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Abstract 

The structure and thermodynamic properties of Tix(HfNbTaZr)(1-x)/4 refractory high entropy 
multicomponent alloys have been studied using a comprehensive Monte-Carlo Special Quasi-
random Structure (MCSQS) realization of the disordered atomic structure and DFT 
calculations. We have shown that to model the random structure in a small supercell, it is 
necessary to study a large space of random configurations with respect to the nearest shells. 
Mimicking the randomness with the many-body terms does not lead to significant 
improvements in the formation energy but modeling the random structure with the few nearest 
neighbor pairs leads to improvements in the formation energy. We have also demonstrated the 
existence of weak to intermediate SRO for equimolar compositions. Chemical ordering is 
studied by linking a large number of MCSQS realizations to DFT calculations, and the SRO 
results are rationalized in terms of the crystallographic structure of the element pairs and binary 
phase diagrams. The formation energy of Tix(HfNbTaZr)(1-x)/4 alloys remains slightly positive 
for all x when Ti is added. For x > 0.5, a phase transition in favor of an hcp structure is observed 
in agreement with the Bo-Md diagram. A dual phase is predicted at x = 0.5. The Ti content in 
this class of alloys appears to be a practical way to select the phase structure and tailor the 
structure and elastic properties to specific applications. 

 

 

Keywords: High entropy alloys, Random alloys, Special Quasi-Random structures (SQSs), Density Functional 
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1 Introduction 

In recent decades, Ti alloys have made great progress in the application of biomaterials that are 
not only environmentally friendly but also less toxic and compatible with bone tissue [1]. Ti-
based alloys have been used for orthopedic and dental implants due to their high corrosion 
resistance but suffer from fatigue stresses and metal wear due to their high elastic modulus. 
Over time, these stresses lead to inflammation and subsequent damage to bone tissue. Elastic 
properties are particularly interesting for biological applications, as Young's modulus 
compatibility with bone is critical. Therefore, recent research has focused on the development 
of new Ti-based alloys with a lower modulus of elasticity [2]. 

Refractory High-Entropy Alloys (RHEAs) exhibit unique properties such as a high density, 
nontoxicity, which make them more compatible with the biological environment, and 
mechanical properties that exceed those of Ti-based alloys, making them particularly attractive 
for the associated applications [3]. These HEAs are typically composed of four or more 
elements at nearly the same concentration [4–6]. Despite consisting of a complex 
multicomponent system, they lead to the formation of a simple single-phase solid solution, 
such as face-centered cubic (fcc), body-centered cubic (bcc), or hexagonal close-packed (hcp). 
Among these alloys, fcc HEAs have been widely studied, but few studies exist on bcc HEAs, 
and even fewer in the case of bcc refractory HEAs (RHEAs) [7,8]. 

Recent experiments on TiTaHfNb, TiTaHfNbZr, and TiTaHfMoZr have shown that the non-
toxic and non-allergenic elements such as Nb, Ta, and Zr have high corrosion resistance [9]. 
Properties such as high ductility, corrosion resistance, and strength at both room and high 
temperatures can be improved by choosing suitable refractory elements (a mixture of bcc and 
hcp elements). 

As for the phase stability of the quaternary alloy (HfNbTaZr), as-cast experiments have shown 
that this structure exists as a bcc structure with a reported lattice parameter of 3.446 Å [10]. 
However, a recent experiment by Huang et al. showed that cold rolling and annealing of this 
alloy produces a two-phase structure [11] Therefore, they did not investigate the structural 
properties due to poor malleability. 

Much of the properties of HEA such as formation energies or dislocation kinetics are rooted in 
the atomic structure of these alloys, that may well deviate from the ideal random structure. 
However, in absence of direct experimental observations at the lattice length scale, chemical 
ordering is mostly unknown and remain a challenging task to simulation approaches. For 
medium to high entropy alloys, short-range order (SRO) effect has been investigated in bcc 
and fcc HEAs [12–16]. Tamm et. al. [17] showed for a NiCrCo medium entropy alloy the 
existence of SRO decreases the configurational entropy and affects the formation energy of the 
system [18]. Likewise, Yin et al. [12] have shown using Monte-Carlo (MC) and DFT 
calculations that quaternary MoNbTaW alloys exhibit an SRO. 

In this paper, our objective is to systematically investigate the effects of Ti content on the 
atomic structure, phase stability, chemical local ordering and elastic constants using MCSQS 
and DFT calculations. The results regarding dislocation structure and properties, that control 
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the plastic behavior and forming capability of this system are left for an upcoming paper [Asif 
Iqbal et al. to be published 2023]. The paper is organized as follows: Section 2 explains the 
methods and techniques used to compute the random supercell. Section 3 provides results and 
discussion, and the last section summarizes the conclusions. 
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2 Methodology and Computational details 

In the present article, we report the formation energy, elastic properties and structural 
parameters of a model of the Tix(HfNbTaZr)(1-x)/4 alloys calculated using Density Functional 
Theory (DFT) as implemented in Vienna ab initio simulation (VASP) code [19]. The Projector 
Augmented Wave (PAW) pseudopotential was used to approximate the electron core energy 
[20] and the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation was used to 
approximate the exchange correlation functional (XC) [21]. The plane-wave cut-off energy 
was set to 600 eV. The first order Methfessel-Paxton method [22] with a smearing parameter 
of 0.2 eV was used. Brillouin zone integrations were performed with Γ-centered k-points mesh 
generated by the Monkhorst-Pack (MP) method [23]. 

