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Abstract: Enriching Brownian Motion with regenerations from a fixed
regeneration distribution µ at a particular regeneration rate κ results in a
Markov process that has a target distribution π as its invariant distribu-
tion. We introduce a method for adapting the regeneration distribution, by
adding point masses to it. This allows the process to be simulated with as
few regenerations as possible, which can drastically reduce computational
cost. We establish convergence of this self-reinforcing process and explore its
effectiveness at sampling from a number of target distributions. The exam-
ples show that our adaptive method allows regeneration-enriched Brownian
Motion to be used to sample from target distributions for which simulation
under a fixed regeneration distribution is computationally intractable.

Keywords and phrases: Adaptive algorithm, Markov process, MCMC,
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1. Introduction

Bayesian statistical problems customarily require computing quantities of the
form π[f ] ≡ Eπ[f(X)], where X is some random variable with distribution π
and f is a function, meaning this expectation is the integral

∫
Rd f(x)π(x) dx,

when Rd is the state space. For sophisticated models, it may be impossible
to compute this integral analytically. Furthermore, it may be impractical to
generate independent samples for use in Monte Carlo integration. In this case,
Markov Chain Monte Carlo (MCMC) methods (Robert and Casella, 2004) may
be used to generate a Markov chain X0, X1, . . . with limiting distribution π,
and then approximate π[f ] by n−1

∑n
i=1 f(Xi).

The chain is constructed by repeatedly applying a collection of Markov transi-
tion kernels P1, . . . , Pm, each satisfying πPi = π for i = 1, . . . ,m. The Metropolis-
Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) is normally used
to construct and simulate from reversible π-invariant Markov transition ker-
nels. A single kernel P may be used to represent P1, P2, . . . , Pm, with form
depending on whether a cycle is used (P = P1P2 · · ·Pm) or a mixture (P =

1
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[P1 +P2 + · · ·+Pm]/m). Using multiple kernels allows different dynamics to be
used, for example, by making transitions on both the local and global scales.

The MCMC framework described above is restrictive. Firstly, each kernel
must be π-invariant; for example, it is not possible for P1 and P2 to be indi-
vidually non-π-invariant and yet somehow compensate for each other so that
their combination P is π-invariant. To achieve this π-invariance, each kernel is
designed to be reversible. This acts as a further restriction; by definition, re-
versible kernels satisfy detailed balance and thus have diffusive dynamics. That
is, chains generated using reversible kernels show random-walk-like behaviour,
which is inefficient. Recently, there has been increasing interest in the use of non-
reversible Markov processes for MCMC (Bierkens et al., 2019; Bouchard-Côté
et al., 2018; Pollock et al., 2020a).

A further restriction of the typical MCMC framework is that it is difficult to
make use of regeneration. At regeneration times, a Markov chain effectively starts
again; its future is independent of its past. Regeneration is useful from both
theoretical and practical perspectives. Nummelin’s splitting technique (Num-
melin, 1978) may be used in MCMC algorithms to simulate regeneration events
(Mykland et al., 1995; Gilks et al., 1998). However, the technique scales poorly:
regenerations recede exponentially with dimension.

An interesting direction to address these issues appeared in Wang et al.
(2021). The authors introduced the Restore process, defined by enriching an
underlying Markov process, which may not be π-invariant, with regenerations
from some fixed regeneration distribution µ at a regeneration rate κ so that the
resulting Markov process is π-invariant. The segments of the process between
regeneration times, known as tours, are independent and identically distributed.
When applied to Monte Carlo, we make reference to the Restore sampler. The
process provides a general framework for using non-reversible dynamics, local
and global moves, as well as regeneration within a MCMC sampler. Sample
paths of the continuous-time process are used to form a Monte Carlo sum to
approximate π[f ].

An issue with the Restore sampler is that when µ differs greatly from π, tours
of the process frequently start in areas where π has low probability mass and for
which the regeneration rate is very large, so regeneration occurs very frequently.
This is computationally wasteful, since π and its derivatives must be evaluated
in order to determine regeneration events. We consider here adapting µ so that a
far smaller regeneration rate may be used. We call the novel Markov process an
Adaptive Restore process and the original Restore process the Standard Restore
process.

Instead of using a fixed regeneration distribution, the Adaptive Restore pro-
cess uses at time t a regeneration distribution µt, which is adapted so that it
converges to a particular distribution corresponding to the regeneration rate be-
ing as small possible. The regeneration distribution is initially a fixed parametric
distribution µ0, then as the process is generated point masses are added, so that
µt is a mixture of a parametric distribution and point masses. Throughout simu-
lation, the regeneration rate that is as small as possible is used. Adaptive Restore
differs from adaptive MCMC methods (Andrieu and Thoms, 2008; Roberts and
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Rosenthal, 2009; Haario et al., 2001), since the latter adapt the Markov transi-
tion kernel used in generating the Markov chain, whilst the former adapts the
regeneration distribution.

Besides the methodological contributions of this work, from a theoretical per-
spective, this paper presents a novel application of the stochastic approximation
technique to establishing convergence of self-reinforcing processes, as previously
utilised in, say, Aldous et al. (1988); Benäım et al. (2018); Mailler and Ville-
monais (2020). In particular, we will adapt the proof technique of Benäım et al.
(2018)—which is for discrete-time Markov chains on a compact state space—
to deduce validity of our Adaptive Restore process, which is a continuous-time
Markov process on a noncompact state space. This will be achieved by identify-
ing a natural embedded discrete-time Markov chain, taking values on a compact
subset, whose convergence implies convergence of the overall process. Theoreti-
cal summary and comparison are in section 4.1

A secondary contribution of this article is showing that it is possible to use
a Standard Restore process to estimate the normalizing constant of an unnor-
malized density.

The rest of the article is arranged as follows. Section 2 reviews Standard
Restore. Next, section 3 introduces the Adaptive Restore process and its use as a
sampler. Section 4 is a self-contained section on the theory of Adaptive Restore,
where we prove its validity; see section 4.1 for a summary of our theoretical
contributions. Examples are then provided in section 5, then section 6 concludes.

2. The Restore process

This section describes the Standard Restore process, as introduced in (Wang
et al., 2021). We define the process, explain how it may be used to estimate nor-
malizing constants, introduce the concept of minimal regeneration, and present
the case where the underlying process is Brownian motion.

2.1. Regeneration-Enriched Markov Processes

The Restore process is defined as follows. Let {Yt}t≥0 be a diffusion or jump
process on Rd. The regeneration rate κ : Rd → [0,∞), which we will define
shortly, is locally bounded and measurable. Define the tour length as

τ = inf

{
t ≥ 0 :

∫ t

0

κ(Ys) ds ≥ ξ

}
, (1)

for ξ ∼ Exp(1) independent of {Yt}t≥0. Let µ be some fixed distribution and(
{Y (i)

t }t≥0, τ (i)
)∞
i=0

be i.i.d realisations of ({Yt}t≥0, τ) with Y0 ∼ µ. The regen-

eration times are T0 = 0 and Tj =
∑j−1
i=0 τ

(i) for j = 1, 2, . . . . Then the Restore
process {Xt}t≥0 is given by:

Xt =

∞∑
i=0

1[Ti,Ti+1)(t)Y
(i)
t−Ti .
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Let LY be the infinitesimal generator of {Yt}t≥0. Then the (formal) infinitesimal
generator of {Xt}t≥0 is: LXf(x) = LY f(x) +κ(x)

∫
[f(y)−f(x)]µ(y) dy. To use

the Restore process for Monte Carlo integration one chooses κ so that {Xt}t≥0
is π-invariant. Defining κ as

κ(x) =
L†Y π(x)

π(x)
+ C

µ(x)

π(x)
, (2)

with L†Y denoting the formal adjoint, it can be shown that
∫
Rd LXf(x)π(x) dx =

0. Hence, {Xt}t≥0 is π-invariant. We will write equation (2) as

κ(x) = κ̃(x) + C
µ(x)

π(x)
. (3)

We call κ̃ the partial regeneration rate, C > 0 the regeneration constant and Cµ
the regeneration measure, which must be large enough so that κ(x) > 0,∀x ∈ Rd.
The resulting Monte Carlo method is called the Restore Sampler. Given π-
invariance of {Xt}t≥0, due to the regenerative structure of the process, we have

