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Abstract

Finding large quantities of high-quality data to train neural networks is one of the
most challenging aspects for researchers since privacy restrictions and associated fi-
nancial obligations make it difficult to gather the data. In recent years, Generative
Adversarial Networks (GANs) have been extensively used in the generation of different
types of datasets. Despite this, we cannot control the attributes that will be asso-
ciated with a data sample generated by GANs. Combining GANs with Variational
Autoencoders (VAEs) is an effective way of obtaining outputs which have the desired
attributes. Our study examined the sampling capacity and quality of VAE and VAE-
GAN for MNIST and Fashion MNIST datasets. Additionally, we introduce a new
metric, Transformer Score (TS), to determine the quality of the generated data. It is
based on a vision transformers network and demonstrates superiority over Inception
Score.
Keywords: Data Synthesis, Generative Models, Variational Autoencoders, Neural
Networks

1 Introduction

In order to train deep learning models, it is essential to have high-quality data sets. Therefore,
the data must be representative of real-world scenarios and large enough to cover as many
cases as possible. With a good data set, it’s usually easier to generalize the characteristics of
the data and to build a better model. Synthetic data can be useful for a variety of reasons,
such as oversampling minority classes and generating new data sets in order to maintain the
privacy of the originals [1]. The augmentation of data results in better performing models and
can reduce generalization errors. However, in many cases, there is a requirement for more
samples to be generated from some distribution and traditional augmentation techniques
may not be good enough for certain tasks [2]. Generative Adversarial Networks [3] are
generative models that are capable of producing synthetic data based on examples they
have encountered in training. As mentioned in the paper [3], noise samples from a prior
distribution function are used as inputs. In Variational Autoencoders (VAE) [4], instead
of mapping the input to a fixed vector, it is mapped to a distribution and the bottleneck
vector is replaced by a mean vector and a standard deviation vector. To pick samples for the
generator, we propose using the latent space distribution of VAE. In other words, we plan on
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studying the effects of combining VAE and GAN and collapsing the decoder and generator
into one entity. Furthermore, we propose to evaluate the resulting models quantitatively and
qualitatively, and improve the network accordingly.

2 Background

Generative modeling generates new samples from the same distribution with given training
data. It aims to learn a generative model Pmodel(x) that approximates Pdata(x). Generative
modeling has broad applications. It can create realistic samples for artwork, super-resolution
and colorization. Besides, generative models are useful to get insights from high-dimensional
data in physics and medical imaging fields. It is also implemented to model the physical
world for simulation and planning with robotics and reinforcement learning applications.

Deep generative models have a large family and variable categories such as autoregressive
models (e.g., PixelCNN [5]), flow-based models (e.g., RealNVP [6]), latent variable models
and energy-based models. Here we will introduce and discuss two most popular types of
generative models: VAEs [4] and GANs [3], which belong to the category of latent variable
models.

2.1 Variational Autoencoder

Variational Autoencoders (VAEs) is a latent variable model that combines the ideas of Au-
toencoder, reparameterization trick, amortization inference and variational approximation.
VAE is composed of encoder and decoder, which are probabilistic. The structure of VAE is
displayed as follows.

Figure 1: VAE structure Source: Adapted from [7]

Encoder network outputs mean and variance of Normal distribution as following equation.

qϕ(z|x) = N(µϕ(x)− σϕ(x)) (1)

Decoder network outputs mean and optionally variance of Normal distribution.

pθ(x|z) = N(µϕ(z), I) (2)
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The VAE assumes that the latent variable z follows N(0, I) and the training data is
generated from the distribution of unobserved (latent) representation z. The goal is to
maximize the following objective function and train a generative model of the conditional
probability.

L(x(i), θ, ϕ) = Ez(log pθ(x
(i)|z)) = DKL(qθ(z|(x(i))||pθ(z)) (3)

The loss function L provides a low bound of likelihood of p(x), i.e. p(x) >= L(x), so VAE
is categorized in explicit density estimation methods. The reconstruction loss Ez maximizes
the likelihood of original input being reconstructed. KL divergence loss makes approximate
posterior distribution close to prior.

