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On the Universality of Atomic and Molecu-
lar Logics via Protologics

Guillaume Aucher

Abstract. After observing that the truth conditions of connectives of
non–classical logics are generally defined in terms of formulas of first–
order logic, we introduce ‘protologics’, a class of logics whose connec-
tives are defined by arbitrary first–order formulas. Then, we introduce
atomic and molecular logics, which are two subclasses of protologics that
generalize our gaggle logics and which behave particularly well from a
theoretical point of view. We also study and introduce a notion of equi-
expressivity between two logics based on different classes of models. We
prove that, according to that notion, every pure predicate logic with
k ≥ 0 free variables and constants is as expressive as a predicate atomic
logic, some sort of atomic logic. Then, we prove that the class of proto-
logics is equally expressive as the class of molecular logics. That formally
supports our claim that atomic and molecular logics are somehow ‘uni-
versal’. Finally, we identify a subclass of molecular logics that we call
predicate molecular logics and which constitutes its representative core:
every molecular logic is as expressive as a predicate molecular logic.

Mathematics Subject Classification (2010). 03, 03B, 03C.

Keywords. Universal logic, expressivity, first-order logics, non-classical
logics.

1. Introduction

A wide variety of non–classical logics have been introduced over the past
decades, such as relevant logics, linear logics and Lambek calculi, to name
just a few. On the one hand, this diversity is an asset since each logic is rel-
evant to a specific purpose, and one can select, and resort to, some of them
when reasoning about a given applicative issue [32]. On the other hand, and
from a theoretical point of view, this plurality can be felt as problematic be-
cause it threatens the unity and the unifying power of logic. Even if all logics
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already have in common the same terminology and notions, non–classical log-
ics are still disorganized and scattered and lack a common formal ground. In
response to that situation, a number of attempts have been made by various
logicians to introduce a genuine unity to logic as witnessed, for example, by
the development of abstract model theory and “institutions” [7, 30, 20], the
“labelled deductive systems” of Gabbay [18] or the “basic logic” of Sambin
& al. [40] (see [8, 17] for details and more examples). This led to the rise of
a research thread sometimes referred to (nowadays) as “Universal Logic” [8].
According to Béziau, “Universal logic is a general theory of logical systems,
studying the relations between them, comparing them and combining them”
[9].

We share the ideal and the objectives of “Universal Logic”. In this arti-
cle, we propose a novel and simple approach to address that grand problem.
Our starting point will be the observation that the truth conditions of non–
classical connectives are often defined in terms of first-order formulas (without
functions). This will lead us to introduce protologics, a class of logics whose
connectives are defined by arbitrary first–order formulas. Even if protologics
are quite general and capture a wide range of non–classical logics, they do
not lend themselves naturally to a systematic exploration of their theoretical
properties. The truth conditions of their connectives are arbitrary formulas
of first–order logic and, as such, do not yield us much information about their
associated theoretical properties. To overcome this difficulty we will introduce
atomic and molecular logics, a subclass of protologics whose connectives are
of a specific form and which are particularly well–behaved from a theoretical
point of view. They are a generalization of polyadic modal logics that take
into account some sort of monotonicity in the truth conditions of their con-
nectives. They generalize our gaggle logics [4, 5]. We will show that atomic
and molecular logics are ‘paradigmatic’ logics or ‘normal form’ logics in the
sense that they can capture a very wide range of non–classical logics. We
will prove in this article that first-order logic with k ≥ 0 free variables and
constants is as expressive as a specific atomic logic and that every protologic
is as expressive as a molecular logic. That result supports our claim that
atomic and molecular logics are (somehow) ‘universal’.

Structure of the article. We start in Section 2 by recalling first-order logics
and some of the most well-known non-classical logics: that is, modal logic, the
Lambek calculus, modal intuitionistic logic, temporal logic and many-valued
logics. In Section 3, we also study and introduce a notion of equi-expressivity
between logics based on different classes of models. Then, in Section 4, we in-
troduce protologics: that is, logics whose connectives are defined by arbitrary
first-order formulas, as well as atomic and molecular logics. We show that
modal logic, many-valued logics and the Lambek calculus are atomic logics
whereas modal intuitionistic logic and temporal logics are molecular logics.
In Section 5, we prove that first-order logic is as expressive as an atomic logic
and that the class of molecular logics is as expressive as the class of pro-
tologics. In Section 6, we introduce predicate molecular logics and we show
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that the class of molecular logics is as expressive as the class of predicate
molecular logics. We conclude in Section 7.

2. Classical and Non-Classical Logics

In this section, we recall first-order logic (FOL) and some of the most well–
known non–classical logics. Logics will always be semantically presented by
following a tri-partite representation: language, class of models, satisfaction
relation.

2.1. Classical Logics

We deal with FOL without function symbols. The set P ≜ {R1, . . . ,Rn, . . .}
is a set of predicate symbols of arity k1, . . . , kn, . . . respectively (one of them
can be the identity predicate = of arity 2), V ≜ {v1, . . . , vn, . . .} is a set of
variables and C ≜ {c1, . . . , cn, . . .} is a set of constants. Each of these sets
can be finite or infinite. v1, v2, v3, . . . are the names of the variables and we
use the expressions x,x1, x2, . . . , y, y1, y2, . . . , z, z1, z2, . . . to refer to arbitrary
variables or constants, which can be for example v42, v5, c101, c21, . . .

The first-order language LPFOL is defined inductively by the following
grammars in BNF:

LVCFOL ∶ t ∶∶= x ∣ c

LPFOL ∶ ϕ ∶∶= Rt . . . t ∣ � ∣ (ϕ→ ϕ) ∣ ∀xϕ

where x ∈ V, c ∈ C, t ∈ LVCFOL and R ∈ P. Elements of LVCFOL are called terms
and elements of LPFOL are called first–order formulas. Formulas of the form
Rt1 . . . tk are called atomic formulas. If ϕ ∈ LPFOL, the Boolean negation of
ϕ, denoted ¬ϕ, is defined by the abbreviation ¬ϕ ≜ (ϕ → �). We also use
the abbreviations ⊺ ≜ ¬�, (ϕ ∨ ψ) ≜ (¬ϕ → ψ), (ϕ ∧ ψ) ≜ ¬(¬ϕ ∨ ¬ψ) and
(ϕ ↔ ψ) ≜ (ϕ → ψ) ∧ (ψ → ϕ) as well as the abbreviations ∃xϕ ≜ ¬∀x¬ϕ,
∀x1 . . . xnϕ ≜ ∀x1 . . .∀xnϕ, ∃x1 . . . xnϕ ≜ ∃x1 . . .∃xnϕ and ∀xϕ ≜ ∀x1 . . . xnϕ
if x = (x1, . . . , xn) is a tuple of variables.

Let ϕ ∈ LPFOL. An occurrence of a variable x in ϕ is free (in ϕ) if, and
only if, x is not within the scope of a quantifier of ϕ. We say that a formula of
LPFOL is a sentence (or is closed) when it contains no free variable. We denote
by ϕ(x1, . . . , xk) a formula of LPFOL whose free variables or constants coincide
exactly with x1, . . . , xk. We assume that these variables and constants are all
distinct. In doing so, we depart from the literature in which this notation
means that the free variables of ϕ are included in {x1, . . . , xk}. Free variables
may be used to bind elements of two different subformulas. For example, the
formula Ryx∨R′xz with free variables x, y, z will be evaluated in a structure
in such a way that x will be assigned the same element of the domain in the
two subformulas Ryx and R′xz.

We denote by LPFOL(x) the fragment of LPFOL whose formulas all contain
at least one free variable or constant and by LPFOL(∅) the set of sentences

of LPFOL. For all k ∈ N∗ and x = (x1, . . . , xk) ∈ Vk, we denote by LPFOL(x, k)
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the fragment of LPFOL whose formulas all contain exactly k free variables or
constants and these variables or constants are x. Note that LPFOL(x) can be
partitionned into sublanguages of the form LPFOL(x, k).

A structure is a tuple M ≜ (W,{R1, . . . ,Rn, . . . , c1, . . . , cn, . . .}) where:

● W is a non-empty set called the domain;
● R1, . . . ,Rn, . . . are relations over W with the same arity as R1, . . . ,Rn, . . .

respectively;
● c1, . . . , cn, . . . ∈ W are elements of the domain called distinguished ele-

ments.

An assignment over M is a mapping s ∶ V ∪ C → W such that for all
ci ∈ C, s(ci) = ci. If s is an assignment, s[x ∶= w] is the same assignment
as s except that the value of the variable x ∈ V is assigned to w. A pair of
structure and assignement (M,s) is called a pointed structure. The class of
all pointed structures (M,s) is denoted MFOL.

The satisfaction relation FOL ⊆MFOL ×LPFOL is defined inductively as
follows. Below, we write (M,s) ϕ for ((M,s), ϕ) ∈ FOL.

(M,s) � never;
(M,s) Rit1 . . . tk iff (s(t1), . . . , s(tk)) ∈ Ri;
(M,s) (ϕ→ ψ) iff if (M,s) ϕ then (M,s) ψ;
(M,s) ∀xϕ iff (M,s[x ∶= w]) ϕ for all w ∈W.

In the literature [11], (M,s) ϕ(x1, . . . , xk) is sometimes denoted M ϕ(x1,
. . . , xk)[w1, . . . ,wk], M ϕ[w1/x1, . . . ,wk/xk] or simply M ϕ[w1, . . . ,wk],
with w1 = s(x1), . . . ,wk = s(xk). Some other times [16], it is denotedM ϕ(x1,
. . . , xn)[s], M,s ϕ(x1, . . . , xn) or simply M ϕ[s]. In that case, we say
that (M,s) makes ϕ true. We say that the formula ϕ ∈ LPFOL is realized in M
when there is an assignment s such that (M,s) ϕ.

We depart from the literature by treating constants on a par with vari-
ables: the denotation of constants is usually not dealt with by means of as-
signments. In doing so, we can avoid to introduce distinguished elements in
the very definition of a structure. Two (pointed) structures are elementarily
equivalent when they make true the same sentences, and for all k ∈ N∗ and all
x = (x1, . . . , xk) ∈ Vk we write (M,s) ≡x (M ′, s) when for all ϕ ∈ LPFOL(x, k)
it holds that (M,s) ϕ iff (M ′, s′) ϕ.

If EFOL is a class of pointed structures, the triple (LPFOL,EFOL, FOL) is

called pure predicate logic (associated to EFOL), the triple (LPFOL(x),EFOL, FOL)
is called pure predicate logic with free variables and constants (associated to
EFOL) and the triple (LPFOL(x, k),EFOL, FOL) is called pure predicate logic
with k free variables and constants (associated to EFOL). When EFOL isMFOL,
they are simply called respectively pure predicate logic and pure predicate
logic with (k) free variables and constants.
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2.2. Non-Classical Logics

The examples of non–classical logics that follow are among the most well–
known and most studied non–classical logics.

In this section, A is a set of propositional letters which can be finite or
infinite.

2.2.1. Modal Logic. Let I be a set of indices which can be finite or infinite.
The multi-modal language LML is defined inductively by the following gram-
mar in BNF:

LML ∶ ϕ ∶∶= p ∣ ¬p ∣ (ϕ ∧ ϕ) ∣ (ϕ ∨ ϕ) ∣ 3jϕ ∣ 2jϕ

where p ∈ A and j ∈ I.
We present the so-called possible world semantics of modal logic. A

Kripke model M is a tuple M ≜ (W,{R1, . . . ,Rm, . . . , P1, . . . , Pn, . . .}) where

● W is a non-empty set whose elements are called possible worlds;
● R1, . . . ,Rm, . . . ⊆W ×W are binary relations over W called accessibility

relations;
● P1, . . . , Pn, . . . ⊆ W are unary relations interpreting the propositional

letters of P.

We write w ∈M for w ∈W by abuse and the pair (M,w) is called a pointed
Kripke model. The class of all pointed Kripke models is denoted EML.

We define the satisfaction relation ML ⊆ EML×LML inductively by the
following truth conditions. Below, we write (M,w) ϕ for ((M,w), ϕ) ∈ ML.
For all (M,w) ∈ EML, all ϕ,ψ ∈ LML, all pi ∈ P and all j ∈ I,
(M,w) pi iff Pi(w) holds;
(M,w) ¬pi iff Pi(w) does not hold;
(M,w) (ϕ ∧ ψ) iff (M,w) ϕ and (M,w) ψ;
(M,w) (ϕ ∨ ψ) iff (M,w) ϕ or (M,w) ψ;
(M,w) 3jϕ iff there exists v ∈W such that Rjwv and (M,v) ϕ;
(M,w) 2jϕ iff for all v ∈W such that Rjwv, (M,v) ϕ.

The triple (LML,EML, ML) forms a logic, that we call modal logic.

2.2.2. Lambek Calculus. The Lambek language LLC is the set of formulas
defined inductively by the following grammar in BNF:

LLC ∶ ϕ ∶∶= p ∣ (ϕ ○ ϕ) ∣ (ϕ/ϕ) ∣ (ϕ/ϕ)
where p ∈ P. A Lambek model is a tuple M = (W,{R,P1, . . . , Pn, . . .})

where:

● W is a non-empty set;
● R ⊆W ×W ×W is a ternary relation over W ;
● P1, . . . , Pn, . . . ⊆W are unary relations over W .

We write w ∈M for w ∈W by abuse and (M,w) is called a pointed Lambek
model. The class of all pointed Lambek models is denoted ELC. We define
the satisfaction relation Int ⊆ ELC × LLC by the following truth conditions.
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Below, we write (M,w) ϕ for ((M,w), ϕ) ∈ LC. For all Lambek models
M = (W,{R,P1, . . . , Pn, . . .}), all w ∈M , all ϕ,ψ ∈ LLC and all pi ∈ P,

(M,w) pi iff Pi(w) holds;
(M,w) (ϕ ○ ψ) iff there are v, u ∈W such that Rvuw,

(M,v) ϕ and (M,u) ψ;
(M,w) (ϕ/ψ) iff for all v, u ∈W such that Rwvu,

if (M,v) ϕ then (M,u) ψ;
(M,w) (ψ/ϕ) iff for all v, u ∈W such that Rvwu,

if (M,v) ϕ then (M,u) ψ.

