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Abstract12

In this paper, we develop a component mode synthesis method that relies on artificial springs to connect13

the subsystems of a built-up structure. The modal behaviour of the subsystems can be computed using14

different approaches, from analytical to numerical methods, depending on their complexity. The advantage15

of using artificial springs to link the subsystems is that one can model them with the Rayleigh-Ritz method,16

which is problematic in component mode synthesis. As known, the approximating functions must satisfy17

the system boundary conditions and the use of artificial springs avoids this difficulty. Moreover, and as in18

other component mode synthesis approaches, one can build reduced-order models at the subsystem level19

to significantly diminish the dimensions of the entire built-up structure, resulting in substantial reduction20

of the computational cost when performing numerical simulations. The method is first presented for the21

simple case of two axially connected beams. Two more complex cases are then addressed. The first one22

deals with two beams connected at right angles and the second one deals with an internal floor attached23

to a cylindrical shell, which reminds of some aeronautical structures. The performance of the method is24

carefully analysed and validated against finite element simulations.25

Keywords: Component mode synthesis, Built-up systems, Substructures, Artificial springs, Coupling26

1. Introduction27

Aeronautical, naval, and civil transportation structures can become very complex and determining their28

vibration field often becomes a daunting task. One way to simplify such situation is that of dynamic sub-29
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structuring. The issue has been around for decades and in the sixties of the last century, efforts were30

placed on finding options to recover the modal behaviour of large structures from the modal behaviour31

of their components. Hurty [1, 2] and Gladwell [3] put forward the basis of component mode synthesis32

(CMS). The components’ modes were divided into rigid-body, constraint, and normal modes, resulting33

into three-block mass, stiffness and damping matrices. Typically, in sub-structuring analysis continuity at34

joints gives rise to compatibility equations for the displacements as well as force equilibrium conditions [4],35

enabling substructure coupling through a transformation matrix [2]. Yet in the Rayleigh-Ritz framework,36

the equilibrium condition is often substituted by the compatibility of the displacement derivatives (e.g.,37

rotational angles). Further progress was made by Guyan [5], who took advantage of projecting the internal38

degrees of freedom with no external forces onto the outer ones, where exterior loads were applied. Craig and39

Bampton [6] improved the mode synthesis theory by introducing the fixed interface hypothesis, laying the40

foundation for typical fixed-fixed interface methods. The dual modal formulation to link components with41

very different impedance mismatch was also established by that time [7–9]. Interestingly, the dual modal42

formulation was later extended to couple substructures in the mid-high frequency range using a stress-43

displacement approach, within the framework of the statistical modal energy distribution analysis [10–12].44

Recently, the dual formulation has been also applied to account for the vibrations of multiple subsystems45

connected at a junction in the case of strong impedance mismatch [13], while a reformulated energy-based46

Craig-Bampton has been proposed for linked subsystems with low impedance mismatch [14].47

Certainly, a large number of papers dealing with CMS approaches have been published in the last48

decades and, in recent years, free-free [15–17], free-fixed [18] and fixed-fixed [14] interface conditions have49

been addressed. Uncertainty propagation in CMS models has also received much attention [19–21] and some50

CMS methods for built-up systems with nonlinearities [22, 23] and damping [24, 25] have been developed.51

Mode selection strategies have been suggested for model order reduction [26], according to non-physical, semi-52

physical, and physical subspace reduction methods [27] (see e.g., the semi-physical interior mode ranking53

in [28]). The big advantage of CMS methods is that it is not only possible to recover the global behaviour of54

a built-up structure from that of its components, but also to build a reduced-order model for the system by55

truncating the set of modes considered for each substructure. Applications cover a large variety of problems,56

from recovering the response of a washing machine using reduced models of its cabinet and legs [29], to57

investigating the nonlinear aeroservoelastic behaviour of a three-dimensional supersonic aircraft [30], among58

many others. The reader is referred to [4, 31] for some complete reviews on CMS methods.59

While the CMS is well established for numerical approaches involving some type of mesh, like the finite60
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element method (FEM), see e.g. [32–35], this is not the case for the Rayleigh-Ritz method (RRM). The RRM61

turns to be useful as an alternative to FEM in problems with simple geometries that require very fine meshes62

(e.g., acoustic black holes in mechanics, see [36, 37] and references therein). However, substructuring in the63

RRM is difficult because the approximating functions need to explicitly satisfy the substructure boundary64

conditions. In addition, and as far as the authors know, no strategy to build reduced-order models in the65

framework of the RRM has been presented to date. This constitutes the main goal of this paper.66

A few strategies have been suggested to address the problem of fulfilment of the boundary conditions67

by the approximating functions in the RRM. One option is to directly modify the function basis to that68

aim, see e.g., [38–42] where wavelets and Gaussian functions were used as shape functions. Yet, this is only69

possible for very simple structures. Alternatively, a well-known and more flexible technique to assemble70

substructures within the RRM that avoids the boundary conditions problem is the penalty method [43] (also71

referred to as the artificial spring method). This approach has proved useful in many circumstances [44–47].72

The idea is to impose a penalty function into the system Lagrangian that allows the shape functions to73

describe the displacement field even if they do not fulfil the compatibility conditions [48]. The penalty74

function represents the coupling potential energy of artificial springs connecting the substructures. Courant75

suggested the use of artificial stiffness parameters having very large magnitude so that a rigid constraint76

could be approximately modelled by a restraint [43]. Subsequently, Ilanko introduced the use of negative77

stiffness in addition to positive stiffness, to bound the error of the penalty approach [49]. Remarkably,78

negative stiffness with a finite value can be realized in some practical situations [50]. Moreover, Ilanko also79

used inertial penalty to speed up the convergence of the method [51]. The advantage of using artificial80

springs is that of allowing the simulation of arbitrary constraints, exemplified by plate [52] and cylindrical81

shell [53, 54] boundary conditions, connections between plates and resonators [55, 56], and beam [57] and82

plate-shell coupling systems [58, 59]. Another useful approach in the RRM is the Lagrangian multiplier83

method (LMM) [60, 61]. In the LMM, a proper combination of approximating functions is forced to satisfy84

the boundary conditions instead of requiring the functions to satisfy the constraints individually. However,85

the LMM leads to larger dimension problems, a point we want to avoid herein. Finally, and very recently, a86

nullspace approach [62] has been proposed that presents some advantages with respect to the penalty and87

LMM methods. The method has proved successful for beam systems [63], including the case of periodic88

boundary conditions [64], but it is yet at its early initial stages.89

It is the main goal of this paper to develop a CMS approach in the framework of the artificial spring90

Rayleigh-Ritz method that could yield reduced-order models for the vibration of large systems. The modal91
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behaviour of the latter is recovered from the modes of the substructures, which can be truncated to a92

certain order. The penalty function in the Lagrangian arising from the contribution of the potential energy93

of the artificial coupling springs incorporates the mode truncation as the displacements get projected onto94

the substructure modal basis. The suggested method will be hereafter designated as the artificial spring95

component mode synthesis (ASCMS) method, and it provides reduced-order models for built-up systems96

whose substructures (components) have been characterized by means of the RRM. Besides, it is to be97

noted that hybrid approaches in which different methods are used for different subsystems also fit well98

in the ASCMS framework. For instance, in buildings, the walls and the floors could be represented by99

analytical plate modes whereas some internal structures could be represented by FEM. As said, this can be100

advantageous for substructures requiring very fine FEM meshes like the centres of mechanical acoustic black101

holes (see e.g., [65–67]). It should be noted that the ASCMS method is not just a mere combination of the102

Rayleigh-Ritz method and the CMS. Though the use of artificial spring method has been extensively applied103