Construction of a Tix(HfNbTaZr)(1-x)/4 supercell 

A lot of care has been paid to the construction of the disordered structure corresponding to the 
Tix(HfNbTaZr)(1-x)/4 alloys. The composition was varied from x = 0.0 to 0.81, by steps of 0.1, 
while the rest of the composition is equally distributed among other elements Hf, Nb, Ta, Zr. 
For all considered compositions, the supercell geometry was constrained so that the cubic bcc 
symmetry was preserved as experiments suggest that most compositions correspond to a bcc 
single phase. Additional calculations using an hcp or orthorhombic lattice have also been 
conducted. Mimicking a random structure in a supercell of sufficiently limited dimensions to 
be tractable by DFT simulations, raises an additional problem arising from the short-range 
spatial correlations among atoms induced by the Periodic Boundary Conditions (PBC). To 
overcome this issue, several techniques have been proposed in the literature and they rely on 
the usage of order parameters to assess the disordered nature of the atomic configuration and 
the minimization of the spatial correlations as much as possible [24–28]. Here, we choose to 
use the Monte-Carlo Special Quasi-random Structure (MCSQS) technique implemented in the 
Alloy Theoretic Automated Toolkit (ATAT) code [29,30] to generate a random structure in a 
small periodic supercell. Hence, it allows us to perform a statistical study of the MCSQS 
parameters on the resulting structure of different atomic configurations. 

The supercell size was chosen to be a necessary tradeoff between physical relevance and 
numerical cost of the calculations. The supercell geometries depend on the investigated 
composition and are as follows. For x = 0.11, 0.33, 0.4, 0.63, and 0.70, we generated a supercell 
of 54 atoms based on 3x3x3 cubic bcc unit cells; for compositions corresponding to x = 0.0, 
0.50, and 0.81, a supercell of 128 atoms based on 4x4x4 cubic bcc unit cells was used; and for 
x = 0.20, a supercell of 125 atoms based on 5x5x5 primitive bcc unit cells was used. In the case 
of hcp structures, we employed supercells of 128 atoms for x = 0.5, 0.81 (4x4x4 hexagonal 
unit cells) and 54 atoms for x = 0.63, 0.70 (3x3x3 hexagonal unit cells).  

In all the reported simulations, the system was allowed to fully relax, including atomic 
positions and the supercell dimensions (in an anisotropic fashion) using a conjugate gradient 
algorithm. The system was assumed to have converged when the force on each atom was less 
than 1 meV/Å, and a stress tolerance below ~0.005 GPa. After relaxation, the formation energy 
was evaluated from a single point energy calculation with a dense k-point relative to the 
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convergence of the formation energy. A sensitivity study showed that a tolerance of 1 
meV/atom, a 2x2x2 k-points mesh grid and plane-wave cut-off energy 600 eV were sufficient 
for the calculation of elastic and structural properties. 
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3 Results and Discussion 

We employed MCSQS approach to mimic the random structure of HEA in a DFT supercell. 
While MCSQS is now a well-established technique within the HEA community, its results can 
be impacted by a few parameters, in particular the number of neighbor shells and the order of 
the many-body terms that are included to evaluate the disorder in the considered configuration. 
We thus start with a sensitivity study of the structure generated as function of these parameters.  

We begin our analysis by calculating the structure and formation energy for each SQS supercell 
using DFT. Since we have only limited experimental results for all the considered 
compositions, we will understand the stability of the HEA structure as Ti is introduced into the 
quaternary alloy. In the present work, we varied the pairwise terms (called hereafter 'p') among 
the Nearest Neighbor (NN) shells with p going from 2 to 10 NN. We also varied the three-body 
terms (t) and four-body terms (q) terms (with t and q going from 0 to 1 NN). 

 

Figure 1: Examples of supercells [(a)-(d)] obtained from MCSQS for the alloy 
Tix(HfNbTaZr)(1-x)/4. Figure (a) and (c) show a 3x3x3 supercell for x = 0.12, 0.33, 0.40, 0.60, 
and 0.70 containing 54 atoms with bcc and hcp structure, respectively. Figure (b) and (d) show 
a 4x4x4 supercell for x = 0.0, 0.50, and 0.80 representing 128 atoms with a bcc and hcp 
structure, respectively. 

For each Ti content x and MCSQS parameters p, t, and q (hereafter denoted by the value triplet 
(p, t, q)), about 20 different calculations were performed. Figure 1 shows some of the atomic 
configurations resulting from the MCSQS calculations obtained for different Ti content x. Our 
workflow consists of first generating 20 SQS for (p, 0, 0) only, then with (p, t, 0), and finally 
(p, t, q). In each case, the MCSQS calculation was initiated with different random seeds, 
leading to different final atomic configurations. The final configuration was reached when the 
local minimum of the objective function was reached during the runtime of 120 hours. MCSQS 
was terminated earlier when no further SQS structure was generated for more than 12 hours. 

According to classical theory, the Gibbs free energy of the system is given by,  

ΔGx = (ΔHform)x – (TΔSconf)x – (TΔSvib)x (1)

In Eq. 1, (ΔHform)x is the formation energy and ΔSconf and ΔSvib  are the configuration and 
vibrational entropy terms, respectively. The formation energy, (ΔHform)x, given in Eq. 2 is 
computed from the difference of energy of the SQS supercell and the energy Ei associated to 
the most stable phase of each elements, i, (bcc for Nb, and Ta and hcp for Hf, Ti, and Zr): 



7 

7 

(ΔHform)x = (ESQS)x – (∑ ci Ei)x (2)

where ci is the atomic fraction of an alloy element, i. For alloys, the configurational entropic 
term is given by, 

∆Sconf = – kB ∑ ci ln(ci) (3)

where kB is the Boltzmann constant. It can be noted that Eq. 3 applies to perfect random solid 
solutions, which might not be the case of HEA alloys where some level of chemical order may 
exist in these systems (see later). Eq. 3 is nevertheless commonly used within the HEA 
community to estimate the configurational entropy. The last term of Eq. 1, corresponding to 
the vibrational entropy, can be calculated from DFT using the so-called frozen phonon 
approach [31]. However, these types of calculations are computationally demanding, and 
vibrational entropy is commonly neglected when compared to the configurational entropy 
[4,16,27,32]. This last term is thus disregarded in the present study. 

