0

e−2λn
+∞∑
r=0

e−λrP((n, n+ r) ∈ τ)2

> (1− ε)cα
+∞∑
n=nε

e−2(1+ε)λn 1

an

λ→0∼ (1− ε)cα
Γ(1 + ρ)

ϕ(1/λ)(2(1 + ε)λ)−ρ ,

where we used again Corollary 1.7.3 in [14] for the last asymptotics.
By letting ε ↓ 0, we obtain matching upper and lower bound, so that (A.15) is proved.

�

We now use Proposition A.3, and in particular the estimate of the Laplace transform
Û(λ), to obtain estimates on the tail probability of the intersection renewal σ = τ ∩ τ ′.
More precisely, we define σ := σ(1) + σ(2) and estimate P⊗2(σ1 > N).

Lemma A.6. Assume that α > 1. Then recalling that ρ = 1−min(α, 2)−1 ∈ [0, 1/2], we
get that

P⊗2 (σ1 > N)
N→∞∼ 2ρ sin(πρ)

πρ
(UN,N )−1 N→∞∼ Cα,ρ ϕ(N)−1N−ρ . (A.22)

Proof. Recall the definition of Û(λ) =
∑

n,m≥0 e
−λ(n+m)P⊗2 ((n,m) ∈ σ). We also set, for

any λ > 0,

K̂(λ) :=
∑
n,m≥1

e−λ(n+m)P⊗2(σ1 = (n,m)) =
∑
k≥2

e−λkP⊗2(σ1 = k) . (A.23)

The key idea of this proof is the following identity

Û(λ) = 1 + K̂(λ)Û(λ) ⇔ 1− K̂(λ) =
1

Û(λ)
, (A.24)
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which is obtained from the identity

P⊗2 ((n,m) ∈ σ) = 1{n=m=0} +
n∑
i=1

m∑
j=1

P⊗2(σ1 = (i, j))P⊗2((n− i, n− j) ∈ σ). (A.25)

Now, since we know the behavior of Û(λ) as λ ↓ 0, we get the behavior of K̂(λ), from
which we should be able to infer that of P⊗2(σ1 > N). Let us develop here how we
proceed: we use Corollary 1.7.3 and Theorem 8.7.3 in [14]. We can view σ as a renewal

process with inter-arrival distribution P⊗2(σ1 = k) = P⊗2(σ
(1)
1 + σ

(2)
1 = k), and we set

un := P⊗2(n ∈ σ) its renewal mass function, so we have Û(λ) =
∑∞

n=0 e
−λnun (and (A.24)

is standard from the one-dimensional renewal equation). Now, [14, Corollary 1.7.3] tells

that since Û(λ) is regularly varying with exponent −ρ (recall ρ = 1 − min(α, 2)−1), we

have that
∑N

n=0 un ∼ Γ(1 + ρ)Û(1/N) ∼ 2−ρUN,N (where we used (A.15)). In turn [14,
Theorem 8.7.3] gives that

P⊗2(σ1 > N)
N→∞∼

(2−ρUN,N )−1

Γ(1 + ρ)Γ(1− ρ)
,

and we are done. �

Remark A.7. The case α = 1 has been left aside, mostly to avoid technicalities. Denote

µ(n) := E[min(τ
(1)
1 , n)] the truncated first moment of τ

(1)
1 . It is shown in [4, Theorem 3.4]

(or (3.11) in the symmetric context) that along the favorite direction, for n → ∞ and r
with r/an/µ(n) → t ∈ R+, we have

P((n, n+ r) ∈ τ) ∼ c1(t)

µ(n)an/µ(n)
, (A.26)

with c1(t) :=
∫ +∞
−∞ gα(x, (1 + t)x)dx. Notice that n/µ(n) is the typical number of steps

to reach distance n. Again, estimates away from the favorite direction are provided in [4,
Theorem 4.2] (or (4.6) in the symmetric case): for any δ > 0, there is a constant Cδ such
that for any r ≥ an/µ(n),

P((n, n+ r) ∈ τ) ≤ Cδ
µ(n)an/µ(n)

( r

µ(n)an/µ(n)

)−2+δ
. (A.27)

This shows that the main contribution to UN,N comes also here from the terms close to
the diagonal, that is

UN,N � 2
N∑
n=1

an/µ(n)∑
r=0

P((n, n+ r) ∈ τ)2 �
N∑
n=1

1

µ(n)2an/µ(n)
.