2.2 Generative Adversarial Network

Figure 2: GAN structure Source: Adapted from [7]

Different from VAE, generative adversarial networks (GAN) focus on sample generation.
GAN samples from a simple distribution (e.g. random noise) and learn transformation to
training distribution. A GAN consists of a discriminator network and a generator network
as the displayed structure above. The discriminator tries to distinguish between real and
fake images. The generator tries to fool the discriminator by generating real-looking images.
During the training process, the model tries to minimax the following objective function to
make discriminator push up and generator push down.

min
G

max
D

V (D,G) = Ex pdata(x)[logD(x)] + Ez pz(z)[log(1−D(G(z)))] (4)

A generative model describes how a dataset is generated, in terms of a probabilistic
model with probability density functions and prior probabilities. By sampling from this
model, synthetic can be generated. The discriminator model evaluates the quality of the
data created by the generator model. It receives input data samples from either the original
data set, or created by the generator, and tries to predict the source of the sample. The
generator learns to map a latent space to the distribution of the data it aims to replicate
and imitate, so that when fed with a random vector from the latent space, it predicts a
sample from the estimated distribution. The generator is evaluated by the discriminator,
meaning that its aim is to create data samples that are similar to those in the original data
set. The discriminator and the generator are trained simultaneously and they get better
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by “competing” against each other and hence derive their name, “Generative Adversarial
Networks”.

3 Literature Review

To achieve generalizable deep learning models, large amounts of data is needed. But, labeled
data is not always readily available. Recently, GAN based data augmentation has been used
in CT scan segmentation [2] and retinal fundus images generation and segmentation [8].
Synthetic data can indeed boost model performance.

3.1 Generative Adversarial Networks (GANs)

Goodfellow et al. [3] first introduced generative adversarial networks that trained two fully
connected networks (generator and discriminator) to generate images. Several approaches
have been developed since then to generate photo-realistic images. DCGAN [9] adopted a
convolution neural network for both the generated and discriminator. As an alternative to
traditional GAN training, Arjovsky et al. [10] introduced WGAN that improves training
stability and reduces model collapse risk. By progressively increasing the size of the image
and adding layers to the network, the ProgressiveGAN [11] was successful in generating high
resolution images. The Pix2Pix GAN [12], that uses a conditional GAN, mapped images from
one domain to another, for instance, mapping edges to photos. Labels were required for the
training of the network. Through the use of two GANs with cycle consistency loss, CycleGAN
[13] further removed the requirement for labels. Recently, Vision Transformers (ViT) [14, 15]
have also been used in GANs. As a result of using vision transformers architecture in GANs,
ViTGAN [16] demonstrated that the regularization technique of convolutional GANs does
not work on ViT GANs.

3.2 Autoencoders

The autoencoder, designed in order to denoise data by compressing it by encoding and
reconstructing it through decoding [17], proved to be a good feature extraction tool. As
a result of the latent vector (Rn) (compressed input representation), input features are
captured in a low dimension, which follow simple arithmetic. As a result of their ability to
extract features from an image, masked autoencoders [18] have been used in self-supervised
learning for image classification. It has also been shown that variational autoencoders can
be used for anomaly detection [19].

3.3 Controlled Image Generation

3.3.1 GANs

Vanilla GANs that play two player min-max game with a generator and discriminator are
also able generate images with desired attributes. Conditional generative adversarial nets
(CGAN) [20] extend the original generative adversarial nets to a conditional model so that
both generator and discriminator are conditioned on some extra information y. The model
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can generate images conditioned on class labels and learn multi-modal models like text lan-
guage to image. Antipov et al.[21] further enhanced the cGAN to Age-cGAN that conditions
on age and preserve the identity of the generated face. The face aging is simply the change
of condition y at the input of the generator. Reed et al. [22] conditioned on text descriptions
to generate desired attributes. Tan et al. [23] proposed ArtGAN to generate artistic images
conditioned on some attributes K, the discriminator unlike a binary classifier also predicted
K attributes which conditioned the generator.

