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ABSTRACT

Over the past few years, domain specific pretrained language models have been investigated and have
shown remarkable achievements in different downstream tasks, especially in biomedical domain.
These achievements stem on the well known BERT architecture which uses an attention based self-
supervision for context learning of textual documents. However, these domain specific biomedical
pretrained language models mainly use English corpora. Therefore, non-English, domain-specific
pretrained models remain quite rare, both of these requirements being hard to achieve. In this work,
we proposed AliBERT, a biomedical pretrained language model for French and investigated different
learning strategies. AliBERT is trained using regularized Unigram based tokenizer trained for this
purpose. AliBERT has achieved state of the art F1 and accuracy scores in different down-stream
biomedical tasks. Our pretrained model manages to outperform some French non domain-specific
models such as CamemBERT and FlauBERT on diverse down-stream tasks, with less pretraining and
training time and with much smaller corpora.

1 Introduction

Recent contextual language models have achieved a tremendous results in almost all domains using textual information.
Transformers [Vaswani et al., 2017] based pretrained language models (T-PLM) have contributed and continue to
contribute to the success of natural language processing (NLP) in multiple domains of expertise. Furthermore, very large
transformer based models which require hundreds of billions of parameters have shown extra-ordinary achievements
and became more accessible. However, these huge pretrained language models (PMLs) such as Generative pretrained
Transformer (GPT-3) and No Language Left Behind (NLLB) [NLLB Team et al., 2022] have addressed different
languages in the general domain of NLP tasks but not domain specific NLP.

Although there are a few that are multi-lingual [Devlin et al., 2018, NLLB Team et al., 2022], multi-domain pretrained
language models (PLMs) [Maronikolakis and Schütze, 2021], are very rare. Yet, PLMs can be trained in domain
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specific and language specific to achieve better performance. The biomedical field is one of the most important specific
domain and its associated textual corpora is one of the first fast growing sources of information in several languages.
Hence, researchers have leveraged PLMs to represent biomedical knowledge from different sources, following their
success in the general domain. There are quite fascinating biomedical pretrained language models (B-PLMs) that have
achieved interesting results and that help decision making in the biomedical field, such as BioBERT [Lee et al., 2020],
PubMedBERT [Gu et al., 2022], BioELECTRA [raj Kanakarajan et al., 2021], etc.

PLMs are trained using different training mechanisms. The most common are masked language modeling (MLM)
[Devlin et al., 2019], replaced token detection (RTD) [Clark et al., 2020] or Next Sentence Prediction (NSP) [Devlin
et al., 2019]. Training a biomedical language model using different strategies does benefit the different down stream
tasks. Furthermore, B-PLMs apply various pretraining methods since they borrow some characteristics from already
existing PLMs. The commonly used pretraining methods are continual pretraining (CPT), mixed domain pretraining,
domain specific pretraining (DSPT), etc. In this work, DSPT was used for training our proposed model from scratch
using domain-specific French corpora. Furthemore, B-PLMs use tokens as input. Tokenization is indeed the basic step
of language model training since it is the tokens that are directly used as discrete input for model pretraining. There are
different ways to tokenize a text input. The most common tokenization techniques are Byte Pair Encoding (BPE) (such
as; SentencePiece, WordPiece, etc) and Unigram sub-word based tokenization. Consideration and implementation of
different tokenization techniques are equally important to achieve better performance of B-PLMs, especially when the
model is language specific.. Language-specific PLMs can use common tokenization techniques like BPE, but they can
also tailor the tokenization process and train a tokenizer that can fit a specific language and domain under consideration.
In similar way the biomedical text differs from general domain texts, so the use of custom tokenization allows for better
representation of most biomedical vocabulary (words).

Another key stage to consider while training huge PLMs is hyperparameters optimization. Optimization of the
hyperparameters of the T-PLMs have an impact on the performance and training time of the models. One of the
hyperparameters in the deep architecture of transformers is its optimizer which helps minimize the output of the loss
function. Recently, an optimizer known as LAMB —which stands for "Layer-wise Adaptive Moments optimizer for
Batch training"— was shown to greatly reduce BERT training time[Devlin et al., 2018] from 3 days to 76 minutes
[You et al., 2019]. Hence, choosing the right optimizer can also speed up the training of PLMs. In our work we did
investigate the effectiveness of the LAMB optimizer compared to other commonly used optimizers.

