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T he sense of agency refers to the feeling that
we control our actions and, through them,
effects in the outside world. Reinforcement

learning provides an important theoretical frame-
work for understanding why people choose to
make particular actions. Few previous studies have
considered how reinforcement and learning might
influence the subjective experience of agency over
actions and outcomes. In two experiments, par-
ticipants chose between two action alternatives,
which differed in reward probability. Occasional
reversals of action-reward mapping required par-
ticipants to monitor outcomes and adjust action
selection processing accordingly. We measured
shifts in the perceived times of actions and sub-
sequent outcomes (‘intentional binding’) as an im-
plicit proxy for sense of agency. In the first experi-
ment, negative outcomes showed stronger binding
towards the preceding action, compared to posi-
tive outcomes. Furthermore, negative outcomes
were followed by increased binding of actions to-
wards their outcome on the following trial. Exper-
iment 2 replicated this post-error boost in action
binding and showed that it only occurred when
people could learn from their errors to improve
action choices. We modelled the post-error boost

using an established quantitative model of rein-
forcement learning. The post-error boost in action
binding correlated positively with participants’ ten-
dency to learn more from negative outcomes than
from positive outcomes. Our results suggest a
novel relation between sense of agency and rein-
forcement learning, in which sense of agency is
increased when negative outcomes trigger adap-
tive changes in subsequent action selection pro-
cessing.
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Introduction

Achieving one’s goals requires detection of errors and
consequent adjustments to behaviour (Balleine and
Dickinson, 1998). A distinctive subjective experience
accompanies committing an error and registering its
outcome (Charles, King, and Dehaene, 2014). Sense
of agency is defined as the feeling of controlling one’s
actions and their effects in the outside world (Haggard
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and Chambon, 2012). However, the extensive litera-
ture on learning from errors (Dayan and Niv, 2008)
has evolved largely independently from the literature
on sense of agency. Therefore, in two experiments,
we investigated how errors in a reversal-learning task
influence sense of agency.
Explicit judgements of control or agency are influ-

enced both by performance bias (Metcalfe and Greene,
2007) and by a general self-serving bias (Bandura,
1989). A confounding effect of errors on explicit agency
judgements therefore seems inevitable. The intentional
binding paradigm (Haggard, Clark, and Kalogeras,
2002; for a review, see Moore and Obhi, 2012) of-
fers an implicit measure related to sense of agency,
which may be less subject to task demand characteris-
tics. Participants report the time of an action or of its
outcome. If the outcome follows the action with a short
and constant latency, the perceived time of the action
tends to shift towards the subsequent outcome. Simi-
larly, the perceived time of the outcome tends to shift
towards the preceding action. Critically, these effects
are stronger for voluntary actions than for involuntary
movements (Haggard, Clark, and Kalogeras, 2002).
Intentional binding may be one instance of a more gen-
eral temporal binding effect that applies to causal rela-
tions (Buehner and Humphreys, 2009; but see Cravo,
Claessens, and Baldo, 2009; Cravo, Claessens, and
Baldo, 2011). However, experimental designs that con-
trast appropriately chosen conditions can nevertheless
use binding measures as a proxy measure to investigate
different components of sense of agency.
Previous laboratory research on sense of agency of-

ten lacked ecological validity. For example, intentional
binding studies have investigated associations between
a single action and a single outcome without any signif-
icance or value for the participant (Haggard, Clark, and
Kalogeras, 2002). Outside the laboratory, however, ac-
tions are embedded in a rich perceptual, affective and
social landscape. People frequently select one action
from several possible in a given situation, to achieve
a desired goal. Only a few studies have attempted to
link implicit measures of sense of agency with outcome
valence. In Takahata et al. (2012), participants’ actions
caused tones that were associated with monetary re-
wards or penalties. They found reduced binding for
penalty trials compared to neutral or rewarded trials.
Yoshie and Haggard (2013) used human vocalizations
as either negative or positive action outcomes. They
found that negative vocalization outcomes were associ-
ated with a reduction in binding compared to neutral
and positive vocalization outcomes. Neither study ma-
nipulated the effects of contingency between partici-
pants’ actions and the rewards received, and neither
study tried to distinguish the informational value of
outcomes from their reward value. In the present work,
we manipulated occurrence of rewards to investigate
effects of reinforcement and learning.
Accordingly, we have combined intentional binding

with reward-based decision-making, seemingly for the

first time. We used a probabilistic reversal-learning ap-
proach (Cools et al., 2002; Rolls, 2000), which requires
the participant to continuously learn action-outcome
mappings, and update their action choices according
to error feedback. The action-outcome structure of re-
versal learning can be combined straightforwardly with
the intentional binding paradigm. Furthermore, prob-
abilistic reversal learning can be challenging enough
to require consistent cognitive engagement. In con-
trast, humans often readily achieve agency in situa-
tions involving new stable action-outcome relations, so
instrumental learning and sense of agency emerge too
rapidly to be measured with current paradigms.
In reversal learning, participants need to monitor the

outcome linked to each action and then correctly up-
date their expectations so as to select their next action
accordingly (Sutton and Barto, 1998). A central issue
in research on learning is how behaviour changes trial
by trial in response to feedback (Daw, 2011). In this
study, we were interested in the fluctuation of sense
of agency that accompanies reward-based decision-
making. We predicted that the occurrence of rewards
might influence not only the intentional binding asso-
ciated with a given outcome but also the intentional
binding reported on the subsequent trial.

Experiment 1: method

Participants

This study was approved by the UCL Research Ethics
Committee and conformed to the Declaration of
Helsinki. In the absence of any previous study combin-
ing intentional binding with reward-guided decision-
making, the sample size was based on a study of in-
tentional binding with valenced trial outcomes (Yoshie
and Haggard, 2013). A total of 16 participants (nine
females, all right-handed, mean age = 23 years, age
range = 18-41 years) completed the experiment and
were paid £8/hr plus a bonus for correct responses.
Data from one participant were lost due to a technical
error. All participants reported normal or corrected-to-
normal vision and hearing.