(see [68–71], among others), to the best of the authors knowledge it has never been developed to produce104

global reduced-order models, and the convergence and computational efficiency dependence on coupling105

strength and modal truncation has not been analysed before.106

The paper is organized as follows. In section 2 we introduce the theoretical framework of the ASCMS,107

which expands the potential of the traditional artificial spring technique. To facilitate the explanations, the108

simple case of two beams connected at one of their ends by translational or rotational springs is considered.109

A careful analysis follows in section 3, where the convergence of the method depending on the artificial spring110

stiffness, coupling strength, and model order reduction gets analysed and compared with FEM models. Once111

validated, the ASCMS is applied to more complex cases in section 4. The first one consists of two beams112

connected at right angles. The second one is more industrially oriented and comprises a cylindrical shell113

with an internal floor partition. Such configuration can be typically found in aeronautical and underwater114

vehicle designs. Conclusions close the paper in section 5.115

2. Theoretical framework of the ASCMS method116

In this section, we will present the theoretical basis of the ASCMS method. To that purpose and for117

the ease of exposition, the case of a compound beam consisting of two connected short beams of distinct118

thickness is considered. First, the standard artificial spring method in the RMM framework will be revisited119

for the example at hand. Then, the proposed ASCMS will be applied to the example to highlight the120

differences between both approaches. It is believed that starting with this simple case will help the reader121
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to easily understand the key features of the ASCMS.122

As shown in Fig. 1a, we consider two thin Euler-Bernouilli beams fully coupled at the joint x = x1, with123

Beam 1 having length L1 and thickness h1, and Beam 2 having length L2 and thickness h2. It is to be noted124

that for simplicity only bending motion is taken into account in this example. We can separate Beam 1125

and Beam 2 at the junction and reconnect them through a translational spring, k1, and a rotational one,126

k2 (see Fig. 1b). The first spring controls the displacement difference between beams at the joint, while127

the second one accounts for the difference in rotational angle. If we let k1 → +∞ and k2 → +∞, the fully128

coupled situation is recovered. Note that this is an asymptotic modelling process to mimic the boundary129

conditions. Excessive stiffness values may lead to ill-conditioned matrices. The simultaneous use of positive130

and negative stiffness values can bound the resulting error [51, 72].131

Before introducing the ASCMS strategy, let us briefly describe the general procedure for computing the

modes of the two-beam structure using the traditional artificial spring technique. The bending displacements

of the beams, w1(x, t) and w2(x, t), are expanded in terms of approximating functions

w1(x, t) = a⊤
1 (t)ζ1(x) = ζ⊤

1 (x)a1(t), (1)

w2(x, t) = a⊤
2 (t)ζ2(x) = ζ⊤

2 (x)a2(t), (2)

where subscripts 1 and 2 respectively refer to the variables of Beams 1 and 2. ζi(i = 1, 2) stand for the basis132

vectors expanding the general space, and ai(i = 1, 2) represent the associated time dependent weights. The133

size ni of ζi determines the approximating order of the i-th substructure.134

As detailed in Fig. 2a, the next step of the artificial spring technique is to build the Lagrangian of the135

system from the kinetic and potential energies of the beams as well as from the potential energy stored in136

the artificial springs k1 and k2.137

The kinetic energies of Beams 1 and 2 can be written as

Ekin1 =
1

2

∫ L1

0

ρh1ẇ
2
1dx =

1

2

∫ L1

0

ρh1

(
ȧ⊤
1 ζ1ζ

⊤
1 ȧ1

)
dx

=
1

2
ȧ⊤
1

[∫ L1

0

ρh1

(
ζ1ζ

⊤
1

)
dx

]
ȧ1 ≡ 1

2
ȧ⊤
1 M1ȧ1, (3)

5



x
1

0 x
2

L
2L

1

h
2

h
2

h
1

h
1

L
2L

1

x

Beam 1 Beam 2

Beam 1 Beam 2

k
2

k
1

(a)

(b)

Figure 1: Illustration of (a) two fully coupled beams with different thickness, and (b) the two beam substructures connected
by artificial springs, in which k1 and k2 respectively control the bending displacement and rotational angle differences at the
joint. Artificial springs are only applied at the connected boundaries of each beam while global boundary conditions (zero
external force and moment in this case) are imposed at the non-connected ends of the beams. Note also that the axial vibration
is not considered and when k1 → +∞ and k2 → +∞ case (a) is recovered.

and

Ekin2 =
1

2

∫ L2

L1

ρh2ẇ
2
2dx ≡ 1

2
ȧ⊤
2 M2ȧ2, (4)

where ρ is the density, and in the last equalities we have identified the corresponding mass matrices.138

On the other hand, the potential energies of the beams are given by

Epot1 =
1

2

∫ L1

0

EI1
(
∂2
xxw1

)2
dx =

1

2

∫ L1

0

EI1
(
a⊤
1 ∂

2
xxζ1∂

2
xxζ

⊤
1 a1

)
dx

=
1

2
a⊤
1

[∫ L1

0

EI1
(
∂2
xxζ1∂

2
xxζ

⊤
1

)
dx

]
a1 ≡ 1

2
a⊤
1 K1a1, (5)

and

Epot2 =
1

2

∫ L2

L1

EI2
(
∂2
xxw2

)2
dx ≡ 1

2
a⊤
2 K2a2, (6)

in which EIi = Eh3
i /12(i = 1, 2) represents the bending stiffness. Note that we have also identified the139

stiffness matrices of the beams in the above expressions.140
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  Traditional 

spring method

In general space

In general space In general space

In modal space

Mode truncation

Artificial spring component mode synthesis (ASCMS)

Substructure 1

Substructure 1

Equations of motion

Equations of motion Equations of motion

Modes of the whole system Modes of the whole system

Modes of Substructure 1

Lagrangian of Substructure 1

Lagrangian of Substructure 1

Lagrangian of Substructure 2

Lagrangian of Substructure 2

Total Lagrangian

Spring contributions

Equations of motion

Modes of Substructure 2

Substructure 2

Substructure 2

Springs

(a) (b)

Figure 2: (a) The modelling procedure of the traditional artificial spring method for a built-up structure, where the La-
grangian is obtained in the general spatial domain. (b) The proposed framework for the artificial spring component modal
synthesis (ASCMS) method. In this case the modes of each substructure are computed and truncated, and their corresponding
Lagrangians are expressed in the modal space before getting assembled to obtain the global equations of motion.

At the junction between the two beams the following coupling equations must be satisfied,

lim
k1→+∞

w1(L1)− w2(L1) = 0, lim
k2→+∞

∂xw1(L1)− ∂xw2(L1) = 0. (7)
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Therefore, the potential energy stored in the translational spring is given by

Espr1 =
1

2
k1[w1(L1)− w2(L1)]

2

=
1

2
k1[w

2
1(L1)− w1(L1)w2(L1)− w2(L1)w1(L1) + w2

2(L1)]

=
1

2
k1[a

⊤
1 ζ1(L1)ζ

⊤
1 (L1)a1 − a⊤

1 ζ1(L1)ζ
⊤
2 (L1)a2 − a⊤

2 ζ2(L1)ζ
⊤
1 (L1)a1 + a⊤

2 ζ2(L1)ζ
⊤
2 (L1)a2]

=
1

2

 a1

a2


⊤


k1ζ1(L1)ζ
⊤
1 (L1) −k1ζ1(L1)ζ

⊤
2 (L1)

−k1ζ2(L1)ζ
⊤
1 (L1) k1ζ2(L1)ζ

⊤
2 (L1)


 a1

a2



≡1

2

 a1

a2


⊤

Kspr1

 a1

a2

 , (8)

and that in the rotational spring by,

Espr2 =
1

2
k2[∂xw1(L1)− ∂yw2(L1)]

2

=
1

2

 a1

a2


⊤


k2∂xζ1(L1)∂xζ
⊤
1 (L1) −k2∂xζ1(L1)∂xζ

⊤
2 (L1)