Eπ[f ] =
EX0∼µ

[ ∫ τ(0)

0
f(Xs) dx

]
EX0∼µ[τ (0)]

and almost sure convergence of the ergodic averages: as t→∞,

1

t

∫ t

0

f(Xs) ds→ Eπ[f ]. (4)

For i = 0, 1, . . . , define Zi :=
∫ Ti+1

Ti
f(Xs) ds. The Central Limit Theorem for

Restore processes states that

√
n

∫ Tn0
f(Xs) dx

Tn
−Eπ[f ]

→ N (0, σ2
f ),

where convergence is in distribution and

σ2
f :=

EX0∼µ

[(
Z0 − τ (0)Eπ[f ]

)2]
(
EX0∼µ[τ (0)]

)2 . (5)

Evidently the estimator’s variance depends on the expected tour length. This
is one motivation for choosing µ so that tours are on average reasonably long.
Indeed, this is the key motivation behind the minimal regeneration measure
described in section 2.3.
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2.2. Estimating the Normalizing Constant

It is possible to use a Restore process to estimate the normalizing constant of an
unnormalized target distribution. When the target distribution is the posterior
of some statistical model, its normalizing constant is the marginal likelihood, also
known as the evidence. Computing the evidence allows for model comparison via
Bayes factors (Kass and Raftery, 1995). Standard MCMC methods draw depen-
dent samples from π but cannot be used to calculate the evidence. Alternative
methods such as importance sampling, thermodynamic integration (Neal, 1993;
Ogata, 1989), Sequential Monte Carlo (Del Moral et al., 2006) or nested sam-
pling (Skilling, 2006) must instead be used for computing the evidence (Gelman
and Meng, 1998).

For Z the normalizing constant, let

π(x) =
π̃(x)

Z
,

Suppose we are able to evaluate to π̃, but Z is unknown. Let the energy be
defined as:

U(x) := − log π(x) = logZ − log π̃(x).

We will see that when {Yt}t≥0 is a Brownian motion, κ̃ is a function of ∇U(x)
and ∆U(x), so doesn’t depend on Z. In the expression for the regeneration rate,
the normalizing constant may be “absorbed” into C. That is,

κ(x) = κ̃(x) + C
µ(x)(
π̃(x)
Z

) = κ̃(x) + CZ
µ(x)

π̃(x)
= κ̃(x) + C̃

µ(x)

π̃(x)
,

where C̃ = CZ. It is known that C = 1/Eµ[τ ] (Wang et al., 2021, Proof of

Theorem 16). Since C̃ is set by the user, we have Z = C̃Eµ[τ ]. Suppose n tours
take simulation time T , then a Monte Carlo approximation of Z is:

Z ≈ C̃T

n
. (6)

In section 3, we will see that the ability to estimate Z is lost when using Adaptive
Restore instead of Standard Restore, unless the regeneration measure is fixed
for that purpose over a sufficient number of iterations.

2.3. Minimal Regeneration

The minimal regeneration measure, which we denote by C+µ+, is the choice of
Cµ corresponding to the rate being as small as possible:

κ+(x) := κ̃(x) ∨ 0 = κ̃(x) + C+µ
+(x)

π(x)
. (7)
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We call C+ the minimal regeneration constant and µ+ the minimal regeneration
distribution. For any Cµ such that κ, with form (3), satisfies κ(x) ≥ 0,∀x ∈ Rd,
we have κ+(x) ≤ κ(x),∀x ∈ Rd. Rearranging (7), we can obtain an explicit
representation for µ+, namely,

µ+(x) =
1

C+
[0 ∨ −κ̃(x)]π(x). (8)

A Restore process under µ+, κ+, C+ will be referred to as a minimal restore
process, or simply minimal restore. Note that the corresponding notation used
by Wang et al. (2021) is µ∗, κ∗, C∗.

Frequent regeneration in itself is not necessarily detrimental. For instance, if
µ ≡ π and C was large, regeneration would happen very often, but each time the
process would start again with distribution π. Frequent regeneration is more of
an issue when µ is not well-aligned to π, since the process may then regenerate
into areas where π has low probability mass, wasting computation.

A further benefit of minimal restore is that it minimizes the asymptotic vari-
ance (in the number of tours) of estimators of π[f ]. This follows from (5), since
the expected tour length is maximized.

2.4. Regeneration-enriched Brownian Motion

When {Yt}t≥0 is a Brownian motion, the partial regeneration rate is

κ̃(x) :=
1

2

(
||∇U(x)||2 −∆U(x)

)
. (9)

Regeneration-enriched Brownian motion is the focus of the methodology devel-
oped in this article. As such, this subsection is devoted to important aspects of
its application to Monte Carlo.

2.4.1. Output

The left-hand side of equation (4) can’t be evaluated exactly when the underly-
ing process is a Brownian motion. Instead, the output of the sampler is the state
of the process either at fixed, evenly-spaced intervals or at the arrival times of
an exogenous, homogeneous Poisson process with rate Λ0. We use a homoge-
neous Poisson process to record output events, since this method is marginally
simpler—see the discussion in Appendix A.

2.4.2. Simulation

Poisson thinning (Lewis and Shedler, 1979) is used to simulate regeneration
events. This is because the regeneration rate is itself a stochastic process, given
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by t 7→ κt := κ(Xt), and hence no closed form expression for the right-hand side
of (1) is available. Suppose κ is uniformly bounded. That is,

K := sup
x∈Rd

κ(x) <∞.

Then κt < K, ∀t ≥ 0 and K may be used as the dominating rate in Poisson
thinning. To simulate a rate κt Poisson process, at time t generate τ̃ ∼ Exp(K),
the time to the next potential regeneration event. Then regenerate at time t+ τ̃
with probability κt+τ̃/K, else don’t regenerate. In 2.4.4 we consider the process
simulated using the minimal rate κ+ given in (7). In this case, let

K+ := sup
x∈Rd

κ+(x).

Algorithm 1 shows how to simulate a Brownian Motion Restore process for
a fixed number of tours. Variables X, t and i denote the current state, time and
tour number of the process.

Algorithm 1: Brownian Motion Restore

X ∼ µ, t← 0, i← 0
while i < n do

τ̃ ∼ Exp(K), s ∼ Exp(Λ0)
if s < τ̃ then

t← t+ s,X ∼ N (X, s). Record X, t, i
else

t← t+ τ̃ , X ∼ N (X, τ̃), u ∼ U [0, 1]
if u < κ(X)/K then

X ∼ µ, i← i+ 1
end

end

end

For many target distributions κ is not bounded. Then, to use a global domi-
nating rate, κ must be truncated at some level. Alternatively, when κ is bounded
but the bound is very large, then for simulation purposes truncation may be
desirable. When a truncated regeneration rate is used, we will denote the trun-
cation level as K. When a truncated minimal regeneration rate is used, the
truncation level will be denoted K+. In other words, this notation signals the
use of rates

κ(x) =

(
κ̃(x) + C

µ(x)

π(x)

)
∧ K

and
κ(x) = κ+(x) ∧ K+.

Truncation introduces error, so that the Monte Carlo approximation is no
longer exact, however the error is negligible for K large enough. Indeed, in theory
it is possible to quantify the size of this error (Rudolf and Wang, 2021; Wang
et al., 2021, Theorem 30) and show that as K goes to infinity, the error tends
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Figure 1: Path of output states of 5 tours of a Brownian Motion Restore pro-
cess with π ≡ N (0, 12), µ ≡ N (0, 22) and C chosen so that minx∈R κ(x) = 0.
Parameters used were K = 200 and Λ0 = 1000. The first and last output states
of each tour are shown by green dots and red crosses respectively.

to zero (Wang et al., 2021, Proposition 32). Bounding the error explicitly using
Theorem 30 of (Wang et al., 2021) may be difficult in challenging problems.
For complicated posterior distributions, it may not be possible to compute the
supremum of κ, in which case one cannot be sure that the global dominating rate
does not truncate κ. An advantage of using the minimal rate is that for a given
error tolerance, the truncation level K+ typically only needs to be increased
logarithmically with dimension d; see section 2.4.4.