3.1 Sensitivity study on MCSQS parameters 

First, we conducted MCSQS calculations while neglecting the many-body terms, i.e., we 
included only the pairwise (p) NN shells as these terms are expected to have the largest impact 
on the resulting SQS configuration. We then determined the effect of the number of p shells on 
the formation energy. We have considered x = 0.33 composition and assume that similar trends 
could be obtained for other compositions. Table 1 shows the formation energy and average 
lattice parameter as a function of p shells. The values given here refer to the lowest formation 
energy obtained over 20 different SQS calculations. Interestingly, the formation energy per 
atom decreases only weakly as the number of p NN shells increases up to 8 NN. When p = 10 
NN, the MCSQS calculations surprisingly yielded to a larger formation energy per atom by 
about 7 meV/atom. In the latter case, it is probable that the convergence was not met within 
the 120-h left for the calculations. As a result of this sensitivity study, we chose p = 8 NN as a 
compromise between MCSQS capacity to produce low energy configuration and the numerical 
cost to run the MCSQS.  

Table 1: Calculated average lattice parameters a’, and formation energy for x = 0.33 using a 
54-atom supercell over 20 different initial SQS seeds (i) for each value of p along with the 
average (avg) formation energy value and standard deviation (σ). The number of nearest 
neighbor (NN) shells is given by the following convention: p NN where p is the nearest 
neighbor shells for the pair. 

x = 0.33
#Shells mini{ΔHi} avg±σ a'

(p,0,0) NN meV/atom Å
2 84.73 88.56±3.2 3.382
4 82.37 89.05±3.9 3.384
6 81.27 89.70±3.6 3.383
8 80.37 86.80±3.8 3.383
10 87.30 90.49±2.6 3.382
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In another set of calculations, we have investigated the possible effect of higher order many-
body terms: ternary (t) and quaternary (q) interaction within 1st NN shells from MCSQS. For 
this, many-body terms were set to t = 1 NN, and q = 0 or 1 NN, while the pairwise terms were 
set to 6 and 8 NN shells.  

Figure 2 shows the impact of including higher order many-body terms on the formation energy 
of Tix(HfNbTaZr)(1-x)/4 for each Ti content x. The figure reports the Average (avg) formation 
energy value, along with the standard deviation (σ) and minimum and maximum energy values. 
Overall, it is clear that average formation energy decreases as Tix content increases. For a given 
Tix and triplet (p, t, q), the formation energy shows a rather large scatter with variations of up 
to about 20% depending on the initial seed values used in the MCSQS calculation. The scatter 
observed among the 20 realizations seems to depend upon the x content and the supercell size. 
This could be investigated further. 

Further, the average formation energy over 20 initial seeds is weakly impacted when three and 
four body terms are included. For a given Ti content x, the average formation energy (shown 
in blue color) decreases only weakly when including t, and q terms, except for x = 0.40, for 
which the energy varies by about ~4 meV/atom (corresponding to triplet (8,0,1)). A similar 
conclusion was also reached by Tian et al. [33] for CoCrFeMnNi, Ta-W, and CoCrNi alloys. 
Using the Similar Atomic Environment (SAE) approach, these authors showed that including 
many-body clusters did not provide much improvement in the cross-validation error between 
SAE and SQS, implying that pair NN terms for atom pairs is sufficient to model a random 
structure [33].  
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Figure 2: Statistical plot showing the average, minimal, maximal values and the standard 
deviation of the calculated formation energy for Tix(HfNbTaZr)(1-x)/4 alloys. The number of 
shells is given by the following convention: (p, t, q), where p, t, q are the pair, three-body, and 
four-body terms, respectively. Maximum values are represented by black filled circles and 
minimum values by empty circles. The average formation energy for each composition is 
shown in blue color.  

In summary, this sensitivity study performed over 480 different calculations demonstrates the 
importance of performing multiple MCSQS calculations with different initial seeds to evaluate 
the statistical differences that result from the MCSQS calculations. The inclusion of a large 
number of NN shells for pair interactions has an important impact on the ability of the SQS to 
yield lower energy configurations. For p = 8 NN shells, we found a practical optimum for x = 
0.0, 0.20, 0.33, and 0.40 in the present case. The inclusion of ternary and quaternary interaction 
terms up to 1 NN shell appears to have only a second-order effect in the present system. 

For the analyses that follow, we will consider the atomic configuration corresponding to the 
system with the lowest energy for each x as the most thermodynamically probable. 

3.2 Analysis of the Chemical short-range order of the bcc phase 

The results of previous section, raise the question of whether the final configuration among all 
SQS structures exhibit a local chemical order, i.e., whether the favorable pairings between 
elements are preferred leading to a configuration with the lowest formation energy? To 
investigate SRO, Yin et al. and collaborator [18] employed MC and DFT to minimize the 
energy in a bcc HEA system. As a less computationally demanding approach, we propose to 
sample the energy of a disordered atomic configuration making use of a large number of 
different SQS simulations. We chose the equimolar case x = 0.0 and 0.20 and generated another 
650 SQS structures using our optimized SQS parameters (p=8, t=0, q=0) NN pairs. SQS 
calculations were run to produce a random structure in maximizing the objective function using 
the same convergence criterium as above. After this, relaxation of each structure was done 
using DFT and the formation energy was evaluated for all 650 different initial configurations. 
To quantify the short-range order (SRO) in these simulations, we use the SRO parameter αij 
described by Fontaine et al. [34], 

αij = ((nj/ mA) ‐ cj)/ δij ‐ cj (4)

Here, i refers to the reference atom. nj is the number of atoms of the non-reference type among 
the cj atoms in the i-th coordination shell. mA is the concentration of the non-reference atom. 
If i = j, δij = 1, otherwise the Warren-Cowley SRO parameter is returned. The total SRO, ∑ij|αij|, 
is calculated by summing all pairwise terms around the reference atom in the bcc structure for 
the first two and three nearest neighbor coordination shells (2 NN and 3 NN), respectively. We 
employed the tool developed in [35] and extended it to perform the analysis including the first 
three nearest neighbor coordination shells (3NN). In Figure 2, for x = 0.0 and 0.20, the low 
and high formation energy of the configurations are shown along with the standard deviation 
and average values. 
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To assess the SRO, we sort the different atomic structures with respect to the simulated energy 
configuration. First, we checked the meaning of this sorting by analyzing the average over all 
650 different configurations. Thus, a first set of data corresponds to the average over all data 
and is shown as green curves in the Figure 3, 4 and 5. As desired, the SRO parameter is close 
to zero for all pair types. A small deviation on the SRO parameter of 0.01 is found on this 
average, and this gives an estimate of the precision we can expect from our analysis.  The fact 
that the SRO parameter is very close to zero means that the average of all 650 SQS 
configurations is a good approximation of the ideal random solid solution. This neutral curve 
is considered as a reference value for the next steps. Two bins were then considered: The 
configurations with the lowest energy are grouped and called the best set, while the 
configurations with the highest energy are called the worst set. To determine the SRO for the 
best SQS, we averaged the SRO values of each pair type for a group of "best" cases with the 
lowest energy and used the same strategy for the worst SQS. We varied the size of these bins 
from 6 to 65 configurations (1-10% of the total data) and a larger bin size smooths the results 
by reducing the obtained averaged SRO parameter values. However, the sign of the SRO 
parameters, indicating whether a binding type is more or less present than in the ideal random 
structure, remained largely unchanged when the bin size was varied. 