Procedure

Participants were seated at a standard computer key-
board and screen. They fixed a clock with a single
rotating hand. The clock diameter was 20mm and
the hand completed one full rotation within 2560ms.
In baseline conditions, participants pressed a key at a
time of their free choice or heard an auditory tone at a
random time. In ‘agency’ conditions, participants both
pressed a key and heard a tone. The tone occurred 250
ms after the key press. Participants were instructed
to wait for one full rotation of the clock before press-
ing a key. Tones were either high (2000 Hz) or low
(500Hz) in frequency and lasted 100ms. The high tone
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Baseline action and tone measures were first taken in 
six separate blocks of 20 trials (see below) in pseudoran-
dom order, to provide estimates of the perceived time of 
each action and each tone when presented alone, and when 
presented as the only event within a block, or mixed with 
the alternative action or tone. Next, participants completed 
two counterbalanced ‘agency’ blocks. In one block, they 
reported the perceived time of the action, in the other block 
the perceived time of the tone. Finally, the six baseline 
conditions were repeated in the reverse order. Thus, there 
were always 40 trials in each condition, and conditions 
were always blocked.

In the agency conditions, one key delivered rewarded 
high tones with a probability of 0.8 and the other key with 
probability of 0.2. The mapping was maintained across a run 
of several trials, until the participant had selected the key that 
produced the high tone (i.e., the reward) between five and 
seven times consecutively (randomized). Probability map-
pings then reversed. Nine such reversals occurred in each 
block, so each block involved 10 ‘runs’ of responses. The 
actual number of key presses per block therefore depended 
on how rapidly each participant learned the ‘correct’ key.

The cumulative total of rewarded trials was displayed at 
the end of each trial. At the end of each block, all partici-
pants were told they had reached the threshold number of 

rewarded trials required to trigger a bonus. In fact, this 
threshold was fictitious, and a bonus of £3 for each block 
was paid at the end of the experiment. This arrangement 
ensured that participants were not overpaid for prolonging 
the experiment by repeatedly making incorrect responses.

In each trial, a visual feedback indicating either reward 
(tick) or no reward (cross) reward was presented for 1 s 
after each judgement, followed by an inter-trial interval of 
1 s. The visual signal recapitulated the information previ-
ously conveyed by the auditory tone, but was included to 
facilitate decision-making on the next trial, without plac-
ing strong demands on memory.

We did not directly probe participants’ awareness of 
action–outcome contingencies. Rather, we considered that 
generating a sequence of repeated key presses of the ‘good’ 
key, and thus triggering a reversal, was a sufficient indica-
tor of learning. All stimuli were presented using LabView 
2012 (National Instruments, Austin, TX)

Baseline measures
Baseline judgement errors are presented in Table 1.

No significant differences were observed between the 
baseline blocks in the perceived times of key presses in 
milliseconds for left- and right-hand responses (F(1, 

Figure 1. Timeline of events on a typical agency trial in Experiment 1. The trial started when the clock hand began to rotate. At a 
time of their free choice, allowing for at least one full rotation of the clock hand, participants pressed one of two keys. Key presses 
were followed after 250 ms by a high or low frequency tone. The clock hand continued to rotate for a random interval and then 
stopped. Participants then reported the time they perceived the action or tone to have occurred. Immediate visual feedback then 
confirmed the earlier auditory signal, indicating a reward (tick) or non-reward (cross).

Figure 1: Timeline of events on a typical agency trial in Experiment 1. The trial started when the clock hand began to rotate.
At a time of their free choice, allowing for at least one full rotation of the clock hand, participants pressed one of two
keys. Key presses were followed after 250 ms by a high or low frequency tone. The clock hand continued to rotate for a
random interval and then stopped. Participants then reported the time they perceived the action or tone to have occurred.
Immediate visual feedback then confirmed the earlier auditory signal, indicating a reward (tick) or non-reward (cross).

was always the ‘correct’ tone and was associated with
a monetary reward. Informal piloting indicated that
participants had clear prior associations, interpreting
high tones as positive and low as negative. These may
reflect common conventions of everyday electronic de-
vices. Therefore, we did not counterbalance the tones
across participants. The ‘F’ and ‘J’ keys of a standard
keyboard were used for left- and right-hand responses.

Following the tone (or the key press if no tone), the
clock hand continued to rotate for a random interval
between 1100 and 2800ms and then disappeared. Par-
ticipants then used the keyboard to report the time that
they pressed the button or the time that they heard the
tone, according to condition (Figure 1).

Baseline action and tone measures were first taken
in six separate blocks of 20 trials (see below) in pseu-
dorandom order, to provide estimates of the perceived
time of each action and each tone when presented
alone, and when presented as the only event within a
block, or mixed with the alternative action or tone.
Next, participants completed two counterbalanced
‘agency’ blocks. In one block, they reported the per-
ceived time of the action, in the other block the per-
ceived time of the tone. Finally, the six baseline condi-
tions were repeated in the reverse order. Thus, there
were always 40 trials in each condition, and conditions
were always blocked.

In the agency conditions, one key delivered rewarded

high tones with a probability of 0.8 and the other key
with probability of 0.2. The mapping was maintained
across a run of several trials, until the participant had
selected the key that produced the high tone (i.e., the
reward) between five and seven times consecutively
(randomized). Probability mappings then reversed.
Nine such reversals occurred in each block, so each
block involved 10 ‘runs’ of responses. The actual num-
ber of key presses per block therefore depended on
how rapidly each participant learned the ‘correct’ key.

The cumulative total of rewarded trials was displayed
at the end of each trial. At the end of each block, all
participants were told they had reached the threshold
number of rewarded trials required to trigger a bonus.
In fact, this threshold was fictitious, and a bonus of £3
for each block was paid at the end of the experiment.
This arrangement ensured that participants were not
overpaid for prolonging the experiment by repeatedly
making incorrect responses.

In each trial, a visual feedback indicating either re-
ward (tick) or no reward (cross) reward was presented
for 1s after each judgement, followed by an inter-trial
interval of 1 s. The visual signal recapitulated the in-
formation previously conveyed by the auditory tone,
but was included to facilitate decision-making on the
next trial, without placing strong demands on memory.