3.3.2 VAEs

Variational Autoencoders (VAEs) [4] are enhanced Autoencoders where the probability dis-
tribution of the input data is learned using a Bayesian approach. A VAE generates new
samples by utilizing the decoder part of Autoencoder, which has learned a mapping from
latent space to data. Latent space is modeled as a standard normal distribution from which
we can sample data points. Adversarial Autoencoder (AAE) introduced by Makhzani et al.
[24] uses adversarial training to match the aggregated posterior of the hidden code vector
with an arbitrary prior distribution. Wasserstein Auto-Encoder (WAE) [25] minimizes a
penalised form of Wasserstein distance [10] between the model distribution and the target
distribution to build generative model of data distribution. With stable training WAE is
generalization of AAE.

3.3.3 VAE-GAN

Larsen et al. [26] first combined VAE and GAN by collapsing the decoder and generator into
one. On the latent vector, simple arithmetic was used to obtain desired attributes. Hybrid
VAE-GAN method [27] learns an inference model from a GAN model and capture data
representation specific to the VAEs. The aim is to match the latent variables distribution
with the data distribution jointly. The L-VAE-GAN method [28] allows one to discover
disentangled representations across domains and automatically learn shared latent variables.

Weidong Yin et al. [29] introduced Semi-Latent GANs (SL-GANs) for generating and
modifying facial images using high-level semantic attributes. The SL-GAN is composed
of an encoder-decoder network, a GAN, and a recognition network. An encoder projects
the facial images into a semi-latent attribute space containing both user-defined and latent
attributes. As a generator, the decoder generates an image based on an attribute vector.
The user-defined and latent attributes are jointly learned by the recognition network.

Jianmin Bao et al. [30] proposed a variational generative adversarial networks framework
CVAE-GAN for synthesizing images in fine-grained categories such as faces of a specific
person or objects in a category. The method consists of four components: an encoder
network E, a generative network G, a discriminative network D and a classification network
C. As in conditional variational auto-encoder (CVAE) [31], networks E are designed to
learn structured output representations by utilizing deep conditional generative models. The
function of networks G and D is the same as that of GANs [3].

Mingqi Hu et al. [32] developed a variational generator framework to capture semantic
details behind conditional GANs and achieve fine-grain images with rich diversity. A vari-
ational inference is introduced into the generator to infer the posterior of a latent variable
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only from the conditional input, resulting in a variable augmented representation for image
generation. They use a novel auxiliary classifier that reduces adversarial training time and
avoids mode collapse while respecting class-conditional constraints.

Zhang et al. [33] used U-Net [34] as auto-encoder for generating images in adversarial
fashion. There are three components to the network: a U-Net based generator, an adversarial
network Dz on the latent space, a discriminator Dx and an attribute classification network.
U-Nets were trained using reconstruction losses on the generated and true images, and
adversarial losses on the latent space. As a result of the attribute classification loss and
adversarial loss of the discriminator Dx, realistic images with the desired attributes were
guaranteed.

Yu et al. [? ] combined VAEs and GANs to develop a VAE-GAN recommendation sys-
tem. The authors presented a variant of VAEs that uses adversarial training for collaborative
filtering. In order to train VAEs with an arbitrarily expressive inference model, adversarial
variational bayes (AVB) is introduced. GANs are then used for implicit variational inference,
which provides an approximation to posteriors and maximum likelihoods.

Hongyou Chen et al. [35] provided a general framework based on GANs and two au-
toencoders for the task of conditional image generation. The proposed network is intended
to learn a generative model for the entire distribution of data, and to overcome the notori-
ous problem of training instability. There are no typical problems associated with general
generative models, such as mode collapse and unstable training, in the model.

Rui Gao et al. [36] proposed Zero-VAE-GAN, a joint generative model by combining
VAEs and GANs for feature generation to cope with the zero-shot learning problem and
generate unseen features. To enhance class level discriminability, an adversarial categoriza-
tion network is incorporated into the joint framework. In order to augment features that are
unlabeled and unseen, two self-training strategies have been implemented.

Feihong Li et al. [37] presented their VAE-GAN model for arterial spin labeling (ASL)
image synthesis in Magnetic Resonance Imaging(MRI). In the GAN-based model, VAEs are
used as a generator. In addition, Liu et al. [38] investigated VAEs with GANs objectives and
proposed a dual-cycle constrained bijective VAE-GAN to solve the problem of tagged-to-cine
MRI synthesis. Cine MRI is synthesized from its paired tagged MRIs using the network.
Given tagged MR images, a variational autoencoder backbone and cycle reconstruction con-
strained adversarial training are used to produce accurate and realistic cine MR images.

