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Introduction

Symbiosis describes close and usually long-term interactions between different biological species [START_REF] Paracer | Symbiosis: an introduction to biological associations[END_REF] [START_REF] Sapp | Evolution by association: a history of symbiosis[END_REF] [START_REF] Martin | Symbiosis:"living together" in chaos[END_REF]. In biology, a host is an organism that harbors a family of parasites more or less necessary for its life cycle. Three main types of symbiotic relationships can be distinguished: mutualism, commensalism and parasitism. Mutualisms (reciprocally beneficial interactions between species) have finally come to be recognized as critical components of ecological and evolutionary processes occurring at scales ranging from the individual to the ecosystem. Every organism on earth is probably involved in at least one and usually several symbiotic relations during its lifetime [START_REF] Du | Algal-fungal symbiosis leads to photosynthetic mycelium[END_REF] [START_REF] Dittami | A metabolic approach to study algal-bacterial interactions in changing environments[END_REF]. A first example of symbiosis from which we want to draw inspiration is the tripartite symbiotic living system composed of a sharpshooter Homalodisca vitripennis and its two mutualistic bacteria species Baumannia and Sulcia [START_REF] Wu | Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters[END_REF][START_REF] Mccutcheon | Parallel genomic evolution and metabolic interdependence in an ancient symbiosis[END_REF][START_REF] Ankrah | The cost of metabolic interactions in symbioses between insects and bacteria with reduced genomes[END_REF]; it will serve as a guideline of our model (see Figure 1). Organisms use mutualism to obtain nutrients and services from their partners that they cannot Figure 1: Mutualistic interactions between the host and its bacteria. Cooperative relationship between bacteria in obligate symbiosis afford to produce or acquire otherwise [START_REF] Figueiredo | Cooperation and conflict within the microbiota and their effects on animal hosts[END_REF][START_REF] Chow | Host-bacterial symbiosis in health and disease[END_REF]. Most of these nutrients and services have a cost to the partners who produce it for the benefit of the original organisms [START_REF] Bronstein | The Costs of Mutualism[END_REF][START_REF] Ankrah | The cost of metabolic interactions in symbioses between insects and bacteria with reduced genomes[END_REF]. Another example is the macro-algae Ulva Mutabilis that lives in interaction with two bacterial strains Roseovarius and Maribacter that are able to provide them with morphogenetic compounds. The algae alone are unable to perform these functions or it would cost them more energy if they would not acquire them through bacteria [START_REF] Kessler | Macroalgalbacterial interactions: role of dimethylsulfoniopropionate in microbial gardening by ulva (chlorophyta)[END_REF]. Understanding the mechanisms that trigger these interactions, predicting the impact they may have on these organisms, is an increasingly important issue that mathematical modeling can help. Of course other examples may involve more species of parasites, here we focus on a host with two bacterial strains.

Biological systems often feature interacting components that evolve on disparate timescales. In most symbiotic relationships, the evolution of one partner is often much slower than the others due to an asymmetry in generation time, mutation rate or metabolic assimilation constants [START_REF] Damore | A slowly evolving host moves first in symbiotic interactions[END_REF][START_REF] Bergstrom | The red king effect: when the slowest runner wins the coevolutionary race[END_REF][START_REF] Degnan | Host-symbiont stability and fast evolutionary rates in an ant-bacterium association: cospeciation of camponotus species and their endosymbionts, candidatus blochmannia[END_REF]. For example, changes in a cell's environment trigger variations in protein levels through a sequence of protein-protein interactions, leading to changes in gene transcription, followed by translation and often post-translational modification. Modelling such systems involves dynamical systems with multiple time scales. In the biological literature, systems involving two or three time scales are, for instance, found in food chain models of two or three species, respectively (see, e.g., [START_REF] Deng | Food chain chaos due to junction-fold point[END_REF] and [START_REF] Kloeden | Nonautonomous dynamical systems in the life sciences[END_REF]) but such systems regularly appear in a great variety of areas.

Model construction

Models for population dynamics classically start from the two basic systems of Malthusian and logistic [START_REF] Perthame | Transport equations in biology[END_REF][START_REF] Murray | Mathematical biology: I. An introduction[END_REF][START_REF] Ginzburg | The theory of population dynamics: I. back to first principles[END_REF]. By denoting x(t) the population at time t, the Malthusian model proposes an evolution as

dx dt = ϕx (2.1)
where the real number ϕ stands for the difference between the birth rate and the death rate (both assumed to be constant in time). This extremely crude system has a simple solution : an exponential in time, leading to either an exponential growth or an exponential decay of the population depending on the sign of ϕ. In order to mitigate this exaggerated behaviour, the logistic (or Verhulst) model involves a self-consistant modification of the growth rate that takes into account the size of the population (thus leading to a non-linear behaviour) and allows to achieve, at long time range, an equilibrium population at a level named the carrying capacity : K. The associated equation is

dx dt = ϕx 1 - x K (2.2)
In order to model interactions between two or more biological species, that are all represented by such a dynamical system, we can either represent the interaction by further modifying the growth rate, or modify the carrying capacity. A classical kind of interaction between two species that independently follow a Malthusian or logistic type growth law, is the system predator-prey; the canonical example of such a model being the Lotka-Volterra equations [START_REF] Volterra | Fluctuations in the abundance of a species considered mathematically[END_REF]. This is again a nonlinear system where the growth rate of the predator gets improved (actually moves from negative to positive) from the presence of the prey (this presence favouring the birth rate and the state of health of the predator) and the growth rate of the prey gets smaller from the action of the predator (that increases the death rate). Further, any type of mutualistic interaction between different populations, is represented as a generalisation of such a Lotka-Volterra model -the positive interactions being possibly modelled by the same mathematical expressions as the negative ones, modulo a change in sign.

