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LOCALIZATION, BIG-JUMP REGIME AND THE EFFECT OF

DISORDER FOR A CLASS OF GENERALIZED PINNING MODELS

GIAMBATTISTA GIACOMIN AND BENJAMIN HAVRET

Abstract. One dimensional pinning models have been widely studied in the physical
and mathematical literature, also in presence of disorder. Roughly speaking, they un-
dergo a transition between a delocalized phase and a localized one. In mathematical
terms these models are obtained by modifying the distribution of a discrete renewal
process via a Boltzmann factor with an energy that contains only one body potentials.
For some more complex models, notably pinning models based on higher dimensional
renewals, other phases may be present.

We study a generalization of the one dimensional pinning model in which the energy
may depend in a nonlinear way on the contact fraction: this class of models contains the
circular DNA case considered for example in [7]. We give a full solution of this generalized
pinning model in absence of disorder and show that another transition appears. In fact
the systems may display up to three different regimes: delocalization, partial localization
and full localization. What happens in the partially localized regime can be explained
in terms of the “big-jump” phenomenon for sums of heavy tail random variables under
conditioning.

We then show that disorder completely smears this second transition and we are back
to the delocalization versus localization scenario. In fact we show that the disorder, even
if arbitrarily weak, is incompatible with the presence of a big-jump.

1. Introduction of the model and results

1.1. Phase transitions, disorder and pinning models. The pinning model, some-
times called Poland-Scheraga model, comes up in a variety of real world phenomena. For
example in the context of DNA denaturation (this is the Poland-Scheraga framework [49]),
for polymers in presence of a defect region [25, 29, 43], for one dimensional interfaces in
two dimensional systems with suitable boundary conditions [52]. But pinning models have
also an intrinsic and theoretical interest, due in particular to the following crucial features:

• the model is solvable in its homogeneous version: with this respect we cite in
particular [25], but, as pointed out in [36, App. A], the solvability mechanism is in
reality just the basics of Renewal Theory developed in mathematics since the 40s
with seminal contributions by J. L. Doob, P. Erdös, W. Feller and many others (e.g.
[29, App. A] and references therein). Unless we specify otherwise, when we speak
of pinning models, like here, we mean one dimensional pinning models: there are
several higher dimensional generalizations that can and have been considered (e.g.
[32] and references therein), and a class is going to be very relevant to us and will
soon be mentioned;
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2 GENERALIZED PINNING MODEL

• the model exhibits a transition between a delocalized and a localized regime which
is understood in depth thanks to solvability. Notably, the model depends on a
real parameter α ≥ 0 and the critical phenomenon depends on α is such a way
that the (de)localization transition can be of arbitrary order, i.e. from first order
(no differentiability) to infinite order (C∞ transition). In the physical literature
the parameter c = 1 + α is typically used, but we are going to stick to α for the
natural link with the stable law exponent of the inter-arrival distribution for the
underlying renewal process.

Connected to the features we just outlined two research directions are particularly
relevant to us:

(1) the effect of disorder on pinning models has been widely studied ([21, 30, 44] and
references therein), both because of its importance from the modeling standpoint
and because of the whole spectrum of critical phenomena generated by tuning
the parameter α. In fact, understanding the effect of disorder on criticality is
an important general issue: the stability of criticality under the introduction of
disorder is expected to depend on the critical behavior in the homogeneous system.
In a nutshell, less singular transitions are expected/predicted to be more stable.
This is notably the content of the so called Harris criterion for disorder irrelevance
[41] to which we come back below (see in particular Remark 1.10).

(2) (one dimensional) homogeneous pinning models exhibit only one transition, the
(de)localization one. But it has been shown that some generalized pinning models
may exhibit other transitions: this is in particular the case of the generalized
Poland-Scheraga (gPS) model that takes into account the fact that the two DNA
strands may have different length and that the pairing between the two strands
may not be perfect [27, 28, 23]. As pointed out in [31], the gPS model can be
seen as a pinning model based on a two dimensional renewal and its solvability
nature (first pointed out in [27]) can once again be seen in renewal theory terms.
The novel transition exhibited by the gPS is interpreted in the physical literature
in analogy with condensation phenomena [23]. In renewal theory terms it is a
phenomenon for conditioned sums of independent heavy tail random variables
that goes under the name of big-jump [5, 8, 19]. The big-jump phenomenon has
attracted attention in the mathematical community also in connection with other
condensation phenomena (see [24] and references therein). We refer to [39, 53],
and references therein, for more on big-jump regimes in physical systems.

We consider a generalization of the pinning model which is simpler than the ones
just mentioned in (2). This model is based on one dimensional renewals but, in the
homogeneous set-up, it exhibits a condensation/big-jump transition, in addition to the
(de)localization transition. The circular DNA models studied in [50, 6, 7] have been one
of the motivations of our work and appear as a particular case of the family we study.
While the big-jump regime may be interpreted as a regime partial localization, we will not
employ this terminology.

We study the effect of the disorder on this class of models and our main result is that
condensation/big-jump transitions do not withstand the introduction of disorder. By this
we mean that the transition is completely washed out and there is no condensation/big-
jump in presence of disorder, even an arbitrarily weak disorder. In the Harris criterion
language, disorder is therefore relevant, and in a very drastic way, even if, as we will
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explain, big-jump transitions are rather smooth transitions and a direct application of
Harris criterion [41] does not suggest disorder relevance.

1.2. The generalized pinning model. The model is based on the discrete renewal
process τ = (τj)j=0,1,... with τ0 = 0, that is, if we set ηj := τj − τj−1 we have that
(ηj)j=1,2,... is an IID sequence taking values in N := {1, 2, . . .}. By using η for ηj we set
K(n) := P(η = n) and assume that

K(n)
n→∞∼ CK

n1+α
, (1.1)

for α > 0 and a positive constant CK . While mathematically not really necessary, we
assume that K(n) > 0 for every n ∈ N: this does simplify some proofs and it is assumed
in part of the literature that we use. We point out that for the (bio-)physical interpretation
of the model K(1) > 0 is very natural (e.g. [29, Ch. 1]) We stress that

∑
n∈NK(n) = 1

and note that E[η] ∈ (1,∞) if α > 1, while E[η] = ∞ if α ∈ (0, 1]. The generalization to
regularly varying K(·), see e.g. [29, App. A.4] is possible [42, Ch. 4] and in most cases
it is straightforward. But it carries a certain burden of notations and technicalities that
cannot be motivated in terms of new phenomena.

We are going to see τ as a random subset of N ∪ {0}, which almost surely contains 0
and infinitely many other points. In particular δn := 1n∈τ is the indicator function that
there exists j such that τj = n and |τ ∩ (0, N ]| = ∑N

n=1 δn = sup{j = 1, 2, . . . : τj ≤ N}.
The class of models we present is based on a function (m,N) 7→ Ψ(m,N) defined for

N ∈ N and m ∈ {1, . . . , N}. We give here the conditions we require on Ψ:

Definition 1.1. We assume that

Ψ(m,N) = Q(m,N) exp (NH(m/N)) , (1.2)

with

(1) H : [0, 1] → R ∪ {−∞} concave and real analytic in the interior of its domain;
moreover we assume that H is continuous up to the boundary points, including
(with abuse of notation) the possibility that H(0) and/or H(1) are equal to −∞.

(2) Q(m,N) ≥ 0 and

• for every b > 0 there exists c > 0 such that for every N and m ≤ N we have

Q(m,N) ≤ c exp (bN) ; (1.3)

• for every u, v ∈ (0, 1), u < v, and every b > 0 there exists c > 0 such that for
every N and m with m/N ∈ [u, v] we have

Q(m,N) ≥ c exp (−bN) . (1.4)

These conditions readily imply that for ρ ∈ (0, 1)

lim
N→∞:
m/N→ρ

1

N
log Ψ(m,N) = H(ρ) . (1.5)

Moreover, we will say that H is trivial if H ′′(ρ) = 0 for every ρ ∈ (0, 1): this is the case of
H affine. Whenever H is not trivial, H is strictly convex because it is analytic.

While a full analysis is possible, to keep reasonably concise in the analysis of the
(de)localization transition we are going to assume at times that we have

H ′(x)
x↘0
= H ′(0)− cHx+ o(x) , (1.6)
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with cH > 0 and H ′(0) := limx↘0H
′(x). In particular, we are going to assume (1.6) only

when H ′(0) <∞ (we will see that H ′(0) <∞ is necessary and sufficient for the existence
of a delocalization transition). Note that if H ′′(0) < 0 exists, as limit of H ′′(x), then (1.6)
holds true with cH = |H ′′(0)|.

We are now ready to define the non disordered model, that is the probability law PΨ
N,h

that depends also on the real parameter h

PΨ
N,h({A}) :=

ZΨ
N,h({A})
ZΨ
N,h

, (1.7)

where A ⊂ {0, . . . , N},

ZΨ
N,h({A}) := E

exp

h N∑
j=1

δj

Ψ

 N∑
j=1

δj , N

1τ∩[0,N ]=AδN

 , (1.8)

and ZΨ
N,h :=

∑
A Z

Ψ
N,h({A}), that is ZΨ

N,h coincides with the right-hand side of (1.8)

without the restriction to τ ∩ [0, N ] = A. We write {A}, instead of simply A, because {A}
is an elementary event and PΨ

N,h is a probability on the discrete space P({0, 1, . . . , N}),
with P(·) the set of all subsets of ·. Note that PΨ

N,h({A}) = 0 unless both 0 and N are in
A.

For the disordered version of the model we introduce the IID sequence (ωn)n∈N with
law P. We assume that λ(s) := logE[exp(sω1)] <∞ for every s ∈ R and, without loss of
generality, we set E[ω1] = 0 and E[ω2

1] = 1. Moreover the two random sequences τ and ω
are independent. For every realization of the disorder sequence, the disordered model has
partition function

ZΨ
N,ω,β,h := E

exp

 N∑
j=1

(βωj + h)δj

Ψ

 N∑
j=1

δj , N

 δN

 , (1.9)

where β ≥ 0. Of course, the definition of PΨ
N,ω,β,h is immediately inferred by analogy with

(1.7).
Observe now that we can write

ZΨ
N,ω,β,h =

N∑
m=1

exp(mh)Ψ (m,N) E

exp

β N∑
j=1

ωjδj

1τm=N

 , (1.10)

where we have used that {|τ ∩ (0, N ]| = m and N ∈ τ} = {τm = N} and if β = 0, that is
in the non disordered case, this expression becomes even more explicit:

ZΨ
N,h =

N∑
m=1

exp(mh)Ψ (m,N) P (τm = N) . (1.11)

Remark 1.2. For the physical motivations and explicit choices of Ψ we refer the reader
to Appendix A. A very basic case, that essentially contains the full richness of the model
in term of qualitative phenomena, is obtained by choosing H(ρ) = −ρ2 and Q ≡ 1, so
Ψ(m,N) = exp(−m2/N).
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1.3. Results. We start with a result that shows that the free energy density exists and
that it can be represented in terms of the free energy density of a pinning model in which
we have fixed the number of contacts.

Theorem 1.3. For every β ≥ 0 and ρ ∈ [0, 1] we have that P( dω)-a.s. the limit

lim
N→∞:
m/N→ρ

1

N
log E

exp

β N∑
j=1

ωjδj

1τm=N

 =: g(β, ρ) , (1.12)

exists and g(β, ρ) ∈ R is non random. Moreover g(β, ·) is concave, limρ↘0 g(β, ρ) =
g(β, 0) = 0, limρ↗1 g(β, ρ) = g(β, 1) = logK(1) and limρ↗1 ∂ρg(β, ρ) = −∞.

Also the limit

lim
N→∞

1

N
logZΨ

N,ω,β,h =: fH(β, h) , (1.13)

exists for every β ≥ 0 and h ∈ R, P( dω)-a.s. and in L1. fH(β, h) ∈ R is non random,
fH(β, ·) is non decreasing, convex and we have the conjugate variational formulas

fH(β, h) = sup
ρ∈[0,1]

(hρ+H(ρ) + g(β, ρ)) and g(β, ρ) = inf
h∈R

(fH(β, h)− ρh−H(ρ)) .

(1.14)

Of course fH(β, h) is the free energy (density) of the model defined by (1.9). We point
out that at this stage that ∂ρg(β, ρ) should be interpreted as the limit of the incremental
ratio from the left, or from the right: they both exist by concavity. We will see in
Proposition 2.2 that g(β, ·) is C∞ if β > 0 and g(0, ·) is real analytic, except possibly at
one point, in which it is in any case at least C1, see Proposition 3.1.

