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Abstract

The structure, thermodynamic and elastic properties of Tix(HfNbTaZr)(1−x)/4

from Refractory High Entropy multicomponent Alloys to pure titanium are

investigated employing comprehensive MCSQS realizations of the disordered

atomic structure and DFT calculations. We showed that to model the random

structure in a limited supercell, it is beneficial to probe a large space of random

configurations with different atomic arrangements. Including a larger number
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of nearest-neighbor pair shells is in practice more effective in finding config-

urations corresponding to lower formation energies than considering many-

body terms. In addition, we demonstrate the existence of weak-to-medium

short-range chemical order for both equimolar compositions. The study of

chemical order requires hundreds of MCSQS realizations to become meaning-

ful, and SRO results are rationalized in terms of crystallographic structure

of favorable element pairs and binary phase diagrams. When Ti is added to

Tix(HfNbTaZr)(1−x)/4 alloys, the mixing enthalpy of the bcc phase decreases

but remains slightly positive for all x. For large Ti content, a phase transition

in favor of an hcp structure is suggested in agreement with the predictions of

the Bo-Md diagram and mechanical stability analysis. Around x ≈ 0.50, a

dual phase is predicted. The impact of local atomic configuration variability

on elastic properties and bcc/hcp phase competition is discussed. Our results

are in good agreement with the limited existing literature on these alloys, and

provide a better understanding of it. The Ti content in this class of alloys

could be a practical means of selecting the phase structure and tailoring the

elastic properties to specific applications.

Keywords— High entropy alloys, Random alloys, Special Quasi-Random structures

(SQSs), Density Functional Theory (DFT), mixing entropy, Phase stability, Body-centered

cubic (bcc), Metastable alloys.

1 Introduction

Multicomponent High Entropy Alloys (HEAs), a relatively new class of materials, have

recently attracted a great deal of attention due to their remarkable mechanical properties.

These HEAs are typically composed of four or more elements at nearly the same concen-

tration [1–3]. Despite consisting of a complex multicomponent system, they lead to the
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formation of a simple single-phase solid solution, such as face-centered cubic (fcc), body-

centered cubic (bcc), or hexagonal close-packed (hcp). Among these alloys, fcc Cantor

type HEAs have been widely studied, but few studies exist on bcc HEAs, and even fewer

in the case of bcc refractory HEAs (RHEAs) [4, 5], sometimes named "Senkov" alloys.

The high degree of chemical complexity created by mixing different elements with different

atomic sizes and chemical properties increases the material’s resistance to deformation and

fracture. In addition, the high entropy of the alloy leads to a variety of lattice distortions

due to atomic configurations. This arrangement of atoms promotes strain hardening and

increases resistance to dislocation movements [6–10]. Despite abundant literature, many

aspects of phase stability, exact atomic structure, and their relationship to macroscopic

properties remain unclear.

Recent experiments on HfNbTaTi, HfMoTaTiZr, and HfNbTaTiZr have shown that

non-toxic and non-allergenic elements such as Nb, Ta, and Zr exhibit high corrosion resis-

tance [11]. The latter alloy family, HfNbTaTiZr, will be the focus of the present paper.

Properties such as high ductility, corrosion resistance, and strength at both room temper-

ature and high temperatures can be improved by choosing suitable refractory elements (a

mixture of bcc and hcp elements).

The d -electron theory has become a classical tool for predicting the structural stabil-

ity of Ti-based alloys [12] but it has rarely been applied to high-entropy Ti-based alloys.

Lilenstein et al. have synthesized a novel high entropy alloy (HEA) with the composition

Ti35Zr27.5Hf27.5Nb5Ta5 using the d-electron alloy design approach based on the Bo-Md

diagram [13]. This alloy exhibited a remarkable transformation-induced plasticity effect,

resulting in a high normalized work hardening rate while retaining ductility when compared

to the reference equimolar Ti20Zr20Hf20Nb20Ta20 alloy. Microstructure analysis after de-

formation revealed the large presence of stress-induced orthorhombic martensite. This

work shows that the phase stability and mechanical properties of HEA can be tailored by

a chemical design approach based on Bo and Md parameters. However, many of the pre-
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dictions of the Bo-Md diagram need to be compared with the actual HEA phases observed

in experiments or simulations.

Departing from the initial picture of the random distribution of atoms, it is now clear

that HEA alloys exhibit local chemical fluctuations and various degrees of chemical short-

range ordering (SRO), and assessing them is crucial to understanding the microstructure-

property relationship. However, characterizing and quantifying composition fluctuations

is still a challenging task at the atomic scale, and no direct experimental observation

was available until very recently [14–16]. Yin et al. were certainly the first to show that

Monte Carlo simulations can thus provide an alternative route to study SRO in association

with DFT calculations [17], MC was then associated with cluster expansion model [18] or

molecular dynamics simulations [19], but there are still only a few studies of this type. An

increasing degree of SRO was found to lower the mixing energy of the HEA phase in the

corresponding alloys, while some alloys seem more prone to SRO than others. In the qua-

ternary bcc HfNbTiZr alloy, Hf-rich and Ti-rich clusters were experimentally highlighted

using atomic probe tomography and HR-HAADF-SEM observations [14,15], in agreement

with the affinity of some of the Ti- and Hf-bond types observed in simulations [20,21]. The

electronic density structure analysis performed on the same alloy [21] highlighted the pecu-

liar role of Ti-Zr bonds with a reduction of d electrons at the Fermi level, which stabilizes

the bcc phase.

Another fascinating aspect of HEA is to fully understand the origin of their large

strength, and a number of models have been successful in estimating the yield stress of

fcc and bcc alloys [22–24]. In deformed HfNbTaTiZr, TEM observations [25, 26] revealed

heterogeneous dislocation microstructures, with dense slip bands along {110} and {112}

planes and many debris loops. a0
2 ⟨111⟩ screw dislocations are mostly rectilinear, and the

large apparent activation volumes are consistent with the Peierls mechanism and large

friction with the lattice. Once again, the variation of the local chemical environment and

SRO existence seem key in rationalizing the dislocation behavior. EXAFS analysis of

4



pure binary and ternary alloys in the Ti-Ta-Hf-Nb-Zr system evidenced local chemical and

lattice distortions [27, 28]. MD investigations [29] of the dislocation structure in the Nb-

Ti-Zr system showed core structure variations along the dislocation line depending on the

local environment. A collision of cross kinks nucleated on different slip planes yields debris

(pairs of interstitial vacancies) in the wake of the dislocation gliding. Yin and collab. [23]

quantified the Peierls barrier for screw dislocations in the bcc MoNbTaW alloy by ab-initio.

The dislocation core energy roughly follows a Gaussian distribution depending on the local

environment of the dislocation, whose average and variance increase with the degree of

SRO. As a consequence, two types of Peierls potentials were identified, and the Peierls

barrier was found to increase with the degree of SRO. Finally, in-situ TEM observations

revealed [15] that local chemical fluctuations in the quaternary bcc HfNbTiZr alloy lead

to dislocation pinning, stimulating dislocation multiplication and cross-slip activity.