To start with, we propose here to analyse the interaction -say in vitro -of the only two colonies of bacteria that live with the host. Here in vitro means that i) the host is absent of the experiment ii) all what the host naturally provides them, in a controlled way, is provided in abundance by the culture bead.

The model for representing the interaction between the two families of bacteria then follows the same path as above and is easy to understand in this respect. As we shall show at the end of this section, our model has a mirror image in terms of modified value of the carrying capacity in the logistic model, but with an interpretation that is however less straightforward.

Mathematical model

We denote by X and Y the two populations in presence and by x and y the respective sizes. The proposed mutualistic interaction between X and Y is given by

         dx dt = x.ϕ(x, y) dy dt = y.ψ(x, y) (2.3) 
Of course, this model must be supplemented by the appropriate initial conditions

x(t = 0) = x 0 , y(t = 0) = y 0 (2.4)
both assumed to be non negative. We note that ϕ (resp. ψ) interpreted as the growth rates in a Malthusian model, depends not only on x ∈ R + (resp. y ∈ R + ), like for a logistic type, but also on

y ∈ R + (resp. x ∈ R + ).
The functions ϕ and ψ defined over [R + ] 2 must respect certain characteristics so that the model can represent the interaction we have identified both from a mathematical and a biological point of view.

Characteristics of ϕ and ψ

We first assume, for the sake of convenience, that the functions ϕ and ψ are continuous and differentiable over [R + ] 2 . Then in order to represent what we have in mind, they must in-code the type of interactions we have sketched above. We thus impose that they have the following features : i) Over R +2 , ∂ϕ ∂y > 0 and ∂ψ ∂x > 0; this allows us to have a cooperative and mutualist system between bacterial species whatever the level of the populations.

ii) There exists x * such that, for every y ≥ 0, and every x ≥ x * , then ϕ(x, y) < 0, i.e. dx dt < 0.

iii) If y is fixed and large enough (say y > y 0 ), then ϕ(0, y) > 0 meaning that if x is small and Y is present in a sufficiently large proportion, then the population X increases. Conversely, for every x ≥ 0, ϕ(x, 0) < 0 meaning that if y is too small, then the population X decreases. and reciprocally iv) There exists y * such that, for every x ≥ 0, and every y ≥ y * , then ψ(x, y) < 0, i.e. dy dt < 0.

v) If x is fixed and large enough (say x > x 0 ), then ψ(x, 0) > 0 meaning that if y is small and X is present in a sufficiently large proportion, then the population Y increases. Conversely, for every y ≥ 0, ψ(0, y) < 0 meaning that if x is too small, then the population Y decreases.

In order to achieve these requirement, we propose ϕ and ψ are functions of the form:

ϕ(x, y) = ae -αx -be -βy -c, ψ(x, y) = a e -α y -b e -β x -c ,
where the parameters a, b, c, a , b , c , α, α , β, β are all positive. This reaches almost all requirements stated above, except the sign of ϕ(x, 0) and ψ(0, y). We have to adjust the constants in order to satisfy them :

• ∀x ≥ 0, ϕ(x, 0) < 0 if and only if a < b + c

• ∀y ≥ 0, ψ(0, y) < 0 if and only if a < b + c .

From a biological point of view, one would have to fit these constant so as ϕ and ψ reproduce the behavior of each population, from the mathematical point of view, we may (and we shall most of the time in this paper) consider the case where ψ(x, y) = ϕ(y, x) that we shall name the symmetrical case.

We close this section by noticing that this Malthusian representation can also be interpreted in terms of logistic model as proposed in [START_REF] Yukalov | Modeling symbiosis by interactions through species carrying capacities[END_REF] [START_REF]Population dynamics with nonlinear delayed carrying capacity[END_REF] with influencing livelihood through mutual interactions. The idea is to modify the carrying capacity of each species in the model (2.2).

Remark 1. Model (2.3) can also be written as

         dx dt = x(1 - x K(x, y)
)

dy dt = y(1 - y K (x, y) ) (2.5) where K(x, y) = x 1 -ϕ(x, y) , K (x, y) = y 1 -ψ(x, y) (2.6) or equivalently ϕ(x, y) = 1 - x K(x, y) , ψ(x, y) = 1 - y K (x, y) (2.7)
which is mathematically correct but looses somehow the biological interpretation expressed in points i) to v) above.

There are many other ways to represent the same dynamics, but we do not want to give more details on this and chose to start from the Malthusian model that makes more sense for us, in particular thanks to the fact that our model allows two stable equilibrium states under particular regimes that are not present in [START_REF] Yukalov | Modeling symbiosis by interactions through species carrying capacities[END_REF].

In the next section, we present the theoretical and analytical aspects of this biological model.

Mathematical analysis

Positivity and Boundedness

The model equation (2.3) describes bacteria cell populations and therefore, it is important to prove that the model has a unique solution (x(t), y(t)) for every time t > 0, which holds from Cauchy Lipschitz theorem and that all the states x(t) and y(t) remain non-negative for all time t > 0. In addition, the hypothesis lead to the fact that the solutions remain bounded. The two statement above (positivity and boundedness) follow from the hypothesis that show that the flux is inward the set (x, y) ∈ [0, x * * ] × [0, y * * ], for every x * * ≥ x * and y * * ≥ y * .

Stationary point

The stationary points are found by solving the system:

         dx dt = x.ϕ(x, y) = 0 dy dt = y.ψ(x, y) = 0 (3.1)
So, aside the point E 0 = (0, 0), the non-trivial points are obtained from the possible intersection of the two nullclines

F = {(x, y)|ϕ(x, y) = 0} and G = {(x, y)|ψ(x, y) = 0} (3.2) 
These two nullclines can indeed intersect, depending on the value of c and c . Figure 2 obtained in the symmetrical case illustrates this possibility.