It is worth pointing out that if Ψ(m,N) = 1 for every m and N then the model coincides
with the well known disordered pinning model:

ZN,ω,β,h := E

exp

 N∑
j=1

(βωj + h)δj

 δN

 , (1.15)

and the corresponding free energy is denoted by f(β, h). Of course also the case Ψ(m,N) =
exp(am + b), a and b real constants, corresponds to trivial modifications of the pinning
model. As a matter of fact, Theorem 1.3 is telling us that, whenever H of Definition 1.1
is trivial (i.e., affine), we are dealing with a model with free energy that coincides, up to
an additive constant and a shift in h, with the free energy of a pinning model.

In order to better appreciate the results let us consider first the case β = 0: when, like
here, there is no risk of confusion, we drop the dependence on β(= 0), that is we write
fH(h) for fH(0, h), etc. . ..

The first β = 0 result says that h 7→ fH(h) may have up to two singularity points if
α > 1. Otherwise, that is if α ∈ (0, 1], it has at most one singularity. We introduce

ρc :=
1

E[η]
, (1.16)

so ρc = 0 if α ∈ (0, 1] and ρc ∈ (0, 1) if α > 1. Moreover, given a model (that is given Ψ,
hence H), we set

hHc := −H ′(0) ∈ [−∞,∞) and hb := −H ′(ρc) . (1.17)
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Of course hHc ≤ hb. Moreover hHc = hb if ρc = 0, and we can replace if with if and only if
when H(·) is not trivial.

Theorem 1.4. The function h 7→ fH(h) is real analytic for h ∈ R \ {hHc , hb} and it is not
real analytic at hHc nor at hb. Moreover:

(1) if hHc ∈ R (and regardless of hHc < hb or hHc = hb) fH(h) = H(0) ∈ R for h ≤ hHc
and fH(h) > H(0) for h > hHc with the h ↘ hHc asymptotic behaviors (assuming
(1.6)):
• for α > 1 we have fH(ρ)−H(0) ∼ (h− hHc )2/(2cH);
• for α ∈ (0, 1] we still have fH(ρ)−H(0) ∼ (h− hHc )2/(2cH) for α > 1/2 and

the same is true for α = 1/2 but with a prefactor smaller than 1/(2cH). For

α ∈ (0, 1/2) we have fH(ρ)−H(0) ∼ c(h− hHc )1/α for a suitable c > 0;
(2) if hHc < hb (which implies α > 1) then the function h 7→ fregH (h) defined by

fregH (h) := sup
ρ∈[0,1]

(hρ+H(ρ)) , (1.18)

is real analytic on (hHc , 1) and, with κ := max(α/(α − 1), 2) and for a suitable
constant c > 0 (that depends in particular on α), we have (except for the case
α = 2)

fH(h)− fregH (h)
h↘hb∼ −c(h− hb)κ , (1.19)

while fH(h) = fregH (h) for h < hb. If α = 2 the right-hand side in (1.19) is replaced
by −c(h− hb)2/ log(1/(h− hb)).

Theorem 1.4(2) is established in [6, 7] for specific choices of Ψ, see Appendix A, and for
K(n) equal, not simply asymptotically equivalent, to CK/n

1+α. The approach in in [6, 7]
exploits the expression for the Mellin transform of K(·) in terms of special functions and
by doing the asymptotic analysis via identification of singularities in the complex plane.
Our analysis is more general and substantially simpler.

A direct consequence of Theorem 1.4 is that fH(·) is differentiable. In fact, the two
singularity loci are hHc and hb and

• the quadratic behavior at hHc , proven assuming (1.6), of course yields differentia-
bility, but we take this occasion to stress that a first order transition, i.e. dis-
continuous f′H(·), happens only if H(·) is trivial: a look at the proof suffices to
conclude that the contact fraction is continuous at hHc as soon as H(·) is strictly
concave, i.e. without assuming (1.6);
• when hb > hHc the critical exponent κ is larger than one, and, again, this yields

differentiability.

The transition at hHc is a delocalization/localization transition: in fact f′H(h) = 0 for

h < hHc and f′H(h) > 0 for h > hHc and f′H(h) coincides with limN EΨ
N,h[

∑N
j=1 δj ]/N ,

which is the contact density. Note that for this transition we assume (1.6), so H(·) is
non trivial, and the critical exponent coincides with the critical exponent of the standard
pinning model only for α ≤ 1/2. For α > 1/2 the critical exponent of the β = 0 pinning
model is max(1/α, 1) [29, Ch. 2].

Remark 1.5. A more direct view of the delocalization/localization transition can be taken,
without assuming β = 0, by noticing that fH(β, h) ≥ H(0). This fact is straightforward
under the stronger condition lim infN (logQ(1, N))/N ≥ 0 because it suffices to restrict the
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partition function to the event τ1 = N (that is, the only contact point is in N) and we
obtain for every b > 0 and N sufficiently large

ZΨ
N,ω,β,h ≥ exp (N(H(1/N)− b)) exp(βωN + h)P(τ1 = N) . (1.20)

So limN (1/N) logZΨ
N,ω,β,h ≥ H(0) a.s. and we are done. For a proof without the additional

assumption see Proposition B.2.

The transition at hb, when hb > hHc , corresponds in physical terms to the appear-
ing/disappearing of a condensation segment or of a macroscopic loop. The underlying
phenomenon is well known also in the probability literature and it is called big-jump (see
[5, 19] and references therein). In order to make this precise we introduce for every N the
order statistics of the η sequence up to N , that is the order statistics of η1, η2, . . . , η|τ∩(0,N ]|,
for which we use the notation η1,N ≥ η2,N ≥ . . . ≥ η|τ∩(0,N ]|,N . Note that this order sta-
tistics is empty if τ1 > N , which never happens because we always work with N ∈ τ . On
the other hand, what may happen is that the sequence contains only one element, that is
η1,N = τ1 = N , and in this case we set η2,N = 0.

Theorem 1.6. For every h 6= hHc we have that in PΨ
N,h-probability

lim
N→∞

|τ ∩ (0, N)|
N

= ρh := f′H(h) , (1.21)

and when ρc > 0 and h 6= hb

lim
N→∞

η1,N

N
=

(
1− ρh

ρc

)
+

, lim
N→∞

η2,N

N
= 0 . (1.22)

If ρc = 0 and h > hHc = hb we have that limN η1,N/N = 0.

The only reason to require h 6= hb is to keep proofs concise: the statement holds without
this requirement [42, Ch. 4]. The same is true for h 6= hHc and (1.21), if one takes care
of excluding the cases in which f′H(hHc ) does not exist: note that, by Theorem 1.4(1),
f′H(hHc ) exists and it is equal to zero for H(·) non trivial.

Informally stated, Theorem 1.6 is spelling out the standard fact that f′H(h) is the
contact fraction and that the largest loop η1,N encompasses essentially all the system in

the delocalized regime h < hHc (but only if ρc > 0! See Remark 1.7) and it is instead
macroscopically negligible (i.e., η1,N = o(N)) if h > hb. But the key point for us is that

when hHc < hb, for h ∈ (hHc , hb) the largest loop η1,N , normalized by dividing by N ,
is asymptotically of size (1 − ρh/ρc) ∈ (0, 1). Moreover, cf. (1.22), all other loops are
macroscopically negligible.

Moreover, as we have seen, when hHc < hb then ρh = f′H(h) is continuous both at hHc
and at hb and this implies that the normalized large loop size behaves continuously at
these transitions (in the first case it goes to one, in the second one it vanishes).

Remark 1.7. The reader may be surprised by the lack of a full path delocalization result
for ρc = 0, i.e. α ∈ (0, 1], like for α > 1. We are convinced that this cannot be obtained
with our assumptions on Q(·, ·): see the control from below in (1.4) of Def. 1.1. Note in
fact that, for example, we can choose Q(m,N) = exp(−N2) for m ≤ N/ logN and this
forces the presence of at least about N/ logN contacts: forcing them to be close to the
boundary is very expensive in probability terms.
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Theorem 1.6 can be improved in a number of ways, notably the largest loop for h > hb
is O(logN), while the second largest loop for h ∈ (hHc , hb) has a power law scaling and
for h < hHc is O(1). These issues are developed in [42, Ch. 4], along with a detailed
analysis of the critical cases. Our focus is on the effect of the disorder on the system and
Theorems 1.4 and 1.6 are sufficient for this purpose.

In fact, the main point of our work is that for β > 0 the big-jump phenomenon disap-
pears, and this is what we present next, along with an analysis of the effect of the disorder
on the (de)localization transition.

Recall Remark 1.5 and set hHc (β) := inf{h : fH(β, h) > H(0)}. Of course we have
hHc (β) := sup{h : fH(β, h) = H(0)} and hHc = hHc (0). If H(·) ≡ 0 we use hc(β) for hHc (β),
in parallel with the use of f(β, h) for fH(β, h). Much work has been done on identifying
as precisely as possible hc(β): a through review of the literature is in Section 2. Here we
only anticipate that hc(β) ∈ [−λ(β), 0] for every β ≥ 0.

Theorem 1.8. For β > 0 we have that

(1) h 7→ fH(β, h) is C∞ for h ∈ (hHc (β),∞) and hHc (β) = hc(β)−H ′(0), so hHc (β) >
−∞ if and only if H ′(0) < ∞ (like for β = 0). If H ′(0) < ∞ (without assuming
(1.6)) there exists Cβ and ∆ > 0 such that if h− hHc (β) ∈ [0,∆]

fH(β, h) ≤ H(0) + Cβ(h− hc(β))2 , (1.23)

and, assuming(1.6), for α ∈ (0, 1/2) and β ∈ [0, βα], for a suitable choice of
βα > 0, we have the sharper result

fH(β, hHc (β) + y)−H(0)
y↘0∼ fH(0, hHc (0) + y)−H(0) . (1.24)

(2) for every h we have that P( dω)-a.s. in PΨ
N,ω,β,h-probability

lim
N→∞

|τ ∩ (0, N)|
N

= ∂hfH(β, h) , (1.25)

and for h > hHc (β)

lim
N→∞

η1,N

N
= 0 . (1.26)

A number of comments are in order:

(1) hHc (β) may be equal to −∞, but otherwise fH(β, ·) is not analytic at hHc (β),
which is therefore a critical point marking the transition from zero contact density
(delocalized regime) to positive contact density (localized regime);

(2) from the proof we see that Cβ can be chosen independent of β if we assume (1.6)
(see Remark 1.9);

(3) the finite order big-jump transition at hb has disappeared, but the C∞ regularity
estimate on the free energy leaves open the possibility of an infinite order transition;

(4) nevertheless, (1.26) tells us that the loops in the localized regime do not have
macroscopic size, so the large loop phenomenon is washed out by the disorder;

(5) we have decided to leave aside the delicate analysis of the path behavior in the
delocalized phase: we certainly expect that results like in [4, 34] can be adapted,
but only under stronger conditions on Ψ(m,N) (and the problem is already present
for β = 0, see Remark 1.7).

Two important remarks:
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Remark 1.9. The proof of (1.23) exploits the smoothing inequality [14, 35, 36] that we
recall in (2.5) below, but only in part because the result holds as soon as H ′′(ρ) stays
bounded away from 0 for ρ close to zero, and in particular when (1.6) holds. And, in view
of the β = 0 results in Theorem 1.4(1), (1.23) does not establish a smoothing phenomenon.
Disorder relevance is certainly expected and it would follow from what is expected to hold
for the disordered pinning model (that is, an infinite order transition for α ≥ 1/2, see
Remark 2.1). In our model however we can see smoothing for α > 1/2 if we do not assume
(1.6). Notably if we assume for example that H ′(ρ) − H ′(0) ∼ −cργ with a γ > 1 and
c > 0: (1.23) holds, but Theorem 1.4(1) changes and fH(0, hc(0) + δ) becomes equivalent

to δmax(1+1/γ,1/α) times a positive constant. In this case (1.23) does establish a smoothing
phenomenon and disorder relevance. Finally, (1.24) establishes disorder irrelevance for
α < 1/2.