Biomedical languages models in languages other than English , i.e. PLMs that are both domain and language specific,
are quite rare. In the field of non-English language specific models, there are a few that focus on French language, such
as CamemBERT [Martin et al., 2020] and FlauBERT [Le et al., 2019]. French is a very rich language and French-based
PLMs [Martin et al., 2020, Le et al., 2019] have shown the importance of such language-specific model for different
purposes. However, French biomedical textual information have not been implemented using transformers based
PLM. Yet, there are a few French language word embedding in different domains. [Dynomant et al., 2019] compared
different word embedding techniques (word2vec [Mikolov et al., 2013], GloVe [Pennington et al., 2014]) for French
health-related documents. Given the disadvantages of embedding words for their representation it is necessary to build
B-PLMs for better representation. In this work, we propose AliBERT (named after Jean-Louis-Marc AliBERT the french
pioneer of dermatology), a BERT-based language-specific and domain-specific Biomedical language model. AliBERT
uses a masked language model (MLM) pretraining mechanism which randomly masks some of the tokens from the
input biomedical text and predicts the masked tokens based on the context of the input. Thereby learning the context
of each word according to the biomedical text input. A Unigram based tokenizer with a new regularization algorithm
has been trained for AliBERT pre-training. In addition to the MLM, we have also trained an ELECTRA-based [Clark
et al., 2020] model called AliBERT-ELECTRA. AliBERT-ELECTRA is trained using the replaced token detection
mechanism using the same vocabularies and tokenization steps as AliBERT. In addition, the LAMB optimizer is studied
to analyze its computational speed gain during model pretraining. Here are the main contributions of our work:

• A French biomedical language model, a language-specific and domain-specific PLM, which can be used to
represent French biomedical text for different downstream tasks.

• A normalization of a Unigram sub-word tokenization of French biomedical textual input which improves our
vocabulary and overall performance of the models trained.

• AliBERT outperforms other French PLMs in different downstream tasks. AliBERT models and code will
eventually be available at the following address https://gitlab.par.quinten.io/qlab/dagobert/-/tree/main

This paper is organized in the following manner: first the related work is briefly discussed in section 2, different
language-specific and domain specific PLMs and their pretraining objectives and strategies are discussed. Second,
section 3 presents our B-PLM AliBERT with details on architecture, tokenization and optimization. Then, section 4
discusses the fine-tuning and evaluation of our models in downstream tasks. Next, section 5 explain the experiments
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and results on the down-stream tasks. Then, section 6 discusses the results found and the drawbacks we encountered
in detail. Finally, section 7 concludes the findings of this paper and points out our future directions concerning the
domain-specific and language-specific PLMs.

2 Related work

In recent years, the number of language models based on Transformers has grown rapidly and their performance has
been remarkable in many areas. The corner stone of these models is the attention architecture known as "attention is
all you need" [Vaswani et al., 2017] which is composed of an encoder, a decoder and an attention mechanism. The
pioneers of Transformers based PLMs (T-PLMs) are BERT [Devlin et al., 2018] and GPT [Radford et al., 2018] which
are a stacks of encoders and decoders of transformer, respectively. Consequently, the T-PLMs can be mainly divided as
transformer encoder based models such as ALBERT [Lan et al., 2019], RoBERTa [Liu et al., 2019], ELCTRA [Clark
et al., 2020], and transformer decoder based model such as BART [Lewis et al., 2019], PEGASUS [Zhang et al., 2019],
and T5 [Raffel et al., 2020]. [Devlin et al., 2018] played an important role for the increase of T-PLMs and fine-tuning
many down-steam tasks. Devlin et al. also paved the way for other languages (other than English), such as [Martin
et al., 2020, Le et al., 2019, Delobelle et al., 2020, Cañete et al., 2020], to develop language specific (monolingual)
language models.

There are very few French language models [Martin et al., 2020, Le et al., 2019, Copara et al., 2020, Douka et al., 2021,
Cattan et al., 2022]. CamemBERT [Martin et al., 2020] and FlauBERT [Le et al., 2019] are trained on general knowledge
French corpora. CamemBERT used OSCAR2 dataset which is composed of 130 Gigabytes (GB) of raw French text
with 32.7 Billion tokens where as FlauBERT utilized 71 GB of raw text with 12.7 Billion of token. BERTweetFR [Guo
et al., 2021] is another French PLM trained on French tweets. BERTweetFR is a general domain which is initialized
using CamemBERT utilizing the largest French tweets corpora which is composed of 16 GB of 226 Million tweets.
They took tweets with an average length of 30 tokens. Kamal Eddine et al. developed a BART based french language
model names as BARThez which a generative language model based on BART3 [Lewis et al., 2019]. BARThez used
66 GB (110 GB after tokenization) raw text for pretraining. Cattan et al. investigated the usability of transformer
based models for French question answering task and provided a model known as FrALBERT which is based on a
famous compact language models (parameter efficient BERT) known as ALBERT [Lan et al., 2019]. FrALBERT is a
compact language model pretrained on the French version of the Wikipedia encyclopedia of 04/05/2021. Their dataset
is composed of 4 GB of text and 17 million sentences. There are two French domain specific PLMs. The first one is
JuriBERT [Douka et al., 2021], it is a French legal language model (language and domain specific) which is trained on
6.3 GB of raw legal text4. The second is CamemBioBERT [Copara et al., 2020], it is a fine-tuned CamemBERT [Martin
et al., 2020] using biomedical text from a French language challenge known as DEFT ("Défi Fouille de Textes")5. [Dura
et al., 2022] introduced their ongoing work on a clinical French language model, known as EDS (Entrepôt des Données
de Santé), that uses 21 million French clinical reports from electronic health records (EHR) from several hospitals in
the Paris area. Dura et al. claimed that their preliminary results achieved better results than CamemBERT [Martin
et al., 2020]. They have trained EDS from scratch (EDS-from-scratch) and continuous training over CamemBERT
(EDS-fine-tuned).