Note that, by increasing c and c will result in disjoint nullclines.

Stability study

It results immediately from Figure 2, that the trivial stationary point E 0 = (0, 0) is stable, that traduces an extinction of the two colonies of bacteria when the initial population is not large enough.

Let us now investigate the case where there exist two other different stationary points as presented above in Figure 2 in the symmetrical framework. The two non-trivial stationary points are then E 1 = (x 1 , y 1 ) and E 2 = (x 2 , y 2 ), with x 1 < x 2 . Here again, by looking at the signs of ϕ and ψ, Figure 2 indicates that Figure 2: Phase plane (x,y) with nullcline for system (2.3). Different steady state configurations are found at the intersections of the nullclines: F and G. In the zone around

E 1 = (x 1 , y 1 ) : in A (ϕ > 0, ψ < 0), in B (ϕ > 0, ψ > 0), in C (ϕ < 0, ψ > 0), in D (ϕ < 0, ψ < 0). In the zone around E 2 = (x 2 , y 2 ) : in A' (ϕ > 0, ψ < 0), in B' (ϕ < 0, ψ < 0), in C' (ϕ < 0, ψ > 0), in D' (ϕ > 0, ψ > 0) Proposition 3.1. E 1 is a saddle node and E 2 is stable node.
The proof can also be derived from the analysis of the Jacobian matrix of the system (2.3), i = 1, 2

J(x i , y i ) = -x i aαe -αx i x i bβe -βy i y i b β e -β x i -y i a α e -α y i
Finally, the exceptional case where the two intersection points E 1 and E 2 merge, i.e. when the two nullcline are tangent, the above Jacobian degenerates because the determinant vanishes with one eigenvalue being negative and the other 0.

Remark 2. We would like to emphasise that, the precise analytic definition of ϕ and ψ is not so much important in this phenomenological presentation. Of major importance however is the shape of the nullclines F = {(x, y)|ϕ(x, y) = 0} and G = {(x, y)|ψ(x, y) = 0} more precisely their relative placement at their intersections. These should indeed have the feature represented in Figure [START_REF] Berglund | Perturbation theory of dynamical systems[END_REF] and each of them should separate [R + ]2 into two regions where ϕ (resp. ψ) is positive on the left (resp. on the bottom) and negative on the right (resp. on the top). 1

Numerical result

We illustrate here the features that have been established above from numerical simulations of the system (2.3). We will examine different cases for the initial data that allow us to provide an illustration from a biological point of view and comment on the mutual impact of each bacteria colony on the growth of the other. We specify that all the numerical simulations are obtained in the symmetric case ϕ(x, y) = ψ(y, x) except the last one plotted on Figure 7. In the symmetric case, The two figures (Figure 4 and Figure 5) present the convergence toward the two stable equilibrium points. Figure 4 illustrates the three ways the dynamics can converge to (x 2 , y 2 ) while Figure 5 illustrates the extinction of the dynamics converging to (0, 0) when the initial conditions are too small. We refer to the caption for an interpretation of these dynamics in terms of biological flavour.

Lastly, we illustrate the situation where ϕ and ψ are not symmetric. The initial data are chosen as in the case presented above in Figure 4 on the left.

Slow-fast model of host-bacteria interactions

The model we propose aims at traducing what was stated in the introduction : a host is an organism that houses many smaller organisms, e.g. bacteria; that can be a mixture of parasite, mutualist or commensal organisms (symbiont). The smaller organisms usually receive nutrients and shelter [START_REF] Figueiredo | Cooperation and conflict within the microbiota and their effects on animal hosts[END_REF][START_REF] Chow | Host-bacterial symbiosis in health and disease[END_REF]. An important fact is that, unlike bacteria which form a large population, the host which harbors them is alone in this relation. There is only one host harboring a large number of bacteria from different bacterial strains. It is therefore not relevant to represent the dynamics of the host as being a dynamic of its population as we did previously in the case of the interaction between bacteria. In this respect, we introduce a quantity representing the state of health. The interaction of bacteria with the host involves nutrient exchanges (general concept including amino-acid, enzymes ...) with each of the partners in the symbiotic system they form. The question is therefore to understand how these microorganisms influence or impact the state of health of the host and, conversely, how the host impacts the growth of bacteria [START_REF]Microbiome interactions shape host fitness[END_REF]. The following sections will allow us to provide some answers to these questions.

The host's state of health is denoted by z and is scaled so that we assume that 0 ≤ z ≤ 1. ) but large enough to lead to an increase of both colonies. On the opposite, for the figure on the right, the initial conditions (x 0 , y 0 ) = (2.5, 2) are thus above (x 2 , y 2 ), starting with a population of both species fairly large, the mutualistic coexistence takes place and persists, even though they decay due to the fact that the initial populations are larger than the mutualistic carrying capacity. Lastly, the figure in the middle, illustrate the interesting dynamics for an initial condition : (x 0 , y 0 ) = (0.5, 1.2), i.e. where we start with a small population of bacteria X, we first observe a significant decrease in the population Y. This decrease is due to the fact that bacteria Y do not get enough benefit from bacteria X. However, the relative excess of bacteria Y allows the bacteria X to grow rapidly and reach a level where they go through the nullcline G (see (3.2)) which means that y can start and grow.

