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1 Proofs, algorithms, and implicit descrip-
tions

What is a proof? What is it that a proof really does?

One might try to think of a proof as being like an algorithm, in which
terms evolve and a construction is in progress. This is an appealing idea, and
indeed one can often see natural “inputs” for a proof. To make these ideas
more concrete let us consider the concept of feasible numbers. As in [13],
one works in arithmetic but allows an extra unary predicate F(-) for which
the intended meaning of F(n) is that “n is feasible”. All natural numbers
are feasible, but one is interested in the sizes of proofs of feasibility (without
allowing induction over formulas containing F'). A proof of the feasibility of
a number implicitly describes a construction of the number.

More precisely, one allows special rules to say that 0 is a feasible number,
and that feasibility is preserved by taking sums, products, or applying the
successor function. One may wish to consider other special rules, but in any
case a proof of feasibility ought to contain (at least implicitly) a recipe for
constructing the number.

More generally, one can apply the idea of feasibility to other objects in
mathematics, like the elements of a finitely generated group. A proof of fea-
sibility again describes a construction, according to whatever primitive rules
or building blocks one wants to allow. This is discussed in [7]. Thus one
can use lengths of proofs of feasibility as a new way to measure information
content. It provides alternatives to the word metric for finitely generated
groups, for instance. It lends itself well to situations in which there are nat-
ural dynamical processes present. In the context of the rational numbers, for
instance, one has the action of SL(2,Z) on Q by projective transformations,
and this can be used to make short proofs of feasibility [7].

Feasibility provides a language to make explicit the idea of an algorithmic
construction. Through it one can see clearly how proofs can code recur-
sive substitutions, what is the meaning of cycling within a proof [4], and
the exponential and multiexponential effects in proofs in various mathemat-
ical structures [7]. We use it here to motivate combinatorial choices, and
to present a simplified model for the complexity of proofs based only on
combinatorial and geometric notions, without the logical interpretation.

Substitution, recursion, and cycling are phenomena which occur with



quantifier rules, but even with only propositional rules of logic one can al-
ready see interesting effects. Short proofs of feasibility of large numbers can
be built using cuts and contractions, and may present exponential speec-up
over direct constructions [4, 7]. In the basic example one proves F(t) — F(t?)
for any term ¢, and then combines a series of these proofs using cuts to win
an exponential in the exponent. This type of argument is very robust, and
can be extended to other mathematical structures, as in [7].

Proofs, like algorithms, may be seen as descriptions of constructions
rather than actual constructions. To decode them into actual constructions
may require a procedure like cut elimination, which induces large expansion.
(See [8] for an introduction to the combinatorics and complexity of cut elim-
ination.) However, the idea of proofs as algorithms suffers a deficiency. A
proof of the feasibility of a particular number deals only with that number.
Thus proofs may deal with specific objects while algorithms are in essence
more general.

These considerations might lead one to conclude that a proof can repre-
sent an idea for an algorithm rather than an actual algorithm. What about
infinite families of proofs which “look alike”? Can one capture the notion of
“algorithm” in a more complete way through families of proofs? The fami-
lies of short proofs of the feasibility of large numbers in (4] have this flavor,
reflecting a single basic idea even if no one proof alone expresses the general
rule. '

Proofs often come in natural infinite families, as in the examples for
feasible numbers, or the propositional codings of the Pigeon-Hole Principle.
One would like to have ways to compare proofs, to see patterns among them,
and to be able to see infinite families of related proofs as finite pieces of
infinite limiting objects. Limiting objects which one might expect to enjoy
more symmetry than the individual finite approximations, and to reflect the
compactness of some underlying algorithm. Imagine infinite limiting objects
which then have some kind of simple tiling, so that they can be “folded”
like paper down to a small figure. This kind of compression is relevant for
complexity, for obtaining smaller representations.

There is another aspect of symmetry for proofs, and it concerns cut elimi-
nation. If a short proof with cuts becomes much longer after cut elimination,
then one might expect the cut-free version to have a lot of symmetry, ie.,
many similar “patterns”, like many copies of the same subproof. In partic-
ular, if all propositional tautologies admit proofs of polynomial size (as a
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function of the size of the tautology), then one would want to conclude that
this kind of symmetry is frequently present, since propositional tautologies
can often be expected to have only exponentially large cut-free proofs. One
should keep in mind here the well-known fact that there is a propos:tional
proof system in which all tautologies have polynomial-sized proofs if and only
if NP = co-NP [10].