Remark 1.10. The Harris criterion is applied in [7, Sec. IV] to the big-jump transition
and the claim is that disorder is irrelevant for this transition for α ∈ (1, 2], while for
α > 2 disorder is “marginal”, i.e. at the boundary between irrelevance and relevance.
This is in contrast with Theorem 1.8 which proves relevance of the disorder for every
α > 1. It would be of course very interesting to understand what is happening in the
Harris’ perspective. We take this occasion to point out that the “instability” of the big-
jump transition under the effect of disorder has been observed also in [40, 47]. In [40, 47] the
disorder is introduced in such a way that the renewal structure is preserved and explicit
computations can be performed. In our case there is no such structure and our results
follow from the smoothing inequality bound for the standard pinning case [14, 35, 36].
While we believe that our disorder relevance result for big-jump transitions should hold in
greater generality, our approach does not generalize in an evident way, notably not to the
tightly related gPS model mentioned in Section 1.1. The contribution [9] deals with the
disorder (ir)relevance issue in the gPS model, but only for the localization transition.

Organization of the paper.

• In Section 2 we present the main ideas on how we deal with the disorder and we provide
a proof of Theorem 1.8(1), relying on the variational formulas of Theorem 1.3 and on
the uniform strict convexity bound of Theorem B.1.
• In Section 3 we provide a full analysis of fH(0, h). In particular, this section contains

the proof of Theorem 1.4.
• In Section 4 we analyse the trajectories of the process for β = 0 (proof of Theorem 1.6).
• In Section 5 we complete the proof of Theorem 1.8, by proving part (2) that concerns

the trajectories: no big-jump for β > 0.
• In Section 6 we take care of the free energy existence issues and of the variational

formulas (proof of Theorem 1.3).
• In Appendix A we explain how the circular DNA case [6, 7] fits in our framework and

in Appendix B we prove that ∂2
hf(β, h) > 0 for every h > hc(β) and we complete

Remark 1.5.

2. Exploiting the Legendre transform and the key role of the standard
pinning model

Let us start by pointing out the direct consequence of (1.14)

f(β, h) = sup
ρ∈[0,1]

(hρ+ g(β, ρ)) and g(β, ρ) = inf
h∈R

(f(β, h)− ρh) . (2.1)
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The strategy we employ is to obtain information on g(β, ρ), defined in (1.12), via the
second formula in (2.1) and what we know on f(β, h). We start therefore by collecting
here the relevant known results on f(β, h): some of these results are straightforward, but
most of them are the outcome of the work of several contributors.

(P1) Basic convexity and monotonicity properties, together with some relatively stan-
dard bounds, show that f(β, ·) is convex, it is equal to 0 for h ≤ hc(β) and it is
positive and increasing for h > hc(β): hc(β) ≤ 0 and for more on its value see
(P4).

(P2) h 7→ f(β, h) is C∞ for h > hc(β) [37, th. 2.1] (in [37] a concentration condition is
required on the law of ω1, but this is not used in the proof of Theorem 2.1) and
it is analytical if β = 0 for h > hc(0), see e.g. either [29, Ch. 2] or [30, Ch. 2]. Of
course it is also analytical for h < hc(β) and hc(β) is a non analyticity point. We
add that for every β ≥ 0 it is straightforward to show that limh→∞ ∂fh(β, h) = 1.

(P3) For β = 0 the model is solvable [25, 29, 30]: we have already pointed out that
hc(0) = 0, but the sharp behavior of the free energy and its derivatives at criticality
is available too. That is, for α ∈ (0, 1) there exists cα > 0 such that

f(0, h)
h↘0∼ cαh

1/α , (2.2)

and (2.2) holds also if we differentiate k ∈ N times both sides. If α > 1 instead
f(0, h) ∼ h/E[η] and this statement can be differentiated once. If α = 1 instead
f(0, h) ∼ CKh/ log(1/h) (one differentiation allowed). These results imply the
rougher statement

log f(0, h)

log h

h↘0∼ max

(
1,

1

α

)
. (2.3)

Notably, the transition is of first order if α > 1 and it is of higher order if α ∈ (0, 1]:

lim
h↘0

∂hf(0, h) =
1

E[η]

{
> 0 if α > 1 ,

= 0 if α ∈ (0, 1] .
(2.4)

(P4) For β > 0 we have −λ(β) ≤ hc(β) < hc(0) = 0 (see [30, Ch. 3] and [29, Ch. 4];
see [2] and [29, Section. 5.2] for the strict inequality). Moreover hc(β) > −λ(β)
for α ≥ 1/2 [3, 11, 15, 20], but hc(β) = −λ(β) for α ∈ (0, 1/2) and β ≤ βα, for a
suitable βα > 0 [1, 46, 51].

(P5) For β > 0 there exists cβ > 0 and ∆0 > 0 such that for every ∆ ∈ (0,∆0]

0 < f(β, hc(β) + ∆)− f(β, hc(β)) ≤ cβ∆2 . (2.5)

The lower bound in (2.5) is trivial, the upper bound is the smoothing inequality
[14, 35, 36] . We stress that (2.5) directly implies that, regardless of the value of
α, for β > 0 we have

lim
h↘hc(β)

∂hf(β, h) = 0 . (2.6)

(P6) If α ∈ (0, 1/2) ( and β ≤ βα, see (P4)) we have [1, 38, 46, 51]

f(β, hc(β) + y)
y↘0∼ f(0, y) . (2.7)
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Remark 2.1. The truly open problem for the disordered pinning model, and, as a matter
of fact, for every disorder relevant model, is what is the precise critical behavior when
disorder is relevant, see [30, Ch. 5] for a discussion and references. For the pinning model
in the relevant disorder regime it is now expected that the transition becomes of infinite
order. One of the main reason is that the model is expected to be in the strong or infinite
disorder universality class [17, 26, 44], see also the more recent contribution [22]. In this
line there have been also some mathematical progress [10, 16], but they do not impact
directly the pinning model.

2.1. Legendre transform viewpoint on homogeneous pinning. Recalling (1.11) and
(1.12) we see that g(ρ) = g(0, ρ) has a very simple expression:

g(ρ) = lim
N→∞:
m/N→ρ

1

N
log P (τm = N) , (2.8)

and arbitrarily precise estimates on g(·) can be obtained, see in particular Proposition 3.1
that is resumed in part in Fig. 1 and in Fig. 2, and their captions. The behavior of
f(·) = f(0, ·) can then be extracted from g(·) via (2.1). In particular, the non analytic
behavior of g(·) at ρc > 0 yields a jump of size ρc in f′(·) at hc(0) = 0. The jump
disappears if ρc = 0. Moreover, these implications can be reversed, and the behavior of
g(·) can be inferred from the one of f(·).

⇐⇒

α ∈ (1, ∞)
g(ρ)

g(1)

f(h)

ρ

ρc

0

0

1

h

Figure 1. The figure illustrates the (Legendre transform) link between g(·) and f(·)
for α > 1 (and β = 0). We stress here that the flat portion of g(·), that is g(ρ) = 0 for
ρ ∈ [0, ρc] with ρc = 1/

∑
n nK(n), has a direct counterpart the first order localization

transition for the pinning model: quantitatively, limh↘0 f′(h) = ρc. Other features
stressed in the graph are (1) the fact that g(1) = − logK(1) is finite but limρ↗1 g′(ρ) =
−∞ and (2) that limρ→ρc g′(ρ) = 0. These two features are going to be central for
our generalized pinning model: feature (1) forces the optimizing contact density to be
smaller than one and feature (2) makes the big-jump transition of order two or larger.

The non analyticity at ρ = ρc can be viewed as a phase transition: in fact, g(h)
capture the exponential asymptotic behavior of P (τm = N), for m/N ∼ ρ, and we can
view P (τm = N) = E[1τm=N ] as the partition function of the model which is just the
renewal conditioned to τm = N (in Section 4 this probability will be denoted by QN,m).
The trajectories QN,m are substantially different when m/N ∼ ρ is below or above ρc
and the phenomenon is known in probability as the big-jump phenomenon: if ρ < ρc a
single large excursion takes care of the anomalously low contact density, in fact the typical
contact density for the renewal is ρc (this is very well known Renewal Theorem, see [30,
App. A] and references therein). Instead the system constrained to a contact density
ρ > ρc globally modifies itself to accomodate more excursions. See Fig. 3 for a visual
explanation: Proposition 4.1 is a mathematical presentation of the big-jump transition.
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⇐⇒

α ∈ (0, 1)
g(ρ)

g(1)

f(h)

ρ

0

0

1

h

Figure 2. The figure illustrates the (Legendre transform) link between g(·) and f(·) for
α ∈ (0, 1) (and β = 0). This time g(·) is analytic over all the domain. The corresponding
behavior of f(·) is on the right and the difference with the case α > 1 is that f′(·) exists
also at the origin. In fact, the smaller α is, the more f(·) is regular at the origin. But
the most prominent fact is that ρc = 0 is equivalent f′(·) being C1 in 0.

Big Jump
0 N

Figure 3. The big-jump phenomenon that happens when we condition the renewal to
have m contacts between before N , with m/N ∼ ρ smaller than the typical value ρc.
The system behaves typically, so with contact density ρc = 1/E[η], and compensates for
the low global contact density by making a big-jump of length ∼ (1− ρ/ρc)N , randomly
(uniformly) placed in the interval.

2.2. Legendre transform viewpoint on disordered pinning. The key point here
is simply that (2.6) is telling us that there are no longer two scenarios, but only one:
qualitatively, the one of β = 0 and α ∈ (0, 1]. Here is a central statement for our analysis:

Proposition 2.2. For β > 0 we have that ρ 7→ g(β, ρ) is C∞ in the interior of its domain
of definition, that is for ρ ∈ (0, 1). Moreover limρ↘0 g(β, ρ) = 0 and limρ↘0 ∂hg(β, ρ) =
−hc(ρ). Finally, ∂2

hg(β, ρ) < 0 for every ρ ∈ (0, 1) and there exists c > 0 (depending on
β) such that for every ρ

g(β, ρ) ≤ −hc(β)ρ− cρ2 . (2.9)

For α ∈ (0, 1/2) and β ∈ [0, βα] (βα given in (P4)) we have that

g(β, ρ) + hc(β)ρ
ρ↘0∼ g(0, ρ) . (2.10)

Proof. Fix β > 0. By the second identity in (2.1) for every ρ ∈ (0, 1)

g(β, ρ) = f(β, hρ)− ρhρ , (2.11)

with hρ = h unique solution to ρ = ∂hf(β, h): note that, by (2.6), by the large h remark
at the end of (P2) and the strict convexity of f(β, ·) (see Theorem B.1), ∂hf(β, ·) is a
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bijection from (hc(β),∞) to (0, 1). Fully exploiting Theorem B.1, i.e. using ∂2
hf(β, h) > 0

for h > hc(β), by the Implicit Function Theorem we see that ρ 7→ hρ is C∞, so g(β, ·) is
C∞ too.

By differentiating once (2.11) we obtain ∂ρg(β, ρ) = −hρ which tends to −hc(β) for
ρ ↘ 0. By differentiating once more we obtain −∂2

ρg(β, ρ) = 1/∂2
hf(β, hρ) ∈ (0,∞) and

we have all the claimed estimates except (2.9), that we consider next. Since hρ ↘ hc(β)
when ρ↘ 0, for every ∆0 > 0 we have

g(β, ρ) = −hc(β)ρ+ inf
h∈(hc(β),hc(β)+∆)

(f(β, h)− ρ(h− hc(β))) , (2.12)

provided that ρ is smaller than constant that depends on ∆0. Therefore by (P5) we obtain
g(β, ρ) ≤ −hc(β)ρ− ρ2/(4cβ) and (2.9) follows.

Finally, (2.10) follows directly from (2.7) of (P6): this analysis coincides with the β = 0
analysis, developed in greater generality in Section 3. �

⇐⇒

α ∈ (0, ∞) and β > 0
g(β, ρ)

g(β, 1)

f(β, h)

ρ

hc(β)

0

0

1

h

Figure 4. The figure illustrates the (Legendre transform) link between g(·) and f(·)
for α > 0 and β > 0. f(β, ·) has a non analyticity point at a critical value hc(β) < 0:
to the left of this critical value the free energy is zero and to the right it is positive,
C∞ and strictly convex. From this we can extract g(β, ·) is C∞ and strictly concave.
The positive slope of g(β, ·) at the origin, more precisely limρ↘0 ∂ρg(β, ρ) = −hc(β), is
a direct consequence hc(β) < 0 (see Proposition 2.2). The fact that g(β, ·) is strictly
concave strongly hints to the similarity with the case of Fig. 2.