2.4.3. Large Regeneration Rate

Figure 1 shows 5 tours of a Brownian Motion Restore process when π ≡ N (0, 12), µ ≡
N (0, 22),K = 200,Λ0 = 1000 and C is chosen so that minx∈R κ(x) = 0. The
first output state of each tour is shown by a green dot; the last output state of
each tour is shown by a red cross. In this example, µ has larger variance than π.
This has caused tours 1 and 3 to begin in the tails of π, then quickly regenerate
again since the regeneration rate is large in this region.

Indeed, when µ is a bad approximation of π, the regeneration rate can become
very large. Consider π as the 10-dimensional posterior distribution of a Logistic
Regression model of breast cancer. For this model alone, we use the standard
notation of letting the data, consisting of predictor-response pairs, be denoted
{(xi, yi)}ni=1. The random variables of interest are the regression coefficients
β = (β1, β2, . . . , βd)

T . The likelihood of a Logistic Regression model is:

l({(xi, yi)}ni=1|β) =

 n∏
i=1

1

1 + exp{−yiβTxi}

 .
See appendix I for details on the data and prior. Let µ ≡ N (0, I). We generated
n = 105 samples x1, x2, . . . , xn from π using the Random Walk Metropolis
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Figure 2: Quantile functions of the partial and full regeneration rates for a
Logistic Regression Model of breast cancer.

algorithm. A large thinning interval was used so that the Markov chain had low
autocorrelation and thus the samples were of good quality. With these samples
a constant C such that κ(xi) ≥ 0 for xi ∈ {x1, x2, . . . , xn} was computed as
C = maxx1,x2,...,xn −κ̃(xi)π(xi)/µ(xi). This value of C may not be large enough
to ensure that κ(x) ≥ 0,∀x ∈ Rd, but suffices to demonstrate that κ becomes
very large. We estimated the quantile functions of κ̃ and κ by evaluating these
functions at x1, x2, . . . , xn; Figure 2 shows the approximated quantile functions.
We have P[κ̃ < 19.64] ≈ 0.999, but by contrast P[κ < 9465] ≈ 0.999. Simulating
a Standard Restore process with K = 9465 would be very computationally
intensive. Even if simulating the inhomogeneous rate could be done without
using thinning, we have E[κ(X)] ≈ 368, so simulation would still be slow. On
the other hand, if it were possible to use κ+ as the regeneration rate, truncation
level K+ = 19.64 would be appropriate and hence simulation could be done
much more efficiently.

To better understand why the regeneration rate becomes so large, consider the
state xi∗ such that κ(xi∗) = 0. This state satisfies xi∗ = arg maxx1,x2,...,xn −κ̃(xi)π(xi)/µ(xi).
In a sense, this is the state that is most onerous on the regeneration constant,
forcing C to be very large in order to compensate for the values of κ̃(xi∗), π(xi∗)
and µ(xi∗). Here, one component of xi∗ in the tails of π and even further into
the tails of µ, meaning ratio µ/π is tiny. The other components are near to
the mode of the corresponding marginals of µ and π, where the curvature is
relatively large and hence κ̃ is negative. Thus constant C must compensate for
the fact that µ is poorly suited to π, which pushes up κ in all parts of the space.
Figure 3 illustrates this. The following subsection introduces the minimal re-
generation distribution and rate, which may be used to ensure the regeneration
rate does not become extremely large.
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Figure 3: KDEs of marginals of π in black. In green, µ the standard normal.
Vertical dashed lines show the relevant component of xi∗ .
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Figure 4: Five tours of a Minimal Brownian Motion Restore process with π ≡
N (0, 1). The first and last output state of each tour is shown by a green dot
and red cross respectively. The gray horizontal lines mark the support of µ+.

2.4.4. Minimal Brownian Motion Restore

A Minimal Brownian Motion Restore process is defined by enriching an un-
derlying Brownian Motion with regenerations from distribution (8) at rate (7),
with κ̃ given by 9. Figure 4 shows five tours of a Minimal Brownian Motion
Restore process. Green dots and red crosses show the first and last output state
of each tour. In this example, µ+ is supported on the interval [−1, 1], shown
by gray lines. Note that the process always regenerates from outside to inside
this interval and that in comparison to Figure 1, the tours of the process are on
average much longer.

An advantage of Minimal Brownian Motion Restore is that it reduces com-
putational expense. A useful feature of κ+ is that to ensure P [κ+ < K+] < 1− ε
is satisfied, for ε > 0 a small constant (e.g. ε = 0.001), K+ scales logarithmically
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Figure 5: For π ≡ N (0, I), plot of K+ so that P [κ+(X) < K+] = 1 − ε; ε =
0.01, 0.001, 0.0001.

with dimension d. To see this, consider X ∼ N (0, I). Then,

P [κ+(X) < K+] = P [0.5(xTx− d) < K+] = P

 d∑
i=1

x2i < 2K+ + d

 = P [Q < 2K+ + d],

for Q ∼ χ2
d. Figure 5 shows K+ so that P [κ+(X) < K+] < 1 − ε for ε =

0.01, 0.001, 0.0001. Thus for a 100-dimensional Gaussian target distribution, the
truncation level K+ = 30 would likely be appropriate. As a caveat, some func-
tions, such as f(x) = xTx, are very sensitive to K+ so an even more conservative
choice of K+ might be necessary. Furthermore, κ̃ may prove impossible to derive
in realistic situations.

3. Adapting the Regeneration Distribution

Section 2 demonstrated that choosing the regeneration measure is challenging.
Firstly, this measure must ensure that κ(x) > 0,∀x ∈ Rd. Secondly, it’s desirable
that the resulting κ is not too large. An Adaptive Restore process satisfies both
these properties. It is defined by enriching some underlying continuous-time
Markov process with regenerations at rate κ+ from, at time t, a distribution
µt. Initially, the regeneration distribution is µ0. The regeneration distribution is
updated by adding point masses at certain time points. Let πt be the stationary
distribution of the Restore process with fixed regeneration distribution µt. We
have simultaneous convergence of (µt, πt) to (µ+, π). The density of µt is given
by

µt(x) =

{
µ0(x), if N(t) = 0,
t
a+t

1
N(t)

∑N(t)
i=1 δXζi (x) + a

a+tµ0(x), if N(t) > 0,
(10)

where a > 0 is some constant, µ0 is some fixed initial distribution and ζ1, ζ2, . . . , ζN(t)

are the arrival times of an inhomogeneous Poisson process (N(t) : t ≥ 0) with



/Adaptive Restore 12

rate

t 7→ κ−(Xt),

κ−(x) := [0 ∨ −κ̃(x)].

The rate κ− Poisson process is simulated using Poisson thinning, so it is assumed
that there exists a constant

K− := sup
x∈X

κ−(x),

such that K− > 0. The distribution µt is therefore a mixture of a fixed distribu-

tion µ0 and a discrete measure N(t)−1
∑N(t)
i=1 δXζi (x). The constant a is called

the discrete measure dominance time, since it is the time at which regeneration
is more likely to be from the discrete measure in the mixture distribution.

Algorithm 2 describes the method. Three Poisson processes, one homogenous
and two inhomogeneous, are simulated in parallel. Here, the process is generated
for a fixed number of tours, though another condition such as the number of
samples or simulation time could equally be used.

Algorithm 2: Adaptive Brownian Motion Restore

t← 0, E ← ∅, i← 0, X ∼ µ0.
while i < n do

τ̃ ∼ Exp(K+), s ∼ Exp(Λ0), ζ̃ ∼ Exp(K−).
if τ̃ < s and τ̃ < ζ̃ then

X ∼ N (X, τ̃), t← t+ τ̃ , u ∼ U [0, 1].
if u < κ+(X)/K+ then

if |E| = 0 then
X ∼ µ0.

else
X ∼ U(E) with probability t/(a+ t), else X ∼ µ0.

end
i← i+ 1.

end

else if s < τ̃ and s < ζ̃ then
X ∼ N (X, s), t← t+ s, record X, t, i.

else

X ∼ N (X, ζ̃), t← t+ ζ̃, u ∼ U [0, 1].
If u < κ−(X)/K− then E ← E ∪ {X}.

end

end

Figure 6 shows the path of an Adaptive Restore process with π ≡ N (0, 1), µ0 ≡
N (2, 1) and a = 10. The regeneration rate κ+ encourages the process to drift
to towards the origin, where the target distribution is centred. To allow conver-
gence of the process, one might want to only record output after some burn-in
time b.
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Figure 6: Path of an Adaptive Restore process with π ≡ N (0, 1), µ0 ≡
N (2, 1), a = 10. Green dots and red crosses show the first and last output
states of each tour.