Figure 5: This figure presents the dynamics of X and Y with an initial conditions (x 0 , y 0 ) = (0.3, 0.15) that illustrates the dynamics for a small population of both bacteria when the initial population is the region below the χ line. We observe a decrease of the two species leading to their extinction. This decrease aims at traducing the fact that neither species X nor Y can supply enough benefit to the other species. The state z = 0 corresponds to the host's death while the state z = 1 corresponds to the best state the host can approach when everything it needs is available in full quantity. A priori, the host may not reach the state z = 1, but can be very close to this state for some times, in particular with the presence of the different bacteria colonies, i.e. these are necessary for a good state of health over time. The model consists in modelling how bacteria can influence the health status, hence the life span of the host; symmetrically, the model takes into account the mechanism on how the host influences its colony of micro-organisms according to its health status. Knowing that in this system, the host being the macro-organism, develops at a very slow speed compared to that of bacterial growth. So given that, the host-bacteria symbiotic interaction model is therefore a (1, 2)-slow-fast system. The variable z being the slow variable while x and y are fast variables. To study and analyze such a system, we will use the tool of singular perturbation systems in the form of the Tikhonov's theorem [START_REF] Tikhonov | Systems of differential equations containing small parameters in the derivatives[END_REF][START_REF] Berglund | Perturbation theory of dynamical systems[END_REF][START_REF] Lobry | Singular perturbation methods in control theory[END_REF][START_REF] Verhulst | Singular perturbation methods for slow-fast dynamics[END_REF] that we recall in the appendix. In what follows the time of the host will be denoted τ , while the time of the bacteria is denoted as t.

The scalling between the two is τ = t, with 0 < < 1, and even < < 1.

Mathematical model

From the definition of the quantity z associated to the health status of the host, we propose, for its dynamics, a non autonomous model like

dz dτ = z(1 -z)Θ(x, y, τ )
where Θ is initially positive (at time =0) and eventually in time becomes negative. At any given time τ , Θ is an increasing function in x and y that traduces the positive synergy between the bacteria and the host. We choose here to write simply

Θ(x, y, τ ) = T (x, y) -τ
where T represents somehow the mature age of the host, after which the host state of health decays.

T is modulated with the presence or absence of the bacteria and should reach saturation in case the bacteria populations become too large. We propose T (x, y) = T max x 1 + x y 1 + y , with some appropriate fixed T max . Next let us model the mutual impact existing between the host and its bacteria. We start with the populations of the two bacteria that have been modelled in the previous section. We assume e.g. that we have isolated these two populations from the host and studied them in vitro, meaning that we have fitted the two functions ϕ and ψ in vitro conditions. Two extreme situations can then be called : one where the nutrients in vitro are missing -leading to extinction of bacteria -and one where the nutrients are in large quantity -leading to the existence of a non trivial equilibrium node. Starting from (2.3), the first extinction in vitro experiment allows to fit, in the symmetric case, a value γ 0 such that the associated dynamics is

         dx dt = x.(ϕ(x, y) -γ 0 ) dy dt = y.(ψ(x, y) -γ 0 ) (4.1) 
(where we realize that, increasing γ 0 leads, from a mathematical point of view, to a separation of the associated nullclines F and G, and thus no non-trivial equilibrium). Then, the second in vitro experiment allows to fit a second constant γ 1 such that the associated dynamics is

         dx dt = x.(ϕ(x, y) + γ 1 -γ 0 ) dy dt = y.(ψ(x, y) + γ 1 -γ 0 ) (4.2) 
(where we realize that, increasing γ 1 , with γ 0 being fixed, leads to an intersection of the associated nullclines F and G and thus the possibility of a non trivial stable equilibrium state).

The model for the interaction in vivo with the host can thus be described by the two reaction terms Φ and Ψ defined as follow :

• Φ(x, y, z) = ϕ(x, y) + (γ 1 z -γ 0 ) • Ψ(x, y, z) = ψ(x, y) + (γ 1 z -γ 0 )
and the global interaction model we propose reads

                   dx dτ = x.Φ(x, y, z) dy dτ = y.Ψ(x, y, z) dz dτ = z(1 -z)(T (x, y) -τ ) (4.3)
where we remind that τ = t (0 < 1 ). The variables x and y are fast variable while the variable z is a slow variable. Following the same arguments as in the previous section, it can be proven easily that Proposition 4.1. (positivity)

If the initial condition to system (4.3) x 0 , y 0 and z 0 are non-negative, the solution (x, y, z) of this system remains non-negatve in [R + ] 3 . In addition if z 0 < 1 then z remains < 1.

Let us set F (x, y, z) = x.Φ(x, y, z), G(x, y, z) = y.Ψ(x, y, z), H(x, y, z; τ ) = z(1 -z)(T (x, y)τ ), with these notations the system (4.3) reads under a classical form The system (4.4) is called slow system with respect to the slow time τ , being the time felt by the host. By changing the temporal variable t = τ on (4.3), i.e. in the time frame of the bacteria, we get the so-called fast system with respect to the fast time t.

                   dx dτ = F (x,
                   dx dt = F (x, y, z) dy dt = G(x, y, z) dz dt = H(x, y, z; t) (4.5)

Limits system

When → 0 the system (4.4) leads to the following differential-algebraic system called the reduced slow system :

             0 = F (x, y, z) 0 = G(x, y, z) dz dτ = H(x, y, z; τ ) (4.6)
In this system, x and y do not evolve in an independant way but adapt to the state of health z of the host, by staying at the non trivial equilibrium state when it exist. Reciprocally, the system (4.5) leads to the reduced fast system :

                   dx dt = F (x, y, z) dy dt = G(x, y, z) dz dt = 0 (4.7)
We notice that, z appears like a parameter in the reduced fast system and the system (4.5) can be seen as a perturbation of the system (4.7), where the parameter z evolves slowly in time. Actually, the system (4.5), simply resumes into

         dx dt = F (x, y, z) dy dt = G(x, y, z) (4.8) 
We recall that this system enters in the frame of the previous section, in particular, for any z, 0 ≤ z < 1, there exists a unique solution (X (t; z, x 0 , y 0 ), Y(t; z, x 0 , y 0 )) to system (4.8) with initial condition

(x 0 , y 0 ) given in [R + ] 2 .
In what follows we are going to analyse the behaviour of the various quantities x, y, z when tends to 0 and evaluate in which sense they approach the limit cases (4.6) and (4.8).