We did not directly probe participants’ awareness of
action-outcome contingencies. Rather, we considered
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Table 1: Mean (M) and standard deviation (SD) of judgement
errors (ms) in baseline and agency conditions in Ex-
periment 1.

Baseline before Baseline after

M SD M SD

Action (left hand) −42 87 22 60
Action (right hand) −40 63 −17 88
Action (free choice) −40 103 −16 78
Tone (high) 15 70 51 72
Tone (low) 25 76 29 68
Tone (mixed) 12 79 29 84

All agency trials

M SD

Action 42 64
Tone −83 135

that generating a sequence of repeated key presses of
the ‘good’ key, and thus triggering a reversal, was a suf-
ficient indicator of learning. All stimuli were presented
using LabView 2012 (National Instruments, Austin,
TX).

Baseline measures

Baseline judgement errors are presented in Table 1.
No significant differences were observed between the

baseline blocks in the perceived times of key presses in
milliseconds for left- and right-hand responses (F1,14 =
0.176, p = 0.681, η2p = 0.012), mixed or repeated pre-
sentation (F1,14 = 0.236, p = 0.635, η2p = 0.017), or
for pre- or post-experiment blocks measures (F1,14 =
3.137, p = 0.098, η2p = 0.183).
Consequently, all action baseline blocks were col-

lapsed in further analysis. Likewise, no significant dif-
ferences were observed in the perceived times of high-
and low- frequency auditory tones (F1,14 = 0.599, p =
0.452, η2p = 0.041), for mixed or repeated presenta-
tion (F1,14 = 1.827, p = 0.198, η2p = 0.115) or for pre-
or post-test measures (F1,14 = 3.107, p = 0.1, η2p =
0.182). Consequently, these were also collapsed in fur-
ther analysis.

Analysis

Perceptual shifts were then calculated for each partic-
ipant and each condition by subtracting the relevant
mean baseline error for action or tone from that in
agency trials. A positive action binding measure there-
fore corresponds to a shift of the perceived time of the
action towards its outcome and a negative outcome
binding measure to a shift of the perceived time of
the outcome towards the action. Agency trials were
categorized according to two design factors:

1. whether the outcome received on the current trial
was rewarded (high tone) or not rewarded (low

tone)
2. whether feedback on the previous trial was re-

warded or not rewarded.

Experiment 1: results

The overall ratio of trials with non-rewarded outcomes
to rewarded outcomes was 0.6:1 (mean number of
trials per block = 109, standard deviation [SD] = 35).

Performance

Participants learned the action-outcome contingencies
(Figure 4a). As the criterion for advancement was set
at five to seven presses of the more rewarded key, par-
ticipants’ performances were necessarily 100% before
reversal of action?outcome mappings. Reversal events
unsurprisingly triggered errors. We analysed the pro-
portion of correct choices using a repeated-measure
analysis of variance (ANOVA) with trial number after
reversal as a factor. The trial number had a significant
effect on participants’ performance (F4,56 = 66.2, p <
0.001, η2p = 0.250). As the figure shows, participants
adapted their responses after a few reversal-induced
errors occurred.

Intentional binding

Action and outcome binding data are shown in Fig-
ure 2. Action binding data were subjected to a 2 ×
2 ANOVA with factors of current trial outcome: low
tone (no reward) or high tone (reward) and previous
trial outcome. There was a highly significant effect
of previous trial outcome (low tone: M = 87.2, SD =
62.8; high tone: M = 63.0, SD = 49.2), with stronger
action binding following low tones than following high
tones (F1,14 = 9.20, p = 0.009, η2p = 0.397). There
was no effect of current trial outcome (low tone: M
= 69.8, SD = 60.2; high tone: M = 74.2, SD = 48.1;
F1,14 = 1.72, p = 0.210, η2p = 0.110) and no interaction
(F1,14 = 0.01, p = 0.941, η2p = 0.000).
A similar ANOVA was performed for outcome bind-

ing. This showed a significant effect of current trial
outcome (low tone: M = -119.3, SD = 100.4; high
tone: M = -105.1, SD = 93.9), with low tones be-
ing more strongly bound towards actions than high
tones (F1,14 = 6.32, p = 0.025, η2p = 0.311). There was
no effect of previous trial outcome (low tone: M =
-114.6, SD = 93.6; high tone: M = -108.2, SD = 99.8;
F1,14 = 0.02, p = 0.89, η2p = 0.002) and no interaction
(F1,14 = 1.89, p = 0.19, η2p = 0.119).

Experiment 1: discussion

In a reversal-learning task, we observed that non-
rewarded outcomes were more strongly bound back
to their actions than rewarded outcomes. Our results
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did not involve the crucial element of selection between 
alternative outcomes. In our study, unlike previous work, 
the sequential effects on action binding may be linked to 
errors and to learning.

In a second experiment, we therefore aimed to repli-
cate this post-error boost of action binding and investi-
gate whether it was indeed dependent on learning and 
reward. We thus added a ‘non-learning’ condition in 
which participants made actions and received outcomes 
as before, but action–outcome mappings were now 
entirely unpredictable. We explicitly informed partici-
pants about the nature of these two conditions. We pre-
dicted stronger action binding in the learning condition 
than in the random condition.

Experiment 2: method

Participants
A total of 30 participants (21 females, all right-handed, 
mean age = 28 years, age range = 21-53 years) completed 
the experiment and were paid £7.5/hr plus a bonus for cor-
rect responses and precision. The number of participants 
was increased, compared to Experiment 1, to allow us to 
correlate intentional binding measures with learning meas-
ures across participants.

General procedure
The general procedure was similar to Experiment 1, 
except for the following: here the keys used to select an 
action were the ‘right-arrow’ and ‘left-arrow’ keys of a 
standard keyboard, using the index and middle fingers of 
the right hand, respectively. Participants reported the time 
by typing on the keyboard with their left hand. No visual 
feedback was presented following timing judgements. 
Participant reports from Experiment 1 indicated that they 

did not particularly attend to the visual feedback. Because 
it was redundant with the tone frequency, it was omitted in 
Experiment 2.