One would also like to say that if a large object is somehow described by
a short proof - like a short proof of the feasibility of a large number - then
that should imply the presence of some kind of symmetry of the large object,
like many similar patterns in the term describing the large number. This
theme is discussed in [7], but it is hard to make it precise in a general way.
It should be related to the matter of cut elimination, because it is often the
cut-free proofs that describe the underlying objects in a complete way, gram
by gram, so to speak. Thus one might expect that symmetries in cut-free
proofs correspond directly in some approximate way to symmetries in the
underlying objects, and that short proofs with cuts lead to symmetries of
both the cut-free proofs and the underlying mathematical objects.

These questions of symmetry appear to be fundamental. They are com-
patible with the idea sometimes discussed these days that questions like P =
NP or NP = co-NP have negative answers, but that the sequence of examples
which express their failure are hard to write down, themselves not following
a simple pattern. To “break” these questions one may have to find intelligent
ways to break underlying symmetries. In the context of algorithms, proofs,
and combinatorics the notion of symmetry is quite flexible, and that makes
for part of the difficulty.

To make progress on these ideas we would like to have combinatorial
models which bring out some of the aspects related to complexity and sym-
metry in a more manageable way. For this purpose we consider the concept
of optical graphs.

2 Proofs and optical graphs

By an optical graph we mean an oriented graph with the properties that
each vertex has at most three edges attached, and that there are at most
two edges oriented away from any given vertex, and at most two oriented
towards a given vertex.



A basic point is that logical flow graphs associated to formal proofs are
optical graphs. The logical flow graph of a proof traces the flow of occurrences
of formulas in a proof, and was introduced by Buss [2]. A related graph
assoclated to proofs was introduced earlier by Girard [11]. For our purposes
it is better to use a variant of the notion of Buss, in which we restrict ourselves
to atomic occurrences of formulas, as in [5].

Logical flow graphs carry a natural orientation, as discussed in [5]. This
orientation reflects the underlying flow of information; roughly speaking, the
positive orientation goes from Aypotheses to conclusions. It is easy to check
that logical flow graphs are indeed optical graphs. The main point is that
branch points come from the use of the contraction rule in formal proofs.

Conversely, we can sometimes convert optical graphs into proofs, proofs of
feasibility, and this conversion captures some of the phenomena of complexity
in which we are interested. One of the main points here is that the complexity
of proofs is related to the use of contractions in an essential way, and this
plays a large role in the combinatorial model as well, through the branch
points. We shall return to this point soon.

Optical graphs provide a simple way to model some of the activity which
takes place within a proof. A node in the logical flow graph of a proof might
be considered as some kind of “atomic fact”, and then it is natural to try
to trace this fact through the proof, to ask how it is used or where it came
from. To see how it is used one might follow positively oriented paths from
the given point, while negatively oriented paths tell where the fact came
from. Branching phenomena are fundamental to proofs; one establishes a
piece of information, and afterwards one is permitted to use it twice. This
is a consequence of the contraction rule. One might establish a piece of
information, use it twice to establish a second piece of information, use that
twice to establish a third, and so forth.

Such a chain of reasoning uses cuts in an essential way. It corresponds
to the ability to make lemmas, and can lead to ezponential effects; for a
chain of reasoning of length n, the same piece of information might be used
concretely 2" times, even if the process itself is coded in a compact way and
can be described in merely n steps.

This kind of exponential effect has a simple counterpart in the context of -
optical graphs. To see this we define the notion of the visthility of an optical
graph G starting at a vertex v. This is an oriented graph V4(v,G) which we
define in the following way. For the set of vertices in V,.(v,G) we take the
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set of positively oriented paths in G which begin at v. Given two such paths
s and ¢, we have an edge in V;(v,G) from s to ¢ if ¢ is obtained by adding
an edge at the end of s.

This is an analogue of the idea of covering surfaces from topology (see
[1, 12]), and it arises in a natural way in the context of proofs as wall. A
vertex in the logical flow graph of a proof represents a single atomic fact,
and the visibility at that vertex represents the totality of ways that that fact
is used in the proof. Alternatively one can reverse orientations so that the
visibility represents the totality of information which supports the given fact.