Note that for Adaptive Restore, one can’t straightforwardly apply the method
described in 2.2 in order to estimate the normalizing constant Z. This is because
we do not explicitly set constant C̃ and hence cannot use equation (6).

3.1. Choice of initial regeneration distribution and parameters

Generally, we set µ0 to approximate π, e.g., µ0 ≡ N (0, I) (π undergoes a pre-
transformation based on its Laplace approximation, as described in Appendix
B, so that the transformed π is approximately N (0, I)). Setting µ0 as a more
sophisticated approximation of µ+ might lead to faster converge, but for the
example problems considered, this simpler choice of µ0 suffices.

There is a tradeoff in choosing a, the discrete measure dominance time. Em-
pirical experiments have shown that smaller choices of a can lead to faster
convergence. However, a larger value of a encourages more regenerations from
µ0, which makes it more likely for {Xt}t≥0 to explore regions it has not previ-
ously visited. For the examples in this paper, we selected values of a between
1,000 and 10,000.

Lastly, for the examples of this paper, K+ and K− were selected based on
the quantile functions of κ̃, approximated using the output of a preliminary
Markov chain run generated with a Metropolis-Hastings algorithm. It may be
possible to learn suitable values of K+ and K− on-the-fly, without the need for
a preliminary run of a Markov chain. Assuming π is d-dimensional and close
to Gaussian, a sensible initial guess of K− is d/2 (see 2.4.4), which could then
be adjusted as necessary. Similarly, a sensible initial estimate for K+ could be
made based on the cumulative distribution function of a chi-squared random
variable (again see 2.4.4) then adjusted by monitoring how often κ exceeds this
truncation level.
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3.2. Connections with ReScaLE

Although inspired by the Restore algorithm of Wang et al. (2021), the Adaptive
Restore algorithm presented in Algorithm 2 has many connections to quasi-
stationary Monte Carlo (QSMC) methods such as the ScaLE Algorithm of Pol-
lock et al. (2020b), and particularly the ReScaLE algorithm of Kumar (2019).

Indeed, ScaLE and ReScaLE can be seen as instances of Restore where the
regeneration distribution is chosen to be the target, which is then learnt adap-
tively: the killing rate for QSMC methods is given by

κ = κ̃+ C,

and in the case of ReScaLE, at a killing time T , the process is regenerated from
its empirical occupation measure:

XT ∼
1

T

∫ T

0

δXs ds. (11)

The key motivation behind ScaLE and ReScaLE was applicability to tall data
problems, due to the applicability of exact subsampling techniques Pollock et al.
(2020b); Kumar (2019), however sampling from (11) is somewhat delicate due
to the need to simulate complex diffusion bridges.

By contrast, although Adaptive Restore does not straightforwardly permit
exact subsampling, its regeneration mechanism is considerably simpler to im-
plement, and it is only required to adaptively learn the compactly-supported
distribution µ+. ReScaLE need learn the entire distribution π—approximated
by the trajectory of the diffusion path – on Rd for its regeneration mechanism,
and thus the two algorithms—although similar in many regards—can be seen
as complementary.

4. Theory

In this section we will establish the validity of the Adaptive Restore algorithm,
as described in Algorithm 2. In general, this is a difficult task since the process
is self-reinforcing, on a noncompact state space; most works in the literature are
for compact state spaces, an exception being Mailler and Villemonais (2020).
In our present setting, we will thus establish validity by showing that the mea-
sures µt in (10) converges weakly almost surely to the minimal regeneration
distribution µ+ as in (8), which ultimately implies validity of the Adaptive Re-
store algorithm. For this theoretical analysis, we consider a fixed regeneration
rate; in particular we do not consider questions related to truncating a possibly
divergent regeneration rate.

This section is self-contained, to be illustrated by numerical experiments in
Section 5.
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4.1. Summary of theoretical contributions and related work

The theoretical analysis in this section is based on stochastic approximation
techniques, following a similar overall approach as in the sequence of previous
works already cite. Our proof most closely follows the approaches of Benäım
et al. (2018); Wang et al. (2020), with several key novelties. The former shows
almost sure convergence of stochastic approximation algorithms for discrete-
time processes on compact spaces. By focussing our attention on the measures
µt, which in our present setting are supported on a compact set, we will be able
to identify an appropriate embedded discrete-time Markov chain, to which we
can apply their main results. Thus the main technical work of this section is
identifying the appropriate discrete-time structure, and then checking that the
relevant hypotheses are satisfied.

A further difference between our present analysis and the previous works
cited above concerns the nature of the killing mechanism. In all previous works,
the killing mechanism was given by an additional random clock τ∂ of the form

τ∂ := inf

{
s ≥ 0 :

∫ s

0

κ(Xu) du ≥ ξ
}
, (12)

for an appropriate killing rate κ : X → [0,∞] and ξ ∼ Exp(1) independent (in
discrete-time settings the obvious modifications need to be made).

By contrast, our present setting is considering two competing clocks ζ and T ,
each of which defined as in (12) with their own respective arrival rates κ± and
independent exponential random variables ξ, ξ′. A ‘killing’ event in our setting
is then the event

ζ < T,

namely that the clock with rate κ− rings before the clock with rate κ+.
Even with these key differences, we show in this section that the general

stochastic approximation approach of Benäım et al. (2018); Wang et al. (2020)
can still be applied, and thus we deduce almost sure weak convergence of the
measures µt.

4.2. Diffusion setting and Restore process

We assume that we are given some underlying local dynamics on the Euclidean
space Rd, with generator L, assumed to be a self-adjoint (reversible) diffusion:

dXt = ∇A(Xt) dt+ dWt. (13)

For simplicity one can assume (13) to be a Brownian motion with A ≡ 0. This
is a symmetric diffusion, with a self-adjoint generator L on the Hilbert space
L2(Γ), where

Γ(dy) = γ(y) dy, γ(y) = exp(2A(y)), ∀y ∈ Rd.
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For Brownian motion, Γ reduces to Lebesgue measure, and we often work in
that case for notational simplicity; but the analysis extends to the more general
reversible case.

We have fixed a target density π on Rd. We then define a partial killing rate
κ̃, which comes from Wang et al. (2019): κ̃ : Rd → R,

κ̃(y) :=
1

2

(
∆π

π
− 2∇A · ∇π

π
− 2∆A

)
(y), y ∈ Rd.

In the special case of Brownian motion (A ≡ 0), this reduces to (9).
We then define the positive and negative parts:

κ+ := κ̃ ∨ 0, κ− := −(κ̃ ∧ 0).

We make the following regularity assumptions (c.f. Wang et al. (2019)).

Assumption 1. A is smooth (C∞), such that the SDE (13) has a unique non-
explosive weak solution. The target density π is smooth and positive, and that∫
π2/ exp(2A) dy < ∞. Thus κ̃ is continuous, which implies that the functions

κ+, κ− are continuous.
Furthermore, κ− ≤ K− uniformly for some K− > 0.

Assumption 2. The support of κ− is bounded: the set

X := {x ∈ Rd : κ̃(x) ≤ 0}

is a compact subset of Rd.
Remark 1. When we use Brownian motion as local dynamics, this is a weak
condition, holding for instance when π satisfies a suitable sub-exponential tail
condition (Wang et al., 2019).

Thus, the sub-Markov semigroup corresponding to the diffusion X, killed
at rate κ+ can also be realised as a self-adjoint semigroup on L2(Γ). Further-

more, there exists a transition sub-density pκ
+

(t, x, y), as in Kolb and Steinsaltz
(2012), following from the derivation of Demuth and van Casteren (2000): writ-
ing T1 for the first killing event,

Ex[f(Xt)It<T1 ] =

∫
pκ

+

(t, x, y)f(y) dy. (14)

From Demuth and van Casteren (2000), the function (t, x, y) 7→ pκ
+

(t, x, y) will
be jointly continuous and symmetric in x, y.

Assumption 3. The killing time T1 has uniformly bounded expectation on X :
supx∈X Ex[T1] <∞.
Remark 2. This is a very weak assumption, since X is a compact set. A much
stronger condition will be satisfied—uniform bounded expectation over the en-
tirety of Rd for Brownian motion—if the killing rate satisfies

lim inf
‖x‖→∞

κ̃(x) > 0,

which is the case when π possesses a sub-exponential tail; see Wang et al. (2019).
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We shall also require the following elementary identity.