Ti content is expected to strongly impact the stability of the different possible phases

and local chemical fluctuations observed in the Hf-Nb-Ta-Ti-Zr system. In this paper, we

systematically investigate the effects of Ti content on the atomic structure, phase stability,

local chemical ordering, and elastic constants using Monte-Carlo Special Quasi random

(MCSQS) and ab-initio calculations. We employ DFT calculations as the derivation of re-

liable semi-empirical potentials for quinary alloys is still a challenging task [30]. To better

approximate the ideal random structure in a small DFT supercell, we considered multiple

atomic structures resulting from different MC SQS calculations, for each of which the en-

ergy was calculated. Interestingly, the average mixing energy and Global SRO parameter

converge rapidly to constant values with the number of different atomic configurations,

while the SRO parameters for each pair type require many more SQS realizations to con-

verge toward the ideal random structure where no pairs are favored. The comprehensive

set of data can also be further analyzed to identify favorable, neutral, and unfavorable

bond types corresponding to extremes in the mixing energy data. This solution consti-

tutes an alternative to a more complete but more demanding MC-DFT hybrid approach.
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In agreement with the Bo-Md diagram, tuning the Ti content in HfNbTaTiZr alloys has the

potential to alter the alloy’s stable phase. The knowledge gained from these investigations

can be used to design high-entropy bcc alloys with properties tailored for specific applica-

tions. The investigation of the screw dislocation structure and property in correlation to its

local chemical environment is left for a forthcoming publication. The remainder of the pa-

per is organized as follows: Sec. 2 details the simulation conditions and a sensitivity study

of the MCSQS parameters to construct the atomistic configurations of the alloys. Sec.

3 provides results and discussion regarding the SRO existing in quaternary and quinary

equimolar alloys, the convergence of some average alloy properties with the number of

MCSQS realizations, the relative stability of the different phases, the elastic properties as

a function of Ti content, and possible correlations with local atomic arrangements. The

last section summarizes the conclusions.

2 Methodology and Computational details

In the present article, we report the mixing energy, elastic properties, and structural param-

eters of a model of the Tix(HfNbTaZr)(1−x)/4 alloys calculated using Density Functional

Theory (DFT) as implemented in Vienna Ab-initio Simulation Package (vasp) code [31].

The Projector Augmented Wave (PAW) pseudopotential was used to approximate the

electron core energy [32] and the Perdew-Burke-Ernzerhof (PBE) generalized gradient ap-

proximation was used to approximate the exchange-correlation functional (XC) [33].

A lot of care has been paid to the construction of the disordered structure corresponding

to the Tix(HfNbTaZr)(1−x)/4 alloys. The composition was varied from x = 0.0 to 0.81 by

steps of about 0.1, while the rest of the composition is equally distributed among all the

other elements Hf, Nb, Ta, and Zr. For all considered compositions, the supercell geometry

was constrained so that the cubic bcc symmetry was preserved, as experiments suggest that

most compositions correspond to a bcc single phase. Additional calculations using an hcp,
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or orthorhombic (ortho) lattice, have also been conducted for high Ti content. Mimicking

a random structure in a supercell of sufficiently limited dimensions to be tractable by DFT

simulations raises an additional problem due to short-range spatial correlations among

atoms induced by the Periodic Boundary Conditions (PBC). To address this problem,

several techniques have been proposed in the literature based on the use of order parameters

to evaluate the disordered nature of the atomic configuration and minimize the spatial

correlations as much as possible [34–38]. Here, we use the Monte-Carlo Special Quasi-

random Structure (MCSQS) technique implemented in the Alloy Theoretic Automated

Toolkit (atat) code [39,40] to generate and analyze a large set of different random structure

realizations. We can thus perform a statistical study of the MCSQS parameters on the

resulting structure of different atomic configurations.

The supercell size was chosen to be a necessary tradeoff between physical relevance and

the numerical cost of the calculations. The supercell geometries depend on the investigated

composition and are as follows: For x = 0.11, 0.33, 0.40, 0.63 and 0.70, we generated a

supercell of 54 atoms based on 3×3×3 cubic bcc unit cells; for compositions corresponding

to x = 0.00, 0.50, and 0.81, a supercell of 128 atoms based on 4 × 4 × 4 cubic bcc unit

cells was used; and for x = 0.20, a supercell of 125 atoms based on 5× 5× 5 primitive bcc

unit cells was used. In the case of hcp structures, we employed supercells of 128 atoms for

x = 0.50, 0.81 (4× 4× 4 hexagonal unit cells), and 54 atoms for x = 0.63, 0.70 (3× 3× 3

hexagonal unit cells).

In all the reported simulations, the system was allowed to fully relax (to accommodate

the lattice distortions typical of HEA alloys), including atomic positions, supercell shapes,

and volumes (in an anisotropic fashion), using a conjugate gradient algorithm. Brillouin

zone integrations were performed with a Γ-centered k-point grid scheme. The plane-wave

cut-off energy was set to 600 eV. The first order Methfessel-Paxton method [41] with a

smearing parameter of 0.2 eV was used. The system was assumed to have converged

when the force on each atom was less than 1 meV/Å, and the stress tolerance was below
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0.005 GPa. After relaxation, the mixing energy was evaluated using a single-point energy

calculation with a dense k-point relative to the convergence of the mixing energy. A

sensitivity study showed that a tolerance of 1 meV/atom, a 2 × 2 × 2 k-point grid, and

a plane-wave cut-off energy of 600 eV were sufficient for the calculation of elastic and

structural properties.

3 Results and Discussion

We employed the MCSQS approach to mimic the random structure of HEA in a DFT

supercell. While MCSQS is now a well-established technique within the HEA community,

its results can be impacted by a few parameters, in particular, the number of neighbor

shells and the order of the many-body terms that are included to evaluate the disorder

in the considered configuration. We thus start with a sensitivity study of the structure

generated as a function of these parameters.

In the present work, we have varied the pairwise terms (hereafter called p) between the

NN (Nearest Neighbor) shells, where p ranges from 2 to 10 NN. We have also varied the

three-body (t) and four-body (q) terms (where t and q range from 0 to 1 NN).

Figure 1: Examples of supercells [(a)-(d)] obtained from MCSQS for the alloy
Tix(HfNbTaZr)(1−x)/4. Figs. (a) and (c) show a 3×3×3 supercell for x = 0.11, 0.33,
0.40, 0.60, and 0.70 containing 54 atoms with bcc and hcp structures, respectively.
Fig. (b) and (d) show a 4×4×4 supercell for x = 0.00, 0.50, and 0.80, representing
128 atoms with a bcc and hcp structure, respectively.

For each Ti content x and MCSQS parameters p, t, and q (hereafter denoted by the

value triplet (p, t, q)), Fig. 1 shows some of the atomic configurations resulting from

the MCSQS calculations obtained for different Ti content x. Our workflow consists of
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first generating 20 SQS for (p, 0, 0) only, then with (p, t, 0), and finally (p, t, q). In

each case, the MCSQS calculation was initiated with different random seed values, leading

to different final atomic configurations. The configuration was assumed to be final when

the local minimum of the objective function was reached during the 120-hour runtime.

MCSQS was terminated earlier when no further SQS structure was generated for more

than 12 hours.

According to classical theory, the Gibbs free energy of the system is given by:

∆Gx = ∆Hx − (T∆Smix)x − (T∆Svib)x (1)

In Eq. 1, ∆Hx is the mixing energy, and ∆Smix and ∆Svib are the mixing and vibra-

tional entropy terms, respectively. The mixing energy, ∆Hx, given in Eq. 2 is computed

from the difference of energy of the SQS supercell (ESQS) and the energy Ei associated

with the most stable phase of each element, i (bcc for Nb, and Ta and hcp for Hf, Ti, and

Zr):

∆Hx = (ESQS)x −
(∑

i

ciEi

)
x

(2)

where ci is the atomic fraction of an alloy element, i. For alloys, the mixing entropic

term is as follows:

(∆Smix)x = −kB
∑
i

ciln(ci) (3)

where kB is the Boltzmann constant. It can be noted that Eq. 3 applies to perfect

random solid solutions, which might not be the case for HEA alloys, where some level of

chemical order may exist (see later). Eq. 3 is nevertheless commonly used within the

HEA community to estimate the mixing entropy. The last term of Eq. 1, corresponding

to the vibrational entropy, can be calculated from DFT using the so-called frozen phonon

approach [42,43]. However, these types of calculations are computationally demanding, and
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vibrational entropy is commonly neglected when compared to mixing entropy [1,37,44,45].

This last term is thus disregarded in the present study.