For optical graphs one can see exponential behavior in a simple way.
Consider the following example:

O =

If this is our graph G' and we choose v to be the leftmost endpoint, then the
visibility of G at v is a binary tree with root corresponding to v. If we have
n loops in G, then our tree has n levels, and exponentially many vertices and
edges.

This provides a pretty good model for what can happen in propositional
proofs. For straight propositional logic one has examples as in [14], which
involve phenomena of the type which appear in the example above. A further
analysis is given in [6], in a way which brings out the natural oscillations in
these examples through the notion of “almost cyclic structures”. In a proof
without cuts an oriented path in the logical flow graph can go “up” in the
proof and then “down” again, but afterwards it has no opportunities to turn
up again. To do so would represent a kind of “oscillation” in the graph,
and to understand exactly which kind of oscillations matter for complexity is
very much the matter at hand. The analysis developed in [6] also treats the
examples of short proofs of the feasibility of large numbers, which manifest
the same phenomena more directly and simply. In fact the simplest examples
of short proofs of feasibility can be coded completely by optical graphs with
some auxiliary data. .

These considerations suggest that we define a new notion of feasibility
more directly in terms of optical graphs (and in analogy with the notion for
proofs introduced in Section 1). For this notion each vertex would have a



number or other term attached to it, or rather we would think of each vertex
being associated to an atomic formula F (t). Each vertex would have to
be obtained from the “preceding” ones (as defined through the orientation)
using an allowable rule. Let us call a vertex p in an optical graph focussing
if it has two edges oriented towards it and defocussing if it has two edges
oriented away from it. The binary rules which say that sums and products
of feasible numbers are feasible would correspond to focussing branch points,
while the unary rule to the effect that the successor of a feasible number is
feasible would not require a branch point. Defocussing branch points would
reflect the fact that once the feasibility of a particular term is established one
may use that information twice. A vertex with no edges going into it would
represent either an assumption or an “axiom” such as the feasibility of 0. A
vertex with no edge coming from it could be interpreted as a “conclusion”,
e.g., the feasibility of some given number. With this correspondence the proof
of the feasibility of 22" in O(n) steps obtained by stringing together proofs
of F'(t) — F(t?) (as mentioned in Section 1) can be described completely by
an optical graph.!

By following these rules we can have a way to pass from optical graphs
to proofs. Thus optical graphs provide a way of modelling proofs in two
different directions: every proof gives rise to an optical graph, through the
logical flow graph, and conversely in certain circumstances optical graphs can
practically be reconverted into proofs. One should keep in mind here that
the general idea of feasibility is quite flexible in its ability to speak about
mathematical structures, as discussed in [7].

3 Visibility and cut elimination

One might wonder why we approach the study of symmetry in proofs through
the notion of visibility, instead of looking directly at combinatorial models
for cut elimination (see [8] for background information). Since cut-free proofs
have a fairly simple combinatorial structure (see [3]), to have a clear com-
binatorial model for cut elimination would hopefully mean to have a good

L Although there are two exponentials in 22" only one of them really counts. The other
comes for free since we allow a multiplication rule for feasibility. That is, we can get a
proof of the feasibility of 2* in O(n) lines just by multiplying a bunch of 2’s together,
without using contractions or cuts. By using them we win an additional exponential.



understanding of how short proofs might be built. Unfortunately loca.. rules
of cut elimination have very "unusual” combinatorial behavior, and global
properties of graphs of proofs are in general not preserved under these local
transformations. (This aspect is analyzed thoroughly in [5].)

Just as for the visibility, contractions play a very important role for cut
elimination. Indeed, to eliminate cuts over formulas which have been con-
tracted, one needs to duplicate subproofs of the original proof. This fact is
independent of the method we use for cut elimination, but instead intrinsic
to the combinatorics of proofs. Duplication can occur repeatedly during the
process of elimination of cuts and might lead to large expansion in the size
of the proof [8]. In this respect, the idea of visibility makes a pretty good
model for exponential expansion as in cut elimination. Similar duplications
occur there.