−k2∂xζ2(L1)∂xζ
⊤
1 (L1) k2∂xζ2(L1)∂xζ

⊤
2 (L1)


 a1

a2



≡1

2

 a1

a2


⊤

Kspr2

 a1

a2

 . (9)

Again, the coupling stiffness matrices for each spring have been defined in the last equalities of Eqs. (8)141

and (9).142

From Eqs. (3) to (9) we can construct the total two-beam structure Lagrangian as,

L = (Ekin1 + Ekin2)− (Epot1 + Epot2 + Espr1 + Espr2)

=
1

2

 ȧ1

ȧ2


⊤  M1 0

0 M2


 ȧ1

ȧ2

− 1

2

 a1

a2


⊤ 

 K1 0

0 K2

+Kspr1 +Kspr2


 a1

a2


≡ 1

2
ȧ⊤Mȧ− 1

2
a⊤Ka. (10)

Finally, applying the Euler-Lagrange equations ∂t(∂ȧL ) − ∂aL = 0 to Eq. (10) and setting a =
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Â exp(iωt) we get the equations of motion of the total system in the frequency domain,

(
K − ω2M

)
Â = 0. (11)

Via Eq. (11) one can recover the modes of the two-beam built-up structure. The dimension of the model143

will be the summation of that of Beam 1 plus that of Beam 2, namely ntotal = n1 + n2.144

Up to this point no novelty has been introduced. This is how the standard artificial spring method145

would proceed to solve the problem of the two rigidly connected beams within the RRM. However, for a146

more complex example than the current one ntotal can become prohibitively large. Therefore, it would be147

convenient to build a reduced-order model in which the modes of the global system (two beams) could be148

recovered from a small set of individual modes of each beam. This is the essential of the CMS methods149

presented in the introduction. However, CMS methods have not been yet developed for the RRM. This is150

what the ASCMS provides: a methodology to compute a limited number of individual modes for each beam151

using the RRM and then assemble them to get the modes of the global system by resorting to artificial152

springs. The ASCMS strategy is summarized in Fig. 2b and it is to be compared with the standard spring153

method in Fig. 2a, in which no model reduction is considered. Let us next see how the ASCMS works for154

the two-beam example.155

The ni modes of each individual beam can be obtained from

(
Ki − ω2

iMi

)
Ai = 0, i = 1, 2, (12)

where ωi are the modal frequencies and Ai the modal vectors for Beam i. The stiffness and mass matrices

in Eq. (12) have dimensions ni × ni. Next, let us construct the truncated eigen-vector matrices P i =

[Ai,1,Ai,2,Ai,3, ...,Ai,ni ], where Ai,j stands for the j-th normalized eigen-vector of Beam i and ni ≪ ni.

The generalized mass and stiffness matrices become

M i = P
⊤
i MiP i, i = 1, 2,

Ki = P
⊤
i KiP i, i = 1, 2, (13)

with dimensions ni × ni. At this point, there is freedom in choosing how to compute the modes in each156

substructure. For instance, one could use an analytical or semi-analytical method for Beam 1 and FEM for157

Beam 2 (that would be reasonable if instead of Beam 2 we had a more complex substructure).158
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By projecting the weights in Eqs.(1) and (2) into the modal space we obtain,

ai = P iεi, i = 1, 2, (14)

where εi are the vectors of modal participation factors. Taking Eq. (14) into Eqs. (3) and (4) allows one to

compute the kinetic energy of the two beams as

Ekin =
1

2
ȧ⊤
1 M1ȧ1 +

1

2
ȧ⊤
2 M2ȧ2

=
1

2
(P 1ε̇1)

⊤M1(P 1ε̇1) +
1

2
(P 2ε̇2)

⊤M2(P 2ε̇2)

=
1

2
ε̇⊤1 (P

⊤
1 M1P 1)ε̇1 +

1

2
ε̇⊤2 (P

⊤
2 M2P 2)ε̇2

≡ 1

2
ε̇⊤1 M1ε̇1 +

1

2
ε̇⊤2 M2ε̇2

=
1

2

 ε̇1

ε̇2


⊤  M1 0

0 M2


 ε̇1

ε̇2


≡ 1

2
ε̇⊤Mε̇, (15)

where in the last line we have defined the reduced mass matrix of the system (identity for mass-normalized

eigenvectors). Likewise, we get for the potential energy of the two beams,

Epot =
1

2
a⊤
1 K1a1 +

1

2
a⊤
2 K2a2

=
1

2
(P 1ε1)

⊤K1(P 1ε1) +
1

2
(P 2ε2)

⊤K2(P 2ε2)

=
1

2
ε⊤1 (P

⊤
1 K1P 1)ε1 +

1

2
ε⊤2 (P

⊤
2 K2P 2)ε2

≡ 1

2
ε⊤1 K1ε1 +

1

2
ε⊤2 K2ε2

=
1

2

 ε1

ε2


⊤  K1 0

0 K2


 ε1

ε2


≡ 1

2
ε⊤Kε, (16)

with K being the reduced (diagonal) stiffness matrix. We have now reduced-order models for the two beams

but they are still uncoupled. Therefore, we finally need to consider the energy stored in the artificial springs,
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Figure 3: Influence of the artificial spring stiffness on the first three modal frequencies of the two-beam model, to see how
convergence depends on the spring stiffness value. Here m = 1 stands for the normalized modal mass and f3 for the 3-rd
eigenfrequency of Beam 2.

which can be obtained as

Espr =
1

2

 a1

a2


⊤

Kspr1

 a1

a2

+
1

2

 a1

a2


⊤

Kspr2

 a1

a2



=
1

2

 ε1

ε2


⊤  P 1 0

0 P 2


⊤

(Kspr1 +Kspr2)

 P 1 0

0 P 2


 ε1

ε2


≡ 1

2
ε⊤Kcoupε, (17)

with Kcoup being the truncated spring coupling stiffness matrix.159

From Eqs. (15)-(17) we can build the Lagrangian of the system and once applied the Euler-Lagrange

equations and assuming ε = ε̂ exp(iωt), get the eigenvalue problem

(
K +Kcoup − ω2M

)
ε̂ = 0. (18)

Note that this is a reduced-order version of the problem in Eq. (11) and relies on the knowledge of the160

truncated eigenmodes of each substructure (beams), see Fig. 2b.161

3. Convergence of the ASCMS162

Having presented the basics of ASCMS on a simple example and before dealing with more complex ones,163

it would be convenient to see how the convergence of the method depends on several factors. In particular,164

we are interested in how to choose the values of the stiffness of the artificial spring and how this affects the165

results. It is also worth investigating the influence of the coupling force, which can be related to the thickness166

ratio of the two beams. Finally, and as usual, the effects of modal truncation should be determined.167
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Let us start analyzing the influence of the spring stiffness values. For the numerical tests the two beams168

are assumed to be made of steel with density ρ = 7800 kg/m3 and Young’s modulus E = 210 GPa. As for169

the geometry, Beam 1 has length L1 = 0.3 m and thickness h1 = 0.008 m, while Beam 2 has L2 = 0.2 m170

and h2 = 0.004 m. Gaussians are used as basis functions ζi appearing in the mass and stiffness matrices of171

the system. The procedure to obtain solutions to systems Eq. (10) and Eq. (18) by resorting to Gaussians172

in the framework of the Rayleigh-Ritz method is referred to as the Gaussian expansion method (GEM),173

see [65, 66] for details. Comparisons with FEM simulations are hereafter performed to validate the ASCMS174

approach.175

Let us start examining the influence of the stiffness of the artificial coupling springs. As mentioned at the176

beginning of section 2, the spring stiffness should be chosen so that k1 → +∞ and k2 → +∞ to ensure full177

coupling at the junction. In Appendix A, we provide a simple example showing how to select the stiffness178

value k of an artificial spring that ensures that two substructures are rigidly coupled for frequencies above179