3.1 Sensitivity study on MCSQS parameters

First, we conducted MCSQS calculations while neglecting the many-body terms, i.e., we

included only the pairwise p NN shells, as these terms are expected to have the largest

impact on the resulting SQS configuration. We then determined the effect of the number of

p shells on the mixing energy. To evaluate this parameter, we have considered the x = 0.33

composition. Tab. 1 shows the average mixing energy and average lattice parameter as

a function of p shells. The values given in Tab. 1 refer to the lowest mixing energy

obtained over a relevant number of different atomic configurations. We will see later that

20 different SQS realizations are sufficient to assess the ideal solid solution mixing energy

for the alloys and supercell sizes considered here. Interestingly, the mixing energy per atom

decreases only weakly as the number of p NN shells increases up to 8 NN. For p = 10 NN,

it surprisingly yielded a larger mixing energy per atom by about 7 meV/atom. In the latter

case, it is probable that modeling SQS supercells with 10 pairs of shells within a 120-h

time limit is not enough, or it might be that considering a larger number of shells within a

finite supercell constrained by the given composition and size of the supercell overlaps due

to periodic boundary conditions (PBC). As a result of this sensitivity study, we chose p

= 8 NN as a compromise between MCSQS capacity to produce low energy configurations

and the numerical cost to run the MCSQS.

In another set of calculations, we have investigated the possible effect of higher order

many-body terms: ternary (t) and quaternary (q) interactions within 1st NN shells from

MCSQS. For this, many-body terms were set to t = 1 NN, and q = 0 or 1 NN, while the

pairwise terms were set to 6 and 8 NN shells. Fig. 2 shows the impact of including these

higher order many-body terms on the mixing energy of Tix(HfNbTaZr)(1−x)/4 for x ranging

from 0.00 to 0.50. The figure reports the average (avg) mixing energy value, along with
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Table 1: Calculated average lattice parameters a′, and mixing energy, ∆H, for x
= 0.33 using a 54-atom supercell over 20 different initial SQS seed values (i) for
each value of p along with the average (avg) mixing energy value and standard
deviation (σ). The number of nearest neighbor (NN) shells is given by the following
convention: p NN where p is the number of nearest neighbor shells for the pair.

#Shells min{∆H} avg ± σ a′

(p,0,0) NN meV/atom Å

2 84.73 88.5±3.2 3.382
4 82.37 89.0±3.9 3.384
6 81.27 89.7±3.6 3.383
8 80.37 86.8±3.8 3.383
10 87.30 90.5±2.6 3.382

the standard deviation (σ) and minimum and maximum energy values. Overall, average

mixing energy decreases as Ti content x increases. Further, the average mixing energy

over 20 seed values is weakly impacted when three and four-body terms are included. The

standard deviation is relatively large for some of the composition and simulation conditions.

This could be the result of the impact of favorable and unfavorable pair types (see below);

it could also be due to the lower mechanical stability of the bcc phase in the presence of

the hcp prone elements.

For a given Ti content x, the average mixing energy (shown in a blue dotted color line)

decreases only weakly when including t and q terms. A similar conclusion was also reached

by Tian et al. for CoCrFeMnNi, Ta-W, and CoCrNi alloys. Using the Similar Atomic

Environment (SAE) approach, these authors showed that including many-body clusters

did not provide much improvement in the cross-validation error between SAE and SQS for

equimolar composition, implying that pair NN terms for atom pairs are relatively enough

to model a random structure [46].

As we will see later, for a Ti content close to x ≈ 0.5 (see Fig. 8), a phase transition

from bcc to hcp is expected. Therefore, we generated another 20 SQS structures with or-

thorhombic and hcp symmetry, respectively. The orthorhombic structure generated with

(8, 1, 0) exhibits a slightly lower formation energy, 7 meV/atom less than the other config-

urations shown in Fig. 2. It shows that for low-symmetry structures, the (t, q) might play
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Figure 2: Statistical plot showing the average mixing energy, minimal and maxi-
mal values, along with the standard deviation of the calculated mixing energy for
Tix(HfNbTaZr)(1−x)/4 alloys for various MCSQS runs. The number of shells included
in the MCSQS calculations is given by the following convention: (p, t, q), where
p, t, and q are the pair, three-body, and four-body terms, respectively. Maximum
values are represented by black-filled circles, and minimum values by green circles.
The average mixing energy for each composition is shown in a blue dotted color line,
and the standard deviation is shown in a gray rectangle. For each x = 0.00 and 0.20,
650 SQS calculations were performed, respectively.

a role in modeling the un-equimolar composition. For the hcp structure, we see a similar

trend regarding the evolution of the mixing energy as a function of the choice of (p, t, q).

The lowest formation energies for the three structures considered at x = 0.5 are very close

to each other. This will be discussed in more detail later.

The addition of three and four body terms up to 1 NN shell appears to have only a

second-order effect in the present systems. The inclusion of a large number of NN shells

for pair interactions has an important impact on the ability of the SQS to yield lower

energy configurations. This sensitivity study of over 700 different calculations demonstrates
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the importance of performing multiple MCSQS calculations with different seed values to

evaluate the statistical differences associated with the local atomic configurations.

3.2 Convergence of selected average properties

Next, we focus on the quaternary and quinary systems. The atomic configuration obtained

from the MC SQS technique constitutes only one of the realizations of the system, and the

alloy composition and simulation sizes considered here only represent a part of the many

atomic arrangements seen in a random solution. Thus, different MC SQS realizations

could lead to different configurations and thus provide a more complete picture of the

structure of the considered systems. We chose the two equimolar compositions, i.e., x =

0.00 and 0.20, for which we generated a large set of 650 distinct SQS structures using

the optimized SQS parameters (p = 8, t = 0, q = 0 NN pairs). SQS calculations were

run to produce a random structure for maximizing the objective function using the above-

mentioned convergence criteria. After this, the relaxation of each structure was done using

DFT, and the mixing energy was evaluated for all different initial configurations. The data

can thus be analyzed to see how many SQS calculations are needed to provide a realistic

picture of the ideal random solid solution. For this, we will consider two aspects: i) the

average mixing energy, and ii) the SRO parameter (see below).

Fig. 3 displays the energy per atom Ei
at and associated scatter obtained from each of

our MC SQS runs "s", taken in the order they were created. The figure also shows the

running average of the energy per atom: Ēat(k) =
∑k

s=1E
s
at/k. Interestingly, this latter

quantity converges rapidly to a roughly constant average of Ēat(k) after about 20 MC SQS

realizations for both equimolar alloys. This convergence of the average energy is obviously

very empirical here, as sorting the raw energy data in a different order might change the

running average evolution but not its final value. For the moment, we will simply retain

the trends in the evolution of quantities and the number of MC SQS realizations required

for average convergence.
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To quantify the SRO in the simulated atomic configurations, we use the SRO parameter

αij described by Fontaine et al. [47],

αij =

nj

mA
− cj

δij − cj
(4)

Here, i is the reference atom. nj is the number of atoms of the non-reference type among

the cj atoms in the i-th coordination shell. mA is the concentration of the non-reference

atom. If i = j, δij = 1; otherwise, the Warren-Cowley SRO parameter is returned. The

total SRO, α =
∑

ij |αij |, is calculated by summing all pairwise terms around the reference

atom in the bcc structure for the first three nearest neighbor coordination shells (1-3 NN),

respectively. We employed the tool developed in [48] and extended it to perform the

analysis, including the first three nearest neighbor coordination shells (3 NN).

Fig. 4 shows the evolution of the total SRO parameter ᾱ(k) =
∑k

s=1 α
s/k/Nij as a

function of the considered SQS realizations included in the running average, where Nij

is the number of bond types. First, it can be noted that the SRO values remain rather

small. The total SRO parameter (black curve) converges rapidly to a somewhat constant

value when considering more than 20 different MC SQS realizations. The final global SRO

value is not perfectly equal to zero as expected for the ideal random solid solution, but

is negligibly close with a value of -0.01. Interestingly, the results of the SRO analyses on

the 1NN and 2NN shells taken individually showed similar trends, but running average

convergence was achieved for a smaller number of MC SQS realizations.