3.2.1. SRO in the quaternary HfNbTaZr system 

Before comparing the results of our two compositions, Figure 3 shows the radar plot for x = 0 
and x = 0.2, and the analysis is admittedly not straightforward. This analysis was performed 
for the first 2 NN shells, where most of the SRO can be observed. An SRO parameter with a 
negative sign indicates a pair type that is more abundant in the atomic structure under 
consideration than in the ideal random configuration. When comparing two different SQS 
realizations, an increase in formation energy can be explained in two ways: a lower 
representation of favorable pair types and/or an increase in the contribution of unfavorable 
atomic pairs. Comparing the results for the best and worst sets, we see that the SRO data for 
the two sets agree well, i.e., favorable bonds are found in greater numbers in the best sets (aij 
< 0) and unfavorable bond types in smaller numbers (aij > 0). However, the trend is less clear 
when the SRO parameter is close to zero, indicating a neutral influence of the corresponding 
pair. 

Turning now to the specifics of interactions in quaternary alloys, of the 10 different bond types, 
the following pairs appear to be favorable (in decreasing order): Nb-Ta and Hf-Zr; the same 
atom pairs (e.g., Hf-Hf) show a nearly neutral interaction (aij = 0); finally, the last pair types 
seem to be unfavorable (in decreasing order): Hf-Nb, Ta-Zr, Nb-Zr, and finally Hf-Ta. 
Interestingly, the classification of a bond 'ij' can also be determined in a completely different 
way, namely by a linear fit of the configurational energy as a function of the parameter set aij 
calculated for all 650 SQS realizations, where favorable (or unfavorable) bonds are associated 
with a negative slope (positive) of the linear fit. This further strengthens the confidence in the 
proposed SRO analysis. 

Previous results strikingly indicate a simple correlation between the favorable nature of the 
bond types and the crystallographic reference structure of the two elements involved in the pair 
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type. This is shown in Figure 4(a), where an SRO parameter is defined as the sum of SRO 
values corresponding to pairs of elements depending on their structure: bcc-bcc, hcp-hcp, or 
bcc-hcp elements (at 0 K). Elements with identical reference crystallographic structure clearly 
seem to lead to favorable bonds associated with a decrease in formation energy, while those 
with different bcc-hcp crystallographic structure are clearly unfavorable. It would be 
interesting to nuance this rather simple sorting of SRO analysis by combining our SRO results 
with analysis of the binary phase diagrams of the elements that make up our system. This is 
reserved for a later study. Figure 5(a) shows the SRO parameter aij when performing the 
analysis of an increasing number of shells from 1 to 3 NN shells for the best SQS realizations. 
Interestingly, the first NN shell is associated with rather weak SRO parameters for all bond 
types, so that the chemical SRO is limited to the 2nd and 3rd NN shells, which have a larger 
number of atomic layers. In this system, the SRO parameter values for the 2nd and 3rd NN 
shells are meaningfully the same, indicating that most of the SRO occurs in the 2nd NN shell. 

3.2.2. SRO in the HfNbTaTiZr system and comparison between the two systems 

Turning now to the quinary system, some of the previous observations can be repeated, 
although the details may differ. Figure 3(b) shows that the average SRO parameters for all 15 
bond types are close to zero for all 650 SQS realizations, consistent with the ideal random solid 
solution. The best and worst data points again complement each other well, with some 
exceptions that we will discuss later. The following bond types appear to be uniquely favorable 
in this new system (aij < 0 for the best set): Hf-Zr, Hf-Ti, Nb-Ta; the same element pairs 'i-i' 
are typically neutral (aij = 0), while the following bonds appear unfavorable (aij > 0): Hf-Ta, 
Nb-Ti, Nb-Zr, Ta-Zr. The results for some bond pairs such as Ta-Ti, Ti-Ti are less clear. 
Perhaps more SQS realizations are needed to analyze this more complex quinary system. 

The simple sorting of bond types as a function of the crystallographic structure of each element 
is shown in Figure 4(b). As with the quaternary alloy, the sum of the SRO parameters is 
favorable for pairs of elements with the same bcc-bcc or hcp-hcp structures, although the SRO 
parameter for hcp-hcp has a lower value here. The SRO parameter for bcc-hcp element bonds 
is unfavorable and has a much larger value than in the quaternary system. Finally, the SRO 
parameters for all 15 pair types are analyzed as a function of NN shells and shown in Figure 
5(b). In the quinary system, the bond types are polarized even in the 1st NN shell, where the 
SRO value closely follows the sorting by the crystallographic nature of the elements involved 
in the bond (the agreement is better than when considering 1+2NN shells). The SRO data for 
other shells typically evolve uniformly from this 1st NN shell to the following 2nd and 3rd NN 
shells. Thus, the chemical order in the quinary system appears to be more complex and 
comprehensive than in the quaternary systems, as the 1st, 2nd, and 3rd NN shells exhibit SRO. 
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Figure 3: Radar plot showing the average, best (average over fifteen datapoints), and worst 
(average over fifteen datapoints) case for the 1st + 2nd (2NN) data points for (a) x = 0 and (b) x 
= 0.20, respectively. The best and worst SQS is an average over fifteen data points. "Average" 
here refers to the average over all data points. The ideal random solid solution is represented 
by the dashed red line. 