Regarding domain specific-language models, Lee et al.2020 built the first BERT based language model in English in
the biomedical domain, known as BioBERT. BioBERT [Lee et al., 2020] is built on top of the BERT [Devlin et al.,
2018] model using abstracts of articles from the PubMed 6 as well as PMC 7 full articles. BioBERT provided different
sizes of pretrained models and they claimed to have achieved state of the art in multiple down-stream task including
named entity recognition (NER), biomedical text classification, relation extraction, etc. Following the publication of
BioBERT, biomedical language models have gained considerable momentum. Although the B-PLMs are variants of the
pioneer transformers [Vaswani et al., 2017] architecture, they have key differences. Recently, a survey [Kalyan et al.,
2021] studied many publicly available language models in the biomedical domain and provided a survey of systematic
literature review, known as AMMU. AMMU includes 121 articles of biomedical language models that exist until their
paper was published in 2021.

2OSCAR is a set of monolingual corpora
3BART: De-noising Sequence-to-Sequence pretraining for Natural Language Generation, Translation, and Comprehension
4Number of token used in JuriBERT [Douka et al., 2021] not mentioned in the paper
5DEFT is a scientific evaluation campaign on Francophone text mining.
6PubMed comprises more than 34 million citations for biomedical literature from MEDLINE, life science journals, and online

books. Citations may include links to full text content from PubMed Central and publisher web sites
7PubMed Central® (PMC) is a free full-text archive of biomedical and life sciences journal literature at the U.S. National

Institutes of Health’s National Library of Medicine (NIH/NLM))
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AMMU, Kalyan et al., investigated the core B-PLMs concepts, such as pretraining methods, pretraining tasks, fine-
tuning methods and embeddings. Furthermore, Kalyan et al. disclosed different types of corpora along with the language
models that used the corpus. The main corpora included were electronic health record (EHR), radiology reports, social
media texts and scientific literature. During pretraining, different B-PLMs took different learning objectives. Kalyan
et al. have listed out the most common ways and these are Masked Language Modeling (MLM), Replaced Token
Detection (RTD), Next Sentence Prediction (NSP), Sentence Order Prediction (SOP) and Span Boundary Objective
(SBO). MLM was introduced by BERT and many B-PLMs [Lee et al., 2020, López-García et al., 2021] used this
to train their model. MLM considers context from both directions (left and right) of an input tokens to predict the
missing/masked token. There are different masking techniques of MLM, for example, Dynamic masking [Liu et al.,
2019], whole word masking [Gu et al., 2022], whole entity masking [Lin et al., 2021] and whole span masking [Zhang
et al., 2020]. RTD learns by checking whether each token is replaced or not. It has two sub-models, a generator which
predicts words for a masked words and a discriminator which detects if each prediction was the original word or not.
RTD was first introduced by ELECTRA [Clark et al., 2020] then used by BioElECTRA [raj Kanakarajan et al., 2021]
as a domain specific training. NSP was also introduced by BERT, it is training a model on sentence-level to predict if
two sentences come one after the other or not (binary classification). SOP [Lan et al., 2019] is a recent sentence-level
prediction strategy to learn the coherence between sentences. In the biomedical domain BioALBERT [Naseem et al.,
2022] has used this technique. SBO is a pretraining task that learns on predicting the whole masked span of a context.
SpanBERT used this technique for conceptual representation of biomedical text [Joshi et al., 2020]. More details is
left for reader to enjoy the AMMU, survey paper [Kalyan et al., 2021]. We will focus on the non-English biomedical
language models.