For the logical connections between formulas in a proof the combinato-
rial model based on visibility is more rough as a picture of cut elimination.
Suppose that we are given a proof for which G is the logical flow graph. Let
v be a vertex in G, representing an occurrence of an atomic formula in the
proof. If that atomic formula lies in the endsequent of the proof, then it
makes sense to try to compare the visibility V(v, G) of v (positively or neg-
atively oriented, as appropriate) with what happens in the proof after cut
elimination. That is, if IT is the original proof and II’ is obtained from II
by cut elimination, then Il and II’ have the same endsequent, and so we can
view v as being a vertex in each of the logical flow graphs G and (. One
might think that V(v,G) makes a reasonable model for what v can “see”
inside G', but this is not really what happens. The visibility is much more
homogeneous. Whatever opportunities an (oriented) path has in G persist
in the visibility. This is not preserved in general by any procedure of cut
elimination, because of the way that paths can be split [5]. Imagine a vertex
w of G which is visible to v and lies inside the proof II. It may have several
natural “relatives” in G’. Each of these may see much less in G’ than what
w itself sees in (7, even if the total of what the relatives of w see in G’ is
comparable to what w sees in G. Now w will also have a different set of
“relatives” in V(v, @), but each of the relatives of w in V(v, Q) will see inside
V(v,G) about the same as what w sees inside G. (The point here is that
a connected component of G might split under cut elimination into several
disconnected subgraphs. As a consequence, different "relatives” of w in G/
might lie in different connected components of G’ and therefore “see” only
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what lies in a specific component.) In other words, the visibility always has a
certain kind of homogeneity that cut elimination does not typically preserve.

From the above one concludes that the visibility gives a more natural com-
binatorial model for recognizing and relating symmetric patterns in proofs.
The "partial” view that one has after applying cut elimination corresponds
to having only "parts” of patterns lying inside a cut-free proof. The problem
of recognizing patterns from their “partial” representation describes well the
difficulty and limitations in the analysis of cut elimination.

To conclude let us remark that in the discussion above, if we simply start
with a vertex v in G which does not correspond to an atomic formula in the
endsequent, then we experience similar problems from the start.

4 Implicit descriptions and explicit construc-
tions

Let us start over now and think about optical graphs as a mathematical
notion in its own right.

Our thinking about optical graphs will parallel our initial discussion of
proofs. We can think of an optical graph as being related to an algorithm,
for instance. The optical graph, together perhaps with auxiliary data, might
code an implicit construction of some object, as discussed in Section 2.

How does one convert the implicit description into an explicit construction
from primitive pieces? For optical graphs this is achieved by passing to the
visibility?. It is easy to see why this is true. Imagine building an actual
physical house, where one cannot simply say “I have constructed a room,
and therefore I have two rooms”. This explains how to build a house, but for
the physical building one has to produce everything. If one needs 100 bricks,
one has to produce 100 actual physical bricks. Similarly, the word metric in
a finitely generated group measures the amount of material needed to build
the physical group element, while metrics based on feasibility (as in [7]) make
measurements based on the length of the “explanations” required. For free
groups the metrics based on feasibility are already quite different from the
word metric, in the way that they treat cyclic subgroups. Optical graphs

2Strictly speaking one should use the “negatively oriented” version of the visibility here
to be consistent with our other definitions, but this is not a serious point.



provide another way to measure the size of the explanation, while passing to
the visibility corresponds to passing to the construction of the word metric.

This leads one to question how the visibility behaves, what kinds of ex-
pansions can occur, etc. These are analyzed in some detail in [9]. One of
the first points is that the visibility never has more than exponential growth.
Exponential growth can occur, as in the example described in Section 2. A
more subtle point is that configurations like those in the example are ac-
tually necessary for exponential expansion. Roughly speaking, if N is the
number of vertices in the optical graph G, if the visibility is finite, and if
n is the length of the longest configuration “like” the example in Section 2
to be found in G, then the size of the visibility is at least 2® and at most
(2N)". See [9] for a precise statement. The lower bound is about right for
the example in Section 2, but there are more complicated examples which
are closer to the upper bound. In the latter there are many configurations
like those in Section 2 interlacing each other. These examples can also be
represented through short proofs of feasibility of large numbers.

In summary, [9] provides a fairly precise analysis of the way that the
visibility can behave in terms of size, and we refer to [9] for more information.
This analysis has the pleasant features that it is purely geometric and fits
fairly well with what one might expect from the perspective of proofs.

5 The universal feasibility construction

We have discussed before how optical graphs can sometimes be used to code
completely a proof of feasibility. With a little bit of flexibility one can in fact
say that this is alwaeys true. That is, an optical graph can always be viewed
as representing the “feasibility” of its own visibility graph.