The figure also shows the running averages of the SRO parameters αij(k) corresponding

to each bond type. Quite expected, these quantities require a larger number of MC SQS

(between 20 and 100) before converging toward the ideal random solid solution (αij → 0).

Conversely, the empirical convergence analysis carried out here highlights the need to

perform and consider several MC SQS realizations, at least for the alloys and simulation

conditions used here. If a similar variety of configurations were sought in a single simulation
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box, this would represent sizes one or two orders of magnitude larger than what has been

considered in the present study, and such simulation sizes are currently mostly out of reach

for DFT calculations.

3.3 Analysis of the chemical short-range order of the bcc

phase

The results of the previous section raise the question of whether the statistical fluctuation

could be understood among all SQS structures that exhibit a local CSRO, i.e., whether

the favorable pairings between elements are preferred, leading to a configuration with the

lowest mixing energy. MC and DFT calculations have been associated recently to inves-

tigate the short-range order (SRO) in two bcc alloys [20, 22], MoNbTaW and HfNbTiZr,

respectively. The development of SRO was shown to decrease the mixing energy of the

solid solution phase. Here, we show that the large number of different SQS simulations

allows us to sample the energy of a disordered atomic configuration in a less computation-

ally demanding way. We continue focusing on the two equimolar alloys and employing the

650 SQS structures obtained from the optimized SQS parameters (p = 8, t = 0, q = 0

NN pairs). In Fig. 2, for x = 0.00 and 0.20, the low and high mixing energies of the

configurations are shown, along with the standard deviation and average values.

To assess the SRO, we sort the different atomic structures with respect to the simulated

energy configuration. Following the lines of previous sections, we checked the significance

of this sorting by analyzing the average of all 650 different configurations. Thus, the first

set of data corresponds to the average of all the data and is shown as green curves in

Figs. 5, 6 and 7. As desired, the SRO parameter is close to zero for all pair types. A small

deviation on the SRO parameter of 0.01 is found on this average, and this gives an estimate

of the precision we can expect from our analysis. The fact that the SRO parameter is very

close to zero means that the average of all 650 SQS configurations is a good approximation

of the ideal random solid solution. This neutral curve, representing an ideal solid solution,

15



100 101 102 103

# of SQS realization

−10.7375

−10.7350

−10.7325

−10.7300

−10.7275

−10.7250

−10.7225
Ē
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Figure 3: The calculated total energy per atom for every 650 distinct SQS structures
is shown in blue, while the running average, Ēat(k) =

∑k
s=1 E

s
at/k as a function of

the growing number k of SQS realizations is shown with black line for (a) x = 0.00
and in (b) x = 0.20.
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will act as a reference level line for the next steps. Two bins were then considered: the

configurations with the lowest energy are grouped and called the low energy (LE) set,

while the configurations with the highest energy are called the high energy (HE) set. To

determine the SRO for the LE SQS set, we averaged the SRO values of each pair type

for a group of "LE" cases with the lowest energy and used the same strategy for the HE

SQS set. We varied the size of these bins from 6 to 65 configurations (1 − 10% of the

total data), and a larger bin size smooths the results by reducing the obtained averaged

SRO parameter values. However, the sign of the SRO parameters, indicating whether a

bond type is more or less present than in the ideal random structure, remained largely

unchanged when the bin size was varied.

SRO in the quaternary HfNbTaZr system

Fig. 5 shows the SRO analysis in a radar plot for x = 0.00, and the interpretation is

admittedly not straightforward. This analysis was performed for the first 1-3 NN shells,

where most of the chemical ordering can be observed. An SRO parameter with a negative

sign indicates a pair type that is more abundant in the atomic structure under consideration

than in the ideal random configuration. When comparing two different SQS realizations,

an increase in mixing energy can be explained in two ways: a lower representation of

favorable pair types and/or an increase in the contribution of unfavorable atomic pairs.

Comparing the results for the LE and HE sets, we see that the SRO data for the two sets

agree qualitatively well, i.e., favorable bonds are found in greater numbers in the LE sets

(αij < 0) and unfavorable bond types in smaller numbers (aij > 0). However, the trend

is less clear when the SRO parameter is close to zero, indicating a neutral influence of the

corresponding pair.

Turning now to the specific interactions in quaternary alloys, among the 10 different

bond types, the following pairs appear to be favorable (in decreasing order): Nb-Ta and

Hf-Zr; the same atom pairs (e.g., Hf-Hf) show a slight interaction (αij ≤ 0); finally,
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the last pair types seem to be unfavorable (in decreasing order): Hf-Nb, Ta-Zr, Nb-Zr,

and finally Hf-Ta. Interestingly, the classification of a bond "ij" can also be determined

in a completely different way, namely by a linear fit of the configurational energy as a

function of the parameter aij calculated for all 650 SQS realizations, where favorable (or

unfavorable) bonds are associated with a negative slope (positive) of the linear fit. This

further strengthens confidence in the proposed SRO analysis.

Previous results strikingly indicate a simple correlation between the favorable nature

of the bond types and the crystallographic reference structure of the two elements involved

in the pair type. This is shown in Fig. 6(a), where an SRO parameter is defined as the

sum of SRO values corresponding to pairs of elements depending on their structure: bcc-

bcc, hcp-hcp, or bcc-hcp elements (at 0 K). While this analysis is an oversimplification

of the more complex picture in Fig. 5, elements with identical reference crystallographic

structures typically seem to lead to favorable bonds associated with a decrease in mixing

energy, while those with different bcc-hcp crystallographic structures are unfavorable in

this system. It would be interesting to nuance this rather simple sorting of SRO analysis

by the fact that the elements here have a similar radius and chemical properties precisely

chosen to promote the formation of a stable HEA, namely a unique solid solution. If we

had bcc elements other than the elements in the quaternary alloys, the findings would be

much more complex. What is more, it can also be noticed that the binary phase diagrams

of the elements involved in the favorable pairs lead to a unique solid solution, regardless of

composition, while the elements of the unfavorable pairs give rise to a mixture of binary

solid solutions. Fig. 5(b) shows the SRO parameter aij when performing the analysis of

an increasing number of shells from one to three NN shells for the LE SQS realizations.

Interestingly, the first NN shell is associated with rather weak SRO parameters for all bond

types, so the chemical SRO is mostly present in the 2nd and 3rd NN shells, which have a

larger number of atoms.
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SRO in HfNbTaTiZr system and comparison between the two systems

Some of the previous observations made for the quaternary alloy can be repeated here,

although the details may differ. Fig. 7(a) shows that the average SRO parameters for

all 15 bond types are close to zero when considering all 650 SQS realizations, consistent

with the ideal random solid solution. The LE and HE data point sets again complement

each other well, with some exceptions that we will discuss later. The following bond types

appear to be uniquely favorable in this new system (αij < 0 for the LE set): Hf-Zr, Hf-

Ti, and Nb-Ta; the same element pairs "i-i" are typically neutral (αij = 0) or weakly

favored, while the following bonds appear unfavorable (αij > 0): Hf-Ta, Nb-Ti, and Ta-Zr.

Once more, the binary phase diagram of Hf-Ti, the additional favorable pair compared to

the quaternary, shows one solid solution, for all alloy compositions. The results for some

bond pairs, such as Ta-Ti and Ti-Ti, are inconclusive with our methodology. More SQS

realizations are certainly needed to analyze this complex quinary system.