The triple (LLC,ELC, LC) forms a logic, that we call the Lambek cal-
culus.

2.2.3. Modal Intuitionistic Logic. The modal intuitionistic language LInt is
defined inductively by the following grammar in BNF:

LInt ∶ ϕ ∶∶= ⊺ ∣ � ∣ p ∣ (ϕ ∧ ϕ) ∣ (ϕ ∨ ϕ) ∣ (ϕ⇒ ϕ) ∣ 3ϕ ∣ 2ϕ

where p ∈ A. A modal intuitionistic model is a tupleM = (W,{R,R3, P1, . . . , Pn,
. . .}) where:

● W is a non-empty set;
● R ⊆W ×W is a binary relation over W which is reflexive and transitive

(R is reflexive if for all w ∈W Rww and transitive if for all u, v,w ∈W ,
Ruv and Rvw imply Ruw);

● R3 ⊆W ×W is a binary relation over W ;
● P1, . . . , Pn, . . . ⊆W are unary relations over W such that for all v,w ∈W ,

if Rvw and Pn(v) then Pn(w).
We write w ∈ M for w ∈ W by abuse and the pair (M,w) is called

a pointed modal intuitionistic model. The class of all pointed modal intu-
itionistic models is denoted EInt. We define the satisfaction relation Int ⊆
EInt ×LInt by the following truth conditions. Below, we write (M,w) ϕ for
((M,w), ϕ) ∈ Int. For all modal intuitionistic modelsM = (W,{R,R3, P1, . . .
, Pn, . . .}), all w ∈M , all ϕ,ψ ∈ LInt and all pi ∈ P,

(M,w) ⊺ always;
(M,w) � never;
(M,w) pi iff Pi(w) holds;
(M,w) (ϕ ∧ ψ) iff (M,w) ϕ and (M,w) ψ;
(M,w) (ϕ ∨ ψ) iff (M,w) ϕ or (M,w) ψ;
(M,w) (ϕ⇒ ψ) iff for all v ∈W such that Rwv, if (M,v) ϕ

then (M,v) ψ;
(M,w) 2ϕ iff for all v ∈W such that Rwv,

for all u ∈W such that R3vu, (M,u) ϕ;
(M,w) 3ϕ iff for all v ∈W such that Rwv,

there is u ∈W such that R3vu and (M,u) ϕ.

The triple (LInt,EInt, Int) forms a logic, that we call modal intuitionistic
logic.
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2.2.4. Temporal Logic. The temporal language LTL is defined inductively by
the following grammar in BNF:

LTL ∶ ϕ ∶∶= ⊺ ∣ � ∣ p ∣ ¬p ∣ (ϕ ∧ ϕ) ∣ (ϕ ∨ ϕ) ∣ U(ϕ,ϕ) ∣ S(ϕ,ϕ)
where p ∈ A. A temporal model is a tuple M = (W,{<, P1, . . . , Pn, . . .}) where:

● W is a non-empty set;
● <⊆W ×W is a binary relation over W ;
● P1, . . . , Pn, . . . ⊆W are unary relations over W .

We write w ∈ M for w ∈ W by abuse and the pair (M,w) is called a
pointed temporal model. The class of all pointed temporal models is denoted
ETL. We define the satisfaction relation TL ⊆ ETL × LTL by the following
truth conditions. Below, we write (M,w) ϕ for ((M,w), ϕ) ∈ TL. For all
temporal models M = (W,{<, P1, . . . , Pn, . . .}), all w ∈M , all ϕ,ψ ∈ LTL and
all pi ∈ P,

(M,w) ⊺ always;
(M,w) � never;
(M,w) pi iff Pi(w) holds;
(M,w) ¬pi iff Pi(w) does not hold;
(M,w) (ϕ ∧ ψ) iff (M,w) ϕ and (M,w) ψ;
(M,w) (ϕ ∨ ψ) iff (M,w) ϕ or (M,w) ψ;
(M,w) U(ϕ,ψ) iff there is v ∈W such that w < v and (M,v) ϕ

and for all u ∈W such that w < u < v, (M,u) ψ;
(M,w) S(ϕ,ψ) iff there is v ∈W such that v < w and (M,v) ϕ

and for all u ∈W such that v < u < w, (M,u) ψ.

The triple (LTL,ETL, TL) forms a logic, that we call temporal logic.

2.2.5. Many–valued Logics. Our presentation of many–valued logic is in-
spired by Priest [36] but is slightly different from the usual presentation.
V is a set called the truth values. Let D ⊆ V be a subset of designated val-
ues and let C = {⋆1, . . . ,⋆m, . . .} be a countable set of connectives of arity
k1, . . . , km, . . .. The many–valued language LC

MV associated to C is defined
inductively by the following grammar in BNF:

LC
MV ∶ ϕ ∶∶= p ∣ ⋆ (ϕ, . . . , ϕ)

where p ∈ P and ⋆ ∈ C. A many–valued model is a tuple M = (V,{R⋆1 , . . .
,R⋆m , . . . , P1, . . . , Pn, . . .}) where:

● V is the set of truth values;
● R⋆1 , . . . ,R⋆m , . . . are relations over V of arity k1 + 1, . . . , km + 1, . . .;
● P1, . . . , Pn, . . . ⊆ V are unary relations over V .

The relations R⋆ are obtained from the usual truth functions f of many–
valued logics by the connection R⋆w1 . . .wkw iff f(w1, . . . ,wk) = w. We write
w ∈M for w ∈W and the pair (M,w) is called a pointed many–valued model.
The class of all pointed many–valued models is denoted EMV. We also define a
designated many–valued model as a pair (M,D) where M is a many–valued
model (and D is the set of designated values). We define the satisfaction
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relation MV ⊆ EMV × LC
MV by the following truth conditions. Below, we

write (M,w) ϕ for ((M,w), ϕ) ∈ MV. For all many–valued models M =
(V,{R⋆1 , . . . ,R⋆m , . . . , P1, . . . , Pn, . . .}), all w ∈ M , all ϕ1, . . . , ϕk ∈ LC

MV and
all pi ∈ P,

(M,w) pi iff Pi(w) holds;
(M,w) ⋆ (ϕ1, . . . , ϕk) iff there are w1, . . . ,wk ∈ V such that R⋆w1 . . .wkw

and (M,w1) ϕ1 and . . . and (M,wk) ϕk

We extend the satisfaction relation ML to the set of designated many–
valued models (M,D) as follows: we set (M,D) ϕ iff there is w ∈ D such
that (M,w) ϕ.

Typically, a many–valued logic is based on a class of designated many–
valued models whose truth functions associated to the same connective are
the same in every model of the class. A class of designated many–valued
models satisfying this condition is called a many–valued class of designated
models. So, a many–valued logic associated to a set of connectives C and
designated valuesD is a triple (LC

MV,EDMV, MV) where EDMV is a many–valued
class of designated models. Fuzzy logic, the 3–valued logics of Kleene and
 Lukasiewicz are examples of many–valued logics in which the unary predicates
Pi are singletons. Our general approach also allows us to capture the logic of
first–degree entailment (FDE) since in that case the Pis are not necessarily
singletons (see for instance [36] for more details on many–valued logics).

2.3. Common Logical Notions

In the present section, we define a number of notions which are common to
all logics and in particular to the logics introduced beforehand. The way we
define logics is different from many proposals considered in universal logic
[8] such as pairs of Suzsko’s abstract logics, Tarski’s consequence operators
or logical structures. Often a logic is viewed as a pair of a language together
with a consequence relation on this language. Our approach to defining log-
ics is somehow more ‘semantic’ in that respect than the usual proposals. It
corresponds in fact to the “abstract logics” of Garćıa-Matos & Väänänen [19]
and to the “rooms” of Mossakowski et al. [33].

We will say that a logic is a triple L ≜ (L,E , ) where

● L is a logical language defined as a set of well-formed expressions built
from a set of connectives C and a set of propositional letters A;

● E is a class of pointed models;
● is a satisfaction relation which relates in a compositional manner

elements of L to models of E by means of so-called truth conditions.

Let L = (L,E , ) be a logic and let Γ ⊆ L, ϕ ∈ L and M ∈ E . We write
M Γ when for all ψ ∈ Γ, we have M ψ. Then, we say that

● ϕ is true (satisfied) at M or M is a model of ϕ when M ϕ;
● ϕ is a logical consequence of Γ, written Γ Lϕ, when for all M ∈ E , if
M Γ then M ϕ;

● ϕ is valid, written Lϕ, when for all models M ∈ E , we have M ϕ;
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● ϕ is satisfiable when ¬ϕ is not valid in E , i.e. when there is a model
M ∈ E such that M ϕ.

If Γ is a singleton Γ = {ψ}, we also write by abuse ψ ϕ for {ψ} ϕ.

A set of formulas of L is called a theory. A set ∆ of formulas of L
is said to be a set of axioms for a theory Γ iff Γ and ∆ have the same
logical consequences. A theory is called finitely axiomatizable iff it has a
finite set of axioms. A logic L is axiomatizable if its set of validities is finitely
axiomatizable.

3. On the Relative Expressivity of Logics

When two logics L1 = (L1,E , 1) and L2 = (L2,E , 2) are interpreted on
the same class of models E , there is a standard way to compare their relative
expressiveness. We say that L1 is at least as expressive as L2, denoted L2 ≤ L1,
when there is a mapping T ∶ L2 → L1 such that for all ϕ2 ∈ L2 and all M ∈ E ,
M ϕ2 iff M T (ϕ2). These mappings naturally induce conservative trans-
lation morphisms between logics viewed as pairs of language and consequence
relation in the sense of Arndt & Al. [2] and yield a category of logics, which
are all based on the same class of models E .

When L1 ≥ L2 and L2 ≥ L1, we say that L1 is as expressive as L2 and
denote it L1 ≡ L2. In that case, the definition rewrites as follows:

● there is a mapping T1 ∶ L1 → L2 such that for all ϕ1 ∈ L1 and all M ∈ E ,
M ϕ1 iff M T1(ϕ1);

● there is a mapping T2 ∶ L2 → L1 such that for all ϕ2 ∈ L2 and all M ∈ E ,
M ϕ2 iff M T2(ϕ2).
Now, given a logic (L,E , ), for all ϕ,ψ ∈ L, we write ϕ ≡ ψ when for

all M ∈ E , it holds that M ϕ iff M ψ and for all M,N ∈ E , we write
M ≡ N when for all ϕ ∈ L, it holds M ϕ iff N ϕ. If M,N ⊆ E , we write
M ≡ N when for all M ∈M there is N ∈ N such that M ≡ N , and vice versa.
With these notations, that definition of equi-expressivity entails in particular
the following two facts: for all ϕ1 ∈ L1 and all ϕ2 ∈ L2,

{M ∈ E ∣M ϕ1} = {M ∈ E ∣M T1(ϕ1)} ϕ1 ≡ T2(T1(ϕ1)) (1)

{M ∈ E ∣M ϕ2} = {M ∈ E ∣M T2(ϕ2)} ϕ2 ≡ T1(T2(ϕ2)) (2)

However, when two logics L1 = (L1,E1, 1) and L2 = (L2,E2, 2)
are interpreted over different classes of models E1 and E2, there is no widely
accepted way to compare their relative expressiveness, even if some proposals
have already been made [19, 33] (we will come back to them at the end of
this section). We are now going to propose some notions to deal with that
issue. Our proposal is the following.

Definition 1 (Equal expressivity). A logic L1 = (L1,E1, 1) is as expressive
as a logic L2 = (L2,E2, 2), written L1 ≡ L2, when the following conditions
hold:



10 Guillaume Aucher

1. there is a mapping Tϕ1 ∶ L1 → L2 and a mapping TM1 ∶ E1 → E2
such that for all ϕ1 ∈ L1 and all M1 ∈ E1, it holds that M1 ϕ1 iff
TM1 (M1) Tϕ1 (ϕ1);

2. there is a mapping Tϕ2 ∶ L2 → L1 and a mapping TM2 ∶ E2 → E1
such that for all ϕ2 ∈ L2 and all M2 ∈ E2, it holds that M2 ϕ2 iff
TM2 (M2) Tϕ2 (ϕ2);

3. for all M1 ∈ E1 and all M2 ∈ E2, it holds that TM2 (TM1 (M1)) ≡ M1 and
TM1 (TM2 (M2)) ≡M2. ⊣

Our third condition states that TM2 and TM1 are inverse bijections of
each other (modulo some natural congruence ≡). Hence, our definition is
set in such a way that we compare the relative expressivity of each logic
by comparing them over their whole class of models, taking into account the
specificities of all the models of each logic in the comparison. This stems from
the surjectivity of TM2 and TM1 . Moreover, if two logics over the same class of
models are as expressive in the previous sense, they are also equi-expressive:
it suffices to take the identity mappings for TM1 and TM2 . Our definition of
equi-expressivity entails also the following two facts, which generalize the two
previous expressions (1) and (2): for all ϕ1 ∈ L1 and all ϕ2 ∈ L2,

TM1 ({M1 ∈ E1 ∣M1 ϕ1}) ≡ {M2 ∈ E2 ∣M2 Tϕ1 (ϕ1)} ϕ1 ≡ Tϕ2 (Tϕ1 (ϕ1))
TM2 ({M2 ∈ E2 ∣M2 ϕ2}) ≡ {M1 ∈ E1 ∣M1 Tϕ2 (ϕ2)} ϕ2 ≡ Tϕ1 (Tϕ2 (ϕ2))

We canonically extend our definitions of equi–expressivity to classes of
logics.