the eigenfrequencies of the substructures. In particular, it is shown that the artificial spring stiffness should180

satisfy k ≫ |ω2
1−ω2

2 |
2 . For simplicity and safety, one can then choose k = β

2max[ω2
1 , ω

2
2 ], with ω1 and ω2181

respectively being the highest modal frequencies of Beams 1 and 2 and β a factor to be determined. On182

the other hand, and as in CMS strategies applied to finite element methods, the additional constraints also183

reduce the number of degrees of freedom (see Appendix A again). To find proper stiffness values for the184

artificial springs, one can gradually increase them until a convergent solution is achieved. This process is185

illustrated in Fig. 3, where the eigenfrequencies of the first three global modes of the two-beam system are186

plotted against non-dimensional spring stiffness values. As one could expect, the modal frequencies increase187

with stiffness until β ≥ 200, where they become stable. Even though this is only validated for the first three188

modes in Fig. 3, the condition β = k/[m(2πfn)
2] ≥ 200 holds true for guaranteeing the convergence when189

n subsystem modes are considered. In other words, the ASCMS is capable of simulating the full coupling190

condition taking β ≥ 200.191

On the other hand, in classical CMS approaches, the criteria to choose free boundary conditions for the192

substructures (free-interface CMS) or fixed ones (fixed-interface CMS) depends on the coupling strength at193

the junction. For strong coupling, the free-interface CMS is selected while the fixed-interface CMS is chosen194

otherwise. The coupling strength is negatively correlated with |r − 1|, where r = h2/h1 represents, in our195

case, the beam thickness ratio at the interface. Because in its current formulation the ASCMS corresponds196

to a free-interface method, it is worthwhile testing the influence of the coupling strength on the convergence197

of the results. To check that, we have fixed h1 = 0.008 m but changed the value of h2. Five cases have198
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 r = 0.1 FEM

 r = 0.3 FEM

 r = 0.5 FEM

 r = 0.7 FEM

 r = 1.0 FEM
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 r = 0.3 ASCMS
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Figure 4: Comparison of the modal frequencies obtained with the proposed ASCMS method and the reference FEM model.
The focus is placed on examining the effects of changing the thickness ratio r = h2/h1, to see how convergence is influenced
by the coupling strength of the substructures. r = 0.1 corresponds to weak coupling, while r = 1 indicates strong coupling.

been examined, namely r = [0.1, 0.3, 0.5, 0.7, 1.0]. These cases have been also simulated using FEM for199

comparison. Fig. 4 presents the modal frequencies for the first fifty global orders for the five values of r.200

As observed in the figure, the matching between the FEM solutions and the ASCMS ones is extremely201

good. Furthermore, in Fig. 5 we have depicted the 20-th modal shape of the synthesized structure, with202

Fig. 5a - Fig. 5e respectively corresponding to r = [0.1, 0.3, 0.5, 0.7, 1.0]. It is seen that when the thickness203

ratio is small (i.e., weak coupling, say r = 0.1) Beam 1 barely vibrates. The right boundary of Beam 1204

can be approximately regarded as free. As opposed, the left end of Beam 2 should be treated as fixed.205

Notwithstanding, when r → 1 the coupling between beams gradually strengthens and the vibration of206

Beam 1 progressively intensifies. Again, it is important to observe that the ASCMS results closely resemble207

those of FEM.208

It has been explained in the previous section that the main goal of the ASCMS is to get a modal209

reduced-order model that alleviates the computational cost of the whole system. Therefore, it is of interest210

checking how mode truncation affects the problem solution. The order of the reduced model is dictated by211

the number of eigenvectors chosen in Eq. (14), which gets reflected in the size of Eq. (18). Suppose that we212

are concerned in solving the system up to the 20-th mode eigenfrequency and that we use 50 modes to that213

purpose. The 20-th resonant mode has frequency f20 = 18852 Hz and for convenience, we have defined the214

non-dimensional frequency α = f/f20. In Fig. 6, the modal participation factors are drawn against α at each215

modal frequency of the two beams, for r = [0.1, 0.5, 1.0]. As observed, the participation of Beam 1 increases216
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Figure 5: Comparison of the 20-th modal shapes computed with GEM and FEM for (a)-(e) different thickness ratios r = h2/h1.
The region 0 < x < 0.3 m corresponds to Beam 1, while 0.3 < x < 0.5 m is for Beam 2. r = 0.1 designates weak coupling,
while r = 1 indicates strong coupling.

with r, which is consistent with the conclusions from Fig. 5. Most importantly, the participation factors217

mostly locate near α = 1. Modes for α < 1 are also perceptible but modes with α ≫ 1 hardly contribute to218
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Figure 6: Modal participation factors (ε) of the modes of Beam 1 and Beam 2 to synthesize the 20th mode of the built-up
structure. (a)-(c) ε for different coupling strength r = h2/h1. r = 0.1 corresponds to weak coupling, while r = 1 indicates strong
coupling. For the ease of exposition, the abscissa is normalized to the 20th modal frequency, f20, of the built-up structure.
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Figure 7: Highest modal frequency of the built-up structure when using different mode truncation values, α, to reconstruct
the 20-th synthesized mode with f20 = 18852 Hz. The most accurate brown curve has been reconstructed using 50 modes for
each substructure to simulate the situation α → +∞.

the synthesis, whether the coupling strength r is strong (r = 1) or weak (r = 0.1). In general, high-order219

resonant modes can be reasonably eliminated. The final issue is to quantify how many modes should be220

used for the synthesis. This is shown in Fig. 7. There, we represent the modal frequencies synthesized with221

different values of α. The brown line corresponds to the most accurate case, where 50 modes have been used222

to emulate the situation α → +∞. It is seen that for α = 1 we are unable to reach the target mode (i.e.,223

the 20-th mode) but for α = [1.3, 1.5, 2.0] that is recovered without problem. For the ASCMS approach224

it suffices to take modes in [0, αfn] (α = 1.3 ∼ 2.0) to synthesize the n-th mode with modal frequency225

fn. Finally, let us remark that the computational time before modal truncation was 0.315 s, while after226

truncation (taking α = 2) it became 0.1224 s. The latter is less than the half of the former, showing the227

computational benefits of the ASCMS. All the simulations in this paper are performed on the core AMD228

5950X.229

4. Further applications of the ASCMS230

After having introduced and validated the basics of the ASCMS approach by means of the bending231

motion of two beams connected in the axial direction, in this section we will consider some more complex232

cases. The first concerns the two beams of the previous example but now connected at right angles. Then,233

to examine the performance of the proposed ASCMS method in more complex structures, we will focus on234

the case of a cylindrical shell with a coupled internal floor. Such a structure is often found in aeronautical235

and naval applications (e.g., in underwater vehicles).236

4.1. Application 1: two beams connected at right angles237

Let us next consider two beams connected at right angles, see Fig. 8. In this case, it does not suffice to238

limit the analysis to bending motion and in-plane vibrations have to be considered as well. This is because239
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there will be conversion between the two types of waves at the joint between beams. The synthesis procedure240

will be first presented, followed by the results and numerical validations against finite element simulations.241

4.1.1. Synthesis procedure242

We proceed analogously to the case of the two axially connected beams, but now expanding the in-plane

displacement ui(xi, t), xi = x, y, i = 1, 2, and the bending one wi(xi, t), xi = x, y, i = 1, 2, in terms of

approximating function vectors χi(xi) and ζi(xi),

u1(x, t) = a⊤
1 (t)χ1(x), w1(x, t) = b⊤1 (t)ζ1(x), (19)

u2(y, t) = a⊤
2 (t)χ2(y), w2(y, t) = b⊤2 (t)ζ2(y). (20)
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Figure 8: Geometrical model for beams connected at right angles. At the junction the artificial stiffness k1 and k2 are
responsible for the displacements while k3 relates to rotation. Again artificial springs are applied at the connected boundaries
of each beam while global boundary conditions (zero external force and moment) are imposed on the non-connected ends of the
beams. As opposed to Fig. 1, in this case the axial vibrations are taken into account. Here u1 and w1 respectively represent
the axial and bending displacements for Beam 1, while u2 and w2 are those of Beam 2.
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To recover the modes of Beam 1, we start computing its kinetic energy,