To tackle the generalized zero-shot learning (GZSL) problem, Yuxuan Luo et al. [39]
developed a dual learning framework called Dual VAE-GAN that combines VAEs and GANs
for visual feature generation. Compared to VAEs, the dual VAE-GAN model produces more
clear visual features and alleviates the model collapse problem of GANs. Peirong Ma et al.
[40] also proposed a latent feature generation framework GAN-MVAE for the GZSL problem.
GAN-MVAE maps the real and synthetic samples to the latent space of MVAE to further
align them to make the data distribution synthesized by GAN more consistent with real data
distribution. In order to train the final GZSL classifier, GAN-MVAE learns a discriminative
latent space through latent distribution alignment and cross-modal reconstruction.

Two-Channel VAE-GANs proposed by Shengli Wang et al. [41] can address multiple
image-to-video translation tasks, such as generating multiple videos of different categories.
It consists of two channel encoders based on a VAE-GAN network. As a result of combining
VAEs and GANs, the authors avoid the shortcomings of both, such as blurring caused by
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VAE components, and unstable gradients caused by GANs.

3.4 Metrics

3.4.1 Inception Score

Deep generative models are powerful tools that have produced impressive results in recent
years. These advances have been for the most part empirically driven, making it essential
that we use high quality evaluation metrics. The Inception score (IS) [42] is such a popular
metric for automatically judging the image outputs of image generative models. The IS
takes a list of images and returns a single floating point number, the score. The score is
shown to correlate well with human scoring of the realism of generated images [43]. The IS
uses an Inception v3 Network [44] pre-trained on ImageNet and calculates a statistic of the
network’s outputs when applied to generated images.

IS aims to measure two desirable qualities of a generative model into a metric simultane-
ously. First, the images generated should contain clear objects, for example, the images are
clear and sharp instead of blurry. In other words, the Inception Network should be highly
confident there is a single object in the image. Secondly, The output of generative algorithms
should have a high diversity of images from all different classes. For example, if the model
generates dogs, each output image should be a different breed of dog. If both things are
true, the score will be high. If either or both are false, the score will be low. A higher score
is better. It means your GAN can generate many different distinct images. The lowest score
possible is zero. Mathematically the highest possible score is infinity, although in practice
there will probably emerge a non-infinite ceiling.

IS(Pg) = eEx∼Pg [KL(pM(y|x)||pM(y))] (5)

The above equation is used to calculate IS. where x ∼ pg indicates that x is an image sampled
from pg, DKL(p||q) is the KL-divergence between the distributions p and q, p(y|x) is the
conditional class distribution, and p(y) =

∫
x

p(y|x)pg(x) is the marginal class distribution.

The exp in the expression is there to make the values easier to compare. If both of these traits
mentioned above are satisfied by a generative model, then we expect a large KL-divergence
between the distributions p(y) and p(y|x), resulting in a large IS.

IS is a powerful metric of generative models to simulate human’s sense and evaluation.
However, it also has limitations that need to be considered [42]. Firstly, the score is limited
by what the Inception classifier can detect, which is directly linked to the training data
commonly associated with ImageNet. For example, if the model is learning to generate
things not present in the classifier’s training data, then it may always get low IS despite
generating high quality images because that image doesn’t get classified as a distinct class.
Or if the classifier network can not detect features relevant to the concept of image quality,
then poor quality images may still get high scores. In addition, if the generator generates
only one image per classifier image class, repeating each image many times, it can score
highly such as no measure of intra-class diversity. Moreover, the model can score well when
the generator memorizes the training data and replicates it.
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3.4.2 Kernel MMD

Kernel MMD [45] measures the dissimilarity between a real distribution and the learned
parameterized distribution for some fixed kernel function k. This metric gives good results
when it operates in the feature space of a pre-trained feature detector network like ResNet
[46]. Given two sets of samples from both the distributions, the empirical MMD between
them can be computed with finite sample approximation of the expectation. A lower MMD
means that the former distribution is closer to the latter. This metric can identify gener-
ative or noise images from real images, and both its sample complexity and computational
complexity are low.