We focused on measuring action binding, and not tone 
binding, because action binding has been linked to out-
come prediction mechanisms (Engbert & Wohlschläger, 
2007) and to experience-dependent plasticity (Moore & 
Haggard, 2008). Furthermore, excluding tone binding 
allowed us to increase the trial numbers in agency blocks 
without making the experiment excessively long.

Agency conditions
Besides the baseline measures, participants completed 
five blocks of 30 trials in the learning condition, and five 
in the chance condition, in pseudo-randomized order. In 
the learning condition, one key delivered rewarded high 
tones with a probability of 0.8 and the other key with 
probability of 0.2. The high tone was always the ‘correct’ 
tone, and participants were told to learn which key was 
most frequently associated with the high tone. We also 
explicitly informed subjects that reversals of the action–
tone mapping would occur occasionally and unpredicta-
bly. These explicit instructions aimed to reduce the high 
inter-individual variability in performance found in 
Experiment 1, by clarifying the task for poorer perform-
ers. Furthermore, reversals now occurred after a variable 
number of trials (randomly 6, 10 or 14 trials) so partici-
pants could not predict when they would occur. We 
adjusted the run length after the last reversal in the block 
to ensure the same number of trials for each participant. 
At the end of each block of the learning condition, if par-
ticipants achieved a threshold of at least 20 rewarded tri-
als, they gained a bonus of 50p. We used a large blockwise 
reward rather than smaller trialwise rewards, to avoid 
satiety after several successful trials and to maintain 
motivation throughout.

Figure 2. Outcome and action binding in Experiment 1.
Error bars represent standard errors.

Figure 2: Outcome and action binding in Experiment 1. (Error bars represent standard errors.)

therefore differ markedly from previous studies of bind-
ing and valence (Takahata et al., 2012; Yoshie and
Haggard, 2013), in which negative outcomes showed
less binding than positive outcomes. This difference
may reflect the presence of both error-based learning
and action selection in reward-based decision-making
in the current task, but not in those previous studies.
Furthermore, action binding on the trial following a

non-rewarded outcome was stronger than following a
rewarded outcome. To our knowledge, this is a first
time that previous trial outcome has been reported to
have a sequential effect on action binding. Some previ-
ous studies reported effects of the occurrence (Moore
and Haggard, 2008) or timing (Walsh and Haggard,
2013) of preceding outcomes on subsequent action
binding, but those studies did not involve the crucial
element of selection between alternative outcomes. In
our study, unlike previous work, the sequential effects
on action binding may be linked to errors and to learn-
ing.
In a second experiment, we therefore aimed to repli-

cate this post-error boost of action binding and inves-
tigate whether it was indeed dependent on learning
and reward. We thus added a ‘non-learning’ condition
in which participants made actions and received out-
comes as before, but action-outcome mappings were
now entirely unpredictable. We explicitly informed
participants about the nature of these two conditions.
We predicted stronger action binding in the learning
condition than in the random condition.

Experiment 2: method

Participants

A total of 30 participants (21 females, all right-handed,
mean age = 28 years, age range = 21-53 years) com-
pleted the experiment and were paid £7.5/hr plus a
bonus for correct responses and precision. The number
of participants was increased, compared to Experiment

1, to allow us to correlate intentional binding measures
with learning measures across participants.

General procedure

The general procedure was similar to Experiment 1,
except for the following: here the keys used to select an
action were the ‘right-arrow’ and ‘left-arrow’ keys of a
standard keyboard, using the index and middle fingers
of the right hand, respectively. Participants reported the
time by typing on the keyboard with their left hand.
No visual feedback was presented following timing
judgements. Participant reports from Experiment 1
indicated that they did not particularly attend to the
visual feedback. Because it was redundant with the
tone frequency, it was omitted in Experiment 2.
We focused on measuring action binding, and

not tone binding, because action binding has been
linked to outcome prediction mechanisms (Engbert
and Wohlschläger, 2007) and to experience-dependent
plasticity (Moore and Haggard, 2008). Furthermore,
excluding tone binding allowed us to increase the trial
numbers in agency blocks without making the experi-
ment excessively long.

Agency conditions

Besides the baseline measures, participants completed
five blocks of 30 trials in the learning condition, and
five in the random condition, in pseudo-randomized
order. In the learning condition, one key delivered re-
warded high tones with a probability of 0.8 and the
other key with probability of 0.2. The high tone was
always the ‘correct’ tone, and participants were told to
learn which key was most frequently associated with
the high tone. We also explicitly informed subjects that
reversals of the action-tone mapping would occur occa-
sionally and unpredictably. These explicit instructions
aimed to reduce the high inter-individual variability in
performance found in Experiment 1, by clarifying the
task for poorer performers. Furthermore, reversals now
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occurred after a variable number of trials (randomly 6,
10 or 14 trials) so participants could not predict when
they would occur. We adjusted the run length after the
last reversal in the block to ensure the same number
of trials for each participant. At the end of each block
of the learning condition, if participants achieved a
threshold of at least 20 rewarded trials, they gained a
bonus of 50p. We used a large blockwise reward rather
than smaller trialwise rewards, to avoid satiety after
several successful trials and to maintain motivation
throughout.
In the random condition, the probability of hearing a

high tone or a low tone was unrelated to the key chosen
(50%/50%). Participants were explicitly told that their
choice of action would not influence the tones they
would hear. In the learning condition, they were in-
structed to ‘find the good key, maximizing the number
of high tones’, while in the random condition they were
told, ‘whichever action is chosen, it will have no influ-
ence on the following tone’. Since learning could not be
used to maximize reward in this condition, the number
of high-tone trials did not lead to a monetary bonus.
This arrangement ensured that participants were not
incentivized to search for contingencies that did not
exist. Although this creates a motivational difference
between the two conditions, this bias is intrinsic to any
reinforcement-learning experiment (O’Doherty, 2014).
Furthermore, at the beginning of each block, partici-
pants were explicitly told which condition they were
in.
As before, participants reported the timing of their

action. To further improve the precision of our mea-
sure, we instructed participants that at the end of each
block they would receive an additional 25p if they im-
proved the precision of timing estimates relative to the
previous block. We used the SD of their judgement
errors to measure precision – note that this measure
is independent of the mean timing judgement and
thus independent of action binding estimates. Thus,
in the learning condition, participants were rewarded
for precision of timing judgements and for choosing
the ‘correct’ key. In the random condition, they were
rewarded only for precision of timing judgements.