2.3. The generalized pinning model: free energy and transitions. The free energy
fH(β, h) is just given by (1.14) via elementary considerations given the properties and
features of g(β, ρ). These features are richer for β = 0 (Fig. 1 and Fig. 2) and they reduce
to Fig. 4 for β > 0. In particular

• g(0, ρ) has a singularity at ρ = ρc > 0 that directly reflects on a singularity of
fH(0, h) at hb = −H ′(ρc), and corresponds to the big-jump transition: the proof
is in Section 4, but the result can be readily understood because the variational
formula suggests that the system will behave like a renewal constrained to a contact
density ρ = ρh, where ρh is the optimal density;
• when β > 0 instead this singularity disappears and, modulo the shift of the critical

point hc(0) to hc(β), that generates the positive slope at the origin, Fig. 4 is
analogous to Fig. 2. Therefore the transition at hb disappears: the proof that the
trajectories of the process have no big-jump transition is given in Section 5.
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Here we provide the proof that Proposition 2.2 yields, via Legendre transform, the
properties of fH(β, h), for β > 0, given in Theorem 1.8, see also Fig. 5.

Proof of Theorem 1.8(1). The result is already known if H(·) is trivial, but the argument
we give applies in general. By (1.14) and Proposition 2.2 we have that

fH(β, h) = hρh +H(ρh) + g(β, ρh) , (2.13)

with ρ = ρh unique solution of h = −H ′(ρ) − ∂ρg(β, ρ). Note that ∂2
ρg(β, ρ) < 0 for

ρ ∈ (0, 1) yields that h 7→ ρh is a C∞ bijection between (hc(β)−H ′(0),∞) and (0, 1). In
particular fH(h) > H(0) for h > hc(β) −H ′(0) and, by continuity, fH(hc(β) −H ′(0)) =
H(0). On the other hand, ρh = 0 for h < hc(β) − H ′(0). So hHc (β) = hc(β) − H ′(0).
The fact that fH(β, ·) ∈ C∞ on R \ {hHc (β)} is also a direct consequence of (2.13) above
hHc (β), and of the triviality of the free energy below hHc (β).

Let us turn to (1.23). We claim that for every β > 0 there exists a constant c > 0
such that ρh ≤ c(h− hHc (β)) for h sufficiently close to hHc (β). This suffices to show (1.23)
because from the variational formula (1.14) and H(ρ) ≤ H(0) + ρH ′(0), i.e. concavity,
and g(β, ρ) ≤ −hc(β)ρ (Proposition 2.2 ) directly yield

fH(β, h) ≤ H(0) + (h− hHc (β))ρh , (2.14)

which is (1.23) if we use the claim. To prove the claim we use the implicit characterization
of ρh for h > hc(β) that we write as

h− hHc (β) = gβ(ρh) with gβ(ρ) := −(H ′(ρ)−H ′(0))− (∂ρg(β, ρ) + hc(β)) . (2.15)

Note that gβ(·) is smooth and increasing and it satisfies gβ(ρ) ≥ Cρ for a positive constant
C: this is obvious if we assume (1.6) (and in this case C does not depend on β), but it
is true in general because (2.9) implies −∂ρg(β, ρ)− hc(β) ≥ cρ (this is simply because if

f(·) is convex, f ′(ρ) ≥ f(ρ)/ρ). Therefore g−1
β : [0,∞) −→ [0, 1) satisfies g−1

β (x) ≤ x/C,
so

ρh = g−1
β (h− hc(β)) ≤ h− hc(β)

C
, (2.16)

and the claim is proven.
The proof of (1.24) is analogous to the one for β = 0 (once again: the β = 0 analysis is

developed in detail in Section 3), because of the sharp estimate (2.10), which, by convexity,
holds also if we formally differentiate both sides of the asymptotic equivalence. �

3. Free energy in the non disordered case: proof of Theorem 1.4

Recall that ρc = 1/E[η] ∈ [0, 1) and that ρc = 0 if α ∈ (0, 1) and ρc > 0 if α > 1. In the
next statement c is a positive constant for which we have an explicit expression in terms
of α, moments of η and CK : we are going to specify on what c depends, except for CK
(see (1.1)) that is omitted, because c depends on CK in all the cases, either directly or via
E[η] and E[η2].

Proposition 3.1 (Basic properties of g). For every ρ ∈ [0, 1] the limit in (1.12) with
β = 0 exists and

g(ρ) = inf
x≥0

(x+ ρ log E [exp(−xη)]) , (3.1)
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fH(β, h)

hH
c (β)

hb

H(0)

0 h

Figure 5. This is the graph of fH(β, h) for H(·) non trivial and H ′(0) < ∞, hence
H(0) > −∞ too. We see the (de)localization transition at hHc (β) = −H ′(0) + hc(β) and
we remark that the contact density is continuous at this transition. The transition at
hb is instead present only if β = 0 (and α > 1), but it is difficult to appreciate it in this
image because the contact density is also in this case continuous, or more regular, at the
transition and the free energy is non trivial, i.e. non affine, both on the left and on the
right of hb.

from which the concavity of g(·) is evident and we have also the uniform estimate:

lim
ε↘0

lim sup
N→∞

sup
m∈{1,...,N :}
|m/N−ρ|≤ε

∣∣∣∣g(ρ)− 1

N
log P (τm = N)

∣∣∣∣ = 0 . (3.2)

Moreover

(1) if α ∈ (0, 1] (see Fig. 2) then g(·) is analytic and negative on (0, 1) and, if we
exclude α = 1, for ρ↘ 0

g(ρ) ∼ −cρ1/(1−α) and g′(ρ) ∼ − c

1− αρ
α/(1−α) , (3.3)

and c depends on α. For α = 1 instead −g′(ρ) = exp(−(1 + o(1))/(CKρ)) and
−g(ρ) = o(−g′(ρ)).

(2) if α > 1 (see Fig. 1) then g(ρ) = 0 for ρ ∈ [0, ρc] and g(·) is analytic and negative
on (ρc, 1). Moreover with δ := ρ−ρc and κ := max(α/(α−1), 2) in the limit δ ↘ 0
we have for α 6= 2

g(ρc + δ) ∼ −c δκ and g′(ρc + δ) ∼ −κc δκ−1 , (3.4)

where c depends on α and E[η] when α ∈ (1, 2) and it depends on E[η] and
E[η2] if α > 2. When α = 2 we have instead g(ρ) ∼ cδ2/ log(1/δ) and g′(ρ) ∼
2cδ/ log(1/δ) with c that depends on E[η].

(3) limρ↗1 g(ρ) = g(1) = logK(1) ∈ (−∞, 0) and limρ↗1 g′(ρ) = −∞.

Proof. Existence of g(ρ) and (3.1) can be established at the same time by standard argu-
ments: for the upper bound it suffices to apply the Markov inequality to P (τm ≤ N) =
P (exp(−xτm) ≥ exp(−xN)), for x > 0; for the lower bound the standard exponential tilt
argument covers the case ρ > ρc, while for ρ < ρc the lower bound is easily achieved by
selecting trajectories that make a suitable big-jump (no exponential cost), so that in the
rest of the system the contact density is ρc and this matches with the typical behavior
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of the renewal (again, no exponential cost): if ρ = ρc the argument is the same, but the
big-jump is empty. Details of the proof can be found in [42, § 4.3]; in a more general
context these estimates can be found for example in [12, 13].

Now we set gρ(x) := x + ρ log E[exp(−xη)] and remark that for every ρ ∈ (0, 1) the
function gρ(·) is strictly convex and limx→∞ gρ(x) =∞ because in this limit E[exp(−xη)] ∼
K(1) exp(−x). Therefore the infimum in the right-hand side of (3.1) is reached at a unique
point xρ ≥ 0. Since for x > 0

g′ρ(x) = 1− ρE[η exp(−xη)]

E[exp(−xη)]
=: 1− ρEx[η] , (3.5)

we readily see that if ρ ≤ ρc then g′ρ(x) > 0 for every x > 0 so xρ = 0 and g(ρ) = gρ(0) = 0.
If ρ > ρc instead xρ > 0, because in this case g′ρ(x) = 0, that is ρEx[η] = 1 can be solved
with x ∈ (0, 1). Since x 7→ log E[exp(−xη)] is real analytic on (0,∞) from the analytic
implicit function theorem one readily obtains that ρ 7→ xρ is analytic on (ρc, 1) and this
property passes directly to g(·), because g(ρ) = gρ(xρ).

The rest of the proof is concerned with the asymptotic behaviors for ρ↘ ρc and ρ↗ 1.
Key formulas for this are Exρ [η] = 1/ρ (cf. (3.5)) and

g(ρ) = xρ + ρ log E [exp(−xρη)] and g′(ρ) = log E [exp(−xρη)] . (3.6)

For the case ρ ↗ 1 we observe that, for x ↗∞, both E[exp(−xη)] and E[η exp(−xη)]
are equal to K(1) exp(−x) + O(exp(−2x)). Therefore Ex[η] = 1 + O(exp(−x)) and this
implies xρ ↗∞ as ρ↗ 1 with 1− ρ = O(exp(−xρ)). Therefore

g(ρ) = xρ + ρ log
(
K(1)e−xρ +O

(
e−2xρ

))
= xρ(1− ρ) + ρ logK(1) +O

(
e−xρ

)
, (3.7)

so limρ↗1 g(ρ) = logK(1). By using the second expression in (3.6), we get g′(ρ) ∼ −xρ,
in particular g′(1) = −∞.

We are left with ρ ↘ ρc that we separate into ρc = 0 and ρc > 0. Let us first remark
that in both cases limρ↘ρc g(ρ) = g(ρc) = 0. This is obvious by concavity when ρc > 0. If
ρc = 0 it suffices to use the first expression in (3.6) and the fact that Exρ [η] = 1/ρ ↗ ∞
when ρ ↘ 0, so xρ → 0 in this limit. This remark simplifies the analysis because the
asymptotic analysis of g(·) near ρc follows from by integrating the corresponding estimate
on g′(·).

For ρc = 0, i.e. α ∈ (0, 1], by Riemann sum approximation we readily find that Ex[η] ∼
E[η exp(−xη)] for x↘ 0 and

E[η exp(−xη)]
x↘0∼ CK ×

{(∫∞
0 y−αe−y dy

)
xα−1 if α ∈ (0, 1) ,

log(1/x) if α = 1 .
(3.8)

Of course
∫∞

0 y−αe−y dy = Γ(1−α), but we will not keep track of the precise value of the
constants and we content ourselves with remarking that we have obtained for α ∈ (0, 1)

that xρ ∼ cαρ
1/(1−α). Now we can insert this result into the second identity in (3.6) that

in this limit becomes g′(ρ) ∼ −E[1 − exp(−xρη)]: the sharp asymptotic behavior of the
right-hand side is again a matter of Riemann sum approximation for xρ that tends to

zero. So for for α ∈ (0, 1) we obtain g′(ρ) ∼ −CK(Γ(1 − α)/α)xαρ ∼ −cρα/(1−α). For
α = 1, going back to (3.8) we see that xρ = exp(−(1 + o(1))/(CKρ)), so by using E[1 −
exp(−xη)] ∼ CKx log(1/x) from which, using (3.6), we obtain g′(ρ) ∼ −CKxρ log(1/xρ),
which implies g′(ρ) = exp(−(1 + o(1))/(CKρ)) and, by convexity of −g(·), we see that
0 ≤ g(ρ)/g′(ρ) ≤ ρ.

For ρc > 0, i.e. α > 1, the analysis is different according to whether E[η2] <∞ or not:
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(1) if E[η2] <∞, that is α > 2, and x↘ 0 we have

Ex[η] =
E[η exp(−xη)]

E[exp(−xη)]
=

E[η]−E[η2]x(1 + o(1))

1−E[η]x(1 + o(1))
= E[η]− var(η)x+ o(x) . (3.9)

Therefore xρc+δ ∼ (E[η]2/var(η))δ, so g′(ρ) ∼ −E[η]xρ directly yields the result
for g′(ρc + δ).