There are few non-English transformer-based biomedical PLMs [Terumi Rubel Schneider et al., 2020, Bressem et al.,
2020, López-García et al., 2021]. Most of the models are pretrained using the continual pretraining (CPT) approach
which means they used already pretrained language specific general knowledge PTM or multilingual BERT (mBERT)
[Devlin et al., 2018] as a starting point and continue the training using biomedical and clinical textual documents.
Terumi Rubel Schneider et al. developed a B-PLM for Brazilian Portuguese using biomedical scientific paper abstracts
and clinical notes. They initialized their models using mBERT provided by Devlin et al. and achieved state of the art
Portuguese biomedical named entities recognition (NER). They have also experimented the combination of clinical
notes and abstracts of biomedical scientific articles and they claimed the model trained with both datasets outperformed
the other two models trained separately (using only one of the datasets). Cañete et al. developed a clinical coding model
for Spanish medical documents using transformer based PLM. They developed different transformer based models
by continuing the training from existing multilingual and language specific models such as mBERT [Devlin et al.,
2018], BETO8 [Canete et al., 2020] and XLM-RoBERTa [Conneau et al., 2019] using a private corpus of deidentified
real-world oncology clinical texts written in Spanish. The corpora are composed of 30.9 thousand documents, 64.4
million words. Then, they further fine-tuned the models on clinical coding tasks using publicly available clinical Spanish
corpora. López-García et al. showed that language and domain specific PLMs perform better than the mixed domain
and multilingual language models. Bressem et al. developed German biomedical transformer based PLMs trained
from already existing German language models such as mBERT, GermanBERT [Chan et al., 2020], etc. and continued
training for biomedical text documents. They have also trained the BERT model from scratch and named it FS-BERT. It
is based on a text corpora consisting of 3.8 million unstructured radiology reports which are composed of around 4.16
billion words. Bressem et al. created a custom WordPiece vocabulary because the existing German language models
did not have the vocabularies that come from radiology texts. There are more language specific B-PLMs that are not
covered here, we invite readers to refer to the AMMU survey for details [Kalyan et al., 2021].

To the best of our knowledge, there is not yet a French biomedical transformer based PLM trained from scratch.
However, as mentioned above we are aware of an ongoing work on a PLM for French clinical reports using proprietary
EHR [Dura et al., 2022] From the literature we can clearly see that there is a gap in pretrained language models for
French biomedical text mining. Hence, Our primary goal is to address this gap and enhance the tokenization of French
biomedical texts. Instead of relying solely on general tokenization methods, we have standardized the tokenization
process specifically for French biomedical texts.

3 AliBERT: a pretrained language model for French biomedical text

This sections focuses on how the proposed pretrained language model, AliBERT, was built. It describes the pretraining
strategy and architecture, pretraining corpora, tokenization and optimization of our models.

8BETO is a BERT model trained on a big Spanish corpus. BETO is of size similar to a BERT-Base and was trained with the
Whole Word Masking technique.
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3.1 Pretraining strategies

There are different kinds of pretraining strategies [Kalyan et al., 2021] to train a transformers based models, such as
pretraining from scratch (PTS), continual pretraining (CPT), simulated pretrained (SPT), etc. as discussed in section 2.
pretraining from scratch (PTS) is utilized for training AliBERT and its variants from scratch using biomedical corpora
for better representation of biomedical context of words. Training our models from scratch helps to represent vocabulary
that only exist in biomedical text which will be discussed in subsection 3.3.

The models selected are based on the transformers [Vaswani et al., 2017] architecture and the famous BERT [Devlin
et al., 2018] model is used as masked language model (MLM), transformers and BERT architecture will not be discussed
here because they have been discussed enough in many research works [Devlin et al., 2019, Martin et al., 2020].
Therefore, AliBERT is trained in the coarse of self-supervised learning by masking 15% of the words from the input
text (sequence of words). All necessary steps and configurations are discussed in the following sub-sections.

3.2 Pretraining data

The pretraining corpus was gathered from different sub-corpora of French biomedical textual documents. The sources
used are: Drug Database, a french equivalent of Physician’s Desk Reference i.e. the (RCP)9, biomedical articles from
ScienceDirect10, Thesis manuscripts in French and articles from Cochrane 11 database. It can be inferred from the
names of the corpora that they cover various topics in the biomedical domain and that they have different writing styles.
Table 1 summarises the different corpora collected and used for pretraining AliBERT models.

Name Type Quantity Size
Drug database Description 23 K 550 Mb
RCP Description 35 K 2200 Mb
Articles Scientific articles 500 K 4300 Mb
Thesis Thesis summaries 300 K 300 Mb
Cochrane Articles pages 7.6 K 27 Mb

Table 1: Corpora used to pretrain AliBERT

The corpora were collected from different sources. Scientific articles are collected from ScienceDirect using an API
provided on subscription and where French articles in biomedical domain were selected. The summaries of thesis
manuscripts are collected form "Système universitaire de documentation (SuDoc)" which is a catalog of university
documentation system. Short texts and some complete sentences were collected from the public drug database which
lists the characteristics of tens of thousands of drugs. Furthermore, a similar drug database known as "Résumé des
Caractéristiques du Produit (RCP)" is also used to represent description of medications that are intended to be utilized
by biomedicine professionals. Pages of biomedical articles from Cochrane are also collected. Hence, our corpus for
pretraining is composed all together of around 7 gigabyte (GB) textual documents.

When comparing with the corpora of already existing French T-PLMs, our corpus is big enough to represent a biomedical
text. Table 2 compares the different corpora used for pretraining french language models.