Ekin1 =
1

2

∫ L1

0

ρh1(u̇
2
1 + ẇ2

1)dx

=
1

2

 ȧ1

ḃ1


⊤


∫ L1

0
ρh1

(
χ1χ

⊤
1

)
dx 0

0
∫ L1

0
ρh1

(
ζ1ζ

⊤
1

)
dx


 ȧ1

ḃ1



≡ 1

2

 ȧ1

ḃ1


⊤  Mu1 0

0 Mw1


 ȧ1

ḃ1


≡ 1

2
ċ⊤1 M1ċ1, (21)

and the potential one,

Epot1 =
1

2

∫ L1

0

Eh1 (∂xu1)
2
+ EI1

(
∂2
xxw1

)2
dx

=
1

2

 a1

b1


⊤


∫ L1

0
Eh1

(
∂xχ1∂xχ

⊤
1

)
dx 0

0
∫ L1

0
EI1

(
∂2
xxζ1∂

2
xxζ

⊤
1

)
dx


 a1

b1



≡ 1

2

 a1

b1


⊤  Ku1 0

0 Kw1


 a1

b1


≡ 1

2
c⊤1 K1c1. (22)

After building the Lagrangian we get the equations of motion,

(
K1 − ω2

1M1

)
Ĉ1 = 0, (23)

from which we can obtain the normalized eigen-matrix, P 1 = [C1,1,C1,2,C1,3, ...,C1,m] of Beam 1.243
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We proceed equally for Beam 2 which yields,

Ekin2 =
1

2

∫ L2

0

ρh2(u̇
2
2 + ẇ2

2)dy

=
1

2

 ȧ2

ḃ2


⊤


∫ L2

0
ρh2

(
χ2χ

⊤
2

)
dy 0

0
∫ L2

0
ρh2

(
ζ2ζ

⊤
2

)
dy


 ȧ2

ḃ2


≡ 1

2
ċ⊤2 M2ċ2, (24)

and

Epot2 =
1

2

∫ L2

0

Eh2 (∂yu2)
2
+ EI2

(
∂2
yyw2

)2
dy

=
1

2

 a2

b2


⊤


∫ L2

0
Eh2

(
∂yχ2∂yχ

⊤
2

)
dy 0

0
∫ L2

0
EI2

(
∂2
yyζ2∂

2
yyζ

⊤
2

)
dy


 a2

b2


≡ 1

2
c⊤2 K2c2, (25)

from which we derive the equations of motion,

(
K2 − ω2

2M2

)
Ĉ2 = 0. (26)

Solving Eq. (26) we compute the normalized eigen-matrix, P 2 = [C2,1,C2,2,C2,3, ...,C2,m].244

Next, we project the weight coefficient vectors into the modal space, i.e.,

c1 = P 1ε1, c2 = P 2ε2, (27)
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which allows one to calculate the total kinetic energy of Beams 1 and 2 as,

Ekin = Ekin1 + Ekin2

=
1

2
ċ⊤1 M1ċ1 +

1

2
ċ⊤2 M2ċ2

=
1

2

 ċ1

ċ2


⊤  M1 0

0 M2


 ċ1

ċ2



=
1

2

 P 1ε̇1

P 2ε̇2


⊤  M1 0

0 M2


 P 1ε̇1

P 2ε̇2



=
1

2

 ε̇1

ε̇2


⊤

 P 1 0

0 P 2


⊤  M1 0

0 M2


 P 1 0

0 P 2




 ε̇1

ε̇2



≡ 1

2

 ε̇1

ε̇2


⊤  M1 0

0 M2


 ε̇1

ε̇2


≡ 1

2
ε̇⊤Mε̇, (28)

where M1 and M2 are the reduced (and normalized) mass matrices of Beam 1 and Beam 2, respectively.245
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The total potential energy is expressed as,

Epot = Epot1 + Epot2

=
1

2
c⊤1 K1c1 +

1

2
c⊤2 K2c2

=
1

2

 c1

c2


⊤  K1 0

0 K2


 c1

c2



=
1

2

 P 1ε1

P 2ε2


⊤  K1 0

0 K2


 P 1ε1

P 2ε2



=
1

2

 ε1

ε2


⊤

 P 1 0

0 P 2


⊤  K1 0

0 K2


 P 1 0

0 P 2




 ε1

ε2



≡ 1

2

 ε1

ε2


⊤  K1 0

0 K2


 ε1

ε2


≡ 1

2
ε⊤Kε, (29)

where K1 and K2 are the reduced stiffness matrices of Beams 1 and 2.246

Next, we must couple the reduced-order models of the two individual beams. The coupling conditions

to be satisfied at the joint between Beam 1 and Beam 2 in the current case are

lim
k1→+∞

w1(L1)− u2(0) = 0,

lim
k2→+∞

u1(L1)− w2(0) = 0,

lim
k3→+∞

∂xw1(L1)− ∂yw2(0) = 0. (30)

Knowing that, we can derive the potential energy stored at the two artificial translational springs and at
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the rotational one (see Fig. 8). For the first translational spring we get,

Espr1 =
1

2
k1[w1(L1)− u2(0)]

2

=
1

2
k1[w

2
1(L1)− w1(L1)u2(0)− u2(0)w1(L1) + u2

2(0)]

=
1

2
k1[b

⊤
1 ζ1(L1)ζ

⊤
1 (L1)b1 − b⊤1 ζ1(L1)χ

⊤
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2 χ2(0)ζ
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2 χ2(0)χ
⊤
2 (0)a2]

=
1

2

 b1
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⊤
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⊤
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 b1

a2
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≡1

2

 b1
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−K⊤
sp1,12 Ksp1,22


 b1

a2

 , (31)

and for the second one,

Espr2 =
1

2
k2[u1(L1)− w2(0)]

2

=
1

2

 a1

b2


⊤


k2χ1(L1)χ
⊤
1 (L1) −k2χ1(L1)ζ

⊤
2 (0)

−k2ζ2(0)χ
⊤
1 (L1) k2ζ2(0)ζ

⊤
2 (0)


 a1

b2
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≡1

2
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−K⊤
sp2,12 Ksp2,22


 a1

b2

 . (32)
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In the case of the rotational spring, the stored energy becomes

Espr3 =
1

2
k3[∂xw1(L1)− ∂yw2(0)]

2

=
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2
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k3∂xζ1(L1)∂xζ
⊤
1 (L1) −k3∂xζ1(L1)∂yζ
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 b1

b2



≡1

2

 b1
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−K⊤
sp3,12 Ksp3,22


 b1

b2

 . (33)

Therefore, the total potential energy of the artificial springs reads in compact form

Espr = Espr1 + Espr2 + Espr3

=
1
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a1

b1

a2

b2



⊤



Ksp2,11 0 0 −Ksp2,12

0 Ksp1,11 +Ksp3,11 −Ksp1,12 −Ksp3,12

0 −K⊤
sp1,12 Ksp1,22 0

−K⊤
sp1,12 −K⊤

sp3,12 0 Ksp2,22 +Ksp3,22





a1

b1

a2

b2



≡ 1

2

 c1

c2


⊤

Kcoup

 c1

c2



=
1

2

 ε1

ε2


⊤

 P 1 0

0 P 2


⊤

Kcoup

 P 1 0

0 P 2
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 ε1

ε2


≡ 1

2
ε⊤Kcoupε. (34)