Lemma 4.1. For any x ∈ X , we have the identity

Ex[T1] =

∫ ∞
0

dt

∫
dy pκ

+

(t, x, y).

4.3. Restore process

Recall the minimal regeneration distribution, as in (8), which has a density
function with respect to Lebesgue measure on Rd, compactly supported on X ,
given by

µ+(y) :=
1

C+
π(y)κ−(y),

where C+ :=
∫
π(y)κ−(y) dy is the normalizing constant.

We consider now running a Restore process X with local dynamics (13) de-
scribed by infinitesimal generator L, regeneration rate κ+ and regeneration dis-
tribution µ. If µ = µ+, then π will be the invariant distribution of X under
appropriate regularity conditions; see Wang et al. (2021).

The goal of the Adaptive Restore algorithm is to learn µ+ adaptively, by
running an additional Poisson process with rate function

t 7→ κ−(Xt).

These auxiliary arrival times will be used to construct the adaptive estimate of
µ+.

Notationally, we will use letters T, T1, T2, . . . to refer to regeneration times
of the Restore process, which arrive with rate κ+(Xt), and ζ, ζ1, ζ2, . . . to refer
to the addition events which arrive with rate κ−(Xt).

In particular, for a Restore process with local dynamics L, regeneration rate
κ+ and regeneration distribution µ—abbreviated into Restore(L, κ+, µ)—we
have, XTi ∼ µ.

We have the following representation from Wang et al. (2021) of the invariant
measure of Restore(L, κ, µ):

Πκ(µ)(dy) ∝
∫
µ(dx)

∫ ∞
0

dt pκ(t, x, y) dy.

In particular, we must therefore have the identity

π(y) ∝
∫
µ+(dx)

∫ ∞
0

dt pκ
+

(t, x, y). (15)
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4.4. Discrete-time system

For now we imagine the rebirth distribution to be a fixed (but arbitrary) measure
µ and consider the Restore(L, κ+, µ) process, with additional events (ζi)

∞
i=1 at

rate κ−(Xt). We will let Ex denote the expectation under the law of this Restore
process X initialised from X0 = x. We are interested in studying the behaviour
of the points (Xζ1 , Xζ2 , . . . ).

Our first goal is to show that this sequence is in fact a Markov chain, and
give an expression for its transition kernel. To reduce notational clutter, we will
write ζ := ζ1, and T := T1 for the first κ− or regeneration events respectively:

ζ := inf

{
s ≥ 0 :

∫ s

0

κ−(Xu) du ≥ ξ
}
,

T := inf

{
s ≥ 0 :

∫ s

0

κ+(Xu) du ≥ ξ′
}
,

where ξ, ξ′ ∼ Exp(1) are independent of each other and of all other random
variables.

Lemma 4.2. Defining for each i ∈ N, Yi := Xζi , the sequence (Yi)
∞
i=1 is a

Markov chain on X .

Proof. This follows from the fact that the underlying Restore process X is a
strong Markov process, and the fact that the Poisson processes have independent
exponential random variables.

We now define a Markov sub-kernel Q(x, dy) on X which will be crucial to
describing the transition kernel of the chain Y . The kernel is defined, for any
integrable f : X → R, by

Qf(x) := Ex[f(Xζ) Iζ<T ].

We can then define q : X → [0, 1] by

q(x) := 1−Q1(x) = 1− Px(ζ < T ) = Px(T ≤ ζ).

We can also define a proper Markov kernel,

Q0(x, ·) :=
Q(x, ·)
Q(x,X )

= Ex[f(Xζ)|ζ < T ].

We need the following technical result; namely, we check (Benäım et al., 2018,
Hypotheses H1, H2).

Lemma 4.3. Q is Feller, and defining the augmented kernel Q̄ on X ∪ {∂},
where ∂ /∈ X represents an absorbing state,

Q̄(x,dy) := Q(x,dy)Ix∈X + q(x)δ∂(dy)Ix∈X + δ∂(dy)Ix∈{∂},

we have that ∂ is accessible for Q̄.
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Proof. The Feller property holds by the representation (14). Accessibility of ∂
is immediate, since started from anywhere, the diffusion path can (eventually)
be killed.

Proposition 4.4. The Markov chain Y has transition kernel Qµ(x, dy) on X
given by

Qµ(x, dy) = Q(x, dy) + q(x)
µQ(dy)

µQ1

=
(
1− q(x)

)
Q0(x,dy) + q(x)

µQ(dy)

Pµ(ζ < T )
.

4.5. Adaptive reinforced process

We are interested in studying the limiting behaviour of

µn :=
1

n

n∑
i=1

δYi ,

where now the (Yi) are generated as follows:

Yn+1|(Y0, Y1, . . . , Yn) ∼ Qµn(Yn, ·). (16)

This corresponds to our Adaptive Restore algorithm (Algorithm 2), where we
are learning an approximation to the minimal rebirth distribution. Our goal will
be to show the almost sure weak convergence of µn → µ+ as n → ∞. We will
utilise the approach of Benäım et al. (2018).

4.6. Fixed point analysis

In order to understand the limiting properties of the self-reinforcing process (Yi)
in (16), we need to study the properties of the Qµ kernels.

We have the following useful representation. We write P(X ) for the space of
probability measures on X .

Lemma 4.5. For any bounded continuous f , we have for x ∈ X ,

Af(x) :=
∑
n≥1

Qn(x, f) =

∫ ∞
0

dt

∫
dy pκ

+

(t, x, y)f(y)κ−(y).

The nonnegative kernel A is also a bounded kernel on X : A1(x) ≤ ‖A‖∞ <
∞. Furthermore, there exists δ > 0 such that for any x ∈ X , δ ≤ A1(x).
This implies Lipschitz continuity (with respect to total variation) of the map
P(X )→ P(X ) given by

µ 7→ Πµ :=
µA
µA1

.

Proposition 4.6. Given a fixed probability measure µ on X , the invariant dis-
tribution of the kernel Qµ is proportional to µA, where A is the kernel

∑
n≥1Q

n.



/Adaptive Restore 20

4.7. Limiting ODE flow

The limiting flow can be defined just as in Benäım et al. (2018, Section 5),
since we have the appropriate assumptions in force; Lemma 4.3 and also the
Lipschitz property of µ 7→ Πµ, Lemma 4.5. In other words, we also have, from
Benäım et al. (2018, Proposition 5.1), an injective semi-flow Φ on P(X ) such
that t 7→ Φt(µ) is the unique weak solution to

µ̇t = −µt + Πµt , µ0 = µ.

We need to check global asymptotic stability, and to do this we will follow the
approach in Wang et al. (2020).

In particular, we need to identify the eigenfunctions of A.

Proposition 4.7. We have that, for µ+ the minimal rebirth distribution, µ+A ∝
µ+, and defining ϕ := π|X to be the restriction of π to X , Aϕ = βϕ, where
β := C+Eµ+ [T1].

Given the preceding results, we can now conclude the following.

Proposition 4.8. We have that µ+ is a global attractor for the semi-flow Φ:
we have convergence Φt(µ)→ µ+ uniformly in µ in total variation distance.

Proof. Since we have obtained uniform upper and lower bounds on 0 < δ ≤
A1(x) ≤ K− supx∈X [T1] from Lemma 4.5, the proof is identical to the proof of
Wang et al. (2020, Theorem 3.6), and hence omitted.

4.8. Asymptotic pseudo-trajectories

We secondly need to demonstrate that our trajectories (n 7→ µn), once suitably
embedded in continuous time, are an asymptotic pseudo-trajectory for the semi-
flow Φ defined in Section 4.7.

The key technical challenge to establishing this is to prove an analogue of
Benäım et al. (2018, Lemma 6.2) in our setting. Once that is in place, everything
else follow identically from Benäım et al. (2018, Section 6).

We need the following Lipschitz property, where the total variation norm for
a signed measure ν on X is defined as

‖ν‖TV := sup{|ν(f)| : f : X → R bounded measurable, ‖f‖∞ ≤ 1}.