Baseline measures

We also measured the perceived times of actions pre-
sented without tones in a baseline condition. Partici-
pants performed two baseline blocks of 20 trials each,
at the beginning and end of the agency session. In base-
line blocks, participants freely chose which of the two
keys to press. Baseline judgement errors are presented
in Table 2.
No significant differences were observed in the per-

ceived times of key presses in milliseconds for left- and
right-hand responses (F1,29 = 1.01, p = 0.319, η2p =
0.018) or for pre- or post-experiment blocks measures
(F1,29 = 0.129, p = 0.721, η2p = 0.002). Consequently,

Table 2: Mean (M) and standard deviation (SD) of judgement
errors (ms) in baseline and agency conditions in Ex-
periment 2.

Baseline before Baseline after

M SD M SD

Action −27 139 −10 112
(free choice, left hand)
Action −34 77 −47 105
(free choice, right hand)

All agency trials

M SD

Action −5 110
(learning condition)
Action −28 93
(random condition)

action baseline blocks were collapsed in further analy-
sis.

Analysis

Action binding was calculated for each participant and
each condition by subtracting the relevant mean base-
line error from the error in agency trials. Agency trials
were categorized according to three design factors:

1. whether the outcome on a given trial was a high
or low frequency tone (associated with a positive
or negative outcome, respectively, in the learning
condition);

2. whether the trial was in the learning or random
condition;

3. whether the outcome on the previous trial was a
high or low frequency tone.

Action binding data were then subjected to a 2 × 2 ×
2 ANOVA.

Experiment 2: results

Performance

In the learning condition, participants demonstrated
an ability to learn the correct action. As in Experiment
1, the trial number after reversal had a significant effect
on participants’ proportion of correct choice (F5,145 =
57.14, p < 0.001, η2p = 0.200). They quickly returned to
initial performance levels after a reversal event (Figure
4a).

Action binding

Action binding data are shown in Figure 3. A 2 × 2 ×
2 ANOVA revealed a highly significant main effect of
condition (learning condition: M = 28.8, SD = 53.3;
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current trial outcome × previous trial outcome: F(1, 
29) = 1.01, p = 0.323, ηp

2 = 0.034; and current trial 
outcome × condition × previous trial outcome: F(1, 
29) = 0.13, p = 0.718, ηp

2 = 0.005 ).

Experiment 2: discussion
With some changes in implementation, we replicated the 
post-error boost in action binding in the learning condi-
tion. Crucially, we showed that this effect is specific to a 
learning context and is absent when participants cannot 
learn stable action–outcome relations. Our results there-
fore provide strong evidence that action binding reflects 
the ability to influence events through learning to improve 
one’s own action choices. Critically, this learning depends 
on previous error feedback.

We next used a formal reinforcement-learning model 
to investigate how the post-error boost in action binding is 
related to how people learn to maximize rewards. 
Reinforcement-learning models distinguish between the 
learning opportunities offered by errors and by rewards, 
respectively. Interestingly, these two elements of learning 
are differentially expressed across the population. 
Negative learners are better at avoiding negative out-
comes, while positive learners are better at choosing posi-
tive outcomes. Interestingly, the electroencephalogram 
(EEG) feedback-related negativity (FRN) evoked by an 

error signal has been found to be larger in negative learn-
ers than in positive learners (Frank, Woroch, & Curran, 
2005). Similarly, we hypothesized that the post-error 
boost in action binding might be positively correlated 
with participants’ bias to learn more from negative than 
from positive outcomes.

Statistical modelling of results from 
Experiments 1 and 2

Method
We fitted an established model of reinforcement learning to 
investigate whether inter-individual variance in asymmetric 
learning is correlated with the post-error boost in action bind-
ing. According to the reinforcement-learning algorithm, each 
of the two possible actions (choosing the left or right button) 
was associated with an internal value called an action value 
(Sutton & Barto, 1991). The values themselves are hidden but 
are thought to drive choices between alternative actions.

Value updating. The model is based on the concept of pre-
diction error, which measures the discrepancy between 
actual outcome value and the expected outcome for the 
chosen action (i.e., the chosen action value)

δ t t t( ) = ( )− ( )Outcome Valuechosen

Figure 3. Mean action binding (ms) following a rewarded (light grey) or non-rewarded (dark grey) outcome on the previous trial, 
for both chance and learning conditions. Error bars represent standard errors. Note that the high/low tones were associated with 
rewarded/non-rewarded outcome in the learning condition, but not in the chance condition.
***p < 0.001.

Figure 3: Mean action binding (ms) following a rewarded (light grey) or non-rewarded (dark grey) outcome on the previous trial,
for both random and learning conditions. Note that the high/low tones were associated with rewarded/non-rewarded
outcome in the learning condition, but not in the random condition. (***: p < 0.001)

random condition: M = 5.6, SD = 39.0), with stronger
action binding in the learning condition compared to
the random condition (F1,29 = 17.48, p < 0.001, η2p =
0.376). There was no effect of current trial outcome
(low tone: M = 16.4, SD = 42.7; high tone: M =
17.8, SD = 44.7; F1,29 = 0.02, p = 0.896, η2p = 0.001).
Importantly, we found a significant main effect of pre-
vious trial outcome (low tone: M = 21.3, SD = 43.2;
high tone: M = 14.7, SD = 44.7; F1,29 = 14.56, p <
0.001, η2p = 0.334) and also a highly significant inter-
action between learning condition and previous trial
outcome (F1,29 = 9.71, p = 0.004, η2p = 0.251; see
Figure 3).

We performed simple-effect t-tests to further investi-
gate this interaction. In the learning condition, non-
rewarded outcomes significantly increased the action
binding on the following trial compared to rewarded
outcomes (simple-effect paired t-test: t29 = 3.73, p <
0.001, Cohen?sd = 685). This difference was numer-
ically almost abolished and became statistically non-
significant, in the random condition (t29 = 0.46, p =
0.646; see Figure 3).