The simple sorting of bond types as a function of the crystallographic structure of each

element is shown in Fig. 6(b). As with the quaternary alloy, the sum of the SRO parameters

is favorable for pairs of elements with the same bcc-bcc or hcp-hcp structures, although

the SRO parameter for hcp-hcp has a lower value here. The SRO parameter for bcc-hcp

element bonds is unfavorable and has a much larger value than in the quaternary system.

Finally, the SRO parameters for all 15 pair types are analyzed as a function of NN shells

and shown in Fig. 7(b). In the quinary system, the bond types are polarized even in the 1st

NN shell, where the SRO value closely follows the sorting by the crystallographic nature

of the elements involved in the bond (the agreement is better than when considering 1st

+ 2nd NN shells). The SRO data for other shells typically evolves uniformly from this 1st

NN shell to the following 2nd and 3rd NN shells. Thus, the chemical order in the quinary

system appears to be more complex and more spread than in the quaternary systems, as

the 1st, 2nd, and 3rd NN shells are involved.

The total SROs for x = 0.00 and 0.20 are given in Tab. 2 and are calculated from the
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Figure 5: Radar plot showing the average values for x = 0: low energy (LE) set
averaged over fifteen data points, and high energy (HE) set averaged over fifteen
data points, for (a) 1st + 2nd + 3rd (1-3) NN data points and (b) low energy (LE)
set SQS realizations for the 1st (1) NN, 1st + 2nd (1-2) NN, and 1st + 2nd + 3rd
(1-3) NN shells, respectively. The LE and HE SQS sets are an average of the first
and last fifteen data points, respectively. "AVG" here refers to the average over all
SQS realizations. The red dashed line represents the ideal random solid solution.

sum of the first two and the sum of the first three NN shells. In our analysis, we find that

for x = 0.00, we have the lowest SRO value for the lowest energy configuration compared

to the highest energy configuration. For x = 0.20, the SRO values are higher for the

configurations with the lowest energy, indicating the existence of SRO. When comparing

the quaternary and quinary alloys, the SRO in the first system is mostly localized on the

2nd NN shell, and only 2 bond types (Nb-Ta and Hf-Zr) are favorable, 4 bond types are

unfavorable, and the same element bonds are mostly neutral. In the quinary system, 4 bond

types are favorable, 6 types are unfavorable, and 5 types are slightly less than zero, while

the chemical ordering covers at least all three NN shells. Since, in a finite-sized supercell,

the bond type contributions are related through the imposed overall alloy composition,

the quaternary system seems more constrained, and this could explain why the total SRO

is smaller in that system. In the study performed by Yin et al. using the Monte Carlo

approach (MC), the author observed a large Warren-Cowley SRO value (in the range of

1.75− 2.00) for bcc MoNbTaW RHEA for the lowest energy configuration by considering
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Figure 6: Radar plot showing the average, the low energy (LE) set and the high
energy (HE) set averaged over fifteen data points for the case 1st + 2nd + 3rd (1-3)
NN data points for (a) x = 0.00 and (b) x = 0.20, respectively. The LE and HE
SQS sets are averaged over fifteen data points when the data are regrouped into
"simple pair categories", "bcc-bcc", "bcc-hcp" and "hcp-hcp" based on the stable
phase for the individual atoms of the pair. "AVG" here refers to the average over
all SQS realizations. The red dashed line represents the ideal random solid solution.
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Figure 7: Idem as Fig. 5, but for x = 0.20.
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the first two NN shells [49]. However, it should be noted that the quaternary system they

studied is arguably simpler as it consists of only bcc elements.

Table 2: Total SRO of the lowest SQS configuration (LSQS) and highest SQS con-
figuration (HSQS) for the combined 1st+2nd nearest neighbors (represented as 2
NN) and 1st+2nd+3rd nearest neighbors (represented as 3 NN) shells, respectively.
Total SRO is determined by using SRO =

∑
ij |αij|. #atoms indicates the number

of atoms in a SQS supercell.

Tix(HfNbTaZr)(1−x)/4 #atoms 2NN 3NN 2NN 3NN

x LSQS HSQS

0.0 128 0.57 0.51 0.88 0.81
0.2 125 1.55 1.61 1.46 1.48

Our results regarding the chemical SRO are mostly in qualitative agreement with the

limited existing literature, and in particular with another very recent MC investigation

on the same quinary alloys [18]. The MC relied on a cluster expansion model fitted on

DFT calculations and conducted at different finite temperatures. While the values of the

WC SRO parameter are quantitatively different (and larger) for the various pair types, the

authors concluded that Hf-Ti and Zr-Ti showed the strongest chemical preference, followed

by Hf-Nb, Zr-Nb, Nb-Ta, and finally Ta-Ta. The SRO was analyzed at small (1st NN only)

and larger length scales (1st to 4th NN), and the SRO appeared weaker when analyzed

at the latter scale. The strong affinity among Ti-Zr, Ti-Hf and Nb-Hf elements was also

observed in the similar HfNbTiZr bcc alloy from both simulation [20,21] and experimental

investigations [14, 15]. In experiments, Hf-rich and Ti-rich clusters were identified from

HR-HAADF-SEM and APT measurements [14,15]. The enthalpy of mixing for Ti-Zr and

Hf-Nb atomic pairs close to zero or negative was suggested as an explanation [18,21]. The

electronic density structure analysis in [21] highlighted the role of Ti-Zr SRO in particular,

with a reduction of d electrons at the Fermi level, which was found to stabilize the bcc

phase.

Similarly to our findings, the quaternary HfNbTaZr alloy seemed to be less prone

to local chemical ordering in [18] when compared to other similar Ti-based HEA alloys,
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suggesting a particular role of Ti atoms in the SRO development. Our SRO analysis in

Fig. 5(a) matches very well with the results in [18] on the same alloy (for data from 1st to

4th NN).

3.4 Possible phases according to the Bo-Md diagram

To predict the phase stability of our alloys, we reprise the d -electrons theory initially

proposed to predict the phase stability of Ti-based alloys. Morinaga et al. originally

proposed the theory to classify Ti-based alloys into α or α+ β or γ phase as a function of

solely two parameters: Bo and Md [50]. Bo is the bond strength between the Ti and the

alloying elements, and Md is the metal’s d-orbital energy level, which corresponds to the

element’s metallic radius and electronegativity [50]. Based on this, Hadi et al. extended

the single β-phase field to the domain from Bo ≤ 2.84 to Bo ≤ 2.96 [12].

For Ti-based alloys, Bo and Md parameters are given as composition averages: Bo =∑
ciBoi and Md =

∑
ciMdi. The ci is the concentration of the alloying elements. Tab.

3 lists the composition averages for the alloys considered here. The reference Bo and Md

values for each element in bcc Ti are taken from Hadi et al. [12]. We will assume that this

analysis is still valid for our alloys, in which Ti is not the main constituent in some of our

nuances [13].