Definition 2 (Equal expressivity of classes of logics). Let L1 and L2 be two
classes of logics. We say that L1 is as expressive as L2, written L1 ≡ L2, when
for all L1 ∈ L1 there is L2 ∈ L2 such that L1 ≡ L2, and vice versa. ⊣

In a sense, our definition of equal expressivity can be viewed as a partial
solution to the so–called “identity problem” of universal logic [8] for logics
which are defined semantically by triples like in the previous section. Our
proposal is different from the one of Garćıa-Matos & Väänänen [19], although
they deal with a more general notion of embedding between logics based on
different classes of models, that is an embedding in only one direction, of one
logic into another. If two logics L1 and L2 are equally expressive in our sense
then there exist two “model-expansive corridors” from L1 to L2 and from
L2 to L1 in the sense of Mossakowski et al. [33] (with the proviso that the
surjection holds modulo the congruence ≡). So, our notion of equi-expressivity
is more demanding and stronger than their notion. On the other hand, our
“logics” can in fact be seen as institutions [33]. In that case, one can prove
that two logics are “equally expressive” in our sense if, and only if, they are
“equivalent” in the sense of institutions [34, Definition 3.5, p. 118].1

1I thank Peter Arndt for checking and proving that result.
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4. Protologics, Atomic and Molecular Logics

Non-classical logics have common features: their syntax is defined by means
of connectives, like ∧,∨,¬,→,2,3, ○, /, /,⇒, . . .; there is not any explicit vari-
able quantification and no variables appear in formulas; they can be given a
Kripke-style relational semantics by means of specific structures; the seman-
tics of their connectives are defined by means of truth conditions.

Our overall approach is based on the observation that we can view truth
conditions as formulas of first-order logic and that the models considered are
very often specific kinds of structures. We revisit below the definitions of
non-classical logics of Section 2 and provide the first-order formula ⋆(x) or
c(x) with one free variable x corresponding to the respective truth condition
of the non-classical connective. These first-order formulas are written in a
specific form that will be explained and become clear later in the article.

● (M,w) 2ip iff for all v ∈M , if Riwv then (M,v) p
⋆1(x) ≜ ∀y(Py ∨ ¬Rixy)

● (M,w) p ○ q iff there are v, u ∈ M such that Rvuw, (M,v) p and
(M,u) q

⋆2(x) ≜ ∃yz(Py ∧Qz ∧ Ryzx)
● (M,w) p/q iff for all v, u ∈ M such that Rwvu, if (M,v) p then

(M,u) q
⋆2(x) ≜ ∀yz(¬Py ∨Qz ∨ ¬Rxyz)

● (M,w) q/p iff for all v, u ∈ M such that Rvwu if (M,v) p then
(M,u) q

⋆2(x) ≜ ∀yz(¬Py ∨Qz ∨ ¬Ryxz)
● (M,w) ⋆(ϕ1, . . . , ϕn) iff there are w1, . . . ,wn ∈W such thatR⋆w1 . . .wnw

and (M,w1) ϕ1 and . . . and (M,wn) ϕn
⋆n(x) ≜ ∃x1 . . . xn (P1x1 ∧ . . . ∧ Pnxn ∧ Rx1 . . . xnx)

● (M,w) 2ϕ iff for all v ∈ W such that Rwv, for all u ∈ W such that
R3vu, (M,u) ϕ

c1(x) ≜ ∀y(∀z(Pz ∨ ¬R3yz) ∨ ¬Rxy)
● (M,w) U(ϕ,ψ) iff there is v ∈ W such that w < v and (M,v) ϕ

and for all u ∈W such that w < u < v, (M,u) ψ
c2(x) ≜ ∃z (Pz ∧ ∀y (Qy ∨ ¬(x < y < z)) ∧ x < z)

4.1. Protologics

In this section, P is a set of predicates symbols and the set of constants of
first-order logics is empty, C = ∅.

Definition 3 (Abstract connectives). The abstract propositional letters Pa are
a subset Q ⊆ P of the predicate symbols P and the abstract connectives Ca
are the formulas of LPFOL(x) together with a non-empty sequence of distinct
predicate symbols that occur in each formula. That is,

Pa ≜ Q
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Ca ≜ {(χ(x), (Q1, . . . ,Qn)) ∣ χ ∈ LPFOL(x) and

Q1, . . . ,Qn ∈ Q all distinct appear in χ}
Let p be an abstract propositional letter whose arity as a predicate symbol
is k. Then, the arity of p is 0 and its type is k. Let ⋆ = (χ(x1, . . . , xk), (Q1,
. . . ,Qn)) ∈ Ca where χ is a formula with k free variables and such that the
predicates Q1, . . . ,Qn are of arity k1, . . . , kn respectively. Then, the arity of
⋆ is n, its type signature is (k, k1, . . . , kn) and its output type is k, denoted
k(⋆). The predicate symbols of χ(x) which do not belong to {Q1, . . . ,Qn}
are called the parameter predicates. ⊣

One needs to explicitly specify the predicates Q1, . . . ,Qn for each ab-
stract connective because a predicate symbol Q could in principle be used
both as an abstract propositional letter and as a parameter predicate.

Example 1. Let us consider the formula χ(x) ≜ ∀y(∀z(Qz∨¬R3yz)∨¬Rxy) or
equivalently χ(x) ≜ ∀y(Rxy → ∀z(R3yz → Q(z))) corresponding to the truth
condition of the box operator of modal intuitionistic logic. The connective
(χ(x), (Q)) of Ca of arity 1, of type signature (1,1) and of output type
1 corresponds to the connective of modal intuitionistic logic. Its parameter
predicates are R and R3. We could define other connectives based on χ(x)
such as (χ(x), (R3,Q)) and (χ(x), (R,R3,Q)) of arities 2 and 3 and of type
signatures (1,1,1) and (1,1,1,1) respectively, possibly with the predicates
ordered differently in the tuples. The parameter predicate in (χ(x), (R3,Q))
is R and there is none in (χ(x), (R,R3,Q)). ⊣

Definition 4 (Protolanguage). The protolanguage L is the smallest set that
contains the abstract propositional letters and that is closed under the other
abstract connectives, while respecting the type constraints:

● Pa ⊆ L;
● for all ⋆ ∈ Ca of type signature (k, k1, . . . , kn) and for all ϕ1, . . . , ϕn ∈ L

of respective types k1, . . . , kn, we have ⋆(ϕ1, . . . , ϕn) ∈ L. The type of
⋆(ϕ1, . . . , ϕn) is k.

If Ca ⊆ Ca is such that Ca ∩ Pa ≠ ∅, then an element of LCa is an
element of L that contains only connectives of Ca. In the sequel, we always
assume that all Ca ⊆ Ca are such that Ca ∩ Pa ≠ ∅. Elements of L are called
protoformulas and are generally denoted ϕ,ψ,α. ⊣

Example 2. If we want to recover the language of modal intuitionistic logic
with only the box modality then we consider the set of connectives C =
{p, (χ(x), (Q)) ∣ p ∈ Q is of arity 1} where χ(x) is the formula of the previous
example. ⊣

Definition 5 (Ca–model). Let Ca ⊆ Ca be a set of connectives. A Ca–model is a
structure M = (W,R) for LPFOL(x) where W is a non-empty set and R is a set
of relations over W such that each predicate Q ∈ Q is associated to a relation
Q of the same arity as Q and such that the parameter predicates {R1, . . . ,Rm}
of each connective ⋆ = (χ(x), (Q1, . . . ,Qn)) ∈ Ca can be associated to a subset
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of the relationsR⋆ = {R1, . . . ,Rm} ⊆R interpreting the predicates R1, . . . ,Rm
(possibly with some overlap for different connectives).

A Ca–assignment for M is a tuple of W k, generally denoted w, where
k = k(⋆) for some ⋆ ∈ Ca. The set of all Ca–assignments for M is denoted
w(M,Ca). A pointed Ca–model (M,w) is a Ca–model M together with a Ca–
assignment w for M . The class of all pointed Ca–models is denoted Ma. ⊣

Example 3. If we resume our previous example, a modal intuitionistic model
M = (W,{R,R3, P1, . . . , Pn, . . .}) is a C–model. The parameter predicates
{R,R3} of (χ(x), (Q)) are associated to the relations {R,R3} and the pred-
icates pn ∈ Q are associated to the relations Pn. ⊣

Definition 6 (Model M[Qi ∶=Wi]). Let Ca ⊆ Ca be a set of connectives, let
M be a Ca–model containing relations Q1, . . . ,Qn of arity k1, . . . , kn respec-
tively and let W1 ∈ P(W k1), . . . ,Wk ∈ P(W kn). We define the Ca–model
M[Qi ∶= Wi] as the Ca–model M where (the interpretation of the predi-
cates Q1, . . . ,Qn by) the relations Q1, . . . ,Qn are replaced by the relations
W1, . . . ,Wn (viewed as sets) respectively, all the rest being the same. ⊣

Definition 7 (Truth function associated to a connective of Ca). Let ⋆ =
(χ(x), (Q1, . . . ,Qn)) ∈ Ca be a connective of type signature (k, k1, . . . , kn)
and let M = (W,R) be a Ca–model such that (χ(x), (Q1, . . . ,Qn)) ∈ Ca.
The (k, k1, . . . , kn)–ary truth function f⋆ ∶ P(W k1)× . . .×P(W kn)→ P(W k)
associated to ⋆ on M is defined as follows:

● if n = 0 and ⋆ = Q, f⋆ ≜ Q;
● if n > 0, then for all W1 ∈ P(W k1), . . . , all Wn ∈ P(W kn) we define

f⋆(W1, . . . ,Wn) ≜ {(w1, . . . ,wk) ∈W k ∣M[Qi ∶=Wi] χ[x1/w1, . . . , xk/wk]}
⊣

In the above definition, M is really taken as a structure of first-order
logic. The choice of the assignment s in the evaluation does not play a role
in the determination of f⋆ since the only value of variables that matter for
that, (x1, . . . , xk), are given by the definition.

Example 4. One can easily check that the truth functions associated to the
connectives (⋆1(x), (Q)), (⋆2(x), (Q1,Q2)), (⋆3(x), (Q1,Q2)) and (⋆4(x), (Q1,
Q2)) at the begining of Section 4 correspond to the truth conditions of the
connectives defined above each of them respectively. For example, for the
case of modal intuitionistic logic, if ⋆ = (χ(x), (Q)) then f⋆(W1) = {w ∈
W ∣ M[P ∶= W1] χ(x)} = {w ∈ W ∣ M[P ∶= W1] ∀y(∀z(Qz ∨ ¬R3yz) ∨
¬Rxy)[x/w]} = {w ∈W ∣ for all v ∈W such that Rwv, for all u ∈W such that
R3vu, u ∈W1}. ⊣

Definition 8 (Protologic). Let Ca ⊆ Ca and let M = (W,R) be a Ca–model.
The extension function of LCa in M , denoted J⋅KM ∶ LCa → w(M,Ca), is
defined inductively as follows: for all p ∈ Ca ∩ Pa and all ⋆ ∈ Ca of arity n > 0
and type signature (k, k1, . . . , kn), for all ϕ1, . . . , ϕn ∈ LCa of respective types
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k1, . . . , kn,

JpKM ≜ fp
J⋆(ϕ1, . . . , ϕn)KM ≜ f⋆ (Jϕ1KM , . . . , JϕnKM)

where f⋆ is the truth function associated to the abstract connective ⋆.
If ECa is a class of pointed Ca–models, we define the satisfaction relation
⊆ ECa × LCa as follows: for all ϕ ∈ LCa and all (M,w) ∈ ECa , we set

(M,w) ϕ iff w ∈ JϕKM . The triple (LCa ,ECa , ) is called the protologic
associated to ECa and Ca. ⊣

When the type of ϕ does not match the size of the assignment w ∈
w(M,Ca) of a pointed Ca–model, then it is not the case that ((M,w), ϕ) ∈ .
That is, (M,w) ϕ does not hold. In that case, we do not say that ϕ is
“undefined” or “false” at the pointed Ca–model (M,w); what only holds is
that the pair ((M,w), ϕ) does not belong to the relation .

One may argue that protologics do not really deserve their qualification
of being somehow ‘primal’ since they seem at first sight to be able to encode
only two–valued logics. This is not the case, as the following example shows.

Example 5 (Many–valued logics). Many–valued logics associated to a set of
connectives C are examples of protologics. The first–order formulas χ(x) ∈
LPFOL(x) on which they are based and that define the connectives are of the
form ∃x1 . . . xn(Q1x1 ∧ . . . ∧Qnxn ∧ R⋆x1 . . . xnx). ⊣

4.2. Atomic Logics

Atomic logics are protologics whose connective skeletons are defined by first-
order formulas of the form ∀x1 . . . xn(±1Q1x1 ∨ . . . ∨ ±nQnxn ∨ ±Rx1 . . . xnx)
or ∃x1 . . . xn(±1Q1x1 ∧ . . . ∧ ±nQnxn ∧ ±Rx1 . . . xnx) where the ±is and ± are
either empty or ¬. Likewise, propositional letters are defined by first-order
formulas of the form ±Rx. We will represent the structure of these formulas by
means of so–called skeletons whose various arguments capture the different
features and patterns from which they can be redefined completely. Atomic
logics are also generalizations of our gaggle logics [4, 5] with types associated
to formulas.

We recall that N∗ denotes the set of natural numbers minus 0 and that
for all n ∈ N∗, Sn denotes the group of permutations over the set {1, . . . , n}.
Permutations are generally denoted σ, τ , the identity permutation Id is some-
times denoted 1 as the neutral element of every permutation group and σ−

stands for the inverse permutation of the permutation σ. For example, the
permutation σ = (3,1,2) is the permutation that maps 1 to 3, 2 to 1 and 3
to 2 (see for instance [39] for more details).

Definition 9 (Atomic skeletons and connectives). The sets of atomic skeletons
P and C are defined as follows:

P ≜S1 × {+,−} × {∀,∃} ×N∗

C ≜P ∪ ⋃
n∈N∗

{Sn+1 × {+,−} × {∀,∃} ×N∗n+1 × {+,−}n} .
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P is called the set of propositional letter skeletons and C is called the set of
connective skeletons. They can be represented by tuples (σ,±,Æ, k,±j) or
(σ,±,Æ, k) if it is a propositional letter skeleton, where Æ ∈ {∀,∃} is called

the quantification signature of the skeleton, k = (k, k1, . . . , kn) ∈ N∗n+1 is
called the type signature of the skeleton and ±j = (±1, . . . ,±n) ∈ {+,−}n is

called the tonicity signature of the skeleton; (Æ, k,±j) is called the signature
of the skeleton. The arity of a propositional letter skeleton is 0 and its type
is k. The arity of a skeleton ⋆ ∈ C − P is n, its input types are k1, . . . , kn and
its output type is k.