3.4.3 1-NN Classifier

1-NN classifier [47] outputs a score in the interval [0, 1], similar to accuracy/error in classifi-
cation problems. When the generative distribution perfectly matches the true distribution,
perfect score (i.e., 50% accuracy) is attainable. Typical GAN models tend to achieve lower
leave-one-out (LOO) accuracy for real samples (1-NN accuracy (real)), while higher LOO
accuracy for generated samples (1-NN accuracy (fake)). GANs are able to capture modes
from the training distribution, such that the majority of training samples distributed around
the mode centers have their nearest neighbor from the generated images, yet most of the gen-
erated images are still surrounded by generated images as they are collapsed together. The
observation indicates that the mode collapse problem is prevalent for typical GAN models.
This problem cannot be detected by human evaluation or Inception Score and thus proves
the superiority of 1-NN classifier metric.

After comparing various metrics, Kernel MMD and 1-NN accuracy appear to be good
metrics in terms of discriminability, robustness and efficiency.

3.5 Datasets

• CelebA [48]: CelebFaces Attributes dataset contains 202,599 face images of the size
178×218 from 10,177 celebrities, each annotated with 40 binary labels indicating facial
attributes like hair color, gender and age

• CelebA-HQ [11]: The CelebA-HQ dataset is a high-quality version of CelebA that
consists of 30,000 images at 1024×1024 resolution.

• CIFAR-10 [49]: The CIFAR-10 dataset (Canadian Institute for Advanced Research,
10 classes) is a subset of the Tiny Images dataset and consists of 60000 32x32 color
images.

• LSUN Bedroom [50]: The LSUN classification dataset contains 10 scene categories,
such as dining room, bedroom, chicken, outdoor church, and so on.

• MNIST [51]: The MNIST database (Modified National Institute of Standards and
Technology database) is a large collection of handwritten digits. It has a training set
of 60,000 examples, and a test set of 10,000 examples.

8



• Tiny ImageNet [52]: Tiny ImageNet contains 200 classes for training. Each class has
500 images. The test set contains 10,000 images. All images are 64x64 colored images.

4 Methodology

Generating synthetic data in a controlled manner would be extremely beneficial. As an
example, if the user is able to control face attributes when generating human face images,
it would assist in generating some underrepresented groups that can be used in the design
of unbiased face recognition systems. The vanilla GAN generates samples from the training
data distribution using noise, but it is difficult to get specific attributes in a sample. It
will be easier to control the output if we start with a reference image instead of noise and
introduce the desired changes in the network.

We trained vanilla VAE that used reconstruction loss, and VAE-GAN that used the
discriminator loss and reconstruction loss on discriminator lth layer feature vector. There
are times when the quantitative metric is good in terms of numbers, but the qualitative result
is not satisfactory. In this regard, it is necessary to examine the various metrics available for
GANs. We then compare the sampling capacity of the decoder using Inception Score (IS)
and our introduced Transformer Score (TS) based on Vision Transformer [14]. The models
were trained on MNIST digit [51] and Fashion MNIST [53] datasets, we also tried training
on CelebA [48] but the model did not converge.

4.1 Network Structure

Figure 3: VAE Networks

We construct VAE and VAE-GAN with the same structures to make sure that our ex-
periments and comparisons are fair and convincing for each model. As shown in figure 3,
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Figure 4: VAE Structure

the Encoder of VAE has the same structure as the Discriminator of GAN and the Decoder
the same as the Generator of GAN. For example, training of VAE on MNIST dataset, the
network is visualized in the above figure 4. The encoder takes MNIST image of size 1∗28∗28
as input. The MNIST image is fed into four convolutional layers with each followed by Batch
Normal layer and ReLU activation layer. In the fifth layer, the features are flattened as a
latent dimension with latent dim size. During the decoding process, the network takes la-
tent dimension as input and generated an image of the same size as original input, which is
achieved by a transpose convolution. In our VAE-GAN network as display in figure 5, we
refer to [26] to combine VAE and GAN networks. The generator of GAN is replaced as VAE
network. Therefore, we implement VAE to generate high quality fake images. Then, both
real images and generated fake images are fed into discriminator to be identified.