Table 3: The Bo and Md for the Tix(HfNbTaZr)(1−x)/4 alloys are calculated using
the reference values of Bo and Md from Hadi et al. [12].

x 0.0 0.12 0.20 0.33 0.40 0.50 0.63 0.70 0.81

Bo 3.110 3.074 3.046 3.003 2.979 2.95 2.908 2.884 2.850
Md 2.715 2.685 2.662 2.626 2.607 2.582 2.548 2.528 2.499

In the Bo-Md diagram shown in Fig. 8, the domain of stability associated with the

various possible phases of Ti based alloys are drawn along with some examples from the

literature [12, 13]. The solid line in red is extrapolated for Tix(HfNbTaZr)(1−x)/4 alloys

with the composition studied in the present work to pure Ti system. For compositions
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well above the dashed line in the Bo-Md diagram, a bcc structure is expected, while for

compositions well below the same line, structures tend to become hcp. For x = 0.0 (the

quaternary alloy without Ti) and x = 0.2 (the equimolar case), experimental studies exist

and provide clear reference data in the shape of unambiguous identification of a single HEA

phase of bcc structure [30,51], corresponding to well-defined X-ray diffraction peaks for the

bcc structure. The Bo-Md diagram predictions are thus in agreement with these studies

on HEA alloys. From this, it becomes clear that relevant MCSQS and DFT simulations

must be provided not only for the bcc phase but also for the hcp phase at larger Ti content

x. The transition from a bcc structure to an hcp structure is expected at a Ti content

between 0.5 and 0.6.
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Figure 8: Extrapolation of the Bo-Md diagram for Tix compositions. Considered
alloys are represented by a solid red line. The dotted black line shows the separation
between beta and alpha phases, the inset figure is taken from reference [12] and
compiles data for various conventional Ti alloys for illustrative purposes.
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3.5 Structure and stability of the bcc phase as a function of

the Ti content

The rest of the article focuses mainly on the properties obtained for the best MCSQS

obtained among 20+ realizations and associated with the lowest energy (LE) for each

composition and structure (bcc, hcp and ortho). These LE configurations are assumed to

be more relevant to the atomic arrangements that might be obtained in real alloys or after

the final homogenization annealing step. Where significant, the difference between LE

results and those obtained with the Highest Energy (HE) configurations or average (AVG)

sets will also be shown. Since these sets correspond to rather different local arrangements

and SRO, as shown in Figs. 5 and 7 for equimolar alloys, this comparison can highlight the

impact of local atomic arrangements and the contribution of favorable/unfavorable bonds

(this latter correlation will be mostly qualitative, as more statistics would be required

for the non-equimolar alloys). Finally, the AVG set approximates the ideal random solid

solution, as shown in Fig. 3.

In this section, we present DFT results on the effects of Ti content on the structure

and relative stability of the possible phases.

Fig. 9 shows the evolution of the lattice parameter averaged over the three dimensions

of the supercell (a′ = (a+ b+ c)/3) for LE configurations as a function of the Ti content

of the alloys in the bcc structure. More details concerning the structural properties of the

phases possible for the alloys considered can be found in the supplementary material S1.

The cubic a′ decreases monotonically from 3.436 Å to 3.252 Å with increasing Ti content x

from 0.00 to 1.00. Our DFT calculations reproduce well the experimental lattice parameter

for equimolar alloys x = 0.00 and x = 0.20 [30, 51], giving confidence in our methodology

based on several sets of MCSQS and DFT simulations. Fig. 9(b) displays the average

lattice parameters (a′ = (a+b)/2, c/a′) when the hcp structure is now considered for high

Ti contents (x ≥ 0.5). The parameter c remains practically constant, while a′ shows a
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surprising non-monotonic evolution with Ti content. Finally, these parameters gradually

converge towards those of pure Ti hcp for the highest x, with a = 2.94 Å and c = 4.64 Å.

Interestingly, the detail of the local atomic arrangement of the various elements in the

supercell has little impact on the average lattice parameters. Anisotropic lattice parameters

or geometries are slightly influenced by the composition of the atomic elements in the

considered lattice directions (cf. Supp. Mat. and Tab. S1). In contrast, the average lattice

parameters are virtually identical for the LE, AVG and HE configurations, suggesting

average convergence of the lattice distortions typical of HEA systems, and thus these

average parameters depend solely on alloy composition.
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Figure 9: Calculated average lattice parameters a′ as a function of Ti content x are
reported for the conventional unit cell. (a) displays the average lattice parameters
for the bcc phase for the LE sets, while (b) presents the average lattice parameters
for the hcp phase for the LE set. The red dots represent the experimental lattice
parameters for the given composition [30, 51]. The tabulated data can be found in
the supplementary section (see Tab. S1).

Fig. 10(a) shows the computed mixing energies of the possible phases of Ti content x

for the LE sets. Mixing energies are calculated using Eq. 2 by taking the energy of the

most stable phase of each alloying element as a reference (namely, bcc for Nb, hcp for Ti,

and so on). Interestingly, the mixing energies of all phases of the alloy compositions are

slightly positive for all Ti content x. The corresponding values are, however small, below

100 meV/atom. This will be discussed further below.

The mixing enthalpy of the bcc phase decreases monotonically with the Ti content

x. For x = 0.20, which corresponds to the equimolar case, the mixing energy of 84.4
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meV/atom determined in the present study is similar to the DFT calculations of Gao et

al. [52], where a value of 86.5 meV/atom was reported. Fig. 10(a) also displays the mixing

energies of pure Ti in the bcc and hcp phases. The mixing energy of Tix(HfNbTaZr)(1−x)/4

alloys taken in the hcp structure smoothly decreases towards that of pure Ti in the hcp

structure.
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Figure 10: Calculated mixing energy (∆H) and Gibbs free energy (∆G) for
Tix(HfNbTaZr)(1−x)/4 alloys using the reference state as stable bcc and hcp phases
for bulk systems at 0 K. In (a), mixing enthalpies and free energies at 300 K and
1000 K are given for the LE set only as a function of Ti content. Fig. (b) shows the
impact of the local atomic arrangement onto the mixing enthalpy, through results
corresponding to LE, AVG and HE sets. The inset highlights the extended overlap
of mixing energies of the three possible phases.

If we compare the relative stability of the possible phases according to the LE sets only

for now at x > 0.5 in Fig. 10(a), mixing enthalpy for the hcp phase becomes lower than

that of the bcc phase and decreases faster as Ti content x is increased. This suggests that

alloys with a large Ti content may exhibit an hcp structure or dual bcc and hcp phases.

The mixing energy difference between the two structures is, however, very low (i.e., 2

meV/atom at the intersection, i.e., x = 0.50 and 5 meV/atom for x = 0.63). The mixing

energy of the orthorhombic phase at x = 0.50 is slightly smaller than that of the bcc and

hcp phases and could constitute a third possible structure. These phases could well be

found in the synthesized unstrained samples or reveal themselves by phase transformation

upon straining, as in [13].

28



This picture of relative phase stability becomes more nuanced when fluctuations in the

local atomic arrangements are taken into account. Fig. 10(b) also shows the enthalpies

of mixing for the LE, AVG and HE sets for the different alloy compositions. Assuming

that for a given overall alloy composition, the atomic microstructure of a large system

consists of an assortment of various atomic configurations in the domain bounded by the

LE and HE sets, the intersection between the bcc and hcp phases is not unique and now

extends to a compositional range between 0.4 and 0.6 (see figure inset). This means that

different phases can coexist in correlation with local chemical fluctuations in the alloy.

Along these lines, it can be assumed that an as-cast alloy may contain a greater variety of

atomic arrangements, including HE types, while a relaxed microstructure obtained after

annealing may reinforce the local chemical order with favorable bonds associated with lower

energies. The inset in the figure shows that the Ti content at which the bcc/hcp curves

intersect shifts to the left when HE and LE sets are considered. It is therefore possible for

a given sample to undergo a phase transition between the as-cast and annealed states if

the alloy composition lies between these two points of intersection.

Such a structural evolution has been observed in a related Ti35Zr27.5Hf27.5Nb5Ta5 alloy,

where the as-cast alloy exhibited a metastable orthorombic structure, which transforms into

an hcp structure as soon as residual stresses are removed during sample preparation [53].

The same alloy exhibits a bcc structure after homogenization processing [13]. These effects

may be stronger for alloys that are more prone to chemical ordering, as in [23].

In the context of high-entropy alloys, the mixing entropy term has been thought to

stabilize the HEA phase by lowering the Gibbs free energy. The consensus is now more

nuanced, as it has been shown that high mixing entropy is neither a sufficient nor a neces-

sary condition for the formation of a single-phase solid solution [54–56]. Fig. 10(a) shows

that the Gibbs free energy calculated at RT accounting for the mixing entropy term as

given in Eq. 3 is still not enough to reach negative values.