Model Domain Size Source
CamemBERT [Martin et al., 2020] general 138 GB OSCAR
FlauBERT [Le et al., 2019] general 71 GB WMT19, OPUS, Wikmedia
BERTweetFR [Guo et al., 2021] general 16 GB French tweets
JuriBERT [Douka et al., 2021] legal 6.3 GB LégalFrance & Court of Causation
FrAlbert [Cattan et al., 2022] general 4.0 GB Wikipedia
AliBERT biomedical 7.0 GB ScineceDirect, SuDoc, Drug datbases and Cochrane

Table 2: Comparing the corpus with already existing corpora for French PLMs

9The "Résumé des Caractéristiques du Produit" (RCP) database aims at providing more accurate information than the medication
note given for medicines.

10ScienceDirect is a website which provides access to a large bibliographic database of scientific and medical publications of the
Dutch publisher Elsevier.

11Cochrane is a British international charitable organisation formed to organise medical research findings to facilitate evidence-
based choices about health interventions involving health professionals, patients and policy makers.
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3.3 Tokenization

In the context of Pretrained Language Models (PLMs), tokenization refers to the process of dividing the input text into
subwords or words known as tokens that will serve as the input to the model. Most BERT based PLMs use sub-word
tokenization scheme such as Byte Pair Encoding (BPE), WordPiece and SentencePiece. However, the tokenization
process can be adapted or trained to meet a specific purpose and/or to represent a vocabulary in a specific domain. We
chose to train our own tokenizer to ensure that its vocabulary encompasses the necessary biomedical terms.

A normalization step prior to tokenization, particularly adapted to french, was used to enhance our vocabulary. In this
step we added a space after each punctuation mark. It did normalise the representation of the text, and did facilitate
both the tokenization and learning by the neural network. Hence, this step leads to a significant reduction of duplicates,
such as, ("MOT", "_MOT"),("_siècle","_siècles") which were introduced due to punctuation marks like "(", " :", "-", etc.
in the text.

We have trained different tokenizers, such as Unigram, WordPiece with different parameters (vocabulary size, regular-
ization). Unlike BPE, Unigram starts from a big vocabulary and removes tokens until it reaches the desired vocabulary
size. During training, at every step, Unigram computes a loss over the corpus given the current vocabulary. Then, for
each symbol it calculates how much the overall loss would increase if the symbol was removed, and looks for the
symbols that would decrease it the most. Figure 1 depicts the steps taken during tokenization with an example and
compares Unigram tokenizers trained from scratch and the tokenizer from CamemBERT[Martin et al., 2020].

Figure 1: Normalization and tokenization example. During normalization step the input text is normalized by adding
a space after the punctuation (shown by the orange vertical lines) and removing a space before it (shown by the red
vertical lines) and then used to train the tokenizer (Unigram). The Unigram tokenizers are trained from scratch while
developing AliBERT, Unigram uses text input as it is (does not change the cases), Unigram_L lower cased the input text
and Unigram_N_N is the not-normalized version of Unigram and CamemBERT is the tokenizer used by CamemBERT
[Martin et al., 2020], a French PLM.

3.3.1 Training configurations

During the training of a large language model, it is necessary to consider different configuration that are necessary for
building a model that performs well. Therefore, the model architectures, training strategy, optimization and computation
are key parameters to consider.

Model architectures and training: We have mainly developed two architectures of our French B-PLM namely
AliBERT, a BERT [Lan et al., 2019] based and AliBERT-ELECTRA, an ELECTRA [Clark et al., 2020] based, models.
BERT and ELECTRA differ only in their learning strategy. The former uses masked language modeling (MLM) and
the later uses replaced token detection (RTD). AliBERTbase has the same architecture as BERTbasewhich has a length
(L) of 12, height (H) of 512 and a self-attention head (A) of 12.

Figure 2 illustrates how MLM works. A sequence of words is given as input and 15% of the words are hidden. The
input goes through the tokenization stage and the words are tokenized. The tokens are padded or truncated to have a
maximum length of 512 tokens. Hence, special tokens "[CLS]","[PAD]" are added if the sequence length is less than
512 tokens. Then the embeddings of the tokens are passed to the transformer layers to learn the context of the input
and the relationship of the tokens. Finally the output of the transformers is passed to a feed forward neural network to
compute the probability distribution of the token to predict the masked toked words. For more detail on this training
method see the original work of BERT [Devlin et al., 2019].

Another strategy different from MLM is RTD, illustrated on the Figure 3. In RTD the objective is to predict which
tokens have been replaced and which have not. A very simple pretrained model is used as generator to predict a masked

6
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Figure 2: Masked Language Modeling (MLM) strategy. In this example, a sentence related to the French medical
domain is given as input where some of the words are hidden. In the output, the hidden words are predicted.

word from the input text. Then, the predicted words are used to replace the masked inputs and the unmasked sentence is
used as input text in the discriminator model. Finally the discriminator model is used to identify the original words
of the original input text. For more details of the architecture, we invite our readers to refer to the original work of
ELECTRA [Ozyurt, 2020].