 

Figure 4: Radar plot showing the average, best (average over fifteen datapoints), and worst 
(average over fifteen datapoints) case for the 1st + 2nd (2NN) data points for (a) x = 0 and (b) x 
= 0.20, respectively. The best and worst SQS is an average over fifteen data points for selected 
bcc-bcc, bcc-hcp, and hcp-hcp phases. "Average" here refers to the average over all data points. 
The ideal random solid solution is represented by the dashed red line. 

 

Figure 5: Radar plot showing the best SQS realizations for the 1st (1NN), 1st + 2nd (2NN), and 
1st+2nd+3rd (3NN) shells for two systems (a) HfNbTaZr and (b) HfNbTaTiZr, respectively. The 
best SQS is an average over fifteen data points. The ideal random solid solution is represented 
by the dashed red line. 



13 

13 

The total SROs for x = 0.0 and 0.20 are given in Table 2 and are calculated from the sum of 
the first two and the sum of the first three nearest neighbor (NN) shells. In our analysis, we 
find that for x=0, we have the lowest SRO value for the lowest energy configuration compared 
to the highest energy configuration. For x = 0.20, the SRO values are higher for the 
configurations with the lowest energy, indicating the existence of SRO. When comparing the 
quaternary and quinary alloys, the SRO in the first system is mostly localized on the 2nd NN 
shell and only two bond types (Nb-Ta and Hf-Zr) are favorable, four bond types are 
unfavorable and same element bonds are mostly neutral. In the quinary system, four bond types 
are favorable, 6 types are unfavorable, and 5 types are mostly neutral, while the chemical 
ordering covers at least all 3 NN shells. Since, in a finite sized supercell, the bond type 
contributions are related through the imposed overall alloy composition, the quaternary system 
seems more constrained, and this could explain why the total SRO is smaller in that system. In 
the study performed by Yin et al. using the Monte Carlo approach (MC), the author observed 
a large Warren-Cowley SRO value (in the range of 1.75-2.00) for bcc MoNbTaW RHEA for 
the lowest energy configuration considering only the first 2NN shells [18]. However, it should 
be noted that the quaternary system they studied is arguably simpler as it consists of only bcc 
elements. For alloys consisting of bcc and hcp elements, the local ordering appears thus to be 
complex. The chemical ordering observed in our systems could therefore be responsible for the 
apparent metastability of the bcc phase deduced from our simulations. 

Table 2: Total SRO of the lowest and highest energy SQS configurations for the combined 
1st+2nd nearest neighbors (2NN) and 1st+2nd+3rd nearest neighbors (3NN) shells, respectively. 
Total SRO is determined by using SRO =∑ij|αij|. 

Tix(HfNbTaZr)(1-x)/4 2NN 3NN 2NN 3NN
x low high 

0.0 0.57 0.51 0.88 0.82
0.2 1.55 1.61 1.46 1.48
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3.3. Possible phases according to the Bo-Md diagram 

To predict the phase stability in our alloys, we reprise the d-electrons theory initially proposed 
to predict the phase stability of Ti-based alloys. Morinaga et al. originally proposed this theory 
to classify Ti based alloys into α or α+β or γ phase as function of solely two parameters: Bo 
and Md [36]. Bo is the bond strength between the Ti and the alloying elements with Bo ≤ 2.84, 
and Md is the metal's d-orbital energy level, which corresponds to element's metallic radius 
and electronegativity [36]. Based on this, Hadi et al., extended the single β-phase field to the 
domain where Bo ≤ 2.96. With this extension the authors showed that the inclusion of Al, O, 
and Sn increased the stability of the β-phase [37].  

For typical Ti based alloys these parameters are given as composition averages Bo = ∑ciBoi 

and Md = ∑ciMdi. The ci is the concentration of the alloying elements. Table 3 lists the 
composition averages for the alloys considered here. The reference Bo and Md values for each 
element in bcc Ti is taken from Hadi et al. [37]. We will assume that this analysis is still valid 
for our alloys, in which Ti is not the main constituent in some of our nuances. A similar 
assumption was made in another DFT study [38], and we will see later that the predictions 
from Bo-Md diagram agree well with our DFT data.  

Table 3: The 𝐵𝑜 and 𝑀𝑑 for the Tix(HfNbTaZr)(1-x)/4 alloys are calculated using the reference 
values of Bo and Md from Hadi et al. [37]. 

x 0.0 0.11 0.20 0.33 0.40 0.50 0.63 0.70 0.81
𝐵𝑜 3.11 3.074 3.046 3.003 2.979 2.95 2.908 2.884 2.850 

𝑀𝑑 2.715 2.685 2.662 2.626 2.607 2.582 2.548 2.528 2.499 

In the Bo Md diagram shown in Figure 6, the domain of stability associated to the various 
possible phases of Ti based alloys are drawn along with some examples from the literature 
[37,38]. The solid line in red is extrapolated for Tix(HfNbTaZr)(1-x)/4 alloys with the 
composition studied in the present work to pure Ti system. For compositions well above the 

dashed line in the Bo Md diagram, a bcc structure is expected, while for compositions well 
below the same line structures tends to become hcp. Close to the border, bcc, hcp and 
orthorhombic structures are all possible and may be metastable. From this, we thus expect the 
decrease of formation energy and stable phase change from bcc to hcp when increasing the Ti 
content from x = 0 to x = 0.81 in our alloys. For x = 0.0 (the quaternary alloy without Ti and x 
= 0.2 (the equimolar case), experimental studies exist and provide clear reference data in the 
shape of unambiguous identification of a single HEA phase of bcc structure [11,39], 

corresponding to well defined X-ray diffraction peaks for the bcc structure. The Bo Md 
diagram predictions are thus in agreement with these studies on HEA alloys. From this, it 
becomes clear that relevant MCSQS and DFT simulations must provide not only for the bcc 
phase but also for the hcp phase at larger Ti content x.  
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Figure 6: Extrapolation of 𝐵𝑜 𝑀𝑑 diagram for Ti compositions. Designed alloys are shown 
with the solid red line. The figure is taken from the ref [37]. 
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3.4. Structure and stability of the bcc phase as function of the Ti content 

In this section, we present DFT results on the effects of Ti content on the structure and relative 
stability of the possible HEA phases. For x = 0.0 and x = 0.2, there are experimental studies 
that provide clear reference data for the identification of a single bcc phase [11,39]. 
Unfortunately, there are no experimental or theoretical data for x other than 0.0 and 0.2 with 
which to compare our results. 