The fact that the mixing energy remains positive, albeit slightly, while a stable solid
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solution phase is observed for at least some of the alloy compositions in the experiments can

be explained in several ways. First, the solid solution mixing energy is strongly impacted

by the structure reference chosen for the elements, most of which are stable in hcp at 0 K

while the others are stable in bcc structure. These HEA are, however, typically elaborated

at very high temperatures > 2000 K, and all these elements exhibit a stable bcc structure

at high temperature. The calculated Gibbs free energy nevertheless becomes negative at

a temperature of about 1000 K, well below the elaboration temperature, for all considered

alloy compositions (see Fig. 10(b)). Ti, Zr, and Hf are still stable in hcp structure at that

temperature [57]. If we define the bcc structure as the reference one for all these elements,

the mixing enthalpy will become clearly negative for all alloy compositions.

Finally, when considering high temperatures, vibrational entropy Svib could also play a

stabilizing role in the solid solution phase. Interestingly, of all the considered compositions,

the quinary equimolar alloy (x = 0.20) exhibits the lowest mixing energy, mostly due to a

greater contribution from entropy.

3.6 Elastic constants for the bcc phase

In this final section, we evaluate the elastic constants of the bcc phase as a function of

the Ti content. The energy-strain approach is a commonly used method to determine the

elastic constants (ECs) at 0 K. In this study, the strain tensor was considered based on

the symmetry of the relaxed supercell, as described in [58]. To accurately determine the

unique elastic constants, a strain range of +/-2% was applied to the equilibrium structure,

resulting in 11 deformed structures. These structures were then relaxed to obtain the

atomic positions. To focus specifically on the bcc elastic properties, calculations were

limited to alloys with a Ti content x < 0.5, where the bcc phase is expected to be the most

stable.

Fig. 11(a) and Tab. 4 show the evolution of the ECs for the LE configurations measured

for our alloy Ti compositions. C11 decreases slowly at first and then rapidly with the
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increase of Ti content, while C12 decreases at first and C44 remains mostly unchanged.

Born stability conditions on elastic constants for cubic systems also provide an alternative

way of assessing the structural stability of alloys. We therefore checked that the elastic

constants for x from 0 to 0.4 satisfy the following conditions, i.e., C11 > C12, C11+2C12 > 0,

and C44 > 0. These conditions are, however, not fulfilled by our calculated ECs for large Ti

content x > 0.7 (when extrapolating the simulation results past x > 0.4). For these large

Ti contents, some of the DFT calculations did not converge as the atomic configurations

spontaneously transformed into an hcp lattice, confirming this instability and suggesting a

correlation with the local atomic arrangement (see below). This loss of mechanical stability

of the bcc phase is thus in agreement with the Bo-Md diagram prediction and our results

regarding the mixing energies of the bcc and hcp phases in the previous section. The

bcc phase of pure Ti becomes mechanically stable at high temperature, as shown by the

experimental evaluation of ECs in [59].

A quantitative comparison can be made with ECs calculated in other DFT investiga-

tions [60, 61] or obtained from experiments [4, 59] for the two equimolar alloys and pure

bcc Ti, where an overall good agreement is found. For the quaternary alloy, our results

agree well with the DFT results from [61] with the exception of C12, which is larger in [61]

but still within an acceptable 15% difference margin typical of EC evaluations by DFT.

For the quinary alloy, a nice agreement is also found with experimental data from [4];

the most significant discrepancy is found for C44 (see below). A comparison can also be

made with another simulation concerning equimolar quinary alloys carried out using the

Coherent Potential Approximation (CPA) [60]. It yielded C11 = 160.2 GPa, C12 = 124.4

GPa, and C44 = 62.4 GPa. While the first two constants correspond well to experimental

constants, the last value seems particularly high compared to experimental and our own

data. The coherent potential approximation assumes a perfect mixing of atoms within the

alloy, neglecting any local atomic ordering or clustering that may occur.

The isotropic bulk modulus B, shear modulus G, and Young’s modulus E can be
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Figure 11: Evolution of the elastic moduli for Tix(HfNbTaZr)(1−x)/4 alloys in the
bcc structure as a function of the Ti content x. (a) the elastic constants Cij (GPa)
and (b) the isotropic averages. Comparison with data from the literature is shown,
corresponding to DFT calculations for the quaternary alloy [61] (half solid symbols)
and experimental data for the quinary alloy [4] (hollow symbols) along with pure
bcc Ti at high temperature T = 1273 K [59] for illustration. Corresponding data
can be found in supplementary Tab. S2.

evaluated from previous elastic constants for the various Ti content x. The shear modulus

was obtained from the average of the Voigt and Reuss expressions, as suggested by Hill [62].

Fig. 11(b) shows the evolution of the isotropic elastic constants as a function of the Ti

content. B decreases monotonously when increasing the Ti content, while G and E are

roughly constant for x < 0.5. Finally, Pugh’s ratio (B/G) indicates the brittle or ductile

nature of the material’s behavior [63]. Materials that present a large B and a low G

typically tend to exhibit ductile behavior. Mechanical testing conducted on the x = 0.2 [4]

already demonstrated the ductile behavior of this composition. Based on our calculations,

Pugh’s ratio B/G is > 1.75 for all Ti content x from 0 to 0.4, suggesting a ductile behavior

for this entire range of compositions.

Finally, we end this section by assessing whether the local atomic arrangement affects

the elastic response of the considered alloys. To this aim, we evaluated ECs for the LE,

one AVG and the HE configurations while focusing on equimolar compositions. The corre-

sponding results are also presented in Tab. 4. For a given alloy composition, we expected

initially the ECs to be only very weakly influenced by the local atomic arrangement, since

the ECs are already an average measure of the collective response of the atoms contained
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Table 4: Calculated values for elastic constants Cij (GPa) with Ti content x for the
investigated alloys in the bcc structure. Data in parenthesises are extracted from
the literature and correspond to DFT calculations for x = 0 [61], experimental data
for x = 0.2 [4] and pure bcc Ti at T = 1273 K [59]. Data for the LE, AVG and HE
configurations are also provided for equimolar alloys to assess the impact of the local
atomic arrangement on the elastic response of these systems. Zener Anisotropy, Az,
coefficient is also given.

x 0.0 0.11 0.20 0.33 0.40 1.0 ( [59])

LE AVG HE ( [61]) LE AVG HE ( [4])

C11 162 161 158 (169) 155 156 151 145 (172±6) 154 147 70 (98)
C12 109 107 109 (127) 108 105 103 105 (108±1.5) 100 100 123 (83)
C44 41 39 36 (45) 46 39 38 32 (28±1.5) 45 41 39 (38)
Az 1.5 1.4 1.5 (2.1) 1.9 1.5 1.6 1.6 (0.87) 1.7 1.9 - (5)

in the supercell subjected to deformation. Furthermore, the prediction of ECs from DFT

simulations is known to be limited in accuracy and is strongly influenced by the choice of

XC function. That said, the results in Tab. 4 show a consistent and slight decrease of

ECs (C44 in particular) when measured for the LE set compared to the AVG and HE sets.

These differences between the EC calculated for the LE and HE may be explained in two

ways. i) The deeper energy wells corresponding to LE configurations may be circumvented

by steeper energy variations, resulting in stiffer ECs. ii) HE configurations contain rela-

tively more of unfavorable bonds, in particular bcc-hcp ones (cf. Figs. 6 and 7), possibly

making the system less mechanically stable and lowering the ECs. Interestingly, the ECs

(C44) obtained for the HE configurations are in better agreement with experimental de-

terminations for the quinary alloy [4], which were evaluated on the as-cast state that may

well contain more high-energy atomic arrangements than in the final annealed state.

4 Conclusions

In this work, we have studied the structure, phase stability, and elastic behavior of

Tix(HfNbTaZr)(1−x)/4 alloys as a function of the Ti content x. The atomistic structure,

corresponding to the disordered structure of the HEA solid solution, was approximated

using a large number of different MCSQS realizations, while the atomic relaxation and
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energy calculations were performed using DFT calculations for each MCSQS configuration.