If we want this to match perfectly with what we did before we should
sort out the technical problem of finding a way to make a formal theory
about oriented rooted trees, in such a way that an optical graph can be
converted into a formal proof of its feasibility. We shall not pursue this here.
Instead we take a broader view, towards the idea of implicit descriptions
of mathematical objects in general, and their connection with questions of
complexity and algorithms. Formal proofs and optical graphs both provide
models for a general question which has a life of its own.

This perspective is simple but conceptually quite striking. It says that
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whatever phenomena we see on the geometric side should be “accepted” as
part of the general story, rather than as an artifact of the model. Some par-
ticular phenomenon may not be relevant for the particular case of feasibi’ity
of numbers, or of elements of finitely generated groups, but it is always rel-
evant for the general idea of feasibility, because the visibility is always an
example for feasibility.

In the beginning of this paper we mentioned various questions about
proofs and their relations to algorithms and implicit descriptions, and then
we went on to optical graphs as combinatorial models for proofs. We should

return now to some of the questions of Section 1 but for optical graphs instead
of proofs.

6 Symmetry and oscillations

We mentioned before the idea that if one has a short proof describing a
“large” object then that should imply the presence of a substantial amount
of symmetry. For proofs in general it is not at all clear how to formulate this
principle in a precise way.

For our model the question becomes more concrete. Given an optical
graph G and a vertex v in G, let V = V, (v, G) be the visibility of G starting
from v. Assume for simplicity that V is finite, so that its size is at most
exponential in the size of G, as discussed in [9]. It may be much smaller than
exponential, but if it is of exponential size then our principle would say that
V should have a lot of symmetry.

To put the matter into perspective let us think first about universal cov-
ering surfaces from topology, for which the visibility is a kind of analogue.
(See [1, 12] for information about covering spaces and the universal cover-
ing.) In this case one starts with a topological space X and a basepoint
b, and one looks at all paths in X which start at 6. (Assume that X is
pathwise connected to avoid pathologies.) Two such paths are considered
equivalent if they have the same endpoint and if there is a continuous defor-
mation from one to the other that keeps the endpoints fixed. The set X of
all such equivalence classes is called the universal covering space of X, and
it carries a natural topology. If one takes X to be a circle, for instance, this
construction gives back the real line.

For the universal covering space there is a natural group action, an action
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by the fundamental group of X, which is the group of all loops based at
b modulo the equivalence relation of continuous deformation again. The
quotient of the universal covering X by this group action exactly gives X
back in a simple and natural way. This is not deep or mysterious, just z part
of the definitions.

Thus for universal covering spaces there is a kind of perfect version of
our principle, the growth in size of the universal covering as compared to the
original space is exactly matched by the size of the covering group. If there
1s a natural volume measure for X, for instance, then there will be a natural
volume measure for X too, and the ratio of the total volume of X to the
total volume of X will be exactly the order of the covering group.

For the visibility of an optical graph there is some symmetry but not
quite as much. This stems in part from the fact that we restrict ourselves to
oriented paths to define the visibility. This can lead to a substantial difference
between going “forward” and “backward”, in such a way that the range of
future choices diminishes with each step.

If an oriented path beginning at the initial vertex v returns to v, then all
the future choices that were possible before are possible again. This situation
is reminiscent of universal coverings, but it is not quite the same, since for
universal coverings one can simply reverse the path, while for the visibility
that possibility is prevented by the orientations.

Even if oriented paths from v in our graph G do not return to v, as in the
example in Section 2, one can still see a lot of symmetry for the visibility in
that case. In general one can often expect to see a fair amount of symmetry
in the following manner. A vertex in the visibility V. (v,G) is an oriented
path a in G which begins at v. If w is the endpoint of «, then the visibility
Vi (w, G) of G beginning at w lies naturally within V, (v, G). Indeed, a vertex
in V;(w, G) corresponds to an oriented path that begins at w, and that can
be added to the end of a to give a vertex in V,(v,G). This construction
also respects edges and orientations. Now if the visibility V. (v, G) is large
compared to the size of G, then there will be vertices w in G which correspond
to many different a’s in V(v,G). For each of these there will be a copy of
Vi(w,G) in V4 (v, G), and all of these copies will look exactly the same.