No other interactions were significant (current trial
outcome × condition: F1,29 = 0.33, p = 0.573, η2p =
0.011; current trial outcome × previous trial outcome:
F1,29 = 1.01, p = 0.323, η2p = 0.034; and current trial
outcome × condition × previous trial outcome:F1,29 =
0.13, p = 0.718, η2p = 0.005).

Experiment 2: discussion

With some changes in implementation, we replicated
the post-error boost in action binding in the learn-
ing condition. Crucially, we showed that this effect is
specific to a learning context and is absent when par-
ticipants cannot learn stable action-outcome relations.
Our results therefore provide strong evidence that ac-
tion binding reflects the ability to influence events
through learning to improve one’s own action choices.
Critically, this learning depends on previous error feed-
back.

We next used a formal reinforcement-learning model
to investigate how the post-error boost in action bind-
ing is related to how people learn to maximize rewards.
Reinforcement-learning models distinguish between
the learning opportunities offered by errors and by re-
wards, respectively. Interestingly, these two elements
of learning are differentially expressed across the popu-
lation. Negative learners are better at avoiding negative
outcomes, while positive learners are better at choosing
positive outcomes. Interestingly, the electroencephalo-
gram (EEG) feedback-related negativity (FRN) evoked
by an error signal has been found to be larger in nega-
tive learners than in positive learners (Frank, Woroch,
and Curran, 2005). Similarly, we hypothesized that
the post-error boost in action binding might be posi-
tively correlated with participants’ bias to learn more
from negative than from positive outcomes.
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Statistical modelling of results
from Experiments 1 and 2

Method

We fitted an established model of reinforcement learn-
ing to investigate whether inter-individual variance
in asymmetric learning is correlated with the post-
error boost in action binding. According to the
reinforcement-learning algorithm, each of the two pos-
sible actions (choosing the left or right button) was
associated with an internal value called an action value
(Sutton and Barto, 1998). The values themselves are
hidden but are thought to drive choices between alter-
native actions.

Value updating. The model is based on the con-
cept of prediction error, which measures the discrep-
ancy between actual outcome value and the expected
outcome for the chosen action (i.e., the chosen action
value):

δ(t) = Outcome(t)− V alueChosen(t)

Prediction error is then used to update the value of
the chosen action. The values were set as 0.5 at the
beginning of each block. Because we were interested
in the specific effect of rewarded and non-rewarded
outcomes, we set two different learning rates, α+ and
α−, to reflect different updating processes after a posi-
tive or negative prediction error (Lefebvre et al., 2016;
Niv et al., 2012). This asymmetrical model therefore
accounts for individual differences in the way partici-
pants learn from positive and negative outcomes.

V alueChosen(t+ 1) =

V alueChosen(t) +

{
α+ × δ(t) if δ(t) > 0
α− × δ(t) else

We then normalized the action values of the two
possible actions by keeping their sum constant.
We also constructed a reduced model with only one

learning rate for both rewarded and non-rewarded
outcomes, and the Aikake Integration Factor (AIC)
comparison showed that the AIC of the two learning
rate model was significantly lower than the AIC of the
one learning rate model for Experiment 1 (paired t-
test : t14 = 4.56, p < 0.001) and for Experiment 2
(t29 = 2.37, p = 0.025). The model with two learning
rates (α+ and α−) was thus the best fitting model.

Decision rule. In the model, the action with the
higher action value is more likely to be selected. The
probability to choose an action will depend on the
two action values and on the ‘inverse temperature’ pa-
rameter β, which represents the strength of the action
values’ effect on action selection:

PChoosingLeft =
eβ×V alueLeft

eβ×V alueLeft + eβ×V alueRight

Parameter fitting and simulations. We fitted the
model parameters based on participants’ choices on
each trial. The three parameters fitted were the two
learning rates, α+ and α−, and the inverse temperature
β. They were fitted independently for each participant,
on the data from the learning condition in Experiments
1 and 2. The best parameters chosen were those that
maximized log likelihood (LLH), defined as the sum of
the log of the model’s fit to participant’s action choices.
Thus, LLH values close to 0 indicate a good model
fit. To test the different possible combinations of pa-
rameters, we used a slice sampling procedure (Bishop,
2006). More precisely, using three different starting
points drawn from uniform distributions for each pa-
rameter, we performed 10,000 iterations of a gradient
ascent algorithm to converge on the set of three param-
eters that best fitted the data.

Results

From the fitted parameters, we simulated the model’s
choices and found a generally good match with par-
ticipants’ behaviour (Figure 4a). The probability of
model selecting the same action as the participant was
M = 0.73, SD = 0.07 in Experiment 1; and M = 0.76,
SD = 0.09 in Experiment 2. Thus, our reinforcement-
learning model seemed to accurately reflect partici-
pants’ learning processes. Similar to Lefebvre et al.
(2016), we found overall higher learning rates for re-
warded outcomes than for non-rewarded outcomes
(Experiment 1: α+: M = 0.89, SD = 0.13 and α− : M
= 0.48 SD = 0.14; t14 = 9.15, p < 0.001 and Experi-
ment 2: α+: M = 0.67, SD = 0.27 and α−: M = 0.51
SD = 0.23; t29 = 3.26, p = 0.003), justifying the use
of an asymmetrical model.
We further calculated the normalized learning rate

asymmetry (Lefebvre et al., 2016; Niv et al., 2012),
defined as:

α− − α+

α− + α+

to investigate whether the post-error agency boost
could be related to the outcome-specific learning rate.
We defined our post-error boost in action binding as
the difference between action binding after a non-
rewarded outcome and action binding after a rewarded
outcome, as before. For Experiment 1, we did not find
any relation between post-error agency boost and nor-
malized learning rate asymmetry (t13 = −0.66, p =
0.518, R2 = 0.03). However, we found a positive corre-
lation between post-error agency boost and normalized
learning rate asymmetry in the learning condition of
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Prediction error is then used to update the value of the 
chosen action. The values were set as 0.5 at the beginning 
of each block. Because we were interested in the specific 
effect of rewarded and non-rewarded outcomes, we set 
two different learning rates, α+ and α−, to reflect different 
updating processes after a positive or negative prediction 
error (Lefebvre, Lebreton, Meyniel, Bourgeois-Gironde, 
& Palminteri, 2016; Niv, Edlund, Dayan, & O’Doherty, 
2012). This asymmetrical model therefore accounts for 
individual differences in the way participants learn from 
positive and negative outcomes
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We then normalized the action values of the two possi-
ble actions by keeping their sum constant. We also con-
structed a reduced model with only one learning rate for 
both rewarded and non-rewarded outcomes, and the 

Aikake Integration Factor (AIC) comparison showed that 
the AIC of the two learning rate model was significantly 
lower than the AIC of the one learning rate model for 
Experiment 1 (paired t-test : t(14) = 4.56, p < 0.001) and for 
Experiment 2 (t(29) = 2.37, p = 0.025). The model with two 
learning rates (α+ and α−) was thus the best fitting model.