Lemma 4.9. For probability measures µ, ν ∈ P(X ) and j ∈ N, with CL := 2/δ,

sup
α∈P(X )

‖αQjµ − αQjν‖TV ≤ CL2j‖µ− ν‖TV,

and for each bounded function f ,

sup
x∈X
‖Qjµ(x, f)−Qjν(x, f)‖TV ≤ CL2j‖f‖∞‖µ− ν‖TV.
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With this result, the rest of the approach of Benäım et al. (2018, Section 6)
goes through to establish the desired result.

Theorem 4.10. Under our Assumptions 1–3, almost surely, the sequence (µn)
converges weakly to the minimal regeneration distribution µ+.

Proof. By embedding the sequence (µn) into continuous time as in Benäım et al.
(2018, Section 6.1), the resulting process (µ̂t) is an asymptotic pseudo-trajectory
of Φ, by Lemma 4.9 and Benäım et al. (2018, Theorem 6.4). Combined with
Proposition 4.8, this proves the result; see Benäım (1999).

5. Examples

The examples presented show that Adaptive Restore can significantly decrease
the truncation level used for simulation of the algorithm. This is especially the
case when π has skewed tails.

5.1. Transformed Beta Distribution

We experiment with sampling from a distribution with density

π(x) = 6e2x(ex + 1)−4.

Appendix J explains how this distribution is derived from the transformation
of a Beta distribution. It happens that κ̃(x) < 2,∀x ∈ R, which makes this
distribution a useful test case, since an Adaptive Restore process may be effi-
ciently simulated without any truncation of the regeneration rate. In addition,
the first and second moments, 0 and (π2− 6)/3, may be computed analytically.
Here, K− = 0.5. Taking µ0 ≡ N (0.5, 1) we simulated 200 Adaptive Restore
processes each with a burn-in period of b = 5 106 followed by a period of length
106 during which output was recorded at rate 10. We deliberately chose µ0 to be
centred away from the mean of π, in order to test that the process still converges.
The discrete measure dominance time was 1000: 106 estimates of first moment
were greater than the exact first moment; 98 estimates of the second moment
were greater than the exact second moment. This indicates the processes have
(approximately) converged to the correct invariant distribution.

5.2. Logistic Regression Model of Breast Cancer

We used Adaptive Restore to simulate from the (transformed) posterior of a
Logistic Regression model of breast cancer (d = 10). This model was first used
in 2.4.3 to demonstrate that K can become very large; in this case, for Standard
Restore with µ ≡ N (0, I), a sensible choice is K = 9465. Details of the data and
prior are given in appendix I.

We simulated an Adaptive Restore process with µ0 ≡ N (0, Id) and param-
eters K− = 5.2,K+ = 19.64,Λ0 = 10.0, a = 1000, b = 6 106, T = 106. We
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Figure 7: Estimates of the mean of each marginal of the (transformed) posterior
distribution of a Logistic Regression model of Breast Cancer. Circles show a
Random Walk Metropolis estimate, crosses an Adaptive Restore estimate.

chose a long burn-in time because other experiments have shown that this is
necessary for convergence of (µt, πt). To check the estimate, we generated 106

samples using the Random Walk Metropolis algorithm, first tuning the scale
of the symmetric proposal distribution and using a thinning interval of 50 so
that the samples had small autocorrelation. Figure 7 plots the estimate of the
mean of each marginal for the Random Walk Metropolis estimate (circles) and
the Adaptive Restore estimate (crosses). The Euclidean distance between these
estimates was 0.014 (2.s.f).

5.3. Hierarchical Model of Pump Failure

Consider the following hierarchical model of pump failure (Carlin and Gelfand,
1991):

Ri ∼ Poisson(X ′iti); i = 1, 2, . . . , 10;

X ′i ∼ Gamma(c1, X
′
11); i = 1, 2 . . . , 10;

X ′11 ∼ InverseGamma(c2, c3);

with constants c1 = 1.802, c2 = 2.01, c3 = 1.01. Observation Ri (i = 1, 2, . . . , 10)
is the number of recorded failures of pump i, which is observed for a unit of
time ti (i = 1, 2, . . . , 10). The failure rate of pump i is X ′i (i = 1, . . . , 10). Before
sampling, we transformed the posterior to be defined on Rd by making a change-
of-variables, defining Xi = logX ′i (i = 1, . . . , 10). We then transformed the
posterior again, based on its Laplace approximation, as described in Appendix
B.

The posterior exhibits heavy and skewed tails. Because of this, under Stan-
dard Restore with an isotropic Gaussian regeneration distribution, we have
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Eπ[κ(X)] ≈ 1.9 × 107, far too large for simulation to be practical. By con-
trast, Eπ[κ+(X)] ≈ 1. We are able to accurately compute the first moment of
the posterior in less than an hour of simulation time.

5.4. Log-Gaussian Cox Point Process Model

A Log-Gaussian Cox Point Process models a [0, 1]2 area divided into a n×n grid.
The number of points Y = {Yi,j} in each cell is conditionally independent given
latent intensity Λ = {Λi,j} and has Poisson distribution n2Λi,j = n2 exp{Xi,j}.
The latent field is X = {Xi,j}. Assume X is a Gaussian process with mean
vector zero and covariance function

Σ(i,j),(i′,j′) = exp{−δ(i, i′; j, j′)/n},

where δ(i, i′; j, j′) = ((i− i′)2 + (j − j′)2)1/2. We have:

log π(x|y) =
∑
i,j

yi,jxi,j − n2 exp{xi,j} −
1

2
xTΣ−1x+ const.

We present results for simulated data on a 5 by 5 grid, so d = 25. After
transformation (again, see Appendix B), the posterior distribution of this model
is close to an Isotropic Gaussian distribution. For standard Restore setting µ ≡
N (0, I) results in P[κ(X) < 181] ≈ 0.9999 and E[κ(X)] ≈ 19.5. Thus K = 181
would be appropriate.

For Adaptive Restore we have P[κ+ < 18.5] ≈ 0.9999 and E[κ+(X)] ≈ 1.4.
Thus Adaptive Restore reduces both the necessary truncation level and aver-
age regeneration rate by a factor of 10. However, simulation runs indicate that
convergence of the Adaptive process for this d = 25 posterior is slow. Though
µt does not need to adapt to account for skew so much, it still needs to change
significantly so that it is centred correctly—this is harder in higher dimensions.

5.5. Multivariate t-distribution

Recall that a d-dimensional multivariate t-distribution with mean m, scale ma-
trix Σ and ν degrees of freedom has density:

π(x) ∝
[
1 +

1

ν
(x−m)TΣ−1(x−m)

]−(ν+d)/2
.

We consider sampling from a bivariate t-distribution with ν = 10, zero mean
and identity scale matrix. We then have κ+(x) < 1.55,∀x ∈ Rd (this bound is
not tight), so can take K+ = 1.55 (no need to truncate κ). In general, Restore
processes are particularly well suited to simulating from t-distributions, since the
regeneration rate is naturally bounded. For this example, we can take K− = 1.2.
The process is quickly able to recover the true variance of each marginal of the
target distribution, which is ν/(ν − 2). Figure 8 shows contours of κ̃, κ+ and
µ+. A notable feature is that, moving outwards from the origin, κ+ rises to its
maximum value then asymptotically tends to zero.
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Figure 8: Contours of κ̃, κ+ and µ+ for π a bivariate t-distribution with ν = 10.

5.6. Mixture of Gaussian distributions

Multi-modal posterior distributions sometimes arise in Bayesian modelling prob-
lems. For example, the standard two-parameter Ising model (Geyer, 1991) is bi-
modal for some parameter combinations; a model of a problem concerning sensor
network location (Ihler et al., 2005) is a popular example that features in many
papers (Ahn et al., 2013; Lan et al., 2014; Pompe et al., 2020). Standard MCMC
algorithms struggle to sample multi-modal distributions because the area of low
probability density between modes acts as a barrier that is difficult to cross.
Several techniques have been developed specifically for multi-modal posteriors,
which generally fall under tempering (Geyer, 1991; Marinari and Parisi, 1992)
and mode-hopping strategies (Tjelmeland and Hegstad, 2001; Ahn et al., 2013).

We explore the use of an Adaptive Restore process for simulating from the
Gaussian mixture distribution

π(x) = w1N (x;m1,Σ1) + w2N (x;m2,Σ2),

for w1 = 0.4, w2 = 0.6,m1 = (1.05, 1.05),m2 = (−1.05,−1.05),

Σ1 =

(
1 −0.1
−0.1 1

)
and Σ2 =

(
1 0.1

0.1 1

)
.