Mathematical analysis

Critical manifold

Following these references [START_REF] Verhulst | The dynamics of slow manifolds[END_REF] [START_REF] Verhulst | Methods and applications of singular perturbations: boundary layers and multiple timescale dynamics[END_REF], the set

M = {(x, y, z) ∈ [R + ] 3 : F (x, y, z) = 0, G(x, y, z) = 0}
(5.1) defines the critical manifold, i.e. the set of all equilibrium points of the reduced fast system (4.8). We notice that the reduced slow system (4.6) evolves over the set M . In order to let the solutions of the global slow system (4.4) to converge towards the solutions of the reduced slow system when goes to zero, we have to ensure that these equilibrium points satisfy some stability conditions A sub-manifold S 0 ⊂ M is said to be normally hyperbolic if all the eigenvalues of the Jacobian matrix of the fast dynamics (4.8) with respect to the fast variable (x, y) have a non-zero real part for all (x 0 , y 0 , z 0 ) ∈ S 0 .

Definition 5.2. A normally hyperbolic subset S 0 ⊂ M is called attracting if all eigenvalues of the Jacobian matrix have negative real part; similarly, S 0 is called repelling if all eigenvalues have positive real part. If S 0 is normally hyperbolic and neither attracting nor repelling, it is of saddle type.

The equilibrium points of the reduced fast system (4.8) depend strongly of the values taken by the slow variable z which appears as a parameter in definition of the manifold M as is illustrated in Figure 8. Then before starting the asymptotic study, let's first look at how this parameter influences the existence the equilibrium point, in particular, the existence of E 1 (z) and E 2 (z) which are the intersection points of the nullclines when z > z * = 0.165. Let us recall the way the quadrant [R + ] 2 is separated in two basins of attraction along a line χ = χ(z) introduce in Figure 3.3 : Proposition 5.1. For any given z > z * , there exists a set χ(z) ∈[R + ] 2 parametrized as follows : (x, y = Y (x; z)), that includes E 1 (z) (i.e. y 1 (z) = Y (x 1 (z); z)) such that, any trajectory of fast system (4.8) with initial value on χ(z) : (x 0 , y 0 = Y (x 0 ; z)) converges to the saddle point E 1 (z). This set χ(z) of such initial values that separates the phase diagram [R + ] 2 into two basin of attraction of the two stable equilibrium E 0 and E 2 (z 0 ).

We can now identify the three critical sub-manifolds that compose M : first comes S 0 = {(0, 0, z), z ∈ R + }, and then

S 2 = {(E 2 (z), z), z > z * } and S 1 = {(E 1 (z), z), z > z * }
Before starting the asymptotic study, let us give the Jacobian matrix of the reduced fast system in the case where the functions Φ and Ψ are given in the following form Φ(x, y) = ae -αxbe -βy -c + γ 1 z -γ 0 and ψ(x, y) = a e -α y -b e -β x -c + γ 1 z -γ 0 :

J(x, y, z) = Φ(x, y, z) -xaαe -αx xbβe -βy yb β e -β x Ψ(x, y, z) -ya α e -α y
The analysis of the bacterial system in section 3, based on the structure of this Jacobian matrix, leads us to the following statements :

Proposition 5.2. The subset S 1 ⊂ M is normally hyperbolic and saddle type while the subset S 2 ⊂ M is normally hyperbolic and attractive. In this section we are doing the asymptotic analysis of the system in an interior subset of the domain above the χ(z) line, hence for z 0 > z * . So we are interested to the equilibrium points E 2 = (x 2 (z), y 2 (z)) ∈ S 2 in the case of symmetrical framework between the variables x and y. The purpose of this section is therefore to study the behavior of the solutions of the system (4.3) in the neighborhood of the critical points E 2 by using Tikhonov's theory [START_REF] Tikhonov | Systems of differential equations containing small parameters in the derivatives[END_REF] as recalled in the appendix. First we remark that Proposition 5.3. The critical point E 2 (z) = (x 2 (z), y 2 (z)) is an asymptotically stable equilibrium point for the reduced fast system.

Analysis of the slow equation

this leads to the following reduced slow equation as presented in (A.3)

dz dτ = H(x 2 (z), y 2 (z), z) = z(1 -z)(T (x 2 (z), y 2 (z)) -τ ) (5.2) 
its solution, with initial value equal to z 0 , is unique and, due to the fact that T is upper bounded (whatever the value of x 2 (z), y 2 (z)) we deduce that its solution z(τ ) converges exponentially to zero in time.

Then, the result of Tikhonov's theorem A.1, states that, after a fast transition close to the trajectories of the fast equation (4.8), the solutions of (4.3) are approximated by those of the slow equation : for any solution (x (τ ), y (τ ), z (τ )) of the system (4.3), we have :

lim →0 (x (τ ), y (τ ), z (τ )) = (x 2 (z(τ )), y 2 (z(τ )), z(τ ))
More precisely, Theorem 5.4. For any initial condition z 0 > z * , and any initial condition (x 0 , y 0 ) in the region above the curve χ(z), ∀η > 0,

∃ 0 > 0, ∃M > 0, ∃(d, L) ∈ R +2 ,∀ ≤ 0 , • ∀t, 0 ≤ t ≤ M , |(x (t), y (t)) -(X (t; z 0 , x 0 , y 0 ), Y(t; z 0 , x 0 , y 0 ))| ≤ η, • ∀τ, d ≤ τ ≤ L, |(x (τ ), y (τ )) -(x 2 (z(τ )), y 2 (z(τ ))| ≤ η • ∀τ, τ ≤ L, |z (τ ) -z(τ )| ≤ η

Restriction to the sub-manifold S 0

The analysis on this trivial equilibrium point is more simple. The reduced slow equation as presented in (A.3) becomes

dz dτ = H(0, 0, z) = z(1 -z)(T (0, 0) -τ ) (5.3) 
This equation has also a unique solution that converges exponentially fast to 0 in time.