Decision rule. In the model, the action with the higher action 
value is more likely to be selected. The probability to 
choose an action will depend on the two action values and 
on the ‘inverse temperature’ parameter β, which represents 
the strength of the action values’ effect on action selection
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Parameter fitting and simulations. We fitted the model 
parameters based on participants’ choices on each trial. 
The three parameters fitted were the two learning rates, 
α+ and α−, and the inverse temperature β. They were fitted 

Figure 4. (a) Proportion of correct responses before and after a reversal event for Experiment 1 (left panel) and Experiment 2 
(right panel). Participants’ data are in black and predictions of the reinforcement-learning model are in grey. (b) Post-error boost in 
action binding plotted against the normalized learning rate asymmetry for Experiment 2.

Figure 4: (a) Proportion of correct responses before and after a reversal event for Experiment 1 (left panel) and Experiment 2
(right panel). Participants’ data are in black and predictions of the reinforcement-learning model are in grey. (b)
Post-error boost in action binding plotted against the normalized learning rate asymmetry for Experiment 2.

Experiment 2 (t28 = 5.6, p = 0.026, R2 = 0.17; Fig-
ure 4b), implying that individuals who learn from er-
rors also show a strong post-error agency boost. The
absence of any effect in Experiment 1 may reflect
the lower statistical power and may also reflect the
very restricted inter-individual variability in learning
rate asymmetry (asymmetry in Experiment 1: M =
-0.31, SD = 0.14 and in Experiment 2: M = -0.15,
SD = 0.32; F-test for comparison of sample variances:
F29,14 = 5.29, p = 0.002).

Finally, we explored whether other confounding fac-
tors, in addition to normalized learning rate asymme-
try, could predict individual variability in post-error
agency boost in Experiment 2. In particular, an alter-
native view hypothesizes that the post-error agency
boost could merely reflect saliency of rare error events,
akin to the non-specific alerting effect of an oddball,
rather than any relation between errors and learning.
This alternative model also predicts a negative relation
between an individual’s post-error agency boost and
the frequency of their errors, yet no such relation was
found (t28 = 0.53, p = 0.603, R2 < 0.001), and the
sign was not as predicted.

General discussion

We have shown that intentional binding, the compres-
sion of the temporal interval between an action and
its outcome, is sensitive to the occurrence of rewards
in a reinforcement-learning environment. Intentional
binding has been proposed as an implicit measure of
sense of agency (Moore and Obhi, 2012). The capacity
to choose between actions in order to obtain desired
outcomes seems essential for functional control of ac-
tions in everyday life – indeed, this is the standard
meaning of the term ‘sense of agency’ in the social
sciences (Haggard, 2017). However, previous experi-
mental studies have not convincingly linked the experi-
ence of action to acquiring control over outcomes. Our
reversal-learning task forced participants to continu-
ously learn relations between actions and outcomes.
Previous studies showed that intentional binding is sen-
sitive to economic (Takahata et al., 2012) and affective
(Yoshie and Haggard, 2013) valence, but these studies
did not address how outcomes can guide learning and
decision-making. Here, we describe for the first time
how outcome success or failure influences the sense of
agency in a dynamic learning environment.
Experiment 1 found that the tone indicating no re-
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ward was more strongly bound back towards the action
that caused it than the tone indicating a reward. This
effect was small and contrary to previous results (Taka-
hata et al., 2012; Yoshie and Haggard, 2013) so its
meaning remains unclear. Those studies suggested
that the well-known self-serving bias (Bandura, 1989)
might influence not only explicit attributions of agency
but also implicit measures of the basic experience of
agency. However, our study adds an additional, impor-
tant element of learning, which those earlier studies
lacked. The effects of learning from errors appear to
replace or outweigh the effects of valence. In our de-
sign, errors provided important evidence for learning
what action to perform next. In contrast, the valence
of outcomes in previous experiments was completely
predictable and unrelated to action choices. Future
studies could directly compare these two conditions in
the same participants.
We also found stronger action binding following a

non-rewarded outcome than following a rewarded out-
come, across two studies. To date, only a few studies
have considered trial-to-trial variation in intentional
binding (Moore and Haggard, 2008; Walsh and Hag-
gard, 2013). Both these studies showed that experience
on recent trials can influence binding on subsequent tri-
als. However, neither study involved learning to choose
between alternative actions in order to optimize out-
comes. Specifically, in neither experiment could par-
ticipants choose between alternative actions, nor did
the outcomes have any value or particular significance
for the participant. Experiment 2 replicated this post-
error boost in action binding in a new and somewhat
larger sample. Experiment 2 further showed that it
was absent in a condition where actions and tones
were identical, but the action-outcome mapping was
random and therefore could not be learned. This speci-
ficity allows us to discount purely perceptual effects of
high/low tones on subsequent action binding.
The concept of ‘cognitive control’ refers to the con-

trol and monitoring of cognitive resources to achieve
successful task performance. Errors signal a failure
of effective control and trigger a number of adapta-
tions, notably ‘post-error slowing’ (Danielmeier and
Ullsperger, 2011). Post-error slowing is classically as-
sociated with increased caution in action selection af-
ter errors (Dutilh et al., 2012). The relation between
post-error agency boost and post-error slowing remains
unclear. However, it seems unlikely that a mere tran-
sient increase in availability of general cognitive re-
sources devoted to action selection, as suggested by
conflict adaptation theories, can explain the increase
in post-error action binding. A general boost in atten-
tion following an error would be expected to cause
a general increase in precision of timing judgements,
reducing judgement errors and therefore reducing both
action binding and tone binding effects – yet we found
a specific increase in judgement errors for actions only.
Instead, we suggest that post-error binding may re-
flect a specific strategic adaptation to the information