Applying the Euler-Lagrangian equations to L = Ekin − Epot − Espr we arrive at the reduced-order

eigenvalue problem,

(
K +Kcoup − ω2M

)
ε̂ = 0, (35)
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Figure 9: Comparison of modal frequencies computed with the ASCMS (blue dash line) and FEM (brown solid line) for the
two beams connected at right angles. To better appreciate their differences, the relative error |fASCMS − fFEM|/fFEM × 100%
has been calculated and shown in red at the right y axis. For the ease of exposition, the relative error at each resonant order
is represented by a circle whose radius and colour are proportional to the relative error value.

which is analogous to Eq. (18) but for the two beams connected at right angles.247

4.1.2. Numerical results248

The geometries and materials of the two beams considered hereafter are the same as those in the tests of249

section 3. For the simulations we take α = 2 and β = 200. To validate the ASCMS for the current example,250

in Fig. 9 we have plotted the modal frequencies corresponding to the first 200 modal orders of the coupled251

two-beam system computed with both, the ASCMS based on GEM (blue dashed line) and the FEM (brown252

line). As can be seen, the ASCMS result is very close to that of the FEM, i.e., the blue dashed line is almost253

indistinguishable from the brown solid line. To reflect the slight differences between these two curves, in254

(a1) ASCMS 4th (a2) ASCMS 14th (a3) ASCMS 35th (a4) ASCMS 47th

(b1) FEM 4th (b2) FEM 14th (b3) FEM 35th (b4) FEM 47th

Figure 10: Comparison of the 4-th, 14-th, 35-th, and 47-th modal shapes obtained from ASCMS (top row) and FEM
(bottom row). The black lines represent the beams before deformation, while the coloured shapes show the displacements
||ui||2 + ||wi||2, i = 1, 2.
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the figure we have also plotted the relative error between the ASCMS and FEM frequency values for each255

resonant order, computed as ϵ100% = |fASCMS − fFEM|/fFEM × 100%. The range of variation of ϵ100% is256

indicated in the right axis of Fig. 9 (red colour). To facilitate the inspection of the value of ϵ100% for each257

resonant order, we have drawn a circle for each whose radius and colour are proportional to ϵ100%. It can258

be observed that for the lower orders (< 100) the relative error is smaller than 0.1%. As one could expect,259

the error increases with the resonant order, but the maximum value does not exceed 0.38%, which confirms260

the high degree of accuracy of the ASCMS method. Furthermore, some arbitrary modal shapes obtained261

from ASCMS simulations have been plotted in Fig. 10 and compared to FEM ones. Again, the resemblance262

between the results of the two methods is very significant. It is also observed in the figure how in-plane263

vibrations strongly couple with bending ones. Likewise, let us mention that the computational time without264

modal truncation is 1.156 s, while for the reduced model (with α = 2) becomes 0.354 s.265

4.2. Application 2: A cylindrical shell with an internal floor partition266

Let us now turn to the more complex case of a cylindrical shell coupled to a flat interior partition (see267

Fig. 11). As already mentioned, this type of structures can be found in simplified models of aircraft and268

submarines. Note that for this problem it will be necessary to consider displacements in all three directions269

(vertical, axial and longitudinal). We will start by presenting the synthesis of the model and then show the270

results and again the validation by comparison with a finite element model.271

4.2.1. Synthesis procedure272

We begin with by expanding the displacement fields in the vertical, w, axial, v, and longitudinal, u,

directions (see Fig. 11) in terms of approximating functions,

us(x, y, t) = a⊤
s (t)χs(x, y), vs(x, y, t) = b⊤s (t)γs(x, y), ws(x, y, t) = c⊤s (t)ζs(x, y), (36)

up(x, y, t) = a⊤
p (t)χp(x, y), vp(x, y, t) = b⊤p (t)γp(x, y), wp(x, y, t) = c⊤p (t)ζp(x, y), (37)
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where the subscripts s and p respectively represent variables corresponding to the shell and the plate. The

kinetic energy of the cylindrical shell is given by,

Ekin,s =
1

2

∫ πR

−πR

∫ Lx

0

ρhs

(
u̇2
s + v̇2s + ẇ2

s

)
dxdy

≡ 1

2


ȧs

ḃs

ċs


⊤ 

Mus 0 0

0 Mvs 0

0 0 Mws




ȧs

ḃs

ċs


≡ 1

2
ḋ⊤
s Msḋs, (38)
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Figure 11: Illustration of (a) a standard cylindrical shell, (b) a rectangular plate, (c)-(d) the coupled built-up structure in 3D
and front views, respectively. The in-plane displacements of the plate are denoted by up and vp, while wp stands for the bending
one. As for the cylindrical shell, us, vs, and ws respectively represent the axial, circumferential, and radial displacements. The
plate location is characterized by angle θ, as seen in (d).
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and the potential one by,

Epot,s =
1

2

∫ πR

−πR

∫ Lx

0

Ds

[(
∂2
xxws

)2
+

(
∂2
yyws −

1

R
∂yvs

)2

+ 2ν∂2
xxws

(
∂2
yyws −

1

R
∂yvs

)
+

1− ν

2

(
2∂2

xyws −
2

R
∂xvs

)2
]
dxdy

+
1

2

∫ πR

−πR

∫ Lx

0

Gs

[
(∂xus)

2
+

(
∂yvs +

ws

R

)2

+ 2ν∂xus

(
∂yvs +

ws

R

)
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1− ν

2
(∂xvs + ∂yus)

2

]
dxdy

≡1

2
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bs

cs
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⊤ 

Kusus Kusvs Kusws

K⊤
usvs Kvsvs Kvsws

K⊤
usws K⊤

vsws Kwsws




as

bs

cs


≡1

2
d⊤
s Ksds, (39)

where Ds =
Eh3

s

12(1−ν2) is the bending stiffness and Gs = Ehs

1−ν2 the extensional one. For the sake of brevity,

the stiffness matrices in Eq. (39) are not listed herein. The interested reader can find them e.g., in [41].

Building the Lagrangian from Eqs. (38) and (39) we obtain the equations of motion for the shell,

(
Ks − ω2

sMs

)
D̂s = 0, (40)

and solving Eq. (40) we find the shell resonances and eigenvectors. We can select the first m ones and get273

the reduced eigen-matrix, P s = [Ds,1,Ds,2,Ds,3, ...,Ds,m].274

Likewise, the kinetic and potential energies of the plate read

Ekin,p =
1

2

∫ Ly

0

∫ Lx

0

ρhp

(
u̇2
p + v̇2p + ẇ2

p

)
dxdy

≡ 1
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ċp
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≡ 1

2
ḋ⊤
p Mpḋp, (41)
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and

Epot,p =
1

2

∫ Ly

0

∫ Lx

0
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)2
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∂2
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2
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dxdy

≡1

2
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⊤ 

Kupup Kupvp 0
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upvp Kvpvp 0

0 0 Kwpwp
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ap

bp

cp


≡1

2
d⊤
p Kpdp, (42)

from which we obtain the equations of motion for the plate,

(
Kp − ω2

pMp

)
D̂p = 0. (43)

The solution to Eq. (43) provides the eigenvectors of the plate and choosing m of them, we get the reduced275

eigen-matrix, P p = [Dp,1,Dp,2,Dp,3, ...,Dp,m]276

As done for the beam examples, we next project the weight coefficient vectors to the modal space,

ds = P sεs,

dp = P pεp, (44)

where εs and εp designate the vectors of modal participation factors.277
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The kinetic energy of the built-up system (cylindrical shell plus inner plate) becomes,

Ekin,total = Ekins + Ekinp

=
1

2
ḋ⊤
s Msḋs +

1

2
ḋ⊤
p Mpḋp

=
1

2
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
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0 P p