An atomic connective is a symbol generally denoted ⋆ to which is associ-
ated an atomic skeleton. A propositional letter is a symbol generally denoted
p to which is associated a propositional letter skeleton. Their arity, signa-
ture, quantification signature, type signature, tonicity signature, input and
output types are the same as their skeleton. By abuse, we sometimes identify
a connective with its skeleton. If C is a set of atomic connectives, its set of
propositional letters is denoted P(C).

Propositional letters are denoted p, p1, p2, etc. and connectives ⋆,⋆1,⋆2,
etc. ⊣

We need to distinguish between connectives and skeletons because in
general we need a countable number of propositional letters or connectives
of the same skeleton, like in some modal logics, where we need multiple
modalities of the same (similarity) type/skeleton.

Remark 1. The permutations σ mentioned in atomic skeletons do not really
play a role in this article. Permutations play an important role in the proof
theory of atomic logics, which is dealt with in [4, 5].

Definition 10 (Atomic language). Let C be a set of atomic connectives. The
(typed) atomic language LC associated to C is the smallest set that contains
the propositional letters and that is closed under the atomic connectives.
That is,

● P(C) ⊆ LC;
● for all ⋆ ∈ C of arity n > 0 and of type signature (k, k1, . . . , kn) and

for all ϕ1, . . . , ϕn ∈ LC of types k1, . . . , kn respectively, we have that
⋆(ϕ1, . . . , ϕn) ∈ LC and ⋆(ϕ1, . . . , ϕn) is of type k.

Elements of LC are called atomic formulas and are denoted ϕ,ψ,α, . . .
The type of a formula ϕ ∈ LC is denoted k(ϕ).

The skeleton syntactic tree of a formula ϕ ∈ LC is the syntactic tree of
the formula ϕ in which the nodes labeled with subformulas of ϕ are replaced
by the skeleton of their outermost connective.

A set of atomic connectives C is plain if for all ⋆ ∈ C of skeleton
(σ,±,Æ, (k, k1, . . . , kn), (±1, . . . ,±n)) there are atoms p1, . . . , pn ∈ P of types
k1, . . . , kn respectively. In the sequel, we assume that all sets of connectives
C are plain. ⊣ ⊣

Our assumption that all sets of connectives C considered are plain makes
sense. Indeed, we want all connectives of C to appear in some formula of LC.
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If C was not plain then there would be a connective of C (with input type
k) which would be necessarily composed with another connective of C (of
output type k), if we want such a connective to appear in a formula of LC.
Yet, in that case, we should instead view C as a set of molecular connectives
(introduced in the next section).

Definition 11 (C–models). Let C be a set of atomic connectives. A C–model
is a tuple M = (W,R) where W is a non-empty set and R is a set of relations
over W such that each n–ary connective ⋆ ∈ C of type signature (k, k1, . . . , kn)
is associated to a k1 + . . . + kn + k–ary relation R⋆ ∈R.

An assignment is a tuple (w1, . . . ,wk) ∈W k for some k ∈ N∗, generally
denoted w. A pointed C–model (M,w) is a C–model M together with an
assignment w. In that case, we say that (M,w) is of type k. The class of all
pointed C–models is denoted MC. ⊣

Note that a C–model can be canonically seen as a structure, for some
appropriate set of predicates P associated to the relations of R.

Definition 12 (Atomic logics). Let C be a set of atomic connectives and let
M = (W,R) be a C–model. We define the interpretation function of LC in M ,
denoted J⋅KM ∶ LC → ⋃

k∈N∗
W k, inductively as follows. For all propositional let-

ters p ∈ C, all connectives ⋆ ∈ C of skeleton (σ,±,Æ, (k, k1, . . . , kn), (±1, . . . ,±n))
of arity n > 0, for all ϕ1, . . . , ϕn ∈ LC,

JpKM ≜ ±Rp
J⋆(ϕ1, . . . , ϕn)KM ≜ f⋆(Jϕ1KM , . . . , JϕnKM)

where the function f⋆ is defined as follows. For all W1 ∈ P(W k1), . . . ,Wn ∈
P(W kn), f⋆(W1, . . . ,Wn) ≜ {wn+1 ∈W k ∣ C⋆ (W1, . . . ,Wn,wn+1)} where C⋆(W1,
. . . ,Wn,wn+1) is called the truth condition of ⋆ and is defined as follows:

● if Æ = ∀:

“∀w1 ∈W k1 . . .wn ∈W kn (w1 ⋔1 W1 ∨ . . . ∨wn ⋔n Wn ∨R±σ
⋆ w1 . . .wnwn+1)”;

● if Æ = ∃:

“∃w1 ∈W k1 . . .wn ∈W kn (w1 ⋔1 W1 ∧ . . . ∧wn ⋔n Wn ∧R±σ
⋆ w1 . . .wnwn+1)”;

where, for all j ∈ J1;nK, wj ⋔j Wj ≜
⎧⎪⎪⎨⎪⎪⎩

wj ∈Wj if ±j = +
wj ∉Wj if ±j = −

and

R±σ
⋆ w1 . . .wn+1 holds iff ±R⋆wσ−(1) . . .wσ−(n+1) holds, with the notations

+R⋆ ≜ R⋆ and −R⋆ ≜W k+k1+...+kn −R⋆. If EC is a class of pointed C–models,
the satisfaction relation ⊆ EC ×LC is defined as follows: for all ϕ ∈ LC and
all (M,w) ∈ EC, ((M,w), ϕ) ∈ iff w ∈ JϕKM . We usually write (M,w) ϕ
instead of ((M,w), ϕ) ∈ and we say that ϕ is true in (M,w).

The logic (LC,EC, ) is the atomic logic associated to EC and C. The
logics of the form (LC,MC, ) are called basic atomic logics. ⊣

We stress that the ± sign inR±σ
⋆ is the ± sign in (σ,±,Æ, (k, k1, . . . , kn), (±1

, . . . ,±n)).
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Permutations of S2 unary signatures

τ1 = (1,2) t1 = (∃, (1,1),+)
τ2 = (2,1) t2 = (∀, (1,1),+)

t3 = (∀, (1,1),−)
t4 = (∃, (1,1),−)

Permutations of S3 binary signatures

σ1 = (1,2,3) s1 = (∃, (1,1,1), (+,+))
σ2 = (3,2,1) s2 = (∀, (1,1,1), (+,−))
σ3 = (3,1,2) s3 = (∀, (1,1,1), (−,+))
σ4 = (2,1,3) s4 = (∀, (1,1,1), (+,+))
σ5 = (2,3,1) s5 = (∃, (1,1,1), (+,−))
σ6 = (1,3,2) s6 = (∃, (1,1,1), (−,+))

s7 = (∃, (1,1,1), (−,−))
s8 = (∀, (1,1,1), (−,−))

Figure 1. Permutations of S2 and S3 and ‘families’ of
unary and binary signatures

Example 6 (Lambek calculus, modal logic, many–valued logics, multi-dimen-
sional modal logics). The Lambek calculus, where C = {p, ○, /, /} is defined
in Section 2.2, is an example of atomic logic. Here ○, /, / are the connectives
of skeletons (σ1,+, s1), (σ5,−, s3), (σ3,−, s2) (permutations σi and signatures
si are defined in Figure 1). Another example of atomic logic is modal logic
where C = {p,⊺,�,∧,∨,3,2} is such that

● ⊺,� are connectives of skeletons (1,+,∃,1) and (1,−,∀,1) respectively;
● ∧,∨,3,2 are connectives of skeletons (σ1,+, s1), (σ1,−, s4), (τ2,+, t1)

and (τ2,−, t2) respectively;
● the C-models M = (W,R) ∈ EC are such that R∧ = R∨ = {(w,w,w) ∣ w ∈
W}, R3 = R2 and R⊺ = R� =W .

Indeed, one can easily show that, with these conditions on the C–models of
EC, we have that for all (M,w) ∈ EC, (M,w) ∧ (ϕ,ψ) iff (M,w) ϕ and
(M,w) ψ, and (M,w) ∨ (ϕ,ψ) iff (M,w) ϕ or (M,w) ψ. The
Boolean conjunction and disjunction ∧ and ∨ are defined using the connec-
tives of C by means of special relations R∧ and R∨. Many–valued logics are
also examples of atomic logics (see our presentation in Section 2.2.5). Many
more examples of atomic connectives are given in Figures 2 and 3. They are
in fact just examples of gaggle connectives since all gaggle logics [4, 5] are
also atomic logics. They are all of type signature (1,1, . . . ,1). All the pos-
sible truth conditions of unary and binary atomic connectives of this type
signature are given in [4, 5]. Multi-dimensional modal logics [29], such as ar-
row logic or the (temporal) modal logic of intervals, are atomic logics. Their
connectives are of type signature (k, k, . . . , k), for some fixed k ≥ 1 called the
‘dimension’, and of tonicity signature (+, . . . ,+). However, multi-dimensional
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Atomic Truth condition Non–classical connective
Connective in the literature

The existentially positive orbit

(τ1,+, t1) ϕ ∃v (v ∈ JϕK ∧Rvw) 3−ϕ [37] 3↓ [12]
(τ2,−, t2) ϕ ∀v (v ∈ JϕK ∨ −Rwv) ◻ϕ [25]

The universally positive orbit

(τ1,+, t2) ϕ ∀v (v ∈ JϕK ∨Rvw) +↓ϕ [12] [14, p. 401]
(τ2,−, t1) ϕ ∃v (v ∈ JϕK ∧ −Rwv) [12]

The existentially negative orbit

(τ1,+, t4) ϕ ∃v (v ∉ JϕK ∧Rvw) ?ϕ [12][14, p. 402]
⊟1ϕ [12][10, Def. 10.7.7]

(τ2,+, t4) ϕ ∃v (v ∉ JϕK ∧Rwv) ?↓ϕ [12][15] [14, p. 402]
⊟2ϕ [10, Def. 10.7.7]

The universally negative orbit

(τ1,+, t3) ϕ ∀v (v ∉ JϕK ∨Rvw) ϕ⊥ [12, 13] ϕo [22]
x1ϕ [10, Def. 10.7.2]

(τ2,+, t3) ϕ ∀v (v ∉ JϕK ∨Rwv) ∼ ϕ [21] ⊥ϕ [12, 13] oϕ [22]
x2ϕ [10, Def. 10.7.2]

The symmetrical existentially positive orbit

(τ1,−, t1) ϕ ∃v (v ∈ JϕK ∧ −Rvw) [12]
(τ2,+, t2) ϕ ∀v (v ∈ JϕK ∨Rwv) +ϕ [12] [14, p. 402]

ϕ∗ [10, Def. 7.1.19]

The symmetrical universally positive orbit

(τ1,−, t2) ϕ ∀v (v ∈ JϕK ∨ −Rvw) ◻−ϕ [37] ◻↓ [12]
(τ2,+, t1) ϕ ∃v (v ∈ JϕK ∧Rwv) 3ϕ [25]

The symmetrical existentially negative orbit

(τ1,−, t4) ϕ ∃v (v ∉ JϕK ∧ −Rvw) ?ϕ [12][10, Ex. 1.4.5] ϕ1 [22]
(τ2,−, t4) ϕ ∃v (v ∉ JϕK ∧ −Rwv) ?↓ϕ [12] [10, Ex. 1.4.5] 1ϕ [22]

The symmetrical universally negative orbit

(τ1,−, t3) ϕ ∀v (v ∉ JϕK ∨ −Rvw) [12]
(τ2,−, t3) ϕ ∀v (v ∉ JϕK ∨ −Rwv) ¬hϕ [26, 38] �ϕ [15]

Figure 2. The unary connectives of atomic logics of type (1,1)

modal logics do not allow connectives of type signatures (k, k1, . . . , kn) with
different k, k1, . . . , kn. ⊣
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Atomic connective Truth condition Non–classical con.
in the literature

The conjunction orbit

ϕ (σ1,+, s1) ψ ∃vu (v ∈ JϕK ∧ u ∈ JψK ∧Rvuw) ϕ ○ ψ [28], ϕ⊗3 ψ [3]
ϕ (σ2,−, s2) ψ ∀vu (v ∈ JϕK ∨ u ∉ JψK ∨ −Rwuv)
ϕ (σ3,−, s2) ψ ∀vu (v ∈ JϕK ∨ u ∉ JψK ∨ −Ruwv) / [28], ϕ ⊂2 ψ [3]
ϕ (σ4,+, s1) ψ ∃vu (v ∈ JϕK ∧ u ∈ JψK ∧Ruvw)
= ψ (σ1,+, s1) ϕ
ϕ (σ5,−, s3) ψ ∀vu (v ∉ JϕK ∨ u ∈ JψK ∨ −Rwvu) / [28], ϕ ⊃1 ψ [3]
= ψ (σ2,−, s2) ϕ
ϕ (σ6,−, s3) ψ ∀vu (v ∉ JϕK ∨ u ∈ JψK ∨ −Rvwu)
= ψ (σ3,−, s2) ϕ

The not–but orbit

ϕ (σ1,+, s6) ψ ∃vu (v ∉ JϕK ∧ u ∈ JψK ∧Rvuw) ϕ �3 ψ [3]
ϕ (σ2,+, s6) ψ ∃vu (v ∉ JϕK ∧ u ∈ JψK ∧Rwuv)
ϕ (σ3,−, s4) ψ ∀vu (v ∈ JϕK ∨ u ∈ JψK ∨ −Ruwv) ϕ�2 ψ [3]
ϕ (σ4,+, s5) ψ ∃vu (v ∈ JϕK ∧ u ∉ JψK ∧Ruvw)
= ψ (σ1,+, s6) ϕ
ϕ (σ5,+, s5) ψ ∃vu (v ∈ JϕK ∧ u ∉ JψK ∧Rwvu) ϕ �1 ψ [3]
= ψ (σ2,+, s6) ϕ
ϕ (σ6,−, s4) ψ ∀vu (v ∈ JϕK ∨ u ∈ JψK ∨ −Rvwu)
= ψ (σ3,−, s4) ϕ