The following results were obtained:

• We conducted a systematic sensitivity study on the number of NNs and on the order

of the many-body terms employed to approximate the disordered atomic configura-

tion in the MCSQS. In agreement with other studies, we found that the number of

NN pairs has a stronger effect than higher bond orders to obtain SQS configurations

corresponding to lower mixing energies.

• We show that the ideal solid solution is better approximated by considering several

MCSQS realizations of the atomic disordered structure. The average mixing energy

and global Short Range Order (SRO) parameter converge, however, faster than the

SRO parameters for each bond type. The averages over multiple MCSQS configura-

tions will converge faster toward the ideal solid solution representation for simpler

alloy compositions and/or bigger supercells.

• The mixing energy of the alloys in the bcc structure is slightly positive; the value is,

however, smaller than the absolute value of the bulk energy of individual elements.

The bcc HEA phase observed experimentally for the equimolar quinary alloy could

thus be metastable or stabilized thanks to SRO and/or vibrational entropy.

• We have proposed an original analysis of the short-range chemical ordering in the

HfNbTaZr and Ti(HfNbTaZr) systems by making use of the large number of MCSQS

realizations and DFT evaluations of the corresponding energies. Our SRO analysis

strategy can be employed to quickly separate very favorable from unfavorable atomic

pairs and is particularly efficient for simpler systems (i.e., quaternary alloys).
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• We found that Ti-Zr, Ti-Hf, and Nb-Ta are particularly favored at short and longer

distances (1 and 3 NN), probably leading to local fluctuations of the composition

in the alloy. This could explain the waviness of dislocations and debris observed in

experiments. Our SRO analysis is also mostly in agreement with the few existing

studies relying on a more advanced MC method.

• To simplify the complex SRO analysis, elements with identical crystallographic struc-

tures are typically favorable, while elements with different crystallographic structures

are unfavorable. The SRO in HfNbTaZr is mainly located on the 2nd NN shell, while

in HfNbTaTiZr all the first three NN shells are involved. Few bond pairs are favor-

able in the quaternary system, and this could explain the weak global SRO in this

system. Short-range ordering appears to be present in both systems, although it is

stronger in the quinary system.

• The content of Ti has various effects on the structure or properties of the

Tix(HfNbTaZr)(1−x)/4 system. The average bcc lattice parameter and the mixing

energies decrease monotonically with the Ti composition. Ti content can be tailored

to adapt the elastic properties to specific applications (C11 and B) by a few tens

of GPa. The Ti content also controls the structure of the HEA phase, with a bcc

phase stable, predicted as ductile, for x < 0.5. For Ti content larger than 0.5, the

hcp phase becomes the most stable. Close to the quinary equimolar composition, a

dual bcc-hcp phase or deformation induced phase transformation may be possible. A

third possible phase in the shape of an orthorhombic structure is discarded when the

mixing entropy term is considered. These results are consistent with the so-called

Bo-Md diagram and mechanical stability analysis.
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• We have assessed the impact of variability of local atomic arrangements on the struc-

ture, phase stability and elastic behaviour of these alloys. Local atomic configuration

may affect the relative stability and explain some phase observed in experiments,

while structural and elastic properties are mostly impacted by Ti content.

• The present work is qualitatively consistent with trends found in HEA systems and

quantitatively consistent with the limited literature on this system. The average bcc

lattice parameter and elastic constants agree with the experimental values obtained

for the equimolar alloy.
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Supplementary Information

Tab. S1 shows the structural parameters for the configurations corresponding to the lowest

mixing energy structures. The relaxed lattice parameters (a, b, c) deviate slightly from

the perfect bcc lattice. They are slightly anisotropic (with an average difference of about

3%), and the angles (α, β, γ) between the basis vectors of the supercell slightly differ from

the expected 90° (by typically less than 1°). These small distortions are unsurprising for

HEA systems, as differences in the local chemical order are expected along the supercell

axis, especially for the small dimensions dealt with in DFT.

The known stable experimental lattice parameters at RT for stable elements are aT i

= 2.95 Å, c/aT i = 1.58 Å, aZr = 3.23 Å, c/aZr = 1.59 Å, aHf = 3.196 Å, c/aHf = 1.58

Å, aNb= 3.30 Å, and aTa = 3.31 Å. The lattice constants for a pure Ti (hcp) unit cell

are a = b = 2.950 Åand c = 4.687 Å. For large Ti content, typically x ≥ 0.5, the Bo-Md

diagram suggests that hcp and/or orthorhombic (ortho) structures may be stable. We thus

performed another set of MCSQS+DFT calculations for these crystallographic structures.

We adopted the same methodology as discussed in Sec. 2. To assess the prediction of the

Bo-Md diagram, we generated a set of MCSQS structures, assuming the hcp phase for x

ranges from 0.5 to 0.81.

The bottom of Tab. S1 (hcp and ortho) shows the lattice geometry obtained for

these simulations. The simulated lattices are again slightly distorted when compared to a

perfect hcp lattice, certainly because the different element arrangements are probed along

the supercell axis. Surprisingly, no clear trend was found regarding the evolution of the

c/a ratio as the Ti content increased.
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Table S1: Detailed analysis of the structure of the atomic configurations after re-
laxation for Tix(HfNbTaZr)(1−x)/4 alloys as a function of the Ti content x and the
choice of crystallographic structure. The average lattice parameters a′ are reported
for the conventional unit cell. The number of atoms is given for the SQS supercell
generated from MCSQS. Known experimental values are reported from [30,51] and
are given in parentheses.

Phases x #atoms a b c α◦ β◦ γ◦ a′

Å Å

bcc

0.00 128 3.454 3.417 3.438 89.6 90.0 90.0 3.436(3.446)
0.11 54 3.429 3.408 3.425 89.5 89.8 89.9 3.420
0.20 125 3.398 3.417 3.405 89.7 89.6 89.8 3.407(3.404)
0.33 54 3.392 3.372 3.381 89.7 90.1 89.9 3.381
0.40 54 3.371 3.336 3.403 89.5 89.9 89.6 3.370
0.50 128 3.379 3.321 3.361 89.9 90.8 90.0 3.353
0.63 54 3.313 3.345 3.339 90.6 88.6 90.7 3.332
0.70 54 3.300 3.305 3.350 89.2 90.4 90.5 3.318
0.81 128 3.073 3.421 3.418 85.8 89.9 90.1 3.306
1.00 2 3.252 3.252 3.252 90.0 90.0 90.0 3.252

ortho 0.50 32 3.430 4.684 4.707 86.9 88.2 88.0

hcp

0.50 128 2.933 2.942 4.680 90.1 89.7 110.9 c/a′ =1.593
0.63 54 3.318 2.961 4.543 89.9 90.0 123.8 c/a′ =1.447
0.70 54 2.953 3.285 4.533 89.7 89.6 123.7 c/a′ =1.453
0.81 128 2.934 2.997 4.687 90.0 89.9 119.3 c/a′ =1.580
1.00 2 2.94 2.94 4.64 90.0 90.0 120.0 c/a′ = 1.578(1.586)

Table S2: Elastic constants Cij (GPa) and Zener anisotropy coefficient Az calculated
for the bcc SQS supercell. The elastic constants of bcc Ti at high temperature are
also given for comparison. The experimental EC with isotropic Zener Coefficient is
given in parentheses for the known composition.

x 0.0 ( [61]) 0.11 0.20 ( [4]) 0.33 0.40 1.0 ( [59])

C11 162 (169) 155 156 (172±6) 154 147 70(98)
C12 109 (127) 108 105 (108±1.5) 100 100 123(83)
C44 42 (45) 46 39 (28±1.5) 45 41 39(38)
Az 1.5 (2.1) 1.9 1.5 (0.87) 1.7 1.9 - (5.1)
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