Second we notice that, if z < z * , (x, y) = (0, 0) is the unique asymptotically stable equilibrium point of the fast equation (4.8) We can be now more precise in the analysis of the slow equation

dz dτ = H(0, 0, z) = z(1 -z)(T (0, 0) -τ ) (5.4) 
by using the results of the appendix : for any z 0 < z * (and as long as z (τ ) remains > z * ), except in a boundary layer in time at the initial value, the solution (x (τ ), y (τ )) uniformly converges (and for ≤ 0 for some 0 > 0), when → 0 to (0, 0), while, for any time (and as long as z (τ ) remains < z * ) the solution z (τ ) uniformly converges, when → 0 to 0.

Theorem 5.5. For any initial condition z 0 > z * , and any initial condition (x 0 , y 0 ) in the region below the curve χ(z), ∀η > 0,

∃ 0 > 0, ∃M > 0, ∃(d, L) ∈ R +2 ,∀ ≤ 0 , • ∀t, 0 ≤ t ≤ M , |(x (t), y (t)) -(X (t; z 0 , x 0 , y 0 ), Y(t; z 0 , x 0 , y 0 ))| ≤ η, • ∀τ, d ≤ τ ≤ L, |(x (τ ), y (τ ))| ≤ η • ∀τ, τ ≤ L, |z (τ ) -z(τ )| ≤ η
Theorem 5.6. For any initial condition z 0 < z * , and any initial condition

(x 0 , y 0 ), ∀η > 0, ∃ 0 > 0, ∃M > 0, ∃(d, L) ∈ R +2 ,∀ ≤ 0 , • ∀t, 0 ≤ t ≤ M , |(x (t), y (t)) -(X (t; z 0 , x 0 , y 0 ), Y(t; z 0 , x 0 , y 0 ))| ≤ η, • ∀τ, d ≤ τ ≤ L, |(x (τ ), y (τ ))| ≤ η • ∀τ, τ ≤ L, |z (τ ) -z(τ )| ≤ η
In the next sections, we are going to numerically illustrate the parametric analysis of the hostbacteria system. We show some illustrations of host's state of health according to the contribution of its bacteria. We use the three cases presented in the study of the reduced fast system, see the impact that bacteria have on host's state depending on whether we have a coexistence of bacteria or not.

The numerical simulations will illustrate the possible interactions between the species, and the fact that the bacteria should be in large proportion enough to have a positive impact on the host.

We specify that all the numerical simulations are obtained with functions ϕ and ψ given previously (i.e. symmetric case with a = a = 2, b = b = 1, c = c = 1.5, in addition α = α = 0.2; β = β = 3), T max = 5. We will give each figure a brief interpretation from a biological point of view. γ 0 = 0.25, γ 1 = 0.8, x 0 = 0.8, y 0 = 0.6 are fixed.

6 Numerical illustrations

First case: the nullclines do not intersect

Let us start with the most simple case when the nullclines do not intersect at initial time due to a much too small value of z 0 . Figure 9 illustrates the fact that, whatever reasonable2 value of > 0 the solutions (x , y , z ) converge exponentially to (0, 0, 0) in time. Note that, as can be expected and stated in the previous analysis, the bacteria populations collapse in a time horizon of the size .

Figure 9: In those figures, the initial value z 0 = 0.15 is too small and the nullclines do not intersect : the fast system has only one stable equilibrium trivial point. The three functions x, y and z converge to 0, the smaller , the faster. The two extreme values for : = 10 -3 one the left and = 1 on the right illustrate the associated behaviour.

6.2 Second case: the nullclines intersect

Comparative behaviours with different initial bacteria's population values

In this more interesting case, we illustrate in Figure 10 the synergy that the system (4.3) aims at modeling. In the two top figures, the initial value of the bacteria's populations (x 0 , y 0 ) is chosen large enough (i.e. above the curve χ(z)) that allows them to reach the equilibrium point (x 2 (z), y 2 (z)).

Eventually, every solution x, y and z go to zero. In the two bottom figures, the bacteria's initial populations are too small (i.e. below the curve χ(z)) and (x(t), y(t)) is attracted by the trivial equilibrium point leading to a smaller value of z (τ ).

6.2.2

Comparative convergence of slow-fast system (4.3) to the limit systems

In this subsection, we present the rate at which the slow-fast (4.3) system converges to the boundary systems. To do this, we set all the other parameters but modify the parameter in the different simulations. Figure 11 highlights the convergence as converges to 0 of the solutions to the limit behaviour. We can actually see two boundary layers in time : the initial one, at τ = 0, and the second, at τ 5.5, when z(τ ) becomes smaller than z * . The loss of the non trivial equilibrium point (x 2 (z), y 2 (z)) mathematically corresponds to the fact that τ gets larger than L in Theorem 5.4, and a new domain of attraction is present corresponding, eventually to Theorem 5.6.

Parametric analysis of the system

We end these numerical illustrations by an illustration of the importance of the 0 , below which we observe the convergence of (x (τ ), y (τ ), z (τ )) to (x 2 (z(τ )), y 2 (z(τ )), z(τ )) as ≤ 0 tends to 0. Indeed, the asymptotic behaviour of the solutions needs to be scaled with intrinsic sizes of the model, like the norms of the operators involved in the differential system or the size of the initial values of the bacteria's population or state of health of the host.