The but–not orbit

ϕ (σ1,+, s5) ψ ∃vu (v ∈ JϕK ∧ u ∉ JψK ∧Rvuw) ϕ �3 ψ [3]
ϕ (σ2,−, s4) ψ ∀vu (v ∈ JϕK ∨ u ∈ JψK ∨ −Rwuv)
ϕ (σ3,+, s6) ψ ∃vu (v ∉ JϕK ∧ u ∈ JψK ∧Ruwv) ϕ �2 ψ [3]
ϕ (σ4,+, s6) ψ ∃vu (v ∉ JϕK ∧ u ∈ JψK ∧Ruvw) ϕ� ψ [23, 31]
= ψ (σ1,+, s5) ϕ
ϕ (σ5,−, s4) ψ ∀vu (v ∈ JϕK ∨ u ∈ JψK ∨ −Rwvu) ϕ� ψ [23, 31]
= ψ (σ2,−, s4) ϕ ϕ�1 ψ [3]
ϕ (σ6,+, s5) ψ ∃vu (v ∈ JϕK ∧ u ∉ JψK ∧Rvwu) ϕ� ψ [23, 31]
= ψ (σ3,+, s6) ϕ

The stroke orbit

ϕ (σ1,+, s7) ψ ∃vu (v ∉ JϕK ∧ u ∉ JψK ∧Rvuw) ϕ ∣3 ψ [1, 22]
ϕ (σ2,+, s7) ψ ∃vu (v ∉ JϕK ∧ u ∉ JψK ∧Rwuv)
ϕ (σ3,+, s7) ψ ∃vu (v ∉ JϕK ∧ u ∉ JψK ∧Ruwv)
ϕ (σ4,+, s7) ψ ∃vu (v ∉ JϕK ∧ u ∉ JψK ∧Ruvw)
= ψ (σ1,+, s7) ϕ
ϕ (σ5,+, s7) ψ ∃vu (v ∉ JϕK ∧ u ∉ JψK ∧Rwvu) ϕ ∣1 ψ [1, 22]
= ψ (σ2,+, s7) ϕ
ϕ (σ6,+, s7) ψ ∃vu (v ∉ JϕK ∧ u ∉ JψK ∧Rvwu) ϕ ∣2 ψ [1, 22]
= ψ (σ3,+, s7) ϕ

Figure 3. Some binary connectives of atomic logics of type
(1,1,1)
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4.3. Molecular Logics

Molecular logics are basically logics whose primitive connectives are com-
positions of atomic connectives in which it is possible to repeat the same
argument at different places in the connective. That is why we call them
‘molecular’, just as molecules are compositions of atoms in chemistry.

Definition 13 (Molecular skeleton and connective). The class C∗ of molecular
skeletons is the smallest set such that:

● P ⊆ C∗ and C∗ contains as well, for each k, l ∈ N∗, a symbol idlk of type
signature (k, k), output type k and arity 1;

● for all ⋆ ∈ C of type signature (k, k01, . . . , k0n) and all c1, . . . , cn ∈ C∗

of output types or types (if they are propositional letters) k01, . . . , k
0
n

respectively, c ≜ ⋆(c1, . . . , cn) is a molecular skeleton of C∗ of output
type k.

If c ∈ C∗, we define its decomposition tree as follows. If c = p ∈ P or c = idlk,
then its decomposition tree Tc is the tree consisting of a single node labeled
with p or idlk respectively. If c = ⋆(c1, . . . , cn) ∈ C∗ then its decomposition
tree Tc is the tree defined inductively as follows: the root of Tc is c and it is
labeled with ⋆ and one sets edges between that root and the roots c1, . . . , cn
of the decomposition trees Tc1 , . . . , Tcn respectively.

If c ≜ ⋆(c1, . . . , cn) is a molecular skeleton with output type k and
k1, . . . , km are the ks of the different idlks which appear in c1, . . . , cn (in an

order which follows the first appearance of the idlks in the inorder traver-
sal of the decomposition trees of c1, . . . , cn), then the type signature of c is
(k, k1, . . . , km) and its arity is m. We also define the quantification signature
Æ(c) of c = ⋆(c1, . . . , cn) by Æ(c) ≜ Æ(⋆).

A molecular connective is a symbol to which is associated a molecular
skeleton. Its arity, type signature, output type, quantification signature and
decomposition tree are the same as its skeleton.

The set of atomic connectives associated to a set C of molecular connec-
tives is the set of labels different from idlk of the decomposition trees of the
molecular connectives of C. ⊣

Every atomic connective ⋆ of type signature (k, k1, . . . , kn) can be seen
as the (specific) molecular connectives c ≜ ⋆(id1k1 , . . . , id

n
kn

). Note that the
same label (atomic connective) may appear several times in a decomposition
tree. Note also that the vertices of a decomposition tree are molecular con-
nectives. One needs to introduce the connective idlk to deal with molecular

connectives whose skeletons are for example of the form ⋆(p, idlk) where p ∈ P
or molecular connectives in which the same argument(s) appear at different
places, like for example in ⋆(id1k, . . . , id1k) which is of arity 1.
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Example 7 (Modal intuitionistic logic). Let us consider the skeletons c, c′,⋆1,⋆2,⋆3
defined by the following first–order formulas.

c(x) ≜ ∀y (Rxy → ∀z (R3yz → Q(z)))
c′(x) ≜ ∀y (Rxy → ∃z (R3yz ∧Q(z)))
⋆1(x) ≜ ∀y (Rxy → Q(y))
⋆2(x) ≜ ∀z (R3xz → Q(z))
⋆3(x) ≜ ∃z (R3xz ∧Q(z))

These first–order formulas can be naturally represented by molecular skele-
tons. Then, ⋆1,⋆2,⋆3 are atomic skeletons and the connectives associated
to c, c′ are molecular connectives. Indeed, c is the composition of ⋆1 and ⋆2,
c = ⋆1(⋆2), and c′ is the composition of ⋆1 and ⋆3, c′ = ⋆1(⋆3). Equivalently, c
and c′ will have the same semantics as c = ⋆1(⋆2(id11)) and c′ = ⋆1(⋆3(id11)).
The connective associated to c corresponds to the connective 2 of modal
intuitionistic logic and the connective associated to c′ corresponds to the
connective 3 of modal intuitionistic logic [35] defined in Section 2.2.3. ⊣

Definition 14 (Molecular language). Let C be a set of molecular connectives.
The (typed) molecular language LC associated to C is the smallest set that
contains the propositional letters and that is closed under the molecular con-
nectives while respecting the type constraints. That is,

● the propositional letters of C belong to LC;
● for all ⋆ ∈ C of type signature (k, k1, . . . , km) and for all ϕ1, . . . , ϕm ∈ LC

of types k1, . . . , km respectively, we have that ⋆(ϕ1, . . . , ϕm) ∈ LC and
⋆(ϕ1, . . . , ϕm) is of type k.

Elements of LC are called molecular formulas and are denoted ϕ,ψ,α, . . .
The type of a formula ϕ ∈ LC is denoted k(ϕ). We use the same abbreviations
as for the atomic language. ⊣

Definition 15 (Molecular logic). If C is a set of molecular connectives, then
a C–model M is a C′–model M where C′ is the set of atomic connectives
associated to C. The truth conditions for molecular connectives are defined
naturally from the truth conditions of atomic connectives. We define the in-
terpretation function of LC in M , denoted J⋅KM ∶ LC → ⋃

k∈N∗
W k, inductively

as follows: for all propositional letters p ∈ C of skeleton (σ,±,Æ, k), all molec-
ular connectives ⋆(c1, . . . , cn) ∈ C of arity m > 0 and all k, l ∈ N∗, for all
ϕ,ϕ1, . . . , ϕm ∈ LC,

JpKM≜±Rp
Jidlk(ϕ)KM≜JϕKM

J⋆(c1, . . . , cn) (ϕ1, . . . , ϕm)KM≜f⋆ (Jc1(ϕ1
1, . . . , ϕ

1
i1
)KM , . . . , Jcn(ϕn1 , . . . , ϕnin)K

M)

where for all j ∈ {1, . . . , n}, the formulas ϕj1, . . . , ϕ
j
ij

are those ϕ1, . . . , ϕm for

which there is a corresponding idlk in cj (the ϕji s appear in the same order

as their corresponding idlks in cj).
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If EC is a class of pointed C–models, the triple (LC,EC, ) is a logic
called the molecular logic associated to EC and C. ⊣

As one can easily notice, every atomic logic can be canonically mapped
to an equi-expressive molecular logic: each atomic connective ⋆ of type signa-
ture (k, k1, . . . , kn) of the given atomic logic has to be transformed into the
molecular connective of skeleton ⋆(id1k1 , . . . , id

n
kn

).

Example 8 (Temporal logic). Temporal logic is an example of logic in which
one needs to resort both to our types and to combine basic connectives in
order to be able to express the truth conditions of its connectives. Let us
consider the skeletons defined by the following first–order formulas:

⋆1(x) ≜∃yzz′ (Py ∧Qzz′ ∧ Ryzz′x)
⋆′1(x) ≜∃yzz′ (Py ∧Qzz′ ∧ Rxzz′y)

⋆2(x,x′) ≜∀y (Py ∨ ¬Syxx′)

⋆1, ⋆′1 and ⋆2 are atomic skeletons (this is independent from the defini-
tions of R and S). The connectives of skeletons c = ⋆1(id11,⋆2(id21)) and
c′ = ⋆′1(id11,⋆2(id21)) are molecular connectives. Together with some propo-
sitional letters, truth constants, Boolean conjunction and disjunction, they
form a set of molecular connectives C. If we choose the class of C–models
appropriately, the molecular connectives c and c′ then correspond to the con-
nectives ‘until’ U and ‘since’ S of temporal logic respectively. Let us be a
bit more precise. Let M = (W,{<, P}) be a temporal model. We represent
this temporal model by the C–model MU,S = (W,{R,S,P}) such that for all
y, z, z′, x ∈W ,

Ryzz′x iff x < y, x = z and y = z′ (3)

Syxx′ iff x < y < x′. (4)

One can show that for all ϕ ∈ LTL and all w ∈W , (M,w) ϕ iff (MU,S ,w)
T (ϕ) where T ∶ LTL → LC is defined inductively on the formulas of LTL in such
a way that T (U(ϕ,ψ)) ≜ c(T (ϕ), T (ψ)) and T (S(ϕ,ψ)) ≜ c′(T (ϕ), T (ψ)).
Indeed, the standard translation of the until and since operators are:

STx(U(ϕ,ψ)) = ∃y(x < y ∧ STy(ϕ) ∧ ∀z(x < z < y → STz(ψ)))
STx(S(ϕ,ψ)) = ∃y(y < x ∧ STy(ϕ) ∧ ∀z(y < z < x→ STz(ψ))) ⊣

4.4. Boolean Connectives

Note that atomic and molecular logics do not include Boolean connectives as
primitive connectives. Boolean conjunction and disjunction can be defined in
terms of specific atomic connectives as we showed in Example 6. We could
in the same manner introduce specific atomic unary connective(s) to define
Boolean negation(s) (for each type k). For example, the Boolean negation
¬ of type 1 could be defined by one of the atomic skeletons (τ1,+, t4) ,
(τ2,+, t4) , (τ1,−, t3) , (τ2,−, t3) of Figure 2 interpreted in any model over
the identity binary relation R¬ = {(w,w) ∣ w ∈W}.
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It turns out that Boolean negation can also be simulated systematically
at the level of atomic connectives by applying a transformation on them.
The Boolean negation of a formula then boils down to taking the Boolean
negation of the outermost connective of the formula. This transformation is
defined as follows.

Definition 16 (Boolean negation). Let ⋆ be a n–ary connective of skeleton

(σ,±,Æ, k,±1, . . . ,±n). The Boolean negation of ⋆ is the connective −⋆ of

skeleton (σ,−±,−Æ, k,−±1, . . . ,−±n) where −Æ ≜ ∃ if Æ = ∀ and −Æ ≜ ∀
otherwise, which is associated in any C–model to the same relation as ⋆. If
ϕ = ⋆(ϕ1, . . . , ϕn) is an atomic formula, the Boolean negation of ϕ is the
formula −ϕ ≜ − ⋆ (ϕ1, . . . , ϕn). ⊣
Proposition 1. Let C be a set of atomic connectives such that −⋆ ∈ C for all
⋆ ∈ C. Let ϕ ∈ LC of type k and let M = (W,R) be a C–model. Then, for all
w ∈W k, w ∈ J−ϕKM iff w ∉ JϕKM .

5. Relative Expressivity of Protologics, Atomic, Molecular and
First–order Logics

In this section, we are going to investigate the relative expressivity of proto-
logics, atomic, molecular and first–order logics: atomic logics versus FOL in
Section 5.1 and protologics versus molecular logics in Section 5.2.