(2) if E[η2] =∞ we consider separately α ∈ (1, 2) and α = 2. In the first case we use

Ex[η] =
E[η exp(−ηx)]

1 +O(x)
= E[η]− CK

(∫ ∞
0

1− e−y
yα

dy

)
xα−1 + o

(
xα−1

)
, (3.10)

so xρc+δ ∼ cαδ
1/(α−1), g′(ρc + δ) ∼ −E[η]xρc+δ ∼ −E[η]cαδ

1/(α−1). For α = 2 we
have Ex[η] = E[η] − CK(1 + o(1))x log(1/x) that entails δ ∼ ρ2

cCKxρc+δ log xρc+δ
so xρc+δ ∼ δ/(ρ2

cCK log(1/δ)) and with g′(ρ) ∼ −E[η]xρ we conclude.

�

Proof of Theorem 1.4. Of course we are going to use intensively

fH(h) = sup
ρ∈[0,1]

(hρ+H(ρ) + g(ρ)) , f′H(h) = ρh and H ′(ρh) + g′(ρh) = −h , (3.11)

where the second equation identifies the unique optimizer ρh, as long as ρh > 0. So the
second and third identity are written for ρh > 0. Note also that (3.3) implies that g(·) is
C1 also at ρc.

We start with the case hHc = −H ′(0) > −∞: one readily sees that ρh = 0 for h ≤ hHc
and, by the first identity in (3.11), fH(h) = H(0) for these values of h. On the other hand,
for h > hHc , the second identity in (3.11) can be written as −(H ′(ρh)−H ′(0))− g′(ρh) =
(h− hHc ) and we see that it has a strictly positive solution ρh(= f′H(h)) because the left-
hand side is an increasing function of ρh, and this directly yields fH(h) > H(0). Therefore
hHc is a critical (i.e., non analyticity) point.

We now recall that we assume (1.6). Here is the h↘ hHc analysis:

• if ρc > 0 then h− hHc = −H ′(ρh) +H ′(0) ∼ cHρh, so f′H(ρ) = ρh ∼ (h− hHc )/cH
and fH(ρ)−H(0) ∼ (h− hHc )2/(2cH);
• if ρc = 0 then h− hHc = −H ′(ρh) +H ′(0)− g′(ρh) and, by Proposition 3.1(1), we

have (with cα = c/(1− α))

h− hHc ∼


cαρ

α/(1−α)
h if α ∈ (0, 1/2) ,

(c1/2 + cH)ρh if α = 1/2 ,

cHρh if α ∈ (1/2, 1] ,

(3.12)

and, like above, from f′H(ρ) = ρh we extract the claimed asymptotic behaviors.

We turn now to hb, of course when hb > hHc (so α > 1 and H(·) is non trivial) otherwise
we are in the case we just considered. The origin of the hb singularity is simply the fact
that fH(h) is determined by different variational problems according to whether h < hb
and h > hb. In fact h ≤ hb means ρh ≤ ρc, i.e. g(ρ) = 0, and the variational problem in
this case reduces to fH(h) = freg

H (h) = supρ∈[0,1] (hρ+H(ρ)). For h > hb instead ρh > ρc,

i.e. g(ρ) > 0, and one has to use the full expression for fH(·).
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Let us analyse the singularity at hb. We start by remarking that we are just need to
do a local analysis at hb = −H ′(ρc): by introducing J(y) := H(ρc + y)−H(ρc)−H ′(ρc)y
and G(y) = g(ρc + y), we can work with

F (x) := sup
y

(xy + J(y) +G(y)) and F reg(x) := sup
y

(xy + J(y)) . (3.13)

The maximizer yx for F (·) is the (unique) solution of U ′(yx) = −x with U = J + G. We
remark from the start that F (x) ≤ F reg(x) and the inequality is strict for x > 0.

Consider first the case of κ which is not an integer and set k = bκc, so k = 2, 3, . . .: this
means that we are considering α ∈ (1, 2). For y ↘ 0 we have

U(y) = −a2y
2 − a3y

3 − . . .− akyk − bκyκ + o(yκ) , (3.14)

where bκ > 0 is the constant c in (3.4). Moreover, still by (3.4) , we have

U ′(y) = −2a2y − 3a3y
2 − . . .− kaky

k−1 − κbκyκ−1 + o
(
yκ−1

)
. (3.15)

Note that a2 = |J ′′(0)| > 0, but the other a· coefficients are just real numbers. From
(3.15) we extract that as x↘ 0

F ′(x) = yx = c1x+ c2x
2 + . . .+ ck−1x

k−1 − cκxκ−1 + o
(
xκ−1

)
, (3.16)

where c1 = 1/(2a2) and cκ = κbκ/(2a2)κ. so

F (x) =
1

2
c1x

2 +
1

3
c2x

3 + . . .+
1

k
ck−1x

k − 1

κ
cκx

κ−1 + o
(
xκ−1

)
=: Pk(x)− 1

κ
cκx

κ−1 + o
(
xκ−1

)
,

(3.17)

where the last line defines Pk(x), a polynomial of degree k.
Since the analysis we have developed can be repeated for F reg(x), that is with U = J , in

an essentially identical (in fact, simpler) way, and considering x → 0 (not simply x ↘ 0)
we readily see that F reg(x) = Pk(x) +O(xk+1). This completes the case of κ non integer.

Let us consider now the cases κ = k = 2, 3, . . ..
When κ = 2, that is α = 2 (and E[η2] = ∞), for x ↘ 0 we have U ′(y) = −2a2y −

2b2y/ log(1/y)+h.o., of course h.o. means higher order. Therefore yx = x/(2a2) −
(b2/(2a

2
2))x/ log(1/x)+h.o., which yields F (x) = x2/(4a2) + (b2/(4a

2
2))x2/ log(1/x)+h.o..

For x ↗ 0 it suffices to repeat the same analysis, but this time there is no logarithmic
terms and (b2/(4a

2
2))x2/ log(1/x) becomes simply O(x3).

For κ = k = 3, 4, . . . the analysis changes slightly because the last two explicit terms in
the right-hand side of (3.14) and (3.15) have the same behavior. Therefore the coefficient
appearing in front of the term yk in the development for U(y) is ak + bk, respectively ak,
when y ↘ 0, respectively y ↗ 0. This mismatch directly reflects on a mismatch in the xk

term of the two developments for F (x). �

4. Path properties in the non disordered case: proof of Theorem 1.6

The basic step is observing that the probability PΨ
N,h introduced in (1.7) is a superpo-

sition of probabilities in which the number of contacts is fixed:

PΨ
N,h(·) :=

∑N
m=1 exp(hm)Ψ(m,N)P(τm = N)QN,m(·)∑N

m=1 exp(hm)Ψ(m,N)P(τm = N)
, (4.1)

where QN,m is the law of τ ∩ [0, N ] conditioned to τm = N . So QN,m is the law of the
renewal conditioned to visiting N in precisely m steps and can of course be viewed as a non
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disordered pinning model conditioned to having m contacts (one of which is at N). But
this process is very relevant well beyond pinning models and in fact it has been studied
in depth: we collect here the results we will use (that are only a minimal part of what is
available in the literature).

Recall the notations introduced for Theorem 1.6:

Proposition 4.1. In two parts, the first applies only to α > 1, the second one is general:

(1) for every ρ ∈ [0, ρc) and every ε ∈ (0, (ρc − ρ)/2) we have

lim
N→∞

inf
m: |m/N−ρ|≤ε

QN,m

(∣∣∣∣η1,N

N
−
(

1− ρ

ρc

)∣∣∣∣+
η2,N

N
≤ 2ε

ρc

)
= 1 . (4.2)

(2) for every ρ ∈ (ρc, 1) and every ε ∈ (0,min(ρ− ρc, 1− ρ)/2)

lim
N→∞

inf
m: |(m/N)−ρ|≤ε

QN,m

(∣∣∣η1,N

N

∣∣∣ ≤ ε) = 1 . (4.3)

Proof. The first part is a result in the big-jump domain and one can directly apply the
(much sharper and much more general) result in [5, Th. 1] (see also [19]) that implies that
for ρ < ρc and every ε̃ > 0

lim
N→∞:
m/N∼ρ

QN,m

(∣∣∣∣η1,N

N
−
(

1− ρ

ρc

)∣∣∣∣+
η2,N

N
> ε̃

)
= 0 . (4.4)

Therefore if we set

pN,m := QN,m

(∣∣∣∣η1,N

N
−
(

1− ρ

ρc

)∣∣∣∣+
η2,N

N
>

2ε

ρc

)
, (4.5)

then limN→∞ pN,mN = 0 if mN/N → ρ < ρc. This implies that, with ρ and ε like in the
statement limN→∞ supm:|m/N−ρ|≤ε pN,mN = 0 because otherwise there exists p > 0 and a

subsequence (Nj)j∈N such that limjmj/Nj ∈ [ρ− ε, ρ+ ε] and pNj ,mj ≥ p for every j, in
contradiction with limN pN,mN = 0.

The second part is in the Large Deviation regime and we can perform the standard tilting
procedure in a direct way because of the constraint that there are exactly m contacts and
the last one is in N . Explicitly:

QN,m (A) = P
(
τ (q) ∈ A, τ (q)

m = N
)/

P
(
τ (q)
m = N

)
, (4.6)

with τ (q) the renewal process with inter-arrival probability distribution given by Kq(n) ∝
K(n) exp(−qn), and q = q(m/N) is the unique solution of µq :=

∑
n nKq(n) = N/m.

We can now apply the Local Central Limit Theorem for triangular arrays (see e.g. [18,
Th. 1.2]) that gives

lim
m→∞

sup
M∈N

∣∣∣∣∣∣
√
σ2
qmP

(
τ (q)
m = M

)
− fN

M −mµq√
σ2
qm

∣∣∣∣∣∣ = 0 , (4.7)

with µq and σ2
q respectively sum and variance of τ

(q)
1 , and fN (·) is the density of a standard

Gaussian variable. From (4.7) we readily extract that with ρ and ε as required in the
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statement there exists c > 0 and m0 > 0 such that, uniformly in |m/N − ρ| ≤ ε we have

that P
(
τ

(q)
m = N

)
≥ 1/(c

√
m) for every m ≥ m0. Therefore

QN,m

(∣∣∣η1,N

N

∣∣∣ > ε
)
≤ c
√
mP

(
sup

j=1,...,m
τ

(q)
j − τ

(q)
j−1 > εN

)
≤ cm3/2P

(
τ

(q)
1 > εN

)
,

(4.8)
and the right-most term vanishes, with an exponential rate, when m→∞. �

Now we observe that, in analogy with (4.1) we have

ZΨ
N,h =

N∑
m=1

exp(hm)Ψ(m,N)P(τm = N) , (4.9)

Recall that we use ρh = f′H(h) for h 6= hHc , cf. (1.21), so ρh is the unique point that
maximizes ρ 7→ ρh+H(ρ) + g(ρ).

The central estimate for the proof of Theorem 1.6 is:

Lemma 4.2. For every ε > 0 and every h 6= hHc

ZΨ
N,h

N→∞∼ ZΨ,ε
N,h :=

∑
m∈{1,...,N}:
|m/N−ρh|≤ε

exp(hm)Ψ(m,N)P(τm = N) . (4.10)

Proof. We have

0 ≤ ZΨ
N,h − ZΨ,ε

N,h ≤ c
∑

m∈{1,...,N}:
|m/N−ρh|>ε

exp ((h+ b)m+NH(m/N)) P(τm = N)

≤ c2
∑

m∈{1,...,N}:
|m/N−ρh|>ε

exp ((h+ 2b)m+NH(m/N) +Ng (m/N))

≤ c2N exp

(
2bN +N sup

ρ: |ρ−ρh|>ε
(ρh+H(ρ) + g(ρ))

)
,

(4.11)

where in the first step we have used the hypothesis (1.3), so b > 0 can be chosen arbitrarily
small and c = c(b) just needs to be chosen sufficiently large. In the second step instead
we used (3.2) of Proposition 3.1. Now it suffices to remark that

sup
ρ: |ρ−ρh|>ε

(ρh+H(ρ) + g(ρ)) = fH(h)− qε , (4.12)

with qε > 0 (here we use h 6= hHc , but we stress that this is needed only if H(·) is trivial)
and therefore, by choosing b = qε/5 for N sufficiently large, we have

0 ≤ ZΨ
N,h − ZΨ,ε

N,h ≤ exp (fH(h)− qε/2) . (4.13)

Since logZΨ
N,h ∼ NfH(h) we are done. �

Proof of Theorem 1.6. (1.21) follows because

PΨ
N,h

(
A0
N

)
=

ZΨ,ε
N,h

ZΨ
N,h

N→∞−→ 1 with A0
N :=

{
τ :

∣∣∣∣ |τ ∩ (0, N ]|
N

− ρh
∣∣∣∣ ≤ ε} , (4.14)
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by Lemma 4.2. For ρc > 0 (α > 1 and we assume h 6= hb) we consider the event

A1
N :=

{
τ :

∣∣∣∣η1,N

N
−
(

1− ρh
ρc

)
+

∣∣∣∣+
η2,N

N
≤ 2ε

ρc

}
. (4.15)

By Lemma 4.2 we have

PΨ
N,h

(
A0
N ∩A1

N

) N→∞∼ 1

ZΨ,ε
N,h

∑
m: |m/N−ρh|≤ε

exp(hm)Ψ(m,N)P(τm = N)QN,m

(
A1
N

)
.