Table 4 shows the structural parameters for the configurations corresponding to the lowest 
formation energy. The relaxed lattice parameters (a, b, c) deviates slightly from the perfect bcc 
lattice. They are slightly anisotropic (with an average difference of about 3%), and the angles 
(𝛼, 𝛽, 𝛾) between basis vectors of the supercell slightly differs from the expected 90 deg (by 
typically less than 1 deg). These small distortions are unsurprising for HEA systems, as 
differences in the local chemical order are expected along the supercell axis especially for the 
small dimensions dealt with in DFT.  

The average lattice parameter a’ = (a+b+c)/3 decreases from 3.436 Å to 3.306 Å with the 
increase of Ti content from 0.0 to 0.81 assuming the alloys preserve a bcc phase highlighted in 
Table 4. From experiments, it is known at temperature above 1100 K, the hcp elements 
transition to the bcc phase. The reported lattice parameters in the bcc phase are aTi = 3.306 Å, 
aZr = 3.609 Å, and aHf = 3.651 Å at temperatures 1155 K, 1140K and 2016 K, respectively 
[40,41]. To compare our results with the bcc lattice parameters, the lattice parameters are 
extrapolated to room temperature (RT) by using the thermal expansion coefficients for the bcc 
elements Hf, Zr, Ti given in reference [42,43]. The so calculated bcc lattice parameters for the 
elements are aTi = 3.276 Å, aHf = 3.559 Å, and aZr = 3.582 Å. Thus, the lattice parameters aTi 
fall within the range of x = 0.81. Finally, the DFT calculations reproduce well the experimental 
values for x = 0 and x = 0.2, which gives confidence in our methodology relying on several 
sets of MCSQS and DFT simulation conditions. 

The known stable experimental lattice parameters at RT for stable elements are aTi = 2.95 Å, 
c/aTi = 1.58 Å, aZr = 3.23 Å, c/aZr = 1.59 Å, aHf = 3.196 Å, c/aHf = 1.58 Å, aNb= 3.30 Å, and aTa 
= 3.31 Å. The lattice constants for pure Ti (hcp) unit cell are a = b = 2.950 Å and c = 4.687 Å 

[39]. For large Ti content typically x = 0.5 and above, the Bo Md diagram suggests that hcp 
and/or orthorhombic (ortho) structure may be stable. We thus performed another set of 
MCSQS+DFT calculations for these crystallographic structures. The same methodology as 

discussed in the previous section 2 was adopted. To assess the prediction of the Bo Md 
diagram, we generated a set of MCSQS structure assuming the hcp phase for x ranging from 
0.5 to 0.81. At x = 0.5, other phases could exist near the extrapolated red line (shown in Figure 
6); therefore, we have generated additional SQS structure with orthorhombic symmetry. In all 
cases, twenty different SQS structures were obtained and compared to select the one associated 
to lowest formation energy. 

The bottom of Table 4 (hcp and ortho) shows the lattice geometry obtained for these 
simulations. The simulated lattices are again slightly distorted when compared to a perfect hcp 
lattice, certainly because the different element arrangements are probed along the supercell 
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axis. Surprisingly, no clear trend was found regarding the evolution of the average a and c/a 
ratio in the case of the hcp structure as the Ti content increases. 

Table 4: Detailed analysis of the structure of the atomic configurations after relaxation for 
Tix(HfNbTaZr)(1-x)/4 alloys as function of the Ti content x, and the choice of crystallographic 
structure. The average lattice parameters a’ are reported for the conventional unit cell. The 
number of atoms is given for the SQS supercell generated from MCSQS. Known experimental 
values are reported from [11,39] and are given in parentheses. 

Phase x #atoms a b c α β γ a' 

   Å Å 

bcc 

0.00 128 3.454 3.417 3.438 89.6 90.0 90.0 3.436(3.446)

0.11 54 3.429 3.408 3.425 89.5 89.8 89.9 3.420

0.20 125 3.398 3.417 3.405 89.7 89.6 89.8 3.407(3.404)

0.33 54 3.392 3.372 3.381 89.7 90.1 89.9 3.381

0.40 54 3.371 3.336 3.403 89.5 89.9 89.6 3.370

0.50 128 3.379 3.321 3.361 89.9 90.8 90.0 3.353

0.63 54 3.313 3.345 3.339 90.6 88.6 90.7 3.332

0.70 54 3.300 3.305 3.350 89.2 90.4 90.5 3.318

0.81 128 3.073 3.421 3.418 85.8 89.9 90.1 3.306

ortho 0.50 32 3.402 3.243 4.674 89.2 90.3 89.3  

hcp 

0.50 128 2.933 2.942 4.680 90.1 89.7 110.9 
a=2.937, 
c/a=1.593

0.63 54 3.318 2.961 4.543 89.9 90.0 123.8 
a=3.319, 
c/a=1.447

0.70 54 2.953 3.285 4.533 89.7 89.6 123.7 
a=3.119, 
c/a=1.453

0.81 128 2.934 2.997 4.687 90.0 89.9 119.3 
a=2.963, 
c/a=1.580

We now consider Figure 4(a) where the calculated formation energies of the possible phases 
of Tix(HfNbTaZr)(1-x)/4 are plotted as function of the Ti content. Formation energies are 
calculated using Eq 2 by taking the most stable phase of the alloying elements as a reference. 
Interestingly, the formation energies of all phases of the alloy are slightly positive for all Ti 
content. The corresponding values are however small, below 100 meV/atom, while their 
counterparts for pure elements are of the order of few eV/atoms.  

The formation energy of the bcc phase is found to decrease monotonically with Ti content. For 
x = 0.20, which corresponds to the equimolar case, the formation energy of 84.4 meV/atom 
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determined in the present study is almost 2 meV/atom lower than the DFT calculations of Gao 
et al. [44], where a value of 86.5 meV/atom was reported. This is because we used the large 
configuration space and were able to find the configuration corresponding to the structure with 
the lowest energy. 