5.1. Atomic Logics versus FOL

Definition 17 (Predicate atomic connectives). Let P be a set of predicate

symbols. The set of predicate atomic connectives associated to P is CP ≜
{�} ∪ {Rfk

l
∣ R ∈ P of arity k and fkl ∶ J1;kK → J1; lK is surjective with l ≤

k} ∪ {[σk],∥k,⊃k,∀k ∣ k ∈ N∗, σk ∈Sk} ∪ {∀0} where

● � has skeleton (Id,−,∀,1);
● Rfk

l
has skeleton (Id,+,∀, l) for all k, l ∈ N∗ (such that l ≤ k);

● [σk] has skeleton (Id,−,∀, (k, k),+), for all k ∈ N∗;
● ∥k has skeleton (Id,−,∀, (k + 1, k,1), (+,+));
● ⊃k has skeleton (Id,−,∀, (k, k, k), (−,+));
● ∀k has skeleton ((2,3,1),−,∀, (k,1, k + 1), (+,+)), for all k ∈ N∗;
● ∀0 has skeleton (Id,−,∀, (1,1),+). ⊣

Note that all predicate atomic connectives have the quantification sig-
nature ∀ and that all tonicity signatures are positive +, except for the con-
nective ⊃k which contains a negative tonicity −. This exception is crucial.
It somehow encodes the whole Boolean negation. Existential quantification
signatures may then indirectly reappear in the formula through a combina-
tion of this tonicity − and a connective of universal quantification signature
∀. Moreover, we could have replaced our connective ∥k with a connective
&k whose skeleton would be (Id,+,∃, (k + 1, k,1), (+,+)) and with the same
associated relation, and likewise for other connectives. Doing so, we would
obtain the same results.
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Remark 2. Instead of the atomic connectives ∥k, we could also have taken the
molecular connectives ∥k (id1k,�) as primitive connectives. The former are in
fact definable from the latter together with the other connectives [σk],⊃k,�.
Yet, in doing so, FOL would be as expressive as a molecular logic instead of
a simpler atomic logic.

Definition 18 (Predicate atomic logic). Let P be a set of predicate symbols.

A predicate CP–model is a CP–model M = (W,R) such that:

● for all l ∈ N∗, the connectives Rfk
l

are associated to l–ary relations Rfk
l

over W ;
● the connective � is associated to the 1–ary relation R� ≜W ;
● for all k ∈ N∗ and all σk ∈Sk, the connectives [σk] are associated to the

2k–ary relation Rσk such that Rσkw1 . . .wkw
′
1 . . .w

′
k iff for all i ∈ J1;kK,

w′
i = wσk(i);

● for all k ∈ N∗, the connectives ∥k are associated to the 2(k + 1)–ary

relation Rk,1 ⊆ W 2(k+1) such that for all w1 ∈ W k, all w2 ∈ W and all

w3 ∈W k+1, we have that Rk,1w1w2w3 iff w3 = (w1,w2);
● for all k ∈ N∗, the connectives ⊃k are associated to the 3k–ary relation
Rk ⊆ W 3k such that for all w1 ∈ W k, all w2 ∈ W k and all w3 ∈ W k, we
have that Rkw1w2w3 iff w1 = w2 = w3;

● for all k ∈ N∗, the connectives ∀k are associated to the 2(k + 1)–ary
relation Rk,1 as defined for ∥k;

● ∀0 is associated to the 2–ary relation R∀0 ≜W 2.

The class of all pointed predicate CP–models is denoted MCP . The
satisfaction relation ⊆MCP×LCP is then defined following Definition 12. If
L ⊆ LCP and E ⊆MCP then the triple (L,E , ) is called the predicate atomic
logic associated to L and E . We also define LCP (k) ≜ {ϕ ∈ LCP ∣ k(ϕ) = k}. If

L = LCP (k) and all pointed CP–models are of type k then (L,E , ) is a
predicate atomic logic of type k.

Moreover, for all (M,w), (N,v) ∈MCP , we write (M,w) ≡k (N,v) when
for all ϕ ∈ LCP (k) it holds that (M,w) ϕ iff (N,v) ϕ. ⊣

Definition 19 (Translation from FOL to predicate atomic logics). Let P be a
set of predicate symbols.
Syntax. For all k ∈ N and all x = (x1, . . . , xk) ∈ Vk, we define the mappings
Tx ∶ LPFOL(x, k) → LCP (k) and T∅ ∶ LPFOL(∅) → LCP (1) inductively on the
formula ϕ(x1, . . . , xk) ∈ LPFOL (with or without free variables) as follows.

First, for all ϕ ∈ LCP of type k1 ∈ N∗ and all k2 ∈ N∗, we define
the formula ∥k1,k2 (ϕ,�) inductively as follows: ∥k1,1 (ϕ,�) ≜∥k1 (ϕ,�) and
∥k1,k2+1 (ϕ,�) ≜∥k1+k2 (∥k1,k2 (ϕ,�),�).

● if ϕ = � then we define T∅(�) ≜ �;
● if ϕ = Ry1 . . . yl and {y1, . . . , yl} = {xi1 , . . . , xik} is of cardinality k ≤ l

(some variables can be the same) with xi1 , . . . , xik all distinct and in the
same order of appearance as in y1, . . . , yl, then there is a unique surjec-
tive function fkl ∶ J1; lK→ J1;kK such that (y1, . . . , yl) = (xi

fk
l
(1) , . . . , xifk

l
(l)).
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Then, we define the permutation σk on J1;kK by the condition that for
all j ∈ J1;kK, iσk(j) ≜ j. Finally, we define

Tx(Ry1 . . . yl) ≜ [σk]Rfk
l

;

● if ϕ = (ϕ1 → ϕ2) where ϕ1 and ϕ2 are both sentences, then we define
T∅(ϕ) ≜⊃1 (T∅(ϕ1), T∅(ϕ2))

if ϕ = (ϕ1 → ϕ2(x)) where ϕ1 is a sentence, then we define
T(x)(ϕ) ≜⊃1 (T∅(ϕ1), T(x)(ϕ2(x)))

if ϕ = (ϕ1(x)→ ϕ2) where ϕ2 is a sentence, then we define
T(x)(ϕ) ≜⊃1 (T(x)(ϕ1(x)), T∅(ϕ2))

if ϕ = (ϕ1 → ϕ2(x1, . . . , xk)) where ϕ1 is a sentence and k > 1 , then we
define

Tx(ϕ) ≜⊃k (∥1,k−1 (T∅(ϕ1),�) , T(x1,...,xk)(ϕ2(x1, . . . , xk)))
if ϕ = (ϕ1(x1, . . . , xk) → ϕ2) where ϕ2 is a sentence and k > 1, then we
define

Tx(ϕ) ≜⊃k (T(x1,...,xk)(ϕ1(x1, . . . , xk)),∥1,k−1 (T∅(ϕ2),�));
if ϕ = (ϕ1(xi1 , . . . , xik1 )→ ϕ2(yj1 , . . . , yjk2 )) then we define

Tx(ϕ) ≜⊃k (Expx(ϕ1(xi1 , . . . , xik1 )),Expx(ϕ2(xj1 , . . . , xjk2 )))
where

Expx(ϕ1(xi1 , . . . , xik1 )) ≜

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

T(x1,...,xk)(ϕ1(xi1 , . . . , xik1 ))
if k1 = k
[σk] ∥k1,k−k1 (T(xi1 ,...,xik1 )(ϕ1(xi1 , . . . , xik1 )),�)
if k1 < k

where σk is a permutation defined as follows. First, we complete the in-
dices i1, . . . , ik1 with indices ik1+1, . . . , ik such that {xi1 , . . . , xik1 , xik1+1 ,
. . . , xik} = {x1, . . . , xk}. Second, we define the permutation σk such that
for all j ∈ J1;kK, iσk(j) = j.

The definition is similar for Expx(ϕ2(xj1 , . . . , xjk2 )), one only needs
to replace i by j and k1 by k2.

● if ϕ = ∀xψ(x) where ϕ is a sentence, then we define
T∅(ϕ) ≜ ∀0T(x)(ψ(x));

if ϕ = ∀xψ(x1, . . . , xk, x) with k ≥ 1, then we define
Tx(ϕ) ≜ ∀k(�, T(x1,...,xk,x)(ψ(x1, . . . , xk, x))).

Semantics. Let M = (W,{R1, . . . ,Rn, . . . , c1, . . . , cn, . . .}) be a structure with-

out functions. We define the CP–model T (M) = (W,R) as follows:

● the k–ary relation Rfk
l

is defined from the l–ary relation R of M as-

sociated to each R ∈ P as follows: for all w1, . . . ,wk ∈ W , we have that
Rfk

l
w1 . . .wk iff Rwfk

l
(1) . . .wfk

l
(l);

● the other relations of R are defined like in Definition 18.

If x = (x1, . . . , xk) is a tuple of k variables then we define Tx(M,s) ≜ (T (M),
(s(x1), . . . , s(xk))) and T∅(M,s) ≜ (T (M), (s(x0))) for an arbitrary x0 ∈
V. ⊣

In the syntactic part, the definitions may leave some freedom concerning
the exact determination of the permutations σk for the implication case (more
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precisely in the choice of indices for the remaining variables). This is not
problematic and does not impact the results as the proof of the next lemma
shows. Permutations are introduced so that the same variables which appear
in different places in a formula be evaluated at the same points in the domain
of the structure. Moreover, our definitions are set in such a way that for any
sentence ϕ, we will have that T∅(ϕ) will always be a formula of type 1.

Example 9. We provide two examples of translations.

● If P is a 8–ary predicate, then T(x1,x2,x3) (Px3x3x1x1x2x1x2x2) = [σ3]Pf
where f(1) = 1, f(2) = 1, f(3) = 2, f(4) = 2, f(5) = 3, f(6) = 2, f(7) =
3, f(8) = 3 and σ3 = (2,3,1) because here (xi1 , xi2 , xi3) = (x3, x1, x2).

● T(x,y) (∀z (Pzx→ Ryzx)→ ∀zQzz)
=⊃2 (T(x,y) (∀z (Pzx→ Ryzx)) ,∥1 (T∅ (∀zQzz) ,�))
=⊃2 (∀2 (�, T(x,y,z) (Pzx→ Ryzx)) ,∥1 (∀0T(z) (Qzz) ,�))
=⊃2 (∀2 (�,⊃3 ([(1,3,2)] ∥2 (T(x,z) (Pzx) ,�) , T(x,y,z) (Ryzx))) ,
∥1 (∀0T(z) (Qzz) ,�) )
=⊃2 (∀2 (�,⊃3 ([(1,3,2)] ∥2 ([(2,1)]P,�) , [(3,1,2)]R)) ,
∥1 (∀0[Id]Qf ,�))
where f(1) = 1 and f(2) = 1. ⊣

Lemma 1. Let ϕ ∈ LPFOL, let x be the tuple of free variables of ϕ (possibly
empty) and let (M,s) be a pointed structure. Then, we have that

(M,s) ϕ iff Tx(M,s) Tx(ϕ).

Proof: By induction on ϕ. Let x = (x1, . . . , xk) ∈ Vk and let (M,s) be a
pointed structure of domain W .

● If ϕ = � then the result trivially holds.
● If ϕ = Ry1 . . . yl and {y1, . . . , yl} = {xi1 , . . . , xik} is of cardinality k ≤ l

with xi1 , . . . , xik all distinct and in the same order of appearance as in
y1, . . . , yl. Let fkl ∶ J1; lK → J1;kK be the unique surjective function such
that (y1, . . . , yl) = (xi

fk
l
(1) , . . . , xifk

l
(l)). Then,

Tx(M,s) Tx(ϕ)
iff (T (M), (s(x1), . . . , s(xk))) [σk]Rfk

l
xi1 . . . xik

iff (T (M), (s(xi1), . . . , s(xik))) Rfk
l
xi1 . . . xik

iff Rfk
l
s(xi1) . . . s(xik) holds by definition

iff Rs(xi
fk
l
(1)) . . . s(xifk

l
(l)) holds by definition

iff Rs(y1) . . . s(yl) holds by definition of fkl
iff (M,s) Ry1 . . . yl
iff (M,s) ϕ.

● If ϕ = ϕ1 → ϕ2(x) then
T(x)(M,s) T(x)(ϕ)
iff T(x)(M,s) ⊃1 (T∅(ϕ1), T(x)(ϕ2(x))) by definition
iff T(x)(M,s) T∅(ϕ1) implies T(x)(M,s) T(x)(ϕ2(x))
by definition of ⊃1
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iff T∅(M,s) T∅(ϕ1) implies T(x)(M,s) T(x)(ϕ2(x))
because the truth value of T∅(ϕ1) is the same at all states
iff (M,s) ϕ1 implies (M,s) ϕ2, by Induction Hypothesis
iff (M,s) ϕ.

● If ϕ = ϕ1 → ϕ2(x1, . . . , xk) with k > 1 then
Tx(M,s) Tx(ϕ)
iff Tx(M,s) ⊃k (∥1,k−1 (T∅(ϕ1),�), Tx(ϕ2(x))) by definition
iff Tx(M,s) ∥1,k−1 (T∅(ϕ1),�) implies Tx(M,s) Tx(ϕ2(x)))
by definition of ⊃k
iff (T (M), (s(x1), . . . , s(xk)) ∥1,k−1 (T∅(ϕ1),�) implies
(M,s) ϕ2, by definition of Tx and Induction Hypothesis
iff ((T (M), s(x1)) T∅(ϕ1) implies (M,s) ϕ2, by definition
of ∥1,k−1
iff (T (M), s(x1)) T∅(ϕ1) implies (M,s) ϕ2

iff T∅(M,s) T∅(ϕ1) implies (M,s) ϕ2

iff (M,s) ϕ1 implies (M,s) ϕ2, by Induction Hypothesis
iff (M,s) ϕ.

● If ϕ = ϕ1(xi1 , . . . , xik1 )→ ϕ2(yj1 , . . . , yjk2 ) then

– if k1 = k then {xi1 , . . . , xik1} = {x1, . . . , xk} and in that case

Tx(M,s) Expx(ϕ1(xi1 , . . . , xik))
iff Tx(M,s) Tx(ϕ1)
iff (M,s) ϕ1 by Induction Hypothesis.