Figure 9 shows contour plots of the density of π and κ+. In particular, figure 9b
shows that the region for which κ+ is zero, which corresponds to the support
of µ+, consists of two separate non-connected areas. For Standard Restore and
Adaptive Restore, we set µ and µ0 respectively to N (0, 3I).

Standard Restore was able to sample from this distribution well, even though
we had to set K = 1000 so that the truncation wouldn’t overly affect κ. Setting
Λ0 = 10, a simulation time of T = 10000 generated samples which produced
an estimate of the mean that had Root Mean Square Error (RMSE) 0.00358
(3.s.f). Simulation took 3.5 minutes.
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Figure 9: Density of π and κ+ for π a mixture of bivariate Gaussian distributions.

By comparison, Adaptive Restore allows the truncation level to be much
reduced, to K+ = 20. We set a = 10, 000 to allow both modes to be explored
before the discrete measure became dominant. A burn-in time of b = 900, 000
and simulation time of T = 100, 000 took 6 minutes. Setting Λ0 = 1, so that in
expectation the number of samples produced equals that for Standard Restore,
the RMSE was 0.0555 (3.s.f).

In analogue to similar schemes based on stochastic approximation Aldous
et al. (1988); Blanchet et al. (2016); Benäım et al. (2018); Mailler and Villemon-
ais (2020), this slow convergence is a result of the urn-like behaviour intrinsic to
such methods. Although the chain is guaranteed to converge asymptotically, in
finite time the chain is naturally inclined to visit regions it has visited before.
For example, even on a finite state space, Benäım and Cloez (2015, Corollary
1.3) shows convergence can occur in some cases at a very slow polynomial rate.

Thus in practice, we suggest a judicious choice of initial distribution µ0 and
constant a as in Algorithm 2, to ensure that the measures µt quickly place some
mass in all modes of the target distribution.

6. Discussion

This article has introduced the Adaptive Restore process, an extension of the
Restore process (Wang et al., 2021), which adapts the regeneration distribution
on the fly. Like Standard Restore, Adaptive Restore benefits from global moves.
For target distributions that are hard to approximate with a parametric distri-
bution, Adaptive Restore is more suitable than Standard Restore, because its
use of the minimal regeneration rate makes simulation computationally feasi-
ble. In comparison to simpler algorithms such as Random Walk Metropolis, the
process can still be slow to simulate and convergence appears to be slow when
the target is multimodal. However, the algorithm shows promise in sampling
distributions with skewed tails, for which Standard Restore can be computa-
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tionally intractable. From a theoretical perspective, we have demonstrated how
the framework of stochastic approximation can be successfully applied to a novel
class of Markov processes.

Global dynamics allow the Adaptive Restore process to make large moves
across the space, a property shared by Standard Restore. This feature is desir-
able for MCMC samplers (since it results in a Markov chain with smaller auto-
correlation) and has motivated the development of algorithms such as Hamilto-
nian Monte Carlo (HMC) (Duane et al., 1987; Neal et al., 2011) or its special
case, the No-U-Turns Sampler (NUTS) (Hoffman and Gelman, 2014). Crucially,
as the dimension d of π increases, µ+ remains close to π. Indeed, it is shown in
(Wang, 2020, Section 5.6) for several examples that µ+ has a stable behaviour
in the high-dimensional d → ∞ limit. This means that, unlike other meth-
ods making use of global regenerative moves via the independence sampler and
Nummelin splitting (Nummelin, 1978; Mykland et al., 1995), global moves are
more likely to be to areas of the space where π has significant mass.

Experiments on a number of target distributions have highlighted that the
Restore process is particularly effective at simulating from heavy-tailed distribu-
tions, a class of distributions that other samplers can struggle with (Mengersen
and Tweedie, 1996; Roberts and Tweedie, 1996a,b). A heuristic explanation for
this behaviour is that regeneration is a useful mechanism for allowing the sam-
pler to escape the tails of the distribution and move back to the centre of the
space.

A large benefit of Adaptive Restore over Standard Restore is its use of the
minimal regeneration rate. We have shown via an example that even for a sen-
sible choice of fixed µ, the corresponding rate κ can be extremely large in parts
of the space. While frequent regeneration is not in itself a bad thing, frequent
regeneration into regions of low probability mass is computationally wasteful.
Using κ+ results in π and its derivatives being evaluated far less.

Some properties of Standard Restore that are unfortunately not inherited by
Adaptive Restore are independent and identically distributed tours, an absence
of burn-in period and the ability to estimate normalizing constants, unless a
fixed regeneration distribution is used in parallel. Moreover, convergence appears
to be slow for multi-modal distributions. Since tours begin with distribution µt
and this distributed changes over time, tours are no longer independent and
identically distributed. A burn-in period is required, during which µt converges
to µ+ and πt, the stationary distribution of the process at time t, converges
to π. For standard Restore, C̃, the regeneration constant with the normalizing
constant Z absorbed, is defined explicitly and hence can be used to recover Z.
On the other hand, for Adaptive Restore this constant is defined implicitly and
thus cannot be used to recover Z, unless adaptivity is stopped for that purpose.

Despite these downsides, Adaptive Restore represents a significant improve-
ment on Standard Restore by making simulation tractable for a wider range
of target distributions. We have shown that simulation of mid-dimensional
target distributions is practical with Adaptive Restore and have presented a
novel application of stochastic approximation to establish convergence of a self-
reinforcing process.
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Bouchard-Côté, A., Vollmer, S. J., and Doucet, A. (2018). The Bouncy Particle
Sampler: A Nonreversible Rejection-Free Markov Chain Monte Carlo Method.
Journal of the American Statistical Association, 113(522):855–867.

Carlin, B. P. and Gelfand, A. E. (1991). An iterative Monte Carlo method for
nonconjugate Bayesian analysis. Statistics and Computing, 1(2):119–128.

Del Moral, P., Doucet, A., and Jasra, A. (2006). Sequential Monte Carlo sam-
plers. Journal of the Royal Statistical Society: Series B (Statistical Method-
ology), 68(3):411–436.

Demuth, M. and van Casteren, J. A. (2000). Stochastic Spectral Theory for
Selfadjoint Feller Operators: a functional integration approach. Birkhäuser
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Appendix A: Output

When output times are fixed, let {t1, t2, . . . } be an evenly spaced mesh of times,
with ti = i∆ for i = 1, 2, . . . and ∆ > 0 some constant. When output times are
random, let {t1, t2, . . . } be the events of a homogeneous Poisson process with
rate Λ0 > 0. In either case, the output of the process is {Xt1 , Xt2 , . . . }. Suppose
there are n output states, then we estimate expectations using the unbiased
approximation:

π[f ] ≈ 1

n

n∑
i=1

f(Xti).

Algorithmically, there is little difference between using fixed and random output
times. The memoryless property of Poisson processes allows one to generate the
next potential regeneration and output events, τ̃ and s, simulate the process
forward in time by τ̃ ∨ s, then discard both τ̃ and s. When using a fixed mesh
of times, the memoryless property no longer applies, so one must keep track of
the times of the next output and potential regeneration events.

Appendix B: Pre-transformation of the target distribution

In the multi-dimensional setting, the Brownian Motion Restore sampler is far
more efficient at sampling target distributions for which the correlation between
variables is small. Rate κ̃ is more symmetrical for target distributions π with
near-symmetrical covariance matrices. Since the Markov transition kernel for
Brownian motion over a finite period of time is symmetrical, local moves are
better suited to near-symmetrical target distributions.

More generally, the parameterization of π has a large effect on Bayesian
methods (Hills and Smith, 1992). In practice, we recommend making a trans-
formation so that the transformed target distribution has mean close to zero
and covariance matrix close to the identity. Suppose we have X ∼ N (m,Σ) and
that Σ = V ΛV T for V a matrix with columns the eigenvectors of Σ and the cor-
responding eigenvalues forming a diagonal matrix Λ. Then for X ′ ∼ N (0, Id),
we have X = Σ1/2X ′ + m, where Σ1/2 = V Λ1/2 and Λ1/2 is a diagonal ma-
trix with entries the square roots of the eigenvalues of Σ. It follows that when
X is roughly Gaussian, with mean and covariance matrix m and Σ, letting
Σ−1/2 = (Σ1/2)−1, transformed variable X ′ = Σ−1/2(X −m) should be close to
an isotropic Gaussian. By the change of variables formula:

πX′(x
′) = πX(x)

∣∣∣∣ dx

dx′

∣∣∣∣ = πX
(
Σ1/2x′ +m

)
|Σ1/2|.