 ε̇s

ε̇p


≡ 1

2
ε̇⊤Mε̇, (45)

where M s and Mp are the reduced mass matrices of the shell and the plate, respectively. For the potential

energy we get

Epot,total = Epot,s + Epot,p

=
1

2
d⊤
s Ksds +

1

2
d⊤
p Kpcp

=
1

2
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


 εs
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
≡ 1

2
ε⊤Kε. (46)

The next step is to consider the energy contribution from the artificial springs linking the plate and the278

shell. The coupling conditions at the junction between both substructures are expressed as (Figs. 11 c and279

11d),280

lim
k1→+∞

vs(ys1) sin θ + ws(ys1) cos θ − wp(yp1) = 0, lim
k1→+∞

−vs(ys2) sin θ + ws(ys2) cos θ − wp(yp2) = 0,

lim
k2→+∞

vs(ys1) cos θ − ws(ys1) sin θ − vp(yp1) = 0, lim
k2→+∞

vs(ys2) cos θ + ws(ys2) sin θ − vp(yp2) = 0,

lim
k3→+∞

−vs(ys1)

R
+ ∂yws(ys1)− ∂ywp(yp1) = 0, lim

k3→+∞
−vs(ys2)

R
+ ∂yws(ys2)− ∂ywp(yp2) = 0,

lim
k4→+∞

us(ys1)− up(yp1) = 0, lim
k4→+∞

us(ys2)− up(yp2) = 0.

(47)

The above conditions allows us to calculate the energy stored at the artificial springs. For k1, we have from
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the first line in Eq. (47),
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 , (48)

while for k2 and the second line in Eq. (47),
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The energy stored in the third and fourth type of artificial connection springs (constraints in the third and
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fourth lines in Eq. (47)) respectively becomes,
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and
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The entries of Kspri (i = 1, 2, 3, 4) in Eqs. (48)-(51) are provided in Appendix B.281
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The total potential energy stored in the artificial springs can be written in more compact form as

Epot,total = Espr1 + Espr2 + Espr3 + Espr4
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The elements of Kcoup are provided in Appendix C.282

From Eqs. (45), (46) and (52) we construct the Lagrangian of the built-up system and from the Euler-

Lagrange equations we finally arrive at the reduced-order eigenvalue problem,

(
K +Kcoup − ω2M

)
ε̂ = 0. (53)

4.2.2. Numerical results283

To validate the ASCMS method using GEM for the cylindrical shell plus inner plate model we proceed284

as for the two-beam at right angles example, and perform comparisons with FEM simulations. We consider285

both substructures to be made of steel. The shell has radius R = 1 m, length Lx = 5 m and thickness286

hs = 0.02 m, while the plate at cos(θ) = 0.5 has the same length and thickness. The FEM model has been287

built with the commercial code Comsol Multiphysics using the Shell module. To ensure convergence up to288
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Figure 12: Comparison of modal frequencies computed with the ASCMS (blue dash line) and FEM (brown solid line) for the
cylindrical shell connected to an inner floor. To observe the differences, the relative error |fASCMS − fFEM|/fFEM × 100% has
been calculated for the range shown in the red, right y axis of the figure. For the ease of exposition, the relative error at each
resonant order is represented with circles whose radii and colours are proportional to the relative error values.

520 Hz (see Fig. 12), which corresponds to a bending wavelength of λ = 0.616 m, the standard criteria of289

taking a mesh size of h = λ/10 has been chosen. The FEM mesh of the coupled model consists of a total of290

11508 quadratic Lagrange quadrilateral elements, with 11560 nodes and 278850 dofs.291

Fig. 12 is the analogous to Fig. 9 but for the current cylindrical shell plus inner plate coupled system.292

The figure shows the modal frequencies for each resonant order calculated with the ASCMS (dashed blue293

line) and with the FEM (continuous brown line). Again, both lines are almost indistinguishable except for294

the highest modes. Even for this more complex example the degree of accuracy of the ASCMS is remarkable.295

As observed in the figure, the relative error values for each resonant mode, ϵ100% (represented by circles) does296

not surpass 2.3%. The resemblance between the ASCMS results and the FEM ones is also confirmed when297

looking at the mode shapes exhibited in Fig. 13 (which is analogous to Fig. 10 in the previous example). In298

particular, we can observe that, both the global modes (as the 105-th one) and the local modes (as the 135-th299

one involving the plate and the 162-nd one involving the shell) are well reproduced by the ASCMS. On the300

other hand, it only cost 44.8 seconds to get the solution considering the reduced model with np = 1215301

modes for the plate and ns = 2673 modes for the shell, while it took 468.5 s for the full original model. This302

confirms the ASCMS as a reliable approach to build modal reduced-order models of built-up systems and303

simulate the vibrational behaviour of complex structures.304
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(a1) ASCM
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(b1) FEM
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(b3) FEM
 53rd

(b4) FEM
 90th

(a5) ASCM
S 105th
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(b6) FEM
 135th

(b7) FEM
 162nd

(b8) FEM
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Figure 13: Comparison of the 7-th, 18-th, 53-rd, 90-th, 105-th, 135-th, 162-nd and 187-th modal shapes obtained from (a1)-(a8)
ASCMS and (b1)-(b8) FEM. The black lines stand for the shell and the plate before deformation, while the coloured shapes
show the displacements ||ui||2 + ||vi||2 + ||wi||2, i = p, s.

5. Conclusions305

In this paper, we have developed an artificial spring component mode synthesis (ASCMS) method to306

characterize the vibrational behaviour of built-up systems composed of various substructures. As opposed307

to the traditional artificial spring method that expands the displacement fields in the space domain, the308

ASCMS relies on the modal information of each substructure. This allows one to obtain the stiffness coupling309

matrix accounting for the artificial springs in the modal space and to construct a modal reduced-order model310

of the total system based on the modes of each substructure. The artificial spring method has therefore311

been combined with component mode synthesis (CMS) approaches in the ASCMS.312
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For ease of exposition, the ASCMS theory was initially presented for two beams connected in the axial313

direction. This example has been used to study the convergence of the method as a function of several314

factors. First, the influence of the stiffness values of the artificial springs has been analyzed. A simple315

procedure has been provided to choose the stiffness value that guarantees convergence up to a selected316

eigenfrequency of the built-up structure. Then, the influence of the coupling force has been inspected by317

coupling beams of different thickness ratio. The ASCMS has yielded accurate results in all cases, showing318

that the method can be applied with confidence for very different coupling forces. Finally, modal truncation319

has been examined in terms of modal participation factors, showing that almost all resonant orders exceeding320

the target eigenfrequency of the fully coupled system can be discarded.321

After validation of the ASCMS theory for a simple case, more complex examples have been addressed.322

The first consisted of two beams connected at right angles for which the in-plane motion must be considered323

in addition to the bending motion. The second is more industrial and has consisted of an inner floor324

connected to a cylindrical shell, a structure typically found in aeronautical and naval applications. For this325

case, displacements in the vertical, axial and longitudinal directions have been taken into account. It has326

been shown that ASCMS easily adapts to these more complex situations and comparison with FEM models327

has revealed a high degree of accuracy. It should be mentioned that system damping has not been included328

in the examples presented, although this could easily be taken into account by considering a complex stiffness329

matrix whose imaginary part accounts for system losses. This will not imply any substantial change in the330

ASCMS methodology.331

Finally, it should be mentioned that although only fully coupled substructures have been contemplated332

in this work, it is expected that ASCMS can also work well for elastic connections. This will be addressed333

in future work along with the inclusion of damping at the connection interfaces.334
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Appendix A: Influence of the artificial spring339

Let us take a simple example to see how the artificial coupling spring affects a built-up system. As340

shown in Fig. A1a, a resonator having mass m = 2 kg is connected to the ground by springs k1 and k2, thus341
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Figure A1: (a) Illustration of a resonator having two springs in parallel. (b) Illustration of dividing the resonator into two
and assembling them by an artificial spring k.