– if k1 < k then
Tx(M,s) Expx(ϕ1(xi1 , . . . , xik1 ))
iff (T (M), (s(x1), . . . , s(xk)))
[σk] ∥k1,k−k1 (T(xi1 ,...,xik1 )(ϕ1(xi1 , . . . , xik1 )),�) by definition

iff (T (M), (s(xi1), . . . , s(xik1 ), s(xσ−(k1+1)), . . . , s(xσ−(k))))
∥k1,k−k1 (T(xi1 ,...,xik1 )(ϕ1(xi1 , . . . , xik1 )),�), by definition of [σk]
because for all j ∈ J1;kK, since iσ(j) = j, we have ij = σ−(j)
iff (T (M), (s(xi1), . . . , s(xik1 )) T(xi1 ,...,xik1 )

(ϕ1(xi1 , . . . , xik1 ))
by definition of ∥k1,k−k1
iff (T (M), (s(xi1), . . . , s(xik1 )) T(xi1 ,...,xik1 )

(ϕ1(xi1 , . . . , xik1 ))
iff (M,s) ϕ1 by Induction Hypothesis

So, we have proved that
(M,s) ϕ1(xi1 , . . . , xik1 ) iff Tx(M,s) Expx(ϕ1(xi1 , . . . , xik1 )) (∗).
Likewise, we can prove that
(M,s) ϕ2(xj1 , . . . , xjk2 ) iff Tx(M,s) Expx(ϕ2(xj1 , . . . , xjk2 )) (∗∗).
Then, we have that

Tx(M,s) Tx(ϕ)
iff Tx(M,s) ⊃k (Expx(ϕ1(xi1 , . . . , xik1 )),Expx(ϕ2(xj1 , . . . , xjk2 )))
iff Tx(M,s) Expx(ϕ1(xi1 , . . . , xik1 )) implies

Tx(M,s) Expx(ϕ2(xj1 , . . . , xjk2 )), by definition of ⊃k
iff (M,s) ϕ1 implies (M,s) ϕ2 by (∗) and (∗∗)
iff (M,s) ϕ.
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● If ϕ = ∀xψ(x) then
T∅(M,s) T∅(ϕ)
iff (T (M), s(x0)) T∅(ϕ)
iff (T (M), s(x0)) ∀0T(x)(ψ(x)), by definition of T∅ for an
arbitrary x0 ∈ V
iff (T (M),w) T(x)(ψ(x)) for all w ∈M , by definition of ∀0

iff T(x)(M,s[x ∶= w]) T(x)(ψ(x)) for all w ∈M ,
by definition of T(x)
iff (M,s[x ∶= w]) ψ(x) for all w ∈M , by Induction Hypothesis
iff (M,s) ϕ.

● If ϕ = ∀xψ(x1, . . . , xk, x) then
Tx(M,s) Tx(ϕ)
iff Tx(M,s) Tx(∀xψ(x1, . . . , xk, x))
iff Tx(M,s) ∀k(�, T(x1,...,xk,x)(ψ(x1, . . . , xk, x))) by definition

iff (T (M), (s(x1), . . . , s(xk))) ∀k(�, T(x1,...,xk,x)(ψ(x1, . . . , xk, x)))
by definition of Tx
iff ∀w ∈W∀(w1, . . . ,wk+1) ∈W k+1(w ∈ J�KT (M) ∨ (w1, . . . ,wk+1) ∈
JT(x,x)(ψ)KT (M) ∨ −Rτk,1w(w1, . . . ,wk+1)(s(x1), . . . , s(xk))) where

τ is the permutation (2,3,1)
iff ∀w ∈W∀(w1, . . . ,wk+1) ∈W k+1((w1, . . . ,wk+1) ∈ JT(x,x)(ψ)KT (M)
∨ −Rk,1(s(x1), . . . , s(xk))w(w1, . . . ,wk+1))
iff ∀w ∈W∀(w1, . . . ,wk+1) ∈W k+1, if (w1, . . . ,wk) = (s(x1), . . . ,
s(xk)) and wk+1 = w then (w1, . . . ,wk+1) ∈ JT(x,x)(ψ)KT (M)
iff ∀w ∈W, (s(x1), . . . , s(xk),w) ∈ JT(x,x)(ψ)KT (M)
iff (T (M), (s(x1), . . . , s(xk),w)) T(x,x)(ψ) for all w ∈M
by definition
iff T(x,x)(M,s[x ∶= w]) T(x,x)(ψ) for all w ∈M
by definition of T(x,x)
iff (M,s[x ∶= w]) ψ(x1, . . . , xk, x) for all w ∈M , by Induction
Hypothesis
iff (M,s) ∀xψ(x1, . . . , xk, x) by definition
iff (M,s) ϕ.

The cases ϕ = ϕ1(x) → ϕ2 and ϕ = ϕ1(x1, . . . , xk) → ϕ2 with k > 1 are dealt
with like the cases ϕ = ϕ1 → ϕ2(x) and ϕ = ϕ1 → ϕ2(x1, . . . , xk). ◻

Definition 20 (Translation from predicate atomic logics to FOL).
Syntax. For all k ∈ N∗ and all tuples x = (x1, . . . , xk) of variables and con-
stants, we define the mappings STx ∶ LkCP → L

P
FOL, where Lk

CP is the set of
formulas of LCP of type k, inductively as follows:
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STx(Rfk
l
) ≜ Rxfk

l
(1) . . . xfk

l
(l)

STx(�) ≜ �
STx([σk]ϕ) ≜ ST(xσ−

k
(1),...,xσ−

k
(k))(ϕ)

STx(∥k (ϕ1, ϕ2)) ≜ (STy(ϕ1) ∨ ST(x)(ϕ2)) if x = (y, x)
STx(⊃k (ϕ1, ϕ2)) ≜ (STx(ϕ1)→ STx(ϕ2))
STx(∀k(ϕ1, ϕ2)) ≜ ∀x(ST(x)(ϕ1) ∨ ST(x,x)(ϕ2))

ST(x)(∀0ϕ) ≜ ∀xST(x)(ϕ)
where t is an arbitrary term of LPFOL (we recall that ∨ is here an abbreviation).

Semantics. Let (M, (w1, . . . ,wk)) be a pointed CP–model of type k and let x =
(x1, . . . , xk) be a tuple of free variables or constants of size k. The (pointed)
structure associated to (M,w), denoted STx(M,w) ≜ (ST (M), swx ), is defined

as follows. The assignment swx is such that for all i ∈ {1, . . . , k}, s(xi) = wi
and for all x ∈ V − {x1, . . . , xk}, s(x) = w1 and ST (M) is the structure
ST (M) = (W,ST (R)) where ST (R) is the set R to which we remove the
relations of the form Rσk ,Rk,Rk,1 and R∀0 and replace the relations Rfk

l
with

the l–ary relations R associated to each R ∈ P, which are defined as follows:
for all w1, . . . ,wl ∈ W , we have that {w1, . . . ,wl} = {v1, . . . , vk} for some
k ≤ l with v1, . . . , vk all distinct and in the same order as w1, . . . ,wl. There
is a unique surjective function fkl ∶ J1; lK → J1;kK such that (w1, . . . ,wl) =
(vfk

l
(1), . . . , vfk

l
(l)). Then, we set Rw1 . . .wl iff Rfk

l
v1 . . . vk. ⊣

Lemma 2. Let (M,w) be a pointed predicate CP–model of type k, let ϕ ∈ LCP

of type k and let x ∈ Vk. Then,

(M,w) ϕ iff STx (M,w) STx(ϕ).
Moreover, for all pointed structures (M,s) without distinguished ele-

ments, we have that STx (Tx(M,s)) ≡x (M,s) and for all pointed predicate

CP–model (M,w), we have that Tx (STx(M,w)) ≡k (M,w).

Proof: The first part of the proof is by induction on ϕ. The only difficult case
is for the propositional letters, we only deal with it. Let x = (x1, . . . , xk) ∈ Vk.
If w = (w1, . . . ,wk) then

(M,w) Rfk
l

iff Rfk
l
w1 . . .wk

iff Rwfk
l
(1) . . .wfk

l
(l)

iff (ST (M), swx ) Rxfk
l
(1) . . . xfk

l
(l) because (s(x1), . . . , s(xk)) =

(w1, . . . ,wk)
iff (ST (M), swx ) STx(Rfk

l
)

iff STx(M,w) STx(Rfk
l
).

Now, we prove the second part of the lemma. First, note that ST (T (M))
=M (some relations are added and then removed). So, if w = (s(x1), . . . , s(xk))
then (M,swx ) = STx(Tx(M,s)). Then, we have that (M,swx ) ≡x (M,s) be-
cause w = (s(x1), . . . , s(xk)), that is, STx(Tx (M,s)) ≡x (M,s). Second, note
that T (ST (M)) =M . Moreover, if w = (w1, . . . ,wk) then (swx (x1), . . . , swx (xk))
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= (w1, . . . ,wk). Therefore, Tx(STx(M,w)) = (M,w), so the result. ◻

Theorem 1. Every pure predicate logic with k ≥ 0 variables and constants is as
expressive as a predicate atomic logic. The class of pure predicate logics with
k ≥ 2 free variables and constants is as expressive as the class of predicate
atomic logics of type k.

Proof: Let x ∈ Vk be a tuple of variables of size k ≥ 0. If (LPFOL(x, k),EFOL, FOL)
is a pure predicate logic with free variables and constants x, then it is as ex-
pressive as (Tx(LPFOL(x, k)), Tx(EFOL), ), where Tx(LPFOL(x, k)) ≜ {Tx(ϕ) ∣
ϕ ∈ LPFOL(x, k)} and Tx(EFOL) ≜ {Tx(M,s) ∣ (M,s) ∈ EFOL}. The translations
are, on the one hand, Tx (for formulas) and Tx (for models) and, on the other
hand, STx (for formulas) and ST ′x (for models) where ST ′x is defined as fol-
lows: ST ′x(Tx(M,s)) is a fixed and chosen pointed structure (M,s′) such that
Tx(M,s) = Tx(M,s′). Then, we have that ST ′x(Tx(M,s)) ≡x (M,s) (∗) and
Tx(M,s) = Tx(ST ′x(Tx(M,s))) by Lemma 2 (so Tx(M,s) ≡k Tx(ST ′x(Tx(M,s)))).
Moreover, we also have that (M,s) ϕ iff Tx(M,s) Tx(ϕ) by Lemma 1.
Likewise, Tx(M,s) Tx(ϕ) iff STx(Tx(M,s)) STx(Tx(ϕ)) by Lemma 2,
iff (M,s) STx(Tx(ϕ)) again by Lemma 2, iff ST ′x(Tx(M,s)) STx(Tx(ϕ))
by (∗). So, we have proved that (LPFOL(x, k),EFOL, FOL) is as expressive as

(Tx(LPFOL(x, k)), Tx(EFOL), ).

For the second part of the theorem, the proof that every pure predicate
logic is as expressive as a predicate atomic logic of type k is the same as in the
first part. Conversely, if (LCP (k),ECP (k), ) is a predicate atomic logic of
type k ≥ 2, then (LCP (k),ECP (k), ) is as expressive as (LPFOL(x, k),EFOL, FOL)
where this time EFOL ≜ {STx(M,w) ∣ (M,w) ∈ ECP (k)} for some fixed and
chosen tuple of variables x ∈ Vk. In that case, we use the plain translations
Tx and STx and Lemmas 1 and 2 again. There is no ambiguity on the transla-
tions (whether we deal with sentences or formulas with a single free variable)
because k ≥ 2. ◻

Since pure predicate logic can be split up into fragments with k ≥ 0
free variables or constants, we could in principle embed pure predicate logic
into a predicate atomic logic (with CP–models of different types). In fact,
we can define a notion of equi-expressivity taking into account this possible
splitting into sublogics that would allow us to prove formally that the class
of pure predicate logics is as expressive as a specific class of predicate atomic
logics. That notion would be the following: a logic L1 = (L1,E1, 1) would
be modularly as expressive as a logic L2 = (L2,E2, 2) when it would be
possible to split up L1 × E1 and L2 × E2 into partitions L1 × E1 = ⊎

i∈I
(Li1 × E i1)

and L2 × E2 = ⊎
i∈J

(Lj2 × E
j
2) such that for each i ∈ I there is j ∈ J such that

(Li1,E i1, 1) is as expressive as (Lj2,E
j
2 , 2), and vice versa, and at least

one element of each partition is infinite (so that the partitions are not trivial
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partitions into an infinite number of singletons or finite sets of pairs of mod-
els and formulas, because in that case it would always be possible to define
translation mappings). However, this notion of modular equi-expressivity is
not transitive in general. This said, this modular equi-expressivity result sup-
ports our intuition that the class of pure predicate logics is as expressive as
some class of predicate atomic logics.

Corollary 1. Let ϕ ∈ LPFOL and let x be the tuple of k ≥ 0 free variables of ϕ.
Then, ϕ is valid (on the class of all pointed structures) if, and only if, Tx(ϕ)
is valid on the class of all pointed predicate CP–models of type k (of type 1 if
k = 0). Moreover, ϕ ≡ STx(Tx(ϕ)).

Proof: It follows from the first part of Theorem 1 and the expressions that
follow the definition of equal expressivity in Section 3. ◻

Modalizing first-order logic. There have already been some attempts to ‘modal-
ize’ first-order logics; we briefly mention two of them here. Marx & Venema
obtain a result [29, Proposition 5.2.5] similar to our Corollary 1 for multi-
dimensional modal logics, but with respect to some restricted first-order log-
ics. Like here, they “wanted to identify assignments of the first-order se-
mantics with tuple-states in the modal framework” [29, p. 154]. However,
because multi-dimensional logics only allow atomic connectives of type sig-
nature (k, k, . . . , k) for a fixed k > 0 (called the ‘dimension’), their results hold
with respect to fragments of first-order logics. They show for example that
their k-dimensional cylindric (multi-dimensional) modal logic corresponds to
a restricted first-order logic where the predicate symbols are all k-ary (and
with k variables).

Kuhn [27] introduces a multi-typed S5 modal logic PREDBOX and obtains
an equal expressivity theorem [27, p. 152] between PREDBOX and first-order
logic whose formulation is very close to our Lemmas 1 and 2. The formulas of
PREDBOX are also typed (sorted) but the tuples of states on which they are in-
terpreted do not always correspond to the denotations of some free variables.
Like [29], the translation in the modal framework of the first-order quantifi-
cation is different from here, it is expressed by an S5 modality. Moreover,
unlike the models of atomic logics, those of PREDBOX include infinite tuples
of states.