Let us place ourselves in the particular case where the initial condition z 0 is such that the nullclines are almost tangent but not interacting. Let's call δ the distance between these nullclines and assume that δ < < 1. Two interesting cases attract our attention (we refer to Figure 12) :

•

δ corresponds to the fact that the dynamics of bacteria' population towards a point Figure 11: Convergence of slow-fast system (4.3) to the limit systems: In this figure, we show the convergence of the slow-fast system (in red, blue and green) to the limit system (black and yellow) when the parameter tends to zero.

of equilibrium is very rapid compared to the relative motion of nullclines resulting from the evolution of z(τ ) (figure on the left).

• δ corresponds to the fact that the relative time it takes to move the nullclines (and possibly brings them to intersect) is small enough assuming that the host state of health improves a little bit and is faster then the collapse of the bacteria's population. It therefore allows a change in the bacteria's dynamics that is attracted by this newly created stable equilibrium point (figure on the right).

For a given value of δ associated with an initial value z 0 , there is a value for which, there will be a change of dynamics in the bacteria's system, leading to a different behaviour for the host's health status.

On the left the speed of bacteria to reach equilibrium is large, . So if t δ is the time it takes for the nullclines to intersect, then the bacteria quickly reach their equilibrium in (0, 0) before the nullclines can intersect.

On the right, we are in a situation where δ. In this case the nullclines quickly closed, because by increasing the value of , we reduce the speed of bacteria, despite the fast speed of bacteria, the relative time is quite large compared to the distance between nullclines. Then bacteria cannot pass through, because the nullclines close up due to the improvement in the state of the host giving rise to the existence of a non-zero point of equilibrium.

Figure 12: In these figures we want to illustrate the two different regimes, possible when z < Z * , that can be encountered if is not small enough with respect to the natural dimensions of the problem. In the two figure above, on the left, is small enough so that the collapse of the bacteria's population is fast enough to get those populations with a size that sits under the curve χ that is created by the matching of the nullclines resulting from the slight increase of z while on the right, this closing is faster. These two different case where the speed of the decline of the bacteria's populations is larger or smaller than the speed of matching of the nullclines lead to a different status illustrated on the bottom figures where the expected decline of the bacteria's populations that exsist on the left figure is cancelled out on the right figure by the creation of the new stable equilibrium point (x 2 , y 2 ) as illustrated next in Figure 13 Figure 13: We illustrate here how a choice of not small enough does not enter in the frame of Theorem 5.6, on the left, is small enough, and the conclusion of Theorem 5.6 hold, but on the right, is larger than 0 and the dynamics is not represented by the conclusions of the theorem.

We set all the other parameters, x 0 = 0.8, y 0 = 0.6 and z 0 = 0.16. With this parameters, we know that the nullclines are almost tangent. As the nullclines are almost tangent, then there exists δ = 0, such that δ is the distance between these nullclines. When = 10 -3 , we see that we immediately have the result obtained in the theory made in the previous section. That is, when there is no point of intersection of the nullclines, then the bacteria quickly reach their equilibrium in (0, 0). This leads to the extinction of the host-bacteria system quickly.

On the other hand, by increasing the relative time ( = 10 -2 ), despite their speed of growth, the bacteria reach the equilibrium point (0, 0) only after a certain time. We slightly decrease the relative speed of bacteria to reach their equilibrium. We therefore see that even if we are in a situation in which the nullclines do not intersect, we still obtain a non-zero equilibrium point for the bacteria. This allows for a symbiotic relationship between the host-bacteria system for a certain time.

Discussion

Our theoretical study shows the effects that can be expected in an obligate symbiotic relationship. First between the two cooperative bacteria where the survival of one depends strongly on that of the other; then between the host and its bacteria.

In this theoretical study, we discussed in the first model, the dynamics of two interacting bacteria species in obligate symbiosis. Between both species, there is a complementarity in the production of different resources. One of the main point of this model is the geometric shape of the nullclines of the interactions functions and their characteristics rather than their functional expression. The characteristics given for the interaction functions describe properly the behavior of a symbiotic system where the two species are in cooperation. For many reasons of simplicity, we have studied all its models in a symmetric framework, and we can indeed notice that all the points ϕ(x, y) = 0 is symmetric with respect to the first bisector y = x. This is not so important from a mathematical point of view but reality is not like that at all. Hence is we were to fit the model to some data, it would be important to consider the non-symmetric case.

In the host-bacteria model, we discussed the impact of bacteria interaction with the state of health of the host. The study of the asymptotic behavior of the (2-1)-fast-slow system allow us to understand how the different time scales influence the dynamic of bacteria and the state of health of the host. The new point in the modeling of this type of system, and which we have not really found in the literature, is the modeling of the host through its health status. The asymptotic study of the host-bacteria model shows the importance of taking into account in the modeling, the different time scales of the different interacting species.

The question of fitting the model to real data requires consistent and sufficiently sampled time series, which is a challenge for biologists. Yet this is an essential point to advance the understanding of these complex phenomena, with the joint contribution of both disciplines.

A possible opening of our work would be to see the interactions through production and movement of nutriments, the quantities of which would also be taken into account. This opens the way to an optimization problem for a given individual (either the bacteria or the host) where a balance is sought between the cost to produce the nutriments and the benefit these nutriments offer to the organism that consumes them. 

Figure 3 :

 3 Figure 3: This figure represents the nullclines together with the velocity vectors on each point on a regular grid together with the unique line χ, being the ensemble of all initial points of trajectories that reach the saddle point E 1 = (x 1 , y 1 ) and, in addition separates the domain of initial values (x,y) into the two basins of attraction of the two stable equilibrium E 0 and E 2 .