(4.16)
Recall now that we assume h 6= hb, so ρh 6= ρc. By Proposition 4.1 we have that for ε
sufficiently small QN,m

(
A1
N

)
tends to one as N →∞, with the constraint we have on m,

and this readily entails that numerator and denominator in the right-hand side of (4.16)
are asymptotically equivalent, so (1.22) is established. In the case ρc = 0 we change the
event A1

N , but the argument is the same. �

5. Path properties in the disordered case: proof of Theorem 1.8(2)

We start with an estimate on the disordered pinning model that is in the spirit of the
sharper, but also, to a certain extent, different (see Remark 5.2), result in [37, Theo-
rem 2.5].

Lemma 5.1. Consider the Ψ ≡ 1 model for h such that f(β, h) > 0. Then for every γ ∈
(0, f(β, h)] there exists an a.s. finite random variable N0(γ, ω) such that for N ≥ N0(γ, ω)

PN,ω,β,h (η1,N > γN) ≤ exp (−γNf(β, h)/2) . (5.1)

Proof. Set PN,ω = PN,ω,β,h. We also choose γ ∈ (0, f(β, h)/2]. The key estimate is

PN,ω (η1,N > γN) =
∑

n1,n2∈{1,...,N}:
n2−n1>γN

Zn1,ωK(n2 − n1)eβωn2Zn2,θn2ω

ZN,ω

≤
∑

n1,n2∈{1,...,N}:
n2−n1>γN

Zn1,ωK(n2 − n1)eβωn2Zn2,θn2ω

Zn2,ωZn2,θn2ω
≤

∑
n1,n2∈{1,...,N}:
n2−n1>γN

Zn1,ω

Zn2,ω
eβωn2 . (5.2)

Now we observe that Zn1,ω ≤ C(ω) exp(n1f(β, h) + γ/6) for every n1 ∈ N and Zn2,ω ≥
exp(n2f(β, h)−γ/6) for every n2 ≥ γN and for N larger than a random threshold, possibly
dependent also on γ. Therefore

PN,ω (η1,N > γN) ≤ C(ω)N2 exp(−(f(β, h)− γ/3)γN) ≤ exp(−γNf(β, h)/2) , (5.3)

always for N larger than a random threshold. �

Remark 5.2. Lemma 5.1 is a rough version of the sharp statement (in probability) for
the size of the largest excursion in the localized phase [37, Th. 2.5]. In [37, Th. 2.5] the size
of the largest excursion in the localized phase is shown to be equal, in P( dω) probability
and to leading order, to c(β, h) logN , for a suitable choice of c(β, h) > 0. Lemma 5.1
however, with respect to [37, Th. 2.5], gives a P( dω)-almost sure estimate and, above all,
an exponential decay rate in the quenched probability proportional to N .
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Let us consider now the constrained case. Recalling (1.12) we set

ZN,m,ω,β := E

exp

β N∑
j=1

ωjδj

1τm=N

 , (5.4)

Proposition 5.3. Choose any ρ ∈ (0, 1). Then for every γ > 0 there exists ε0 such that
for ε ∈ (0, ε0)

lim
N→∞

sup
m: |m/N−ρ|≤ε

QN,m,ω,β (η1,N > γN) = 0 . (5.5)

Proof. It suffices to prove the result for γ small. Set AN = {η1,N > γN}. We have

PN,ω,β,h(AN ) =
1

ZN,ω,β,h

N∑
m=1

ehmZN,m,ω,βQN,m,ω,β(AN ) , (5.6)

Therefore for every ρ ∈ (0, 1), every ε > 0 and every h we have

sup
m: |m/N−ρ|≤ε

QN,m,ω,β(AN ) ≤ ZN,ω,β,h
infm: |m/N−ρ|≤ε ehmZN,m,ω,β

PN,ω,β,h(AN ) . (5.7)

Choose h such that ∂hf(β, h) = ρ, so that P( dω)-a.s.

lim
N→∞

1

N
logZN,ω,β,h = g(β, h) + hρ . (5.8)

Therefore we can use Proposition 6.2 to bound the ratio of partition functions in (5.7)
thus obtaining that there exists cρ > 0 such that for N larger than a random threshold

sup
m: |m/N−ρ|≤ε

QN,m,ω,β(AN ) ≤ exp (cρεN) PN,ω,β,h(AN ) . (5.9)

By combining this last estimate with (5.1) we see that for ε < γf(β, h)/(2cρ) – and
satisfying also the other smallness requirements in Proposition 6.2 – we have that a.s.

lim
N→∞

sup
m: |m/N−ρ|≤ε

QN,m,ω,β(AN ) = 0 . (5.10)

�

Proof of Theorem 1.8(2). We proceed like in the β = 0 case, see (4.11) of Lemma 4.2, re-
placing P(τm = N) with ZN,m,ω,β and by using Proposition 6.2 instead of Proposition 3.1.
We use ρh the optimizer of the first variational problem in (1.14) and we exploit the

hypothesis (1.3). This way we see that there exists N0(ω)
a.s
< ∞ such that for N ≥ N0(ω)

0 ≤ ZΨ
N,ω,β,h − ZΨ,ε

N,ω,β,h ≤ c
∑

m∈{1,...,N}:
|m/N−ρh|>ε

exp ((h+ b)m+NH(m/N)) P(τm = N)ZN,m,ω,β

≤ c2N exp

(
2bN +N sup

ρ: |ρ−ρh|>ε
(ρh+H(ρ) + g(β, ρ))

)
,

(5.11)

where ZΨ,ε
N,ω,β,h is the direct generalization of the analogous quantity in the β = 0 case,

see Lemma 4.2. Since b can be chosen arbitrarily small and by (strict) concavity of
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H(·) + g(β, ·) (note that, since β > 0, g(β, ·) is strictly concave) we obtain also in this
case that for every ε > 0 there exists pε > 0 such that

0 ≤ ZΨ
N,ω,β,h − ZΨ,ε

N,ω,β,h ≤ exp (N(fH(β, h)− pε)) , (5.12)

for N larger than an a.s . finite random quantity. So the fact that the ratio of ZΨ,ε
N,ω,β,h

and ZΨ
N,ω,β,h tends a.s. to one takes care of (1.25) because ρh = ∂hfH(β, h) for every h.

For (1.26) we use the β > 0 version of (4.1), that is

PΨ
N,ω,β,h(·) =

∑N
m=1 exp(hm)Ψ(m,N)ZN,m,ω,βQN,m(·)∑N

m=1 exp(hm)Ψ(m,N)ZN,m,ω,β
. (5.13)

Now we fix any h > hHc (β), so ρh > 0, and we observe that, by (1.25), we have that for
every ε > 0 and a.s.

PΨ
N,ω,β,h (η1,N > γN)

N→∞∼ PΨ
N,ω,β,h

(∣∣∣∣∣
N∑
n=1

δj − ρhN
∣∣∣∣∣ ≤ εN, η1,N > γN

)
. (5.14)

We can now insert this event into (5.13) and, by using Proposition 5.3, we readily see that
for ε small the right-hand side of (5.14) vanishes a.s. when N → ∞. Since γ > 0 can be
chosen arbitrarily small, we are done. �

6. On free energies and variational formulas: proof of Theorem 1.3

6.1. On g(β, ρ). Recall that the definition (5.4) of ZN,m,ω,β. For ρ ∈ (0, 1] we set

Z̃N,ω(ρ) := min
m∈{bρNc,dρNe}

ZN,m,ω,β , (6.1)

where the set over which the minimum is taken reduces to a singleton if ρN is integer.

Note that ZN,m,ω,β is zero if m = 0, so Z̃N,ω(ρ) = 0 whenever ρ < 1/N .

Lemma 6.1. (log Z̃N,ω(ρ))N=1,2,... is super-additive, namely: for every N1, N2 ∈ N we
have

log Z̃N1+N2,ω(ρ) ≥ log Z̃N1,ω(ρ) + log Z̃N2,θN1ω(ρ) , (6.2)

where (θω)n = ωn+1.

Proof. First of all remark that for every b, c ≥ 0

bbc+ bcc ≤ bb+ cc ≤ db+ ce ≤ dbe+ dce , (6.3)

which implies that both the lower and upper integer part of c+b coincide with the sum of a
suitably chosen combination of upper and/or lower integer parts of b and c. For example if
neither b nor c is an integer, then either db+ce = dbe+dce or db+ce = dbe+bcc = bbc+dce.
On the other hand, if b is an integer and c is not db+ce = b+dce = bbc+dce = dbe+dce =.
The case in which b and c are both integers is of course trivial.

Then remark also that

logZN1+N2,m1+m2,ω,β ≥ logZN1,m1,ω,β + logZN2,m2,θN1ω,β , (6.4)

which follows by restricting the expectation in the definition of ZN1+N2,m1+m2,ω,β to the
event τm1 = N1 and by using the independence of the increments of τ .

Since dρ(N1 + N2)e is one among dρN1e + dρN2e, dρN1e + bρN2c and bρN1c + dρN2e
and since exactly the same holds true is we switch upper integer parts with lower integer
parts, we readily see that (6.2) holds and the proof is complete. �
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Proposition 6.2. For every ρ ∈ [0, 1] and every β ≥ 0 the limit

lim
N→∞
m/N→ρ

1

N
E logZN,m,ω,β =: g(β, ρ) , (6.5)

exists and the convergence holds P( dω)-a.s, with the same (deterministic) limit, without
averaging with respect to P. Moreover, if we set

DN,ε,ρ(ω) := sup
m∈{1,...,N}:
|m/N−ρ|≤ε

∣∣∣∣ 1

N
logZN,m,ω,β − g(β, ρ)

∣∣∣∣ , (6.6)

for ρ ∈ (0, 1) and ε ∈ (0,min(ρ/2, (1 − ρ)/2) we can exhibit a constant cρ > 0, with
supρ∈[b,1−b] < ∞ for every b ∈ (0, 1/2), such that DN,ε,ρ ≤ cρε for every ω and N ≥
N0(ε, ρ, ω), with P(N0(ε, ρ, ω) <∞) = 1.

For ρ = 0 we have g(β, 0) = 0 and there exists c0 > 0 such that DN,ε,ρ ≤ c0ε for every
ε ∈ (0, 1/2) and for N larger than an a.s. finite random variable, like above. For ρ = 1
instead g(β, 1) = logK(1) and there exists c1 > 0 such that DN,ε,1 ≤ c1ε+g(1−2ε)−g(1)
for N larger than a suitable a.s. finite random variable.