the eigenvalue of the resonator is λ = k1+k2

2 . Now we divide the block into two and reconnect them by an342

artificial spring, k, with each mass being mi = 1 kg (i = 1, 2) (see Fig. A1b).343

Because of the simplicity of the system, we can directly obtain the equations of motion of the system in

Fig. A1b,


 k + k1 −k

−k k + k2

− λ

 1 0

0 1




 w1

w2

 =

 0

0

 . (A1)

Solving Eq. A1, we obtain the eigenvalues

λ∓ =
k1 + k2 + 2k ∓

√
4k2 + (k1 − k2)2

2
, (A2)

It can be seen that only λ− is acceptable because when k ≫ |k1−k2|
2 the mode of the system in Fig. A1b344

converges to that of the system in Fig. A1a (i.e., λ = k1+k2

2 ). That is, after considering one rigid constraint,345

the number of degrees of freedom (dofs) of the system is reduced in one. It can be reasonably predicted346

that, if h constraints are imposed into two substructures respectively having n1 and n2 dofs, the final dofs347

of the built-up system become n1 + n2 − h. In particular, we can see that there is no upper limit for the348

value of k in λ−. However, one must be careful when using very large k in numerical implementations, as349

round-off effects may deteriorate convergence.350
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Appendix B: Stiffness matrices for each springs351

The entries of Kspr1 are:

Kspr1,vsvs = k1

∫ Lx

0

γs(x, ys1)γ
⊤
s (x, ys1) sin

2 θdx+ k1

∫ Lx

0

γs(x, ys2)γ
⊤
s (x, ys2) sin

2 θdx, (B1)

Kspr1,vsws = −k1

∫ Lx

0

γs(x, ys1)ζ
⊤
s (x, ys1) sin θ cos θdx+ k1

∫ Lx

0

γs(x, ys2)ζ
⊤
s (x, ys2) sin θ cos θdx, (B2)

Kspr1,vswp = −k1

∫ Lx

0

γs(x, ys1)ζ
⊤
p (x, yp1) sin θdx+ k1

∫ Lx

0

γs(x, ys2)ζ
⊤
p (x, yp2) sin θdx, (B3)

Kspr1,wsws = k1

∫ Lx

0

ζs(x, ys1)ζ
⊤
s (x, ys1) cos

2 θdx+ k1

∫ Lx

0

ζs(x, ys2)ζ
⊤
s (x, ys2) cos

2 θdx, (B4)

Kspr1,wswp = −k1

∫ Lx

0

ζs(x, ys1)ζ
⊤
p (x, yp1) cos θdx− k1

∫ Lx

0

ζs(x, ys2)ζ
⊤
p (x, yp2) cos θdx, (B5)

Kspr1,wpwp = k1

∫ Lx

0

ζp(x, yp1)ζ
⊤
p (x, yp1)dx+ k1

∫ Lx

0

ζp(x, yp2)ζ
⊤
p (x, yp2)dx. (B6)

While the entries of Kspr2 write:

Kspr2,vsvs = k2

∫ Lx

0

γs(x, ys1)γ
⊤
s (x, ys1) cos

2 θdx+ k2

∫ Lx

0

γs(x, ys2)γ
⊤
s (x, ys2) cos

2 θdx, (B7)

Kspr2,vsws = k2

∫ Lx

0

γs(x, ys1)ζ
⊤
s (x, ys1) sin θ cos θdx− k2

∫ Lx

0

γs(x, ys2)ζ
⊤
s (x, ys2) sin θ cos θdx, (B8)
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Kspr2,vsvp = −k2

∫ Lx

0

γs(x, ys1)γ
⊤
p (x, yp1) cos θdx− k2

∫ Lx

0

γs(x, ys2)γ
⊤
p (x, yp2) cos θdx, (B9)

Kspr2,wsws = k2

∫ Lx

0

ζs(x, ys1)ζ
⊤
s (x, ys1) sin

2 θdx+ k2

∫ Lx

0

ζs(x, ys2)ζ
⊤
s (x, ys2) sin

2 θdx, (B10)

Kspr2,wsvp = −k2

∫ Lx

0

ζs(x, ys1)γ
⊤
p (x, yp1) cos θdx− k2

∫ Lx

0

ζs(x, ys2)γ
⊤
p (x, yp2) cos θdx, (B11)

Kspr2,vpvp = k2

∫ Lx

0

γp(x, yp1)γ
⊤
p (x, yp1)dx+ k2

∫ Lx

0

γp(x, yp2)γ
⊤
p (x, yp2)dx. (B12)

Whereas the entries of Kspr3 read:

Kspr3,vsvs = k3

∫ Lx

0

γs(x, ys1)γ
⊤
s (x, ys1)

1

R2
dx+ k3

∫ Lx

0

γs(x, ys2)γ
⊤
s (x, ys2)

1

R2
dx, (B13)

Kspr3,vsws = −k3

∫ Lx

0

γs(x, ys1)∂yζ
⊤
s (x, ys1)

1

R
dx− k3

∫ Lx

0

γs(x, ys2)∂yζ
⊤
s (x, ys2)

1

R2
dx, (B14)

Kspr3,vswp = k3

∫ Lx

0

γs(x, ys1)∂yζ
⊤
p (x, yp1)

1

R
dx+ k3

∫ Lx

0

γs(x, ys2)∂yζ
⊤
p (x, yp2)

1

R
dx, (B15)

Kspr3,wsws = k3

∫ Lx

0

∂yζs(x, ys1)∂yζ
⊤
s (x, ys1)dx+ k3

∫ Lx

0

∂yζs(x, ys2)∂yζ
⊤
s (x, ys2)dx, (B16)
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Kspr3,wswp = −k3

∫ Lx

0

∂yζs(x, ys1)∂yζ
⊤
p (x, yp1)dx− k3

∫ Lx

0

∂yζs(x, ys2)∂yζ
⊤
p (x, yp2)dx, (B17)

Kspr3,wpwp = k3

∫ Lx

0

∂yζp(x, yp1)∂yζ
⊤
p (x, yp1)dx+ k3

∫ Lx

0

∂yζp(x, yp2)∂yζ
⊤
p (x, yp2)dx. (B18)

Finally, those of Kspr4 become:

Kspr4,usus = k4

∫ Lx

0

χs(x, ys1)χ
⊤
s (x, ys1)dx+ k4

∫ Lx

0

χs(x, ys2)χ
⊤
s (x, ys2)dx, (B19)

Kspr4,usup = −k4

∫ Lx

0

χs(x, ys1)χ
⊤
p (x, yp1)dx− k4

∫ Lx

0

χs(x, ys2)χ
⊤
p (x, yp2)dx, (B20)

Kspr4,upup = k4

∫ Lx

0

χp(x, yp1)χ
⊤
p (x, yp1)dx+ k4

∫ Lx

0

χp(x, yp2)χ
⊤
p (x, yp2)dx. (B21)

Appendix C: The assembled stiffness matrix352

The assembled matrix, Kcoup, in Eq. (52) has the following entries:

Kusus = Kspr4,usus, (C1)

Kusup = Kspr4,usup, (C2)

Kvsvs = Kspr1,vsvs +Kspr2,vsvs +Kspr3,vsvs, (C3)
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Kvsws = Kspr1,vsws +Kspr2,vsws +Kspr3,vsws, (C4)

Kvsvp = Kspr2,vsvp, (C5)

Kvswp = Kspr1,vswp +Kspr3,vswp, (C6)

Kwsws = Kspr1,wsws +Kspr2,wsws +Kspr3,wsws, (C7)

Kwsvp = Kspr2,wsvp, (C8)

Kwswp = Kspr1,wswp +Kspr3,wswp, (C9)

Kupup = Kspr4,upup, (C10)

Kvpvp = Kspr2,vpvp, (C11)
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Kwpwp = Kspr1,wpwp +Kspr3,wpwp. (C12)
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