Figure 4 :

 4 Figure4: These figures illustrate the 3 ways the dynamics of the bacteria can reach the stable equilibrium point (x 2 , y 2 ), depending on the initial conditions chosen above χ. For the figure on the left the initial conditions (x 0 , y 0 ) = (1, 0.7) are smaller than (x 2 , y 2 ) but large enough to lead to an increase of both colonies. On the opposite, for the figure on the right, the initial conditions (x 0 , y 0 ) = (2.5, 2) are thus above (x 2 , y 2 ), starting with a population of both species fairly large, the mutualistic coexistence takes place and persists, even though they decay due to the fact that the initial populations are larger than the mutualistic carrying capacity. Lastly, the figure in the middle, illustrate the interesting dynamics for an initial condition : (x 0 , y 0 ) = (0.5, 1.2), i.e. where we start with a small population of bacteria X, we first observe a significant decrease in the population Y. This decrease is due to the fact that bacteria Y do not get enough benefit from bacteria X. However, the relative excess of bacteria Y allows the bacteria X to grow rapidly and reach a level where they go through the nullcline G (see (3.2)) which means that y can start and grow.

Figure 6 :

 6 Figure 6: Changing of stability: Then, on this triple figure we present the behaviour associated to the saddle point (x 1 , y 1). We illustrate that, by varying very little the initial composition of the bacteria 2, the coupled system can reach the i) extinction (left figure with initial condition (x 0 , y 0 ) = (0.5, 0.22007) converging eventually to (0, 0)), ii) a stable coexistence (right figure with initial condition (x 0 , y 0 ) = (0.5, 0.220075) converging eventually to (x 2 , y 2 )), or even unstable (saddle point) coexistence for a very particular initial value for y 0 found by dichotomy, resulting to an initial condition (x 0 , y 0 ) = (0.5, 0.220074047)) right on the curve χ described above.

Figure 7 :

 7 Figure 7: This figure represents the dynamics of bacteria in the case where the interaction functions ϕ and ψ are different. It can be seen in this case that the system always tends towards a stable state. What should be observed in this figure is that the equilibrium points are no longer the same as in the previous figures.

Figure 8 :

 8 Figure 8: We illustrate here three instances of the possible structure of the manifold M defined in (5.1) in the symmetric case where the functions ϕ and ψ are given in the following form ψ(y, x) = ϕ(x, y) = ae -αx -be -βy -c with a = 2, b = 1, c = 1.5, α = 0.2, β = 3. The additional parameters γ 0 = 0.25 and γ 1 = 0.8 are chosen as explained in the text. The figure on the left with z = 0 corresponds to a unique equilibrium point x = y = 0. The figure on the right, obtained with z = 0.2, corresponds to the existence of 3 equilibrium points (0, 0) and E 2 (z) that are both stable and E 1 (z) that is a saddle point. The figure in the middle displays the limit case (associated with z * = 0.165) where the two nullclines are tangent that leads to a unique additional equilibrium point.

5. 2 . 1

 21 Restriction to the sub-manifold S 2

Figure 10 :

 10 Figure10: The four figures illustrate the behaviour of the solutions when z 0 is larger, yielding the existence of two new equilibrium points, one of them (denoted as (x 2 , y 2 )) being stable. First we present, in the same two extreme values for : = 10 -3 one the left and = 1 on the right. In the top figures, the bacteria population is large enough to positively interact together because the initial value x 0 = 0.8, y 0 = 0.6 is above the critical curve χ(z) leading to the existence of a non trivial stable equilibrium point. On the contrary, in the bottom figures, the initial value x 0 = 0.3, y 0 = 0.15 is below the critical curve χ(z) and the bacteria population rapidly collapse, the smaller the faster this collapse.
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  H3) We also assume that, for any given ζ ∈ G : ξ = φ(ζ) is an asymptotically stable equilibium point of the reduced fast equation:dξ dt = f (ξ, ζ) ξ(0) = ξ 0 (A.4)that is uniform in the parameters ζ ∈ G. The solution to (A.4) is denoted as ξ(t; ζ, ξ 0 ) (H4) ξ 0 is contained in an interior subset of the domain of attraction of φ(ζ 0 ). An interior subset of a domain is a subset of which all the points have a positive distance to the boundary of the domain, which is independent of .Theorem A.1. Under the previous hypotheses, ∀η > 0,∃ 0 > 0, ∃M > 0, ∃(d, L) ∈ R +2 ,∀ ≤ 0 , • ∀t, 0 ≤ t ≤ M , |ξ (t) -ξ(t; ζ 0 , ξ 0 )| ≤ η, • ∀τ, d ≤ τ ≤ L, |ξ (τ ) -φ( ζ(τ ))| ≤ η • ∀τ, τ ≤ L, |ζ (τ ) -ζ(τ )| ≤ η

  

  

  

Another set of such functions could take the form ϕ(x, y) = -ax

+ by -c and ψ(x, y) = -a y 2 + b x -c , with positive values for a, b, c, a , b , c and -of course -no coherence with the previous values of a, b, c, a , b , c .

see however subsection 6.3 to better understand what reasonable means.
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A Appendix : Tikhonov's theorem

The main theorem used in this paper is Tykhonov's theorem. We consider the initial value problem in [START_REF] Verhulst | Singular perturbation methods for slow-fast dynamics[END_REF] :

where f : D × G -→ R n and g : D × G × R + -→ R m are given and assumed to be sufficiently smooth vector functions in ξ, ζ and τ . This is a slow fast system for small > 0. We are looking at the solutions behavior when -→ 0. So we are making the following assumptions which are listed by the letter (H).

(H1) We assume that there exists a unique solution (ξ (τ ), ζ (τ )) for the initial value problem (A.1) and also for the following reduced differential-algebraic system so-called the reduced slow system (obtained by letting = 0 in (A.1))

The solutions to (A.2) are denoted as ξ(τ ), ζ(τ ).