Optimization: AliBERT was originally trained using the ADAM 12 optimizer for faster and better training as used in
BERT. Meanwhile, a recent work by You et al.(2019) introduced an optimizer known as LAMB that reduces the training
time of BERT from 3 days (4320 minutes) to 76 minutes. Therefore, AliBERT was also trained using LAMB optimizer.

The models trained using LAMB optimizer trained much faster than their counter part (using ADAM). However the
performance of the models trained with LAMB was not as good as the models trained with ADAM. Figure 4 shows the
comparison of time taken to train using LAMB and ADAM atomizers on our models. The loss of the model quickly
reduces when LAMB optimizer is used during training.

4 Fine-tuning and model evaluation

In order to evaluate the level of understanding of French biomedical tasks by AliBERT, we have fine-tuned AliBERT on
standard pre-trained language model evaluation tasks such as biomedical named entity recognition (NER), biomedical
text classification, etc. Below, we discussed how the tasks are trained.

12Adam is an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates
of lower-order moments.
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Figure 3: Replaced Token Detection (RTD) strategy. In this example a sentence in French medical language is given as
input, some words are hidden and then replaced by the generator. The discriminator then predicts whether the words are
those of the original sentence or have been replaced.

Figure 4: Training time comparison between models using the ADAM and LAMB optimizer. The latter allows for
faster training but does not lead to better performance.

4.1 Biomedical Named Entity Recognition (NER)

For the NER task we have used HuggingFace13 token classification pipeline using our AliBERT models. The first
dataset used is from the work of Groun et al. 2021 which is used in different challenges of French biomedical text
challenge known as, "DEFT (Défis Fouille de Texte)". It is composed of clinical French texts which focuses on specific
specialities of medical domain such as cardiology, urology, oncology, obstetrics, pneumatic, etc. The annotation in
this dataset include plenty of biomedical entities where some of them have not adequate annotation. Hence, we have

13HuggingFace: the AI community building the future. https://huggingface.co/
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kept only 5 types of annotation and these are anatomy, pathology, symptom, substance and value. Table 3 describes the
annotated dataset used in NER task for fine-tuning and evaluation purposes.

Annotation Occurrences Description
Substance 2,009 Refers to the pharmacological substances used by the patient (drugs, commercial names

and generics)
Symptom 5,240 Entities that are used to make a diagnosis that reveals the pathology of the patient.
Anatomy 4,780 Refers to all anatomical parts (arms, cells, cytoplasm, etc.)
Value 1,743 Refers to values and units, grades, etc. corresponding to examination results, or

descriptions of Symptoms
Pathology 764 Concerns diseases and all that is pathological (adenocarcinoma, carcinoma, fistula,

etc.)

Table 3: Number of annotations in GRABAR NER dataset used for evaluation

Meanwhile, QUAERO [Leixa and Zweigenbaum, 2014] datasets is used for more experiment and fine-tuning. QUAERO
datasets is composed of ten annotated entity categories corresponding to UMLS (Unified Medical Language System)
semantic groups. The annotation was performed using automatic pre-annotations and validated by trained human
annotators. We have selected 5 entities from the QUAERO-MEDLINE datasets which is composed of article titles
from the MEDLINE14 database. The five entities are selected according to their definition and their relatedness with
biomedical domain. The entities are discussed in Table 4.

Annotation Occurrences Description
Anatomy 1,464 A UMLS concept that refers to a particular part of the body
Chemical 1,028 Refers to chemicals and drugs inside and outside of the body, i.e. protein, enzyme,

clinical drug, etc.
Device 126 Includes all devices that are used in the biomedical domain i.e, medical, drug delivery

and medical devices
Disorder 2,825 Refers to any abnormality or disease of the body. E.g, disease, symptom, etc.
Procedure 1,631 Refers to procedures and activities practices in the biomedical domain.

Table 4: Number of annotations in QUAERO-MEDLINE NER dataset used for evaluation

5 Experiments and results

AliBERTbase was trained on 48 GPUs Nvidia A100 ((12 nodes each with 4 GPUs) for 20 hours with 512 input tokens
and a batch size of 960 (20 batch size for each GPU). We have used a vocabulary of 40K sub-word units which are built
using Unigram tokenization algorithm.

Our models have been evaluated using the above mentioned fine-tuning models and on the masked token prediction.
The results found using our models have been compared to the CamemBERT [Martin et al., 2020] French PLM which
is the state of the art in French language. Unfortunately, we were not able to compare our models with biomedical
PLMs due to the lack of French PLM in biomedical domain.

The down stream task that our models has been evaluated on are Biomedical NER and Masking Language Modeling.
The results obtained on these tasks are detailed below.

Biomedical Named Entity Recognition (NER) A token classification models was fine-tuned from the pretrained
models mainly in 5 biomedical entity types, these are symptoms, anatomy, substance, value and pathology. Our
models have outperformed CamemBERT in most of the entities and in their macro average of precision (P), recall(R)
and F1 score (F1).