5.2. Molecular Logics versus Protologics

In this section, Q and P are sets of predicates such that Q ⊆ P. We will
also use the equality predicate = so as to avoid formulas of the form Qxyx.
That is, we want all variables in the scope of a predicate to be different.
For example, Qixyx will be translated into the logically equivalent formula
∀z(x = z → Qixyz). This is because we do not want to change the predicate
symbols P into Pfk

l
like in Definition 18. Note that this preprocessing with

the equality predicate could also be applied in the translation from first-order
formulas to predicate atomic logics in order to avoid the complication with
the introduction of Pfk

l
in Definition 18. These two approaches are in fact
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equivalent in that previous case, but we refrained from doing so because we
did not want to introduce the equality predicate in the predicate atomic logic.

Definition 21 (Translation from protologics to molecular logics). Let Ca be
a set of abstract connectives.
Syntax. We define the mapping t from the abstract connectives of Ca to
molecular connectives as follows:

● t(Q) = Q for all predicate Q ∈ Q;
● For abstract connectives of the form (χ(x), (Q1, . . . ,Qn)), we proceed

as follows. We first translate χ(x) into a logically equivalent formula
of first–order logic such that each predicate Qix1 . . . xk which occurs in
χ has distinct variables x1, . . . , xk. This is possible using the equality
predicate =. For example, Qixyx is translated into the logically equiv-
alent formula ∀z(x = z → Qixyz) (or ∃z(x = z ∧ Qixyz)). We obtain a
logically equivalent formula denoted χ=(x) in which the equality pred-
icate may occur. We can define this first transformation so that it is
injective because the equality predicate was not present in the initial
formulas.

Then, we translate χ=(x) into predicate atomic logic using the
translation Tx of Definition 19 (the equality is simply viewed as a predi-
cate R=). We obtain a formula χ′ = Tx(χ=(x)) of predicate atomic logic.
That second transformation is also injective.

That formula χ′ is finally transformed into a molecular connective
c. The skeleton decomposition tree of that molecular connective is the
skeleton syntactic tree of χ′ where the leafs labeled with the skeleton of
a predicate Qi are all replaced by the same skeleton symbol idlki where
ki is the arity of each Qi and l is a natural number which allows to

distinguish idlki from the other symbols of the form idl
′
ki

appearing in
the skeleton. The resulting molecular connective c of arity n and type
signature (k, k1, . . . , kn) is denoted t(χ(x), (Q1, . . . ,Qn)).
The resulting set of molecular connectives is denoted t(Ca). Then, this

translation t is extended to the whole language as follows: for all ⋆ ∈ Ca and all
ϕ1, . . . , ϕn ∈ LCa of appropriate types, t(⋆(ϕ1, . . . , ϕn)) = t(⋆)(t(ϕ1), . . . , t(ϕn)).
By construction, this transformation t is injective.
Semantics. Let (M,w) be a pointed Ca–model with M = (W,R). The pointed
t(Ca)–model t(M,w) is the t(Ca)–model ((W,R′),w) whereR′ isR together
with the relations of Definition 18 (except those of the first item) as well as
the equality predicate R= ≜ {(w,w) ∣ w ∈W}. ⊣

Lemma 3. Let Ca be a set of abstract connectives, let ϕ ∈ LCa and let (M,w)
be a pointed Ca–model where w is of size the type of ϕ. Then, we have that

(M,w) ϕ iff t(M,w) t(ϕ)

Proof: By induction on ϕ. The base case holds trivially. For the induction
step, that is for abstract connectives of the form (χ(x), (Q1, . . . ,Qn)), each
transformation of the formula χ, into χ=(x) and then χ′, preserves its truth



On the Universality of Atomic and Molecular Logics 33

in any assignment w by Lemma 1. ◻

Definition 22 (Translation from molecular logics to protologics). Let C be a
set of molecular connectives.

Syntax. We define the mapping st from molecular connectives to abstract
connectives inductively as follows:

● st(p) ≜ p for all propositional letters p of C.
● For all molecular connectives of the form c = ⋆(c1, . . . , cm) we proceed

as follows. First, we replace all symbols idlk appearing in c by fresh and
distinct propositional letters (p1, . . . , pn). This yields a formula ϕ ∈ LC

of some type k. Then, we pick a tuple of free variables x of size k and
we define the first–order formula stx(ϕ) inductively as follows. If ϕ is a
propositional letter p then stx(p) ≜ Qx, where Q is a predicate symbol
of Q. If ϕ is of the form ⋆(ϕ1, . . . , ϕm) then

– if ⋆ = (σ,±,∀, k, (±1, . . . ,±m)) then
stx(⋆(ϕ1, . . . , ϕm))
≜ ∀y1 . . . ym (±1sty1(ϕ1) ∨ . . . ∨ ±nstym(ϕm) ∨ ±Rσy1 . . . ymx);

– if ⋆ = (σ,±,∃, k, (±1, . . . ,±m)) then
stx(⋆(ϕ1, . . . , ϕm))
≜ ∃y1 . . . ym (±1sty1(ϕ1) ∧ . . . ∧ ±nstyn(ϕm) ∧ ±Rσy1 . . . ymx);

where y1, . . . , yn are fresh tuples of free variables and R is a predi-
cate symbol of P − Q. We recall that for all formulas ψ, ±iψ stands
for ψ if ±i = + and for ¬ψ if ±i = −, and that Rσy1 . . . ymym+1 ≜
Ryσ−(1) . . . yσ−(m)yσ−(m+1).

Finally, we define the abstract connective st(c) ≜ (stx(ϕ), (Q1, . . . ,
Qn)) where for all i ∈ J1;nK, Qi = st(pi).
The resulting set of abstract connectives is denoted st(C). Then, this

translation st is extended to the whole language as follows: for all ⋆ ∈ C and all
ϕ1, . . . , ϕn ∈ LC of appropriate types, st(⋆(ϕ1, . . . , ϕn)) = st(⋆)(st(ϕ1), . . . ,
st(ϕn)). By construction, this transformation st is injective. ⊣

Lemma 4. Let C be a set of molecular connectives, let ϕ ∈ LC and let (M,w)
be a pointed C–model where w is of size the type of ϕ. Then, we have that

(M,w) ϕ iff (M,w) st(ϕ)

Proof: By induction on ϕ. The base case holds trivially. The inductive case
is just a reformulation in first–order logic of the truth conditions associated
to each molecular connective. We do not need to introduce extra predicates
Rf like in the previous case, the ones needed are all already present in the
initial C–model. Therefore we keep the same C–model. ◻

Theorem 2. The class of protologics is as expressive as the class of molecular
logics.



34 Guillaume Aucher

Proof: We have to prove that every protologic is as expressive as a molecular
logic, and vice versa. If (LC,EC, ) is a molecular logic, it is as expressive
as the protologic (st(LC),EC, ), where st(LC) ≜ {st(ϕ) ∣ ϕ ∈ LC}. In that
case, the mappings for models are the identity mappings, the mapping from
LC to st(LC) is st and the mapping from st(LC) to LC is the inverse mapping
of st. It exists because st is injective. We then obtain the result thanks to
Lemma 4.

Conversely, if (LCa ,ECa , ) is a protologic, it is as expressive as the
molecular logic (t(LCa), t(ECa), ), where t(LCa) ≜ {t(ϕ) ∣ ϕ ∈ LCa} and
t(ECa) ≜ {t(M,w) ∣ (M,w) ∈ ECa}. We define the mapping t− from t(ECa) to
ECa by removing from any t(Ca)–model all the relations which do not appear
in the initial Ca–model before the translation t, we thus obtain the initial
Ca–model. The mappings t and t− for models are therefore inverse bijections
of each other. The mappings for formulas are t and the inverse of t; this in-
verse also exists in that case because t is injective. We then obtain the result
thanks to Lemma 3. ◻

Remark 3. The translation mappings between models are in fact inverse
bijections of each other in this result (and this entails Condition 3 of the
definition of equal expressivity). Hence, it holds also with the notion of equal
expressivity of Mossakowski et al. [33] (i.e. “model-expansive corridors”).
Moreover, the translation mappings for formulas are in fact ‘tighter’ than for
Theorem 1 because they operate at the level of connectives.

Example 10. We resume our example of modal intuitionistic logic. We con-
sider the abstract connective (χ(x), (Q)) where χ(x) ≜ ∀y(Rxy → ∀z(R3yz →
Q(z))). We show how this abstract connective is transformed into a molecular
connective. Applying T(x), we obtain

T(x)(χ(x)) =∀1(�, T(x,y)(Rxy → ∀z(R3yz → Qz)))
=∀1(�,⊃2 (T(x,y)(Rxy), [(2,1)] ∥1 (T(y)(∀z(R3yz → Q(z))),�)))
=∀1(�,⊃2 ([Id]R, [(2,1)] ∥1 (∀1(�, T(y,z)(R3yz → Q(z))),�)))
=∀1(�,⊃2 ([Id]R, [(2,1)] ∥1 (∀1(�,⊃2 (T(y,z)(R3yz), [(2,1)] ∥1
(T(z)(Qz),�)))),�))
=∀1(�,⊃2 ([Id]R, [(2,1)] ∥1 (∀1(�,⊃2 ([Id]R3, [(2,1)] ∥1
([Id]Q,�)))),�))

(The subscript mappings fkl are removed since in our algorithm they are the
identity mapping.) Then we replace Q by id11 and we obtain the following
molecular connective:

∀1(�,⊃2 ([Id]R,∥1 (∀1(�,⊃2 ([Id]R3,∥1 (�, [Id]id11))),�)))
We could remove the connectives [Id]. It turns out that the molecular con-
nective that we obtain is quite different from the molecular connective that
was introduced in Example 7. Yet, they both have the same effect, the former
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on C–models and the latter on CP–models when we consider only the part of
the information present in the initial C–model. ⊣

So, it is possible that a protologic corresponds naturally to a molecular
logic but that its translation into a molecular logic using our algorithm of
Definition 21 does not yield the expected natural outcome. However, the
two logics, the one expected and the one obtained thanks to our translation,
will be equally expressive. The pieces of information which are added in
CP–models (corresponding to the connectives [σk],∥k,⊃k,∀k) actually do
not increase the expressive power of the logic because the object language
cannot refer to their associated relations. Yet, they allow us to reformulate
it systematically under the form of an atomic or molecular logic.

6. Predicate Molecular Logics: the Core of Molecular Logics

The proofs of our previous theorems leads us to identify a subclass of molec-
ular logics that we will call ‘predicate’ molecular logics. This subclass of
molecular logics constitutes its ‘core’, in the sense that any molecular logic
is as expressive as a predicate molecular logic.

Definition 23 (Predicate molecular logic). A predicate molecular logic is a
molecular logic whose molecular connectives are built up from the predicate
atomic connectives {�,∀0} ∪ {[σk],∥k,⊃k,∀k ∣ k ∈ N∗, σk ∈Sk} of Definitions
17 and 18, together with some set of (atomic) propositional letters (possibly
empty). ⊣

Theorem 3. The class of predicate molecular logics is as expressive as the class
of molecular logics and therefore also as expressive as the class of protologics.

Proof: It follows easily from the proof of Theorem 2 and its lemmas. ◻

7. Conclusion

This article contributes to the systematic exploration of non–classical log-
ics. It shows in particular the central role played by atomic and molecular
logics in that study. They behave as ‘paradigmatic logics’: every logic whose
connectives are defined by first–order formulas – that is, every protologic –
is as expressive as a molecular logic, as proved by Theorem 2. This result
illustrates their (somehow) ‘universal’ feature.

The main advantage of our overall approach is that it provides a uni-
form and generic way to explore and study non–classical logics. Atomic and
molecular logics can be (somehow) seen as normal forms for logics. It is better
and easier to deal with atomic and molecular logics than with protologics di-
rectly, because of their specific shape and format. Indeed, one can define and
compute automatically notions of bisimulations for any atomic and molec-
ular logic. So, we can develop in a systematic way their model theory, and



36 Guillaume Aucher

therefore, also develop, indirectly, the model theory of any protologic and
non-classical logic. In that respect, a number of results have already been
obtained in the model theory of atomic and molecular logics such as a van
Benthem type characterization theorem for molecular logics given by connec-
tives which are ‘uniform’ [6].2 Likewise, our approach based on atomic and
molecular logics allows us to develop in a systematic and uniform way the
proof theory of non–classical logics. Indeed, one can automatically compute
a display calculus for any gaggle logics, which are specific basic atomic logics
[4, 5]3.

Through close analysis of the proofs of our results, we realized that ev-
ery protologic and every molecular logic is as expressive as a specific kind
of molecular logic, which resorts to the connectives �, [σk],∥k,⊃k,∀k,∀0 and
propositional letters. This class of molecular logics, that we called predicate
molecular logics, therefore constitutes the ‘core’ of the class of all logics since
our Theorem 3 states that any protologic and any molecular logic is as ex-
pressive as one of them. More work and study regarding that specific class of
molecular logics and its relationships with other logics is needed.

We have restricted our investigations in this article to non–classical
logics which are fragments of first–order logic. Yet, the same methodology
could be applied if we replaced in the truth conditions of connectives first–
order logic by second–order logic and, in fact, by any higher–order logic.
Indeed, we could consider logics whose connectives are defined by formulas
of second–order logic instead of first–order logic, like the modal mu-calculus
[24]. Following this research track, we may meet at some point the work on
higher–order logics of abstract model theory [7]. That said, the move from
first–order to second–order logic may be neither straightforward nor natural,
and may lead to some complexifications since we would need, for example,
to choose between a Henkin semantics and a standard semantics [41]. In
any case, we believe that our overall approach and methodology based on
that simple idea is the right track to follow if we want to explore and study
non–classical logics in a systematic and comprehensive way; in particular,
because it is grounded on a class and hierarchy of logics which are naturally
well-defined and articulated and which have already been well studied.
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[8] Jean-Yves Béziau. Logica Universalis, chapter From Consequence Operator to
Universal Logic: A Survey of General Abstract Logic. Birkhäuser Basel, 2007.
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