Proof. For this proof we we fix β ≥ 0 and drop the dependence on β from ZN,m,ω,β
We treat first the case ρ ∈ (0, 1). In this case we apply Kingman Sub-additive Ergodic
Theorem [45], but one has to take care of the fact that ZN,m,ω = 0 for ρN < 1. We deal

with this by considering N0 = N0(ρ) = d1/ρe and by focusing on (log Z̃nN0,ω(ρ))n=1,2,....
By Lemma 6.1 and by Kingman Sub-additive Ergodic Theorem we have that

lim
n→∞

1

nN0
log Z̃nN0,ω(ρ) = lim

n→∞

1

nN0
E log Z̃nN0,ω(ρ) =: g(β, ρ) , (6.7)

where the first limit is P( dω)-a.s.. We now proceed to a surgical procedure to compare

the partition function ZN,m,ω of the systems that satisfy |m/N − ρ| ≤ ε with Z̃nN0,ω(ρ),
n suitably chosen: we are therefore going to establish (6.6), from which (6.5) follows. By
the same trick used in the proof of Lemma 6.1 we have that

logZN,m,ω ≥ log Z̃N−`N ,m′,ω(ρ) + logZ`N ,m−m′,θN−`N ω =: T1 + T2 , (6.8)

where N−`N is a multiple of N0 and m′ := bρ(N−`N )c. Recall that we have |m/N−ρ| ≤ ε
and that we have the constraint that

1 ≤ m−m′ ≤ `N , (6.9)

which simply means that the second portion of the system contains at least one contact
and no more than its length. These requirements are satisfied if

`N ≥ max

(
2 + εN

ρ
,
1 + εN

1− ρ

)
, (6.10)

and we can therefore assume that in addition

lim sup
N

`N
N
≤ εmax

(
1

ρ
,

1

1− ρ

)
. (6.11)

Note also that these definition require N sufficiently large, more precisely N is larger than
a multiple of N0 and the proportionality constant depends on ρ. Everything we claim
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below is for these values of N . Let us remark now that for the term T1 in (6.8) we have

1

N
log Z̃N−`N ,ω(ρ) ≥

(
1− `N

N

)
1

N − `N
log Z̃N−`N ,ω(ρ)

≥
(

1− `N
N

)
g(β, ρ)−

∣∣∣∣ 1

N − `N
log Z̃N−`N ,ω(ρ)− g(β, ρ)

∣∣∣∣
≥ (1− cε) g(β, ρ)−

∣∣∣∣ 1

N − `N
log Z̃N−`N ,ω(ρ)− g(β, ρ)

∣∣∣∣ ,
(6.12)

with c = 2 max(1/ρ, 1/(1 − ρ)), cf. (6.11) (this requires N sufficiently large), and the
rightmost term that vanishes a.s. as N →∞.

We have now to bound T2 from below. We proceed via a rough bound that consists in
selecting only one renewal trajectory (simply the one for which the m −m′ contacts are
at the right end of the system):

logZ`N ,m−m′,θN−`N ω ≥ logZ`N−(m−m′−1),1,θN−`N ω +

m−m′−1∑
j=1

logZ1,1,θN−jω

≥ logK(`N − (m−m′ − 1)) + (m−m′ − 1) logK(1) + β

m−m′−1∑
j=0

ωN−j

≥ −cεN + β

m−m′−1∑
j=0

ωN−j ≥ −cεN − β
`N−1∑
j=0

|ωN−j | , (6.13)

where in the step before the last c > 0 depends on ρ and we have simply used that m−m′ ≤
`N = O(εN), see (6.10) and (6.11). Note that E

∑`N−1
j=0 |ωN−j | = `NE[|ω1|] = O(εN) and

that, by an elementary Large Deviation bound via exponential Markov inequality, we

see that P(
∑`N−1

j=0 |ωN−j | ≥ 2`NE[|ω1|]) ≤ exp(−c`N ) ≤ exp(−c′εN) so that, by Borel-

Cantelli,
∑`N−1

j=0 |ωN−j | ≤ 2`N = O(εN) for N sufficiently large, how large may depend
on ω.

The upper bound is obtained exploiting the same idea: the first step is to observe that

logZN,m,ω ≤ log Z̃N+`N ,ω(ρ)− min
m′∈{m+,m−}

logZ`N ,m′−m,θNω , (6.14)

where m− = bρ(N + `N )c and m+ = dρ(N + `N )e. Once again, the first term on the
right-hand side is controlled using (6.7) and we need a lower bound on logZ`N ,m′−m,θNω,
like before. With the same procedure we obtain

min
m′∈{m+,m−}

logZ`N ,m′−m,θNω ≥ −cεN − β
`N−1∑
j=0

|ωN−j | . (6.15)

This term can be bounded a.s. precisely like for the lower bound, and, by putting upper
and lower bound together we obtain the bound for ρ ∈ (0, 1) on DN,ε,ρ(ω), cf. (6.6),
claimed in Proposition 6.2. Note that this bound directly implies (6.5).

For the case ρ = 0 we can use the same trick as in (6.13) to get the lower bound

logZN,m,ω ≥ logK(N −m+ 1) + (m− 1) logK(1)− β
N∑

j=N−m+1

|ωj | , (6.16)
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and it is straightforward to see that − logZN,m,ω is bounded above by a constant time
ε plus a random contribution that is also O(εN) both in L1 and a.s.. So (logZN,m,ω)−
is under control and it suffices to remark that EZN,m,ω = exp(λ(β)m)P(τm = N) ≤
exp(λ(β)m) which is in turn bounded by exp(λ(β)εN). Therefore E logZN,m,ω ≤ 2λ(β)Nε
and Borel-Cantelli yields also that logZN,m,ω ≤ 2λ(β)m ≤ λ(β)Nε for N larger than a
constant that may depend on ω. This completes the proof for ρ = 0.

For the case ρ = 1 we write

logZN,m,ω = log P (τm = N) + log EN,m

exp

−β N∑
j=1

ωj(1− δj)

+ β
N∑
j=1

ωj , (6.17)

where QN,m(·) = P(·|τm = N), like in Section 4. By Proposition 3.1, notably (3.2), we
have | log P (τm = N) − g(1)| ≤ g(1 − 2ε) for N sufficiently large. The last term is also
easily disposed of since by standard estimates for IID sequence of centered variables in Lp
for every p we have that this term is a.s. O(N c), any c > 1/2.

We are therefore left with controlling the second term in (6.17). By Jensen inequality
have the lower bound

log EN,m

exp

−β N∑
j=1

ωj(1− δj)

 ≥ −β N∑
j=1

ωjuN,m(j) , (6.18)

with uN,m(j) = (1−EN,m[δj ]). The bound in L1 is obvious because
∑

j uN,m(j) = N−m ≤
εN . For the a.s. bound the Markov inequality yields

P

 N∑
j=1

ωjuN,m(j) ≥ εN

 ≤ exp

−tεN +
∑
j

λ(uN,m(j)t)


≤ exp

−tεN +
∑
j

(uN,m(j))2t2

 ≤ exp
(
−tεN + εNt2

)
≤ exp (−cεN) , (6.19)

where we have used that λ(u) ∼ u2/2 for u small, so λ(u) ≤ u2 for |u| ≤ u0, and
uN,m(j) ≤ 1 as well as

∑
j uN,m(j) = N −m ≤ εN . In the last step c is the maximum

of t− t2 for t ∈ [0, u0]. The Borel-Cantelli Lemma warrants that the quantity in (6.18) is
bounded below by −2βεN for N larger than a random threshold.

For the upper bound it suffices to remark that

EEN,m

exp

β N∑
j=1

ωj(1− δj)

 = exp((N −m)λ(β)) ≤ exp(λ(β)εN) , (6.20)

which, by using again the Markov inequality and Borel-Cantelli, yields the a.s. bound we
are looking for. �

Proposition 6.3. g(β, ·) is concave on [0, 1] and it is continuous up to the boundary.
Moreover

lim
ρ↗1

g(β, 1)− g(β, ρ)

1− ρ = −∞ . (6.21)
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Proof. Choose λ ∈ (0, 1) and ρ1, ρ2 ∈ [0, 1] with ρ1 < ρ2. We have

1

N
E logZN,dλρ1+(1−λ)ρ2Ne,ω ≥

1

N
E logZdλNe,dλρ1Ne,ω +

1

N
E logZN−dλNe,dλρ1+(1−λ)ρ2Ne−dλρ1Ne,ω . (6.22)

By Proposition 6.2 we can pass to the limit N →∞ and we obtain

g (β, λρ1 + (1− λ)ρ2) ≥ λg(β, ρ1) + (1− λ)g(β, ρ2) , (6.23)

so g(·) is concave, hence continuous because it is bounded. Both the continuity at 0
and 1, with g(β, 0) = 0 and g(β, 1) = logK(1), follow directly from the estimates in
Proposition 6.2 (we observe that the continuity in (0, 1) can be extracted directly from
Proposition 6.2 as well).

For what concerns (6.21) we need an adequate lower bound on g(β, ρ). This follows by
taking the expectation of both sides of (6.17) and (6.18). This way we obtain

E logZN,m,ω ≥ log P (τm = N) , (6.24)

and the general bound g(β, ρ) ≥ g(0, ρ). This inequality becomes an equality at ρ = 1
(this follows once again from (6.17)) and therefore g(β, 1)−g(β, ρ) ≤ g(0, 1)−g(0, ρ), so
that the claim follows from the analogous claim for the case β = 0. �

6.2. Proof Theorem 1.3.

Proof. Let us make the preliminary remark that it suffices to show a.s. convergence because
(logZΨ

N,ω,β,h/N)N=1,2,... is uniformly integrable and therefore we have also convergence

in L1. Uniform integrability can be established by making upper and lower bounds on
ZΨ
N,ω,β,h in the spirit of the repeated estimates we used in the proof of Proposition 6.2 (but

what suffices here is substantially rougher), so one readily sees that there exists C > 0
(that depends on Ψ, on K(·) and on h) such that

1

N

∣∣logZΨ
N,ω,β,h

∣∣ ≤ β

N

N∑
j=1

|ωj |+ C . (6.25)

Since the expectation of the square of the right-hand side is bounded uniformly in N ,
uniform integrability is proven.

We now proceed with proving a.s. convergence by suitable lower and upper bounds on
the sequence. Remark that the expected limit supρ∈[0,1] (hρ+H(ρ) + g(β, ρ)) is in fact a

maximum which is uniquely achieved at ρh ∈ [0, 1) by the assumptions on H(·) and by
what we have proven on g(β, ·) (that is, Proposition 3.1 and Proposition 6.3).

For the lower bound it suffices to remark that for every ρ (1.10) (with the notation
(5.4)) yields thanks to (1.4) of Definition 1.1

ZΨ
N,ω,β,h ≥ c(b) exp (mh+NH(m/N)− bN)ZN,m,ω,β , (6.26)

With b that can be chosen arbitrarily small. If ρh ∈ (0, 1) it suffices to choose ρ = ρh and
pass to the limit: by Proposition 6.2 we obtain that a.s.

lim inf
N→∞:
m/N∼ρh

1

N
ZΨ
N,ω,β,h ≥ ρhh+H(ρh) + g(β, ρh)− b . (6.27)

Since b > 0 is arbitrary, we are done for the case ρh ∈ (0, 1). If ρh = 0 we can repeat the
same argument for ρ = ρj , with ρj ↘ 0, and the lower bound analysis is complete.
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For the upper bound we use (1.3) of Definition 1.1

ZΨ
N,ω,β,h ≤ c(b)

N∑
m=1

exp (mh+NH(m/N) + bN)ZN,m,ω,β , (6.28)

so

lim sup
N

1

N
logZΨ

N,ω,β,h ≤ lim sup
N

max
m=1,...,N

(
m

N
h+H

(m
N

)
+

1

N
logZN,m,ω,β + b

)
.

(6.29)
To deal with the maximum we fix a small value positive value of ρ̃ and the grid of densities
ρj := ρ̃+j(1−2ρ̃)/M , M a positive integer, for j = 0, 1, . . . ,M : we can therefore group the
maximum intoM+3 blocks. We can now apply Proposition 6.2 in taking the limitN →∞,
with ε = 1/M for for the blocks corresponding to the densities ρ0 = ρ̃, ρ1, . . . , ρM = 1− ρ̃,
and with ε = ρ̃ fro the two boundary blocks. It is then a matter of sending first M to ∞
and ρ̃ to zero. Since also b can be chosen arbirarily small, we conclude that a.s.

lim sup
N

1

N
logZΨ

N,ω,β,h ≤ sup
ρ∈[0,1]

(hρ+H(ρ) + g(β, ρ)) . (6.30)

This completes the proof of Theorem 1.3. �

Appendix A. Circular DNA models

In [6, 7] (to which we refer also for a more complete literature) the problem of modeling
circular DNA is considered: circular DNA corresponds notably to the genetic structures
called plasmids that are present in cells. Plasmids are also used for genetic manipulations.
If a doubled stranded DNA has a circular structure, that is if the strands are not free at
their ends but form an ring, then the separation of the two strands – even just locally,
global separation may not be possible – generates a conflict with the double helix structure
and the physical properties of the DNA polymer. In fact, in a double stranded DNA with
free ends, the local separation of the two strands just induces a rotation in the chain. But
in the circular case (Fig. 6) this rotation cannot take place: the ring of the two strands
has a winding number that can change if the backbone of DNA polymer can absorb,
typically with an energetic cost, this (over)twist. Another way of absorbing the winding
number is by forming nontrivial spatial structures called supercoils at locations where the
two strands are attached (this induces a strain on the base pairs involved, so the relative
contact energy changes): everybody has experienced the formation of supercoils when
trying to disentangle two ropes, or even just one rope.