The results found in Table 5 are trained upon a batch size of 80. learning rate (lr) of 2e-5 and weight decay of 0.01
and the dataset used for each of the entities is discussed on Table 3.Table 5 illustrates that AliBERT and AliBERT-
ELECTRA outperformed CamemBERT considering the precision of the models to detect the entities. CamemBERT
achieved higher F1 score higher than our models for the "Pathology" entity. This is due to the reason that the pathology

14http://www.ncbi.nlm.nih.gov/pubmed/
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Models’ performances on GRABAR dataset
CamemBERT AliBERT (proposed) AliBERT-ELECTRA

Entities P R F1 P R F1 P R F1
Substance 0.96 0.87 0.91 0.96 0.91 0.93 0.95 0.91 0.93
Symptom 0.89 0.91 0.90 0.96 0.98 0.97 0.94 0.98 0.96
Anatomy 0.94 0.91 0.88 0.97 0.97 0.98 0.96 0.97 0.96

Value 0.88 0.46 0.60 0.98 0.99 0.98 0.93 0.93 0.93
Pathology 0.79 0.70 0.74 0.81 0.39 0.52 0.85 0.57 0.68

Table 5: Biomedical named entity recognition (NER) results. Performance in bold is the best achieved for the entity in
question and the measure in question

Models’ performances on QUAERO MEDLINE dataset
CamemBERT AliBERT (proposed) AliBERT-ELECTRA

Entity P R F1 P R F1 P R F1
Anatomy 0.649 0.641 0.645 0.795 0.811 0.803 0.799 0.801 0.800
Chemical 0.844 0.847 0.846 0.878 0.893 0.885 0.898 0.818 0.856

Device 0.000 0.000 0.000 0.506 0.356 0.418 0.549 0.338 0.419
Disorder 0.772 0.818 0.794 0.857 0.843 0.850 0.883 0.809 0.845

Procedure 0.880 0.894 0.887 0.969 0.967 0.968 0.944 0.976 0.960
Macro Avg 0.655 0.656 0.655 0.807 0.783 0.793 0.818 0.755 0.782

Table 6: Biomedical named entity recognition (NER) results on the QUAERO MEDLINE dataset.Performance in bold
is the best achieved for the entity in question and the measure in question

entities in the dataset are very long text that include many words that exist in the general french language words
(CamemBERT vocabularies). However, our models outperformed CamemBERT by a huge margin in F1 score for
the other entities. Furthermore, Our model outperformed CamemBERT for disorder (including pathology) on the
QUAERO dataset. The results found in Table 5 are trained upon a batch size of 80. learning rate (lr) of 2e-5 and weight
decay of 0.01 and the dataset used for each of the entities is discussed on Table 3.Table 5 illustrates that AliBERT
and AliBERT-ELECTRA outperformed CamemBERT considering the precision of the models to detect the entities.
CamemBERT achieved higher F1 score higher than our models for the "Pathology" entity. This is due to the reason that
the pathology entities in the dataset are very long text that include many words that exist in the general french language
words (CamemBERT vocabularies). For example, "tumeur qui est d’allure maligne et qui envahissait
la face postérieure et la corne vésicale droite" is annotated as a single pathology entity. However, our
models outperformed CamemBERT by a huge margin in F1 score for the other entities. Furthermore, Our model
outperformed CamemBERT for disorder (including pathology) on the QUAERO MEDLINE dataset. It is a medical
text dataset based on the PubMed/MEDLINE database. It was created using a number of automatic natural language
processing techniques to extract information from medical texts, such as named entity recognition, semantic relationship
recognition, sentiment analysis, etc. It contains information on diseases, drugs, proteins, genes, etc.

Table 6 shows the results of NER task on the QUAERO dataset and it compares the results with CamemBERT. Our
model outperformed the two models on identifying different kinds of entities (Disorder, Anatomy, Device, Disorder and
Procedure) in QUAERO dataset with around 15% macro average f1 score improvement. We selected the entities that
quite related to biomedical concept. In, Table 6 CamemBERT where not able to identify any medical device where as
AliBERT and AliBERT-ELECTRA detected the devices with f1 score of 42%. Hence, we can say that the B-PTMs can
identify to the specific terms used in the domain.

Masking language modeling We have also compared the ability of the models to predict masked tokens, in the same
way our proposed models have outperformed CamemBERT. For this experiment of unmasking evaluation a sunset of
3000 text of clean texts (1000 articles of ScienceDirect, 1000 articles from Cochrane, 1000 thesis abstracts from SuDuc)
is used. Table 7 illustrates the performance of different models for the prediction of the masked word until the top 5
predictions.