If we compare the relative stability of the possible phases for x > 0.5 in Figure 4(a), formation 
energy for the hcp phase becomes lower than that of the bcc phase and decreases faster as Ti 
content is increased. This suggests that alloys with large Ti content may exhibit an hcp structure 
or a dual bcc and hcp phase, since the difference between the two structures is small (typically 
below 7%). Finally, the formation energy of the orthorhombic phase at x = 0.5 is larger than 
that of the bcc and hcp phases. The difference between bcc and hcp is about 2 meV/atom and 
between bcc and ortho about 8 meV/atom. 

Figure 4(a) also displays the formation energies of pure Ti in bcc and hcp phases as an 
asymptotic behavior for the Tix(HfNbTaZr)(1-x)/4 alloy as x tends to 1. The formation energy of 
our Tix(HfNbTaZr)(1-x)/4 alloys in the hcp structure smoothly decreases towards the one of pure 
Ti in hcp structure. 

To set the formation energies of Figure 4(a) in perspective, we have redone these calculations 
using the bcc phase as the reference for all pure elements. For this, we have performed another 
set of calculations for the three pure hcp elements Zr, Hf and Ti forcing a bcc crystal symmetry. 
The calculated lattice parameters thus obtained are aTi = 3.252 Å, aZr = 3.573 Å, and aHf = 3.542 
Å (and aNb = 3.31 Å, aTa = 3.32 Å for the two last bcc elements). Using these relaxed lattice 
parameters, we recalculated the Ef of our alloys. Figure 4(b) shows the dependence of the 
energies (ΔHform)x  and (ΔG)x on the Ti content calculated in this way. As the hcp elements are 
unstable in the bcc structure, formation energies are larger for these three pure elements, and 
the resulting formation energies of the alloys are all decreased. For x = 0.0 to 0.2, the formation 
energies remained slightly positive, but for x > 0.2 it becomes still slightly negative. It must be 
noted that the bcc phase for the alloy becomes the most stable for all Ti compositions, which 

this time contrasts with the predictions from the Bo Md diagram. 

Figure 4(a) shows the Gibbs free energy with the inclusion of configurational entropy is not 
enough to reach negative values at RT. The decrease in Gibbs free energy with Ti content is 
slightly smaller than the decrease in formation energy for bcc phase. Although, the formation 
energies remain slightly positive. In the context of HEA alloys, it was originally assumed that 
configurational entropy stabilizes the HEA phase by lowering the Gibbs free energy. The 
consensus is now more nuanced, as it has recently been shown that high configurational 
entropy is neither a sufficient nor a necessary condition for the formation of a single-phase 
solid solution [45–47]. In our case we have calculated the Gibbs free energy including the 
configurational entropy at 300 K using Eq.3. 

Figure 4(c) shows the Gibbs free energy for the bcc and hcp phases at a temperature of 1000 
K. At this temperature, the Gibbs free energy for the bcc structure is lower than that observed 
for the hcp structure. This suggests that the most stable bcc structure observed at high 
temperature need to transform into a hcp structure more stable at RT as alloys with x > 0.5 are 
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cooled down. Again, depending on the cooling rate, the hcp phase may well be trapped and 
remain metastable, which could lead to a duplex bcc-hcp structure for the corresponding alloys.  

The fact that the formation energy remains positive, albeit slightly, while an HEA solid solution 
phase is observed in the experiments can be explained in several ways. First, a positive 
formation energy could indicate that the HEA phase is metastable at RT. Second, the presence 
of SROs could be associated with more favorable bonding, which would lower the formation 
energies (see previous section). Another explanation for this positive value for all Ti content x 
could be due to the coexisting phases at RT. Since our alloy consists of hcp and bcc elements 
- from the binary phase diagram [41] for atomic pairings, e.g., Ta-Hf, Ta-Zr, Nb-Hf and Nb-
Zr - there is a miscibility gap at low temperature, which could be responsible for the increase 
in formation energy. 

 

Figure 4: Calculated formation energy (ΔH) and Gibbs free energy (ΔG) of Tix(HfNbTaZr)(1-

x)/4 alloys using the reference state as (a) stable (bcc and hcp phases for all elements) and (b) 
unstable phase of the various elements composing our alloy (bcc structure for all elements). In 
(a) and (b) the Gibbs free energy is given at 300 K. Figure (c) is similar to (a) but the Gibbs 
free energy is now calculated at 1000 K using the stable phase for all elements as reference 
phase. 
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3.5. Elastic constants for bcc Tix(HfNbTaZr)(1-x)/4 alloys 

Elastic constants can also be employed as an alternative criterion for evaluating the structural 
stability and mechanical properties of alloys. To calculate these properties, we used the strain 
energy approach to obtain the elastic tensor. Another approach would be to use the strain-stress 
approach as implemented in VASP to determine the full elastic tensor, but due to the large size 
of the system we resort to the former approach. 

A strain up to 3% on the equilibrium structure was applied to produce eleven intermediate 
deformed structures, followed by relaxation of each atomic structure using the same settings 
as given in Section 2. To obtain the individual constants, a suitable choice of deformation 
tensor was applied to the relaxed equilibrium SQS supercell for all Ti content x. Here we focus 
on the bcc elastic properties and will limit calculations to x ≤ 0.5, for which the bcc phase is 
unambiguously the most stable phase. More details of the strain tensor corresponding to the 
individual cubic elastic constants may be found in [48].  