In this way the visibility will have a lot, of symmetry when it is large, even
if the symmetry is not as simple as for covering spaces, and not as simple
as having a group action. See [9] for more precise information about the
structure and symmetry of visibility graphs.
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7 Intermediate symmetries

Asin Section 1 we would like to have ways to compare optical graphs and their
visibilities, to see patterns, to find symmetry, etc. To this end we can use the
language of mappings between them. This means mappings from vertices to
vertices and from edges to edges with the obvious compatibility conditions.
We shall restrict our attention to mappings which respect orientations.

A very simple way to compare graphs is to look for embeddings between
them, injective mappings. The family of examples in Section 2 (parameter-
ized by the number n of successive loops) can be embedded one into the other
in simple ways. Embeddings like these are compatible with interpretations
of feasibility along the lines presented in Section 2.

A basic point about mappings between optical graphs is that they induce
mappings between visibilities. That is, if G and H are optical graphs, f :
G — H is a mapping (which, as above, we ask to respect orientations),
and if v € G and w € H are vertices which satisfy f(v) = w, then f
lifts to a mapping F' between the visibilities Vi(v,G) and Vi(w, H) in a
natural way. That is, an oriented path in G starting from v is mapped by
f to an oriented path in H starting from w, and so we get a mapping from
the vertices of V,(v,G) to the vertices of Vi(w, H). Similarly f induces
a mapping from edges in V. (v,G) to edges in Vi(w, H), and the resulting
F:V,(v,G) - Vi(w, H) preserves orientations.

In addition to embeddings between optical graphs one can look at map-
pings which might look more like “projections”. For this the theory of cov-
ering surfaces provides a good model; before we were interested in universal
coverings as an analogy with visibilities, now we look to covering spaces in
general for inspiration. Again [1, 12] provide good references for background
information, and for the definitions and basic observations that we are now
going to emulate. Note that the orientations of paths and graphs in our
context changes the story somewhat from the classical one.

Mappings more like projections are very natural for looking for interme-
diate symmetries within proofs, for understanding better what it means to
say that a proof can be shortened. Being able to make a proof shorter is like
being able to project an optical graph into a smaller one, thereby making
manifest some of its internal symmetry. One would like to find criteria for
shortening proofs, or to exhibit “counterexamples” of families of statements
which admit only large optical graphs as proofs.
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To make these ideas more precise we need to introduce some definitions.
Let G and H be optical graphs, and let f : G — H be a mapping which
preserves orientations. We say that f is locally one-to-one if for each vertex
u € G and each pair of distinct edges a, b attached to u we have that a and b
are sent to distinct edges in H by f. Note that locally one-to-one mappings
need not be globally injective, but may instead behave like some kind of
projection.

‘This concept is very useful for comparing optical graphs and seeing pat-
terns. Consider the situation where Z is some enormous optical graph, G
is a much smaller one, and ¢ : Z — G preserves orientations and is locally
one-to-one. This is exactly a way of saying that Z has many repetitions in
its behavior, which is constrained by the mapping into G. Imagine Z being
“projected” into (7, or wrapped around it.

Let us say that f is +-complete if it satisfies the following condition. Let
u be any vertex in G, and suppose that e is an edge in H attached to f(u)
which is oriented away from u. Then we ask that there be an edge a in G
attached to u and oriented away from « which is mapped to e by f.

One can think of +-completeness as a local surjectivity condition, but only
for the edges oriented away from the given vertex. This definition differs from
the customary theory for covering surfaces and reflects the role of orientation
in our story; we are putting more importance on where something goes than
where it came from. ’

We shall think of mappings which are both locally one-to-one and +-
complete as being analogous to covering maps in topology. (Actually they
are like “complete” covering maps, our finite situation enjoying an extra
compactness which is not automatic in the topological setting.)

A fundamental example of such mappings comes from the visibility. That
is, let G be an optical graph, let v be a vertex in G, and let 7 : V, (v,G) = G
be the canonical projection, defined as follows. Each vertex s in V (v, G)
represents an oriented path in G which begins at v, and 7(s) is simply the
endpoint of this path. One can define 7 similarly for edges and check that it
preserves orientations. (This mapping is discussed further in [9].) It is easy
to see that 7 is locally one-to-one and +-complete.