value of the trial following an error. This adaptation
reflects the fact that errors may be highly informative
for future action. For example, following an error in
a probabilistic reversal-learning task, it is important
to decide whether the action-outcome mapping has
changed or not. Was the just-experienced error simply
‘noise’ or does it require a change in behaviour? We
suggest that strongly linking actions to outcomes on
the trial following an error may be an important ele-
ment for this classic credit-assignment problem and for
guiding future action choices. Taken overall, we sug-
gest that cognitive control mechanisms engaged when
people make errors may have two distinct effects: an
increase in cognitive resources to restore performance
and an increase in the experiential link between ac-
tion and outcome. The latter effect could trigger a
post-error boost in agency. However, our study cannot
identify for certain the direction of any causal relation
between post-error agency boost and learning from
errors.
The computations underlying reinforcement learn-

ing are classically thought to take place between the
moment when the outcome is received and the moment
when the next action needs to be performed (Rangel,
Camerer, and Montague, 2008; Sutton and Barto,
1998). During that time, the outcome is used to up-
date participants’ expectancy regarding their available
actions. Reinforcement-learning processes are thus
thought to correspond to this sequential effect. There-
fore, we formally modelled participants’ choices using a
reinforcement-learning model. Consistent with the lit-
erature, we found that participants learned more from
rewarded than from non-rewarded outcomes (Lefeb-
vre et al., 2016; Niv et al., 2012). This positive bias
obviously cannot explain the boost in action binding
that occurs specifically after non-rewarded outcomes.
However, we found that the inter-individual variability
of the post-error boost was related to asymmetry of
participants’ learning rates. Participants whose learn-
ing was more marked for non-rewarded relative to
rewarded outcomes also displayed stronger post-error
boosts in action binding. While we cannot be sure of
the direction of causation underlying this relation, the
observed correlation suggests a strong linkage between
learning and agency.
Interestingly, this asymmetric effect on sense of

agency recalls similar asymmetries in FRN, an EEG
component thought to reflect anterior cingulate cor-
tex activity. FRN is stronger after unfavourable out-
comes and stronger for participants who tend to learn
more from their mistakes (Frank, Woroch, and Curran,
2005). Moreover, similar to our post-error boost in
action binding, the FRN was increased only when par-
ticipants could actually learn, i.e., when they had the
opportunity to choose an action that could influence
outcomes (Yeung, Holroyd, and Cohen, 2004) or were
told that a task was ‘controllable’ compared to ‘uncon-
trollable’ (Li et al., 2011). These parallels point to a
possible link between action binding and FRN, which
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we will investigate in future research.
The structure of the reversal-learning paradigm in-

evitably carries some confounds when investigating ef-
fects of errors. Specifically, errors occur less frequently
than successful, rewarded trials. Furthermore, error
trials are often associated with the reversal or rule-
change event itself. These additional factors could, of
course, contribute part of the post-error agency boost
we observed. However, we consider that learning from
errors remains the more convincing explanation. First,
our analyses comparing post-error action boost with
frequency of errors found no significant association.
Indeed, the numerical sign of the relation was in the
opposite direction to the hypothesis described above.
We thus found no evidence that post-error boost in
action binding is related to non-specific consequences
of errors, such as general arousal from ‘oddball’ events.
Second, in our paradigms, the reversal event was never
made explicit to the participant and was never en-
tirely predictable. Finally, Experiment 2 found a sig-
nificant contrast between learning and random con-
ditions, even though actions, outcomes and reversals
were equally present in both conditions. Thus, our
design clearly links post-error agency boost to the po-
tential for learning about action-outcome relations.
While sense of agency is usually defined as the feel-

ing of controlling one’s actions and their consequences
(Haggard and Chambon, 2012), few studies have in-
vestigated the contribution to sense of agency of ac-
tion selection processes and of discriminative ability to
control outcomes. One previous study suggested that
action-outcome relations had no effect on intentional
binding (Desantis, Hughes, and Waszak, 2012). Un-
like previous studies, our study involved an element of
reward-guided decision-making. Experiment 2 showed
that discriminative control of outcomes does influence
action binding, but only when this element is present,
i.e., when people can learn the relation between their
actions and possible outcomes. Thus, we suggest that
action binding is a useful implicit measure of goal-
directed agency over outcomes. Binding measures can
thus capture a key feature of the sense of agency in
the rich sense of everyday life, i.e., the ability to gener-
ate one particular external event, rather than another,
through one’s own motivated, endogenous action.
People normally make actions for a reason. That

is, they choose actions to achieve a desired outcome.
They then monitor and evaluate whether the action
succeeded or failed in achieving the outcome. Thus,
one might intuitively expect a link between adaptive
behaviour and sense of agency, yet these two traditions
in action control have evolved through largely separate
research literatures. We show, for the first time, that an
implicit measure of sense of agency is sensitive to er-
rors and to reinforcement-learning features. Our data
suggest that when people experience unfavourable out-
comes, they feel more control, not less, in the next
trial. This may initially seem counterintuitive, but it is
strongly consistent with the view that sense of agency

is related to acquiring and maintaining control over
external events.
We hypothesize that sense of agency has an impor-

tant functional role in adaptive behaviour. We specu-
late that error feedback might transiently boost partici-
pants’ feeling of agency, because action failures should
strongly motivate the requirement to act appropriately
on subsequent occasions and also to learn what ac-
tions are now appropriate. Sense of agency could be
understood in the context of motivation to improve
performance on subsequent actions. The human mind
houses a specific cognitive/experiential mechanism to
ensure that ‘If at first you don’t succeed, try and try
again’ (Hickson, 1936). Our study breaks new ground
in linking the subjective experience of agency to the
cognitive mechanisms of reinforcement learning.
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