In computing the gradient and Laplacian of the energy of the transformed dis-
tribution, one must use the chain-rule to take into account the matrix Σ1/2.
Samples obtained from πX′ may be transformed to have distribution πX .
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In most of the examples presented in this paper, the target distribution un-
dergoes a pre-transformation as above, with m and Σ estimated by a Laplace
approximation. For notational simplicity, we will continue to refer to sampling
random variable X with distribution π, even when in actual fact we are sam-
pling the transformed distribution πX′ corresponding to transformed variable
X ′. We make the Laplace approximation using the “optim” function in R (R
Core Team, 2021), which uses numerical methods to find the mode of π and the
Hessian matrix of log π at the mode.

Appendix C: Proof of Lemma 4.1

We have: ∫ ∞
0

dt

∫
X

dy pκ
+

(t, x, y) =

∫ ∞
0

dtPx(T1 ≥ t) = Ex[T1].

Appendix D: Proof of Proposition 4.4

We have already established in Lemma 4.2 that Y is indeed a Markov chain,
and we denote its transition kernel by Qµ(x, dy). Its transition kernel satisfies
the following relation: (noting that by continuity, Px(ζ = T ) = 0)

Qµ(x,dy) = Q0(x,dy) · Px(ζ < T ) + µQµ(dy) · Px(ζ > T ). (17)

This is because by the memoryless property of the exponential,

Law

(
ξ −

∫ T

0

κ−(Xu) dy

∣∣∣∣ξ > ∫ T

0

κ−(Xu) du

)
= Exp(1),

and by the strong Markov property, given (ζ > T ), the subsequent evolution of
X at time T is equal in law to (X|X0 ∼ µ).

By recursion of (17), we arrive at the desired conclusion.

Appendix E: Proof of Lemma 4.5

Since we are imposing in Assumption 1 that κ− ≤ K− uniformly, the law of the
sequence of arrivals ζ1, ζ2, . . . is absolutely continuous with respect to the law
of a homogeneous Poisson process ζ̃1, ζ̃2, . . . of rate K−, which is independent
of X and the regenerations.

Now, we consider

QK−(x, f) := Ex[f(Xζ̃1
)Iζ̃1<T1

] =

∫ ∞
0

dtK−e−K
−t

∫
dy pκ

+

(t, x, y)f(y).

Here we have made use of the subdensity (14).
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Now, using the fact that ζ̃n
d
= Gamma(n,K−), or by direct integration, we

obtain

QnK−(x, f) =

∫ ∞
0

dt
(K−)ntn−1e−K

−t

(n− 1)!

∫
dy pκ

+

(t, x, y)f(y).

Therefore,∑
n≥1

QnK−(x, f) =

∫ ∞
0

dt
∑
n≥0

(K−)ntn−1e−K
−t

(n− 1)!

∫
dy pκ

+

(t, x, y)f(y)

= K−
∫ ∞
0

dt

∫
dy pκ

+

(t, x, y)f(y).

We note that this is a finite measure by Lemma 4.1 and Assumption 3; we have
in fact that ‖A‖∞ ≤ K− supx∈X Ex[T1] <∞.

Now consider
∑
n≥1Q

n(x, f). By Poisson thinning, we have the representa-
tion ∑

n≥1

Qn(x, f) =
∑
n≥1

Kn
K−

(
x, f · κ

−

K−

)

=

∫ ∞
0

dt

∫
dy pκ

+

(t, x, y)f(y)κ−(y).

The final point follows straightforwardly from compactness of X and conti-
nuity and positivity of pκ

+

(t, x, y), and Lipschitz continuity follows as in the
proof of Benäım et al. (2018, Proposition 4.5).

Appendix F: Proof of Proposition 4.6

First, we have seen from Lemma 4.5 that µ
∑
n≥1Q

n is a finite measure. We
have the following direct calculation:

µ
∑
n≥1

QnQµ = µ
∑
n≥1

Qn

(
Q+ q

µQ

Pµ(ζ < T )

)

= µ
∑
n≥1

Qn+1 +

µ∑
n≥1

Qnq

P−1µ (ζ < T )µQ.

Since q = 1−Q1, it follows that

µ
∑
n≥1

Qnq = µQ1 = Pµ(ζ < T ),

and hence, as desired:

µ
∑
n≥1

QnQµ = µ
∑
n≥1

Qn+1 + µQ = µ
∑
n≥1

Qn.
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Appendix G: Proof of Proposition 4.7

We directly calculate,

µ+A(y) =

∫
µ+(dx)

∫
dt pκ

+

(t, x, y)κ−(y) ∝ π(y)κ−(y),

since
∫
µ+(dx)

∫
dt pκ

+

(t, x, y) ∝ π(y), because the invariant distribution of
Restore(L, κ+, µ+) is π; see (15). Now for the right eigenfunction, we use Tonelli’s

theorem and symmetry of pκ
+

(t, x, y) with respect to x, y:∫ ∞
0

dt

∫
X

dy pκ
+

(t, x, y)κ−(y)π(y) =

∫
dy π(y)κ−(y)

∫ ∞
0

dt pκ
+

(t, x, y)

=

∫
dy µ+(y)C+

∫ ∞
0

pκ
+

(t, y, x) dt

= C+π(x)Eµ+ [T1].

Appendix H: Proof of Lemma 4.9

Recall that

Qµ(x,dy) = Q(x, dy) + q(x)
µQ(dy)

µQ1
.

So fix α, µ, ν ∈ P(X ). Then we have

‖αQjµ − αQjν‖TV =

∥∥∥∥α(q)
µQ

µQ1
− α(q)

νQ

νQ1

∥∥∥∥
TV

= α(q)

∥∥∥∥ µQµQ1
− νQ

νQ1

∥∥∥∥
TV

≤
∥∥∥∥ µQµQ1

− νQ

νQ1

∥∥∥∥
TV

,

since α(q) ≤ 1. So we need to bound this final term:∥∥∥∥ µQµQ1
− νQ

νQ1

∥∥∥∥
TV

=

∥∥∥∥µQ(νQ1)− (µQ1)νQ

µQ1 νQ1

∥∥∥∥
TV

≤ ‖µQ‖TV

µQ1 νQ1
|νQ1− µQ1|+ |µQ1|‖µQ− νQ‖TV

µQ1 νQ1

≤ ‖µ− ν‖TV‖Q1‖∞
δ

+
‖µ− ν‖TV

δ

≤ 2

δ
‖µ− ν‖TV.

The rest of the proof then proceeds as in Benäım et al. (2018, [Proof of Lemma
6.2).
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Appendix I: Logistic Regression Model of Breast Cancer

The data (Mangasarian and Wolberg, 1990) was obtained from the University
of Wisconsin Hospitals, Madison. The response is whether the breast mass is
benign or malignant. Predictors are features of an image of the breast mass.
The model has dimension d = 10. We used a Gaussian product prior with
variance σ2 = 400. Following Gelman et al. (2008), we scaled the data so that
response variables were defined on {−1, 1}, non-binary predictors had mean 0
and standard deviation 0.5, while binary predictors had mean 0 and range 1.
The posterior distribution was transformed based on its Laplace approximation,
as described by Appendix B.

Appendix J: Density and Partial Regeneration Rate of the
Transformed Beta Distribution

Consider X ′ ∼ Beta(2, 2), so that πX′(x
′) ∝ x′(1− x′) for x′ ∈ [0, 1]. Let X be

defined by the logit transformation of X ′, that is X = log
(

X′

1−X′

)
, so that X

has support on the real line. The inverse of this transformation is X ′ = eX

eX+1
,

so the Jacobian is dx′

dx = ex

(ex+1)2 . Thus X has density:

π(x) = 6
ex

ex + 1

(
1− ex

ex + 1

)
ex

(ex + 1)2
=

6e2x

(ex + 1)4
.

We make no further transformation of the target. The partial regeneration rate
is

κ̃(x) =
4e2x − 12ex + 4

2(ex + 1)2
.
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