This fits with the idea that the visibility is analogous to the universal
covering surface, but the point now is that we can talk about “covering
spaces” in general. Let us describe a bit of the analogous theory in our
situation (which is much simpler than the usual one).
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Suppose that G and H are both optical graphs, that v € G and w ¢ H
are vertices, and that f: G — H is a mapping which preserves orientations.
Assume also that f is locally one-to-one and +-complete, and that it satisfies
f(v) = w. As above f induces a mapping £ : V,(v,G) — V;(w, H) which
preserves orientations. Under our present assumptions this mapping F' is
actually an isomorphism. Let us sketch the argument. Suppose that s and ¢
are vertices in V, (v, G) which are mapped to the same vertex in Vi(w, H).
This means that s and ¢ represent distinct oriented paths in G which start
at v and which are mapped to the same path in H by f. Since s and ¢ are
distinct paths they may agree for some time after v but they must diverge
somewhere. The parts that agree will of course have the same image in H.
At the moment where they diverge one must also have a divergence in H;
this follows from the local injectivity of f. This implies that the images of
s and ¢ are not the same path in H, and that F : Vi(v,G) = Vi(w, H) is
injective on vertices. It is easy to see that F is locally injective in the sense
described above, and this implies that F must be injective on edges as well.

For surjectivity we use 4+-completeness. We assume that we are given a
vertex in Vy(w, H), and we want to show that it is the image of a vertex
in V,(v,G) under F. This is the same as saying that any oriented path in
H which begins at w should be the image under f of an oriented path in
G which begins at v. This is easy to prove, by induction on the length of
the given path in H, for instance. That 18, +-completeness is precisely the
condition which ensures that if you can lift a path in H to one in G up to a
certain point, then you can go one step further in G if there is another step
to take in H. This gives surjectivity of F' on vertices, and it is easy to show
surjectivity on edges as well.

To summarize, F is injective when f is locally injective, F is surjective
when f is +-complete, and the two assumptions on f imply that F is an
isomorphism.

This is all very nice. It provides a way to say that the structure of G
lies between the structure of H and the structure of the common visibility.
Think of the visibility as being “larger”, while H might well be “smaller”
than G, with f somehow coiling G up inside H. The visibility disentangles
all the paths in H while G only disentangles some of them. Mathematically,
some of these ideas are represented by the formula

(1) WH:fOWGOF—l.
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Here 7y : Vy(w,H) — H and ng : V,(v,G) — G denote the canonical
projections as defined above. We can think of 7y : V,(w, H) — H as repre-
senting the way that the visibility of H is coiled up inside H. It represents
much of the structure of H, the way that paths are coiled up in H. The
formula says that we can compute it as follows. We first use F to identify
the visibilities V. (w, H) and V,(v,G). Then we proceed in two steps, first
applying 7, which represents the coiling of paths in G, and then we apply
f, which may wrap G up inside H.

In short we are saying that the way that paths are coiled up in H can
be “factored” into two contributions, reflecting the coiling of paths in G and
the coiling of G in H. Thus G indeed represents a kind of “intermediate”
structure.

To help us to interpret this it is useful to go back to the case of covering
spaces. In topology we can think of a surface X as providing a geometric
representation of a certain group, the fundamental group. In the universal
covering X of X all the paths are “unwrapped”.

If f:Y — X is a (complete) covering of X by another surface Y, then f
and Y represent a partial unwrapping of the curves in X. One can show that
the canonical projection from the universal covering X to X can be factored
into a mapping from X to Y followed by f:Y — X. Indeed, X is actually
isomorphic to the universal covering of Y, and the mapping from X to Y
Just mentioned is equivalent to the canonical projection.

For covering surfaces the fundamental group of the intermediate space Y
can be seen as a subgroup of the fundamental group of X. Moreover, Y is
essentially characterized in this manner, and all subgroups of the fundamental
group arise in this way.

Thus we might think of a surface as representing a group in a geometric
way, and then (complete) coverings correspond exactly to subgroups of this
group. We can forget about groups and work entirely within this geometric
language of covering spaces.

In our situation we do not have such a good connection with groups. We
have “broken” some of the symmetry as discussed in Section 6, but we still
have a reasonable version of the geometric language. With this geometric
language we can still make comparisons and measurements of patterns even
if it is not quite so “regular” as in the case of covering spaces where the story
admits simple descriptions through groups and group actions on topological
spaces. We still have patterns, even if they are not so simple or regular.
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In short we trade groups for combinatorial geometry. We broke the symn-
metry and lost the groups, but we gained extra flexibility in our combinatorial
geometry.
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