AliBERT has outperformed CamemBERT on predicting a masked word prediction. It can be seen in Table 7 AliBERT
has an increase of 23% in accuracy when compared with CamemBERT. Hence, it clearly shows that in-domain
pretrained language models are really important while dealing with a domain specific texts and hence domain specific
down stream tasks.
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Model Accuracy Top 3 Accuracy Top 5 Accuracy
CamemBERT 0.49 0.57 0.62
AliBERT 0.72 0.83 0.87
AliBERT-ELECTRA 0.71 0.83 0.87

Table 7: Results predicting the masked tokens (MLM)

Figure 5 presents few biomedical text examples for the prediction of masked words. Predicted words colored in green
are the correct predictions. Blue colors shows the prediction is correct in the top 2 predictions, purple color depicts
that the correct prediction is the top 3 and the red colors show the correct word has not been predicted. As can be
seen, Figure 5 AliBERT and AliBERT-ELECTRA outperformed the two French PLMs. This confirms that the need for
training domain specific language models, specifically B-PLMs.

Figure 5: MLM prediction examples and comparison between different Language Model for French Text. For each
sentence where a word has been masked, the list of the first five most probable words according to the model are given.
The colors show the position of the correct prediction, i.e. green is 1st, blue is 2nd, purple is 3rd and red indicates the
correct word is not within the list.

6 Discussion

Our pretrained language models trained on in-domain (biomedical) textual documents tend to outperform models that
are trained on general domain textual documents which is also seen on the literature review of pretrained language
models for English language such as BioBERT [Lee et al., 2020], PubMedBERT [Gu et al., 2022], etc. Training
PLMs using the masked language model (MLM) objective shows somewhat better results, but the difference is not
significant compared to the replaced token prediction (MLM) objective. Moreover, choosing the right optimizer like
LAMB has an effect on the training speed of the pretrained models but not on the performance of the models. During
the training of our models different types of tokenizers, such as, Unigram, WordPiece, SentencePiece, BPE, etc. are
trained and compared with each other. Unigram tokenizer along with our normalization (see section 3) step tend to
outperform other tokenizers. Unigram was also trained into two ways, cased and uncased respectively. Lower casing
the input text achieved better results than letting upper cases as it is. Biomedical text tend to have lots of words that
are written in capital letters. But, we have seen that they are not enough to be used for training our models as upper
cases. Biomedical named entity recognition (B-NER) and biomedical text classification (private data, hence results not
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reported) where used to fine-tune our models to a specific task. Our models tend to generalize faster than the counter
part French general PLMs. For AliBERT or AliBERT-ELECTRA less examples of B-NER text inputs where required
to start learning and generalize quickly and accurately. On the other hand, Camembert took more time to generalize
and with less precision for biomedical entities. This is understandable as it was not trained using domain texts. In
the same manner, this behaviour was reflected during biomedical text classification task. This can also be seen as a
comparison to the vocabularies used by CamemBERT and our models. Our tokenizer’s (Unigram) vocabulary and
CamemBERT tokenizer’s (SentencePiece) have huge difference in content and size. The Unigram tokenizers used to
train our models have a vocabulary size of 40008 while CamemBERT has a size of 32005. CamemBERT’s vocabulary
does not include most biomedical words. In fact, the two tokenizers have about 10,000 tokens in common in their
vocabularies. Although the performance of our models is already excellent, more and varied corpora could improve the
models’ capabilities. For example, medical notes, often found in electronic health records ("EHRs"), can help represent
the knowledge and experience of practitioners.

In addition, to improve the models, continuous training on a general purpose pre-trained language, such as CamemBERT,
could be implemented. Since our tokenizers were a bit different and our goal is to study a purely biomedical PLM, we
have not investigated it yet.

7 Conclusion

This paper proposes a French biomedical pretrained language model that was trained on several corpora of French
biomedical textual materials. Two variants of the model are proposed using two different pre-training strategies.
AliBERT is a pre-trained model based on BERT [Devlin et al., 2018] which used the pre-training strategy of masking
language models (MLM). AliBERT-ELECTRA is based on ELECTRA [Clark et al., 2020]) and used a replaced token
prediction (RTP) learning strategy. Furthermore, a tokenization adaptation strategy was introduced as a building block
for pretraining the two proposed models. A LAMB optimizer has also been tested to accelerate the learning of AliBERT.
The proposed pretraining models have been tested on different downstream tasks and achieved state of the art results on
different tasks. Biomedical entity recognition (NER) and biomedical text classification downstream tasks are fine-tuned
using different biomedical textual documents. Hence, AliBERT is expected to be used by different organization and
practitioners that work with biomedical text for better understanding and to help make informed decisions regarding
biomedical situations. Although our models performed well in all downstream tasks we believe that there is room for
improvements. Hence, we plan to work on integrating clinical documents e.g. EHR data, specifically physician notes,
to make the model more robust to various kind of biomedical documents. The models can also be enlarged by using
continual learning strategy from well known French pretrained language models. CamemBERT [Martin et al., 2020]
can be used as a base model and the training can be continued using our biomedical corpus, like BioBERT [Lee et al.,
2020] and others did.

We are currently working on a new version of AliBERT with more data and a greater diversity of corpora. We plan to
include text from EHR and medical notes in our corpora. Finally, we also plan to train AliBERT to generate biomedical
texts for different purposes.
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