(We denoted xn � yn if xn/yn is bounded away from 0 and +∞.) Let us stress that
we have µ(n) ∼ µ(an/µ(n)) (this comes from [5, Lemma 4.3]): by a change of variable
x = n/µ(n) (comparing the sum to an integral, and considering µ(n), an as functions of
positive real numbers), we get that

UN,N �
∫ N/µ(N)

1

dx

axµ(ax)
�
∫ aN/µ(N)

1

du

uL(u)µ(u)
,
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where we used another change of variables u = ax (dx ∼ L(u)−1du, since n ∼ an/L(an)).
As a conclusion, we expect to have the following criterion:

σ = τ ∩ τ ′ is persistent ⇔
∑
n > 1

1

anµ(an)
= +∞ ⇔

∑
n > 1

1

nL(n)µ(n)
= +∞.

As an example, if L(n) = (log n)κ with κ > − 1, then µ(n) ∼ cκ max(1, (log n)1+κ) and
hence σ = τ ∩ τ ′ should be persistent if and only if κ > 0.
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pour la dénaturation de l’ADN, Ph.D. manuscript, 2016.

[45] H. Kunz, R. Livi, DNA denaturation and wetting in the presence of disorder, Eur. Phys. Lett. 99
(2012), 30001.

[46] H. Lacoin, New bounds for the free energy of directed polymers in dimension 1 + 1 and 1 + 2, Commun.
Math. Phys. 294 (2010), 471-503.

[47] H. Lacoin, The martingale approach to disorder irrelevance for pinning models, Elec. Comm. Probab.
15 (2010), 418-427.

[48] J. B. Martin Linear growth for greedy lattice animals, Stochastic Process. Appl. 98 (2002) 43-66.
[49] R. A. Neher and U. Gerland, Intermediate phase in DNA melting, Phys. Rev. E 73 (2006), 030902R.
[50] C.-K. Peng, S. V. Buldyrev, A. L. Goldberger, S. Havlin, F. Sciortino, M. Simons and H. E. Stanley

Long-range correlations in nucleotide sequences Nature 356 (1992), 168-170.
[51] I. F. Pinelis, A problem on large deviations in a space of trajectories, Theory Probab. Appl. 26 (1981),

69-84.
[52] D. Poland and H. A. Scheraga, Theory of helix-coil transitions in biopolymers;: Statistical mechanical

theory of order-disorder transitions in biological macromolecules, Academic Press, 1970.



36 QUENTIN BERGER, GIAMBATTISTA GIACOMIN, AND MAHA KHATIB

[53] S. Shneer and V. Wachtel, A unified approach to the heavy-traffic analysis of the maximum of random
walks, Theory Probab. Appl. 55 (2011), 332-341.

[54] M.V. Tamm and S.K. Nechaev, Unzipping of two random heteropolymers: Ground-state energy and
finite-size effects, Phys. Rev. E 78 (2008), 011903.

[55] F. L. Toninelli, A replica-coupling approach to disordered pinning models, Commun. Math. Phys. 280
(2008), 389-401.

[56] F. Watbled, Sharp asymptotics for the free energy of 1+1 dimensional directed polymers in an infinitely
divisible environment, Elec. Commun. Probab. 17 (2012), 1-9.

[57] R. Wei, On the Long-range directed polymer model, J. Stat. Phys., 165 Issue 2 (2016), 320-350.

Sorbonne Université, Laboratoire de Probabilités Statistique et Modélisation, UMR 8001,
F- 75205 Paris, France
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	1. Introduction of the model and results
	1.1. The generalized Poland-Scheraga model
	1.2. Relevance and irrelevance of disorder
	1.3. On the results, perspectives and related work
	1.4. Some further notations

	2. Free Energy: existence and properties
	3. Upper bound on the critical point shift
	4. Lower bound on the critical point shift
	4.1. Finite-volume fractional moment estimate
	4.2. Conclusion of the proof of Theorem 1.4 in the case > 2
	4.3. Conclusion of the proof of Theorem 1.4 in the case (1,2]

	Appendix A. Bivariate renewal theory, important estimates
	A.1. Local large deviations and a useful Lemma
	A.2. Renewal theorems, and the intersection of two independent copies

	References