Figure 6. A schematic image of a circular DNA with three loops and four supercoil
sections. The thick line represents the segments of DNA on which the two stands are in
contact. The thin line represents a single strand portion, and this happens only in loops.
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The physical phenomena we just described are very complex: the free end case is already
of great complexity! Nonetheless the (simple!) Poland-Scheraga model turns out to be a
very relevant model for DNA denaturation study in the free end case (see references in
[7, 29]). The circular case is tackled in [6, 7]: a model is built from the Poland-Scheraga and
the partition function of the model, with our notations, is (1.9). The function log Ψ(m,N),
cf. Def. 1.1, that enters the definition can be seen as a nonlocal energy. Note that the
functional dependence in Ψ is only on the length of the polymer and on the number of
contacts m. Moreover, with m contacts the total length of the loops is N −m.

Let us take a closer look at the models considered in [6, 7]:

(1) Model with overtwist. This first model is particularly simple:

Ψ(m,N) = exp
(
−χ(N −m)2/m

)
, (A.1)

with χ > 0. In this case Q(m,N) ≡ 1 and H(ρ) = −χ(1−ρ)2/ρ. We refer to [6, 7]
for explanations about the choice of the precise shape of this energy term. Simply
put, the smaller the number m of contacts is, the less likely the configuration is.
In other words, the opening of loops is penalized. The rationale is that if the loop
length increases, then overtwist is produced in the backbone, which is costly from
the energetic viewpoint.

(2) Model with overtwist and supercoils. This is less straightforward and it involves
choosing n supercoils among the m contacts. This is done by fair coin flipping:
there is no loss of generality in this choice because a bias corresponds simply to an
energetic change for supercoil contacts and in the model there is a real parameter
w that accounts for that. Here is the choice in [7]:

Ψ(m,N) =
m∑
n=0

1

2m

(
m

n

)
exp

(
nw − χ(N −m− n)2

m

)
, (A.2)

where χ > 0 and w are constants. The fair coin structure and the energetic term
for supercoils are clear: added to that there is a penalization term that favors
N −n ≈ m. Recall that in the simple overtwist case m close to N is favored. This
is simply because n supercoils are formed and the twist that remains has to be
absorbed by the portion of DNA, of length N − n, which is not in supercoil form.

The choice (A.2) is in the framework of Definition 1.1 with

H(ρ) = sup
ζ∈[0,ρ]

ψ(ζ, ρ) = ψ(ζ0(ρ), ρ), (A.3)

where

ψ(ζ, ρ) := ζw − ρ log 2− χ(1− ρ− ζ)2

ρ
+ ρ log ρ− ζ log(ζ)− (ρ− ζ) log(ρ− ζ). (A.4)

Q(m,N) is therefore (implicitly) defined and one can derive the asymptotic be-
havior for N →∞ and m/N asymptotically constant:

Q(m,N) ∼ q
(m
N

)
, with q(ρ) :=

√
ρ

ζ0(ρ)(ρ− ζ0(ρ))|∂2
ζψ(ζ0(ρ), ρ)| . (A.5)

The function ψ is concave on the convex domain {0 ≤ ζ ≤ ρ ≤ 1}. Thus, H is also
concave. Moreover H is analytic on (0, 1).
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(3) Model with supercoils. This is the χ =∞ limit of (A.2). In this limit N − n = m
and, since n ≤ m, we have that m ≥ N/2 and that the opening of a loop must be
compensated by at least as many supercoils. Explicitly we obtain

Ψ(m,N) =
1

2m

(
m

N −m

)
eNw−mw1[1/2,1](m/N) . (A.6)

Since Ψ(m,N) = 0 for m < N/2, this limit case does not fall into the framework
of Definition 1.1. A wider set-up that encompasses all models in in [6, 7] can be
found in [42, Ch. 4].

.

We remark that in both examples (1) and (2) H(0) = −∞ and (of course) H ′(0) =∞.
So, with the convention we have chosen to consider localized both the partly and fully
localized cases, the circular DNA models are localized for all values of the parameters and
they display a big-jump transition if β = 0 and α > 1.

Appendix B. On the strict convexity of the disordered pinning free
energy

Theorem B.1. Consider the Ψ ≡ 1 model, that is the disordered pinning model. For
every β ≥ 0 and every h > hc(β) we have ∂2

hf(β, h) > 0.

Proof. Let us remark that for β = 0 the result can be established by explicit computations,
but the proof that we give here works for the β = 0 case as well. In this proof PN,ω =
PN,ω,β,h and VarN,ω is the variance with respect to PN,ω. We know from [37, Proof of
Theorem 2.1] that for h > hc(β)

∂2
hf(β, h) = lim

N→∞

1

N
EVarN,ω

N−1∑
j=1

δj

 . (B.1)

We are going to condition on even sites, so let us replace N with 2N and let us denote by
Fe the σ-algebra generated by δj with j even: VarN,ω,e(·) is going to denote the variance
with respect to PN,ω( · |Fe). By Jensen’s inequality

Var2N,ω

2N−1∑
j=1

δj

 ≥ E2N,ω

Var2N,ω,e

 N∑
j=1

δ2j−1

 . (B.2)

We know consider the conditional variance on the set Eσ := {τ : δ2j = σj for j =

1, 2, . . . , N − 1} for every σ ∈ {0, 1}{1,...,N−1}. We set n(σ) :=
∑N−1

j=1 σj and `0 := 0 and

we define iteratively `j+1 = min{` > `j : σ` = 1} for j ≤ n(σ)− 1. We then redifine `j to
be 2`j and set also `n(σ)+1 := 2N . Therefore `0, `1, . . . , `n(σ)+1 are the n(σ) pinned even
sites, plus 0 and 2N that are pinned from the start. Note that

N∑
j=1

δ2j−1 =

n(σ)+1∑
k=1

`k/2∑
j=1+`k−1/2

δ2j−1 , (B.3)

and remark that, under PN,ω( · |Fe)(τ) with τ ∈ Eσ, the random variables `k/2∑
j=1+`k−1/2

δ2j−1


k=1,...,n(σ)+1

, (B.4)
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are independent. Therefore on Eσ

Var2N,ω,e

 N∑
j=1

δ2j−1

 =

n(σ)+1∑
k=1

Var2N,ω,e

 `k/2∑
j=1+`k−1/2

δ2j−1

 ≥ ∑
k=1,...,n(σ)+1
`k−`k−1=2

Var2N,ω,e (δ`k−1) . (B.5)

Since δ`k−1, under the conditional measure we are considering, is just a Bernoulli random
variable with parameter (we use the short-cut notation ω = ω`k−1)

p(ω) :=
K(1)2 exp(h+ βω)

K(1)2 exp(h+ βω) +K(2)
, (B.6)

we see that for k such that `k − `k−1 = 2

Var2N,ω,e (δ`k−1) = p (ω`k−1) (1− p (ω`k−1)) =: σ2 (ω`k−1) , (B.7)

and therefore

Var2N,ω,e

 N∑
j=1

δ2j−1

 ≥ E2N,ω

[
N−1∑
k=0

δ2kδ2k+2σ
2 (ω`k−1)

]
. (B.8)

Now we set σ2
?(L) := inf{σ2(ω) : |ω| ≤ L} > 0. We remark that σ2

?(L) > 0 for every
L > 0, but in what follows we are forced to work with L such that P(|ω| < L) > 0, that
is for L above a threshold. With this notation

EVar2N,ω,e

 N∑
j=1

δ2j−1

 ≥ σ2
?(L)EE2N,ω

[
N−1∑
k=0

δ2kδ2k+21|ω2k+1|≤L

]

≥ σ2
?(L)

(
EE2N,ω

[
N−1∑
k=0

δ2kδ2k+2

]
−NP (|ω| > L)

)
,

(B.9)

and we are left with showing that

q := lim inf
N

1

N
EE2N,ω

[
N−1∑
k=0

δ2kδ2k+2

]
> 0 , (B.10)

because it suffices to choose L so that P (|ω| > L) ≤ q/2 to obtain, see (B.1)-(B.2), that
∂2
hf(β, h) ≥ σ2

?(L)q/4 > 0.
In order to establish (B.10) we want to show that the quantity under analysis is bounded

below by limN N
−1EE2N,ω[

∑2N
j=1 δj ], which is equal to 2∂f(β, h) > 0, times a positive

constant. This can be done by explicit estimates, but for sake of conciseness we use that,
for any choice of a sequence (bN )N∈N of positive integer numbers satisfying limN bN =∞
and limN bN/N = 0, by [37, Theorem 2.2] we have uniformly on k ∈ [bN , N − bn] ∩ N

lim
N→∞

EE2N,ω[δk] = ∂hf(β, h) and lim
N→∞

EE2N,ω[δkδk+2] =: l(β, h) , (B.11)
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where the second statement is just the existence of the limit and (B.10) follows once
l(β, h) > 0 is shown. For this we write E2N,ω[δkδk+2] = E2N,ω[δk]E2N,ω[δk+2|δk = 1] and

E2N,ω[δk+2|δk = 1] =
Z2,θkω,β,hZN−k−2,θk+2ω,β,h

ZN−k,θkω,β,h
≥ C exp (−β (|ωk+1|+ |ωk+2|)) ,

(B.12)
where the constant C > 0 depends on h and on K(·): this estimate is a standard surgery
procedure ([29, Ch. 2], full details can be found in [42, Sec. 5.5]) for which one uses notably
the regularly varying character of K(·). Therefore

E2N,ω[δkδk+2] ≥ Ce−2βLE2N,ω[δk]
(
1− 1|ωk+1|+|ωk+2|>L

)
, (B.13)

and, in turn, we have

EE2N,ω[δkδk+2] ≥ Ce−2βL (EE2N,ω[δk]− P (|ω1| > L)) . (B.14)

It suffices now to choose L so that P (|ω1| > L) ≤ ∂hf(β, h)/2 to obtain that, uniformly in
k like in (B.11), we have

lim inf
N

EE2N,ω [δkδk+2] ≥ 1

2
Ce−2βL∂hf(β, h) > 0 , (B.15)

and we are done. �

We include here the result proved under restrictive conditions in Remark 1.5.

Proposition B.2. For every β ≥ 0 and every h

fH(β, h) ≥ H(0) . (B.16)

Proof. We can assume H(0) > −∞ and, with b > 0 and u, v and c(b) like in (1.4) of
Definition 1.1, we obtain that

ZΨ
N,ωβ,h ≥ c(b) exp

(
N min

ρ∈(0,b]
H(ρ)− bN

)

E

exp

β N∑
j=1

(βωj + h)δj

 ; τbbNc = N,
τ

N
∩ ((0, b) ∪ (1− b, 1)) = ∅


, (B.17)

a bound that is obtained simply by restricting the partition function to the renewals with
bbNc contacts and all at distance at least bN from the boundary. Therefore

lim inf
N→∞

1

N
E logZΨ

N,ωβ,h ≥ H(0) + lim inf
N→∞

1

N
E log E

exp

 N∑
j=1

(βωj + h)δj

 ; EN,b

 ,
(B.18)

with EN,b := {τbbNc = N, (τ/N) ∩ ((0, b) ∪ (1− b, 1)) = ∅}. Using P′(·) := P(·|EN,b)
we see that by Jensen’s inequality the quantity of which we take inferior limit in the
right-hand side of the last expression is bounded below by

1

N
E

 N∑
j=1

(βωj + h)E′[δj ]

+
1

N
log P (EN,b) = h

bbNc
N

+
1

N
log P (EN,b) . (B.19)
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Of course the limit of the first term is hb, which can be made arbitrarily small by choosing
b small. The remaining term is bounded below, for N →∞, by a (negative) quantity that
vanishes as b ↘ 0 because P(EN,b) is bounded below by K(dbNe)2 times P(τbbNc−2 =
N − 2dbNe), so, by Proposition 3.1, lim infN (1/N) log P(EN,b) = 0 for α > 1 and it
vanishes as b↘ 0 for α ∈ (0, 1]. �
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straints, PhD thesis, Université de Paris (2019), https://tel.archives-ouvertes.fr/tel-02478078

[43] F. den Hollander, Random polymers, Lectures from the 37th Probability Summer School held in
Saint-Flour, 2007. Lecture Notes in Mathematics 1974, Springer-Verlag, 2009.
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