The calculated elastic constants of the alloy Tix(HfNbTaZr)(1-x)/4 are given in Table 5. These 
calculations were carried out for the atomic configuration corresponding to the lowest 
formation energy for each x. We checked the mechanical stability for these atomic 
configurations, and they all satisfy the basic condition, i.e., C11 > C12, C11+ 2C12 > 0, and C44 > 
0. A simple way to assess the relevance of the obtained elastic constant is the Zener anisotropy 
ratio Az. The anisotropy is low in the quaternary alloy Az = 1.5, and the Zener coefficient then 
increases from 1.5 to 2.6 when the Ti content is increased from x = 0.2 to 0.5. For the equimolar 
composition x = 0.2, the values calculated at 0 K agree well with macroscopic measurements 
from experiments [7]. The largest deviation of 15% is observed for C11. For x = 0.2, Fazakas 
et al. have reported the elastic constants using the coherent potential approximation (CPA). 
The CPA approximation considers only the single point energy of the supercell and not the 
relaxed atomic structure. The elastic constants reported in that study are as follows: 160.2 GPa 
for C11, 124.4 GPa for C12, and 62.4 GPa for C44 [49]. Compared to the values in Table 5, we 
see that the values for C12 and C44 seem overestimated if structural relaxation is not considered. 
Thus, to obtain a good approximation, it is necessary to relax the SQS structure. 

Table 5: Elastic constants Cij (GPa) ,and Zener anisotropy Az coefficient calculated with the 
bcc-SQS supercell for Tix(HfNbTaZr)(1-x)/4 alloys. The experimental value for the known 
composition is given in parentheses. For comparison, the elastic constants of bcc Ti are also 
given. 

x 0.00 0.11 0.20([7]) 0.33 0.40 0.50 1.0 
C11 161.6 155.0 156.0(172±6) 153.8 147.0 133.6 106.4
C12 108.9 107.9 104.7(108) 100.4 99.9 105.1 110.5
C44 42.1 45.8 38.6(28±1.5) 45.1 41.4 36.9 45.3 
Az 1.5 1.9 1.5(1.0) 1.7 1.9 2.6 - 

From the elastic constants, it is instructive to calculate the isotropic bulk modulus B, shear 
modulus G, and Young’s modulus E and examine the trend as the Ti content is varied. The 
shear modulus is obtained from the average of Voigt and Reuss expression as suggested by 
Hill [50]. Figure 5 shows that B decreases monotonically when increasing the Ti content, while 
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G and E are constant for Tix < 0.4 and significantly decrease until x = 0.5. From these two 
quantities, the Pugh's ratio (B/G), can be used to estimate the brittle or ductile nature of the 
material. Materials that have a high B value and a low G value are generally ductile. Since for 
all x the B/G is > 1.75, according to Pugh’s ratio this suggests a ductile nature of the alloy. 
Ultimately, the nice agreement between our results and experimental and simulation works 
validates our methodology based on a large number of MCSQS realizations prior to the DFT 
simulations. Besides, the Ti content x in the range (0, 0.5) can be employed to slightly modulate 
the elastic properties of these alloys to meet the value targets for specific applications.  

 

Figure 5: Isotropic elastic moduli for Tix(HfNbTaZr)(1-x)/4 as a function of the Ti content x. 
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Conclusions 

In this work we have studied the structure, phase stability and elastic behavior of 
Tix(HfNbTaZr)(1-x)/4 alloys as a function of the Ti content x. The atomistic structure, 
corresponding to the disordered structure of the HEA solid solution, was approximated using 
the MCSQS technique, and the atomic relaxation and energy calculations were performed 
using DFT calculations. The following results were obtained. 

• We performed many SQS runs with different initial seeds and conducted a systematic 
sensitivity study on the number of NNs and the order of the many-body terms for Ti content 
x. In agreement with other studies, we found that the number of NN pairs has a stronger 
effect than higher bond orders to obtain an SQS configuration with a lower formation 
energy. 

• Adjusting the Ti content x, which corresponds to the number of atoms and the size of the 
supercell, affects the formation energy of the system. An optimum of 8 NN p-shells is found 
for x = 0.0, 0.20, and x = 0.33. For x = 0.12 and 0.50, 6 NN was sufficient. This shows that 
the number of NN shells must be considered to obtain the lowest formation energy. 

• The formation energy of alloys in bcc structure is slightly positive, but the value is smaller 
than the absolute value of the bulk energy of the individual element. The inclusion of 
configurational entropy does not lead to a negative Gibbs free energy at RT. A negative 
Gibbs free energy was obtained when the bcc phase was considered as the reference phase 
for all elements or when the configurational entropy was calculated at the elevated 
elaboration temperature. Thus, the bcc HEA phase observed experimentally for the 
equimolar alloy could be metastable or stabilized by SRO or vibrational entropy. 

• We have proposed an original analysis of the short-range chemical ordering in the 
HfNbTaZr and TiHfNbTaZr systems based on a large number of MCSQS realizations and 
a corresponding DFT calculation for each of them. The average configuration from the large 
number of MCSQS realizations is a good approximation to the ideal random structure. The 
different configurations can then be sorted as a function of the associated formation energy, 
and correlations can be pursued. 

• The chemical local ordering was then analyzed for the best, average, and worst sets of 
MCSQS as a function of formation energy. Somewhat simplistically, elements with 
identical crystallographic structure are typically favorable, while elements with different 
crystallographic structure are unfavorable and their presence is minimized in the best SQS 
sets. It would be interesting to see if this simple explanation can be applied to other HEA 
systems with elements of different crystallographic structure. The SRO in HfNbTaZr is 
mainly located on the 2nd NN shell, while in TiHfNbTaZr all the first three NN shells are 
involved. Few bond pairs are favorable in the quaternary system, and this could explain the 
weak global SRO in this system. The SRO appears to be present in both systems, although 
it is stronger in the quinary system. This SRO could help reduce the formation energy and 
justify the stability of the HEA solid solution. 
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• The content of Ti has various effects on the structure or properties of the Tix(HfNbTaZr)(1-

x)/4 system. The average bcc lattice parameter and the formation energies decrease 
monotonically with the Ti content. When the Ti content exceeds 0.5, the hcp phase is the 
most stable phase. The orthorhombic structure-a third possible phase-is discarded when the 
configurational entropy term is considered. These results are consistent with the so-called 

𝐵𝑜 𝑀𝑑 diagram, which was originally proposed to predict the phase stability of Ti alloys. 

• The present work is qualitatively consistent with trends found in HEA systems and 
quantitatively consistent with the limited literature on this system. The average bcc lattice 
parameter and elastic constants agree with experimental values obtained for the equimolar 
alloy. The energy of formation is also in agreement with the results obtained for the 
equimolar alloy in [44]. 
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