Figure 5: VAE-GAN Structure
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Figure 6: VAE MNIST images Figure 7: VAE Fashion MNIST images

4.2 Training

4.2.1 VAE

The architecture described in Figure 3 was implemented in PyTorch. We trained two models
on MNIST and Fashion MNIST respectively using Mean Square Error as reconstruction loss
function and KL Divergence as prior loss, with Adam optimizer and batch size of 256 for 67
epochs for MNIST and 85 epochs for Fashion MNIST. The learning rate was set to 1e-3 and
the latent vector was set have 16 dimensions for MNIST model and 32 dimensions for the
Fashion MNIST model.

4.2.2 VAE-GAN

The architecture of VAE-GAN is same as VAE with addition of a discriminator. The num-
ber of layers in the discriminator are same as the encoder having same number of filters
corresponding to the encoder. VAE-GAN used adversarial loss, discriminator feature recon-
struction loss and KL Divergence as prior loss. The learning was set to 1e-4 for MNIST
and 1e-3 for Fashion MNIST. The latent dimensions were same as VAE for corresponding
datasets.

4.2.3 Fine-Tuned Inception Score

Inception Scores calculate a statistic from the output of the network when applied to gen-
erated images using the Inception v3 model pre-trained on ImageNet. We fine-tuned the
ImageNet-trained Inception v3 model on interpolated MNIST and Fashion MNIST images.
Using 60000 images and the categorical cross entropy loss function with Adam optimizer,
we trained the model over 20 epochs with a batch size of 128. In this case, the learning rate
was set to 1e-3. Pre-processing involved changing the grayscale images to RGB color space
and interpolating their height and width to 75 pixels. Fashion MNIST followed the same
steps. Following that, we used the resulting models to evaluate the generative models by
calculating IS for MNIST and Fashion MNIST data generated from VAE and VAE-GAN.

11



Figure 8: VAE-GAN MNIST images Figure 9: VAE-GAN Fashion MNIST image

4.3 Transformer Score

We propose a new metric named Transformer Score (TS) that uses ViT [14] backbone to
classify images. The output probabilities of ViT are used to calculate Transformer Score
similar to Inception Score. Further argument on why Transformer Score is a better metric
is in discussion section.

VAE and VAE-GAN were build using Pythae [54] library. The inception networks were
trained on TensorFlow and ViT was fine tuned using Transformers library, on MNIST and
Fashion MNIST dataset.

5 Results

Model VAE (1K) VAE-GAN (1K) VAE (5K) VAE-GAN (5K)
Inception Score 8.028 8.031 8.281 8.043
Transformer Score 7.113 7.893 7.313 8.210

Table 1: Results on MNIST for 1K and 5K samples

Model VAE (1K) VAE-GAN (1K) VAE (5K) VAE-GAN (5K)
Inception Score 5.683 4.891 5.817 4.995
Transformer Score 5.572 4.593 5.827 4.791

Table 2: Results on Fashion MNIST for 1K and 5K samples

Table 1 show Inception Score and Transformer Score for MNIST dataset. We observe
that for 1K samples VAE-GAN has better IS but for 5K samples VAE achieves a better
IS score. Though for Transformer Score VAE-GAN has better metric for both 1K and
5K samples. The Inception Score is cluttered between a small range making it difficult
differentiate between good and bad samples set. In case of Transformer Score the difference
between TS of VAE and VAE-GAN is large, making it easy to differentiate between good
and bad sampling models.
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Table 2 shows the result for fashion MNIST on VAE and VAE-GAN. From figure 7 and
figure 9 we can observe that VAE samples are better than VAE-GAN which is in line with
the Inception Score and Transformer Score.

6 Discussion

In this section we discuss the drawbacks of convolutional neural networks as feature extractor
and their effect on Inception Score.

6.1 Drawbacks of CNN Feature Extraction

Convolutional neural networks (CNNs) extract features from images and then classify, iden-
tify, predict or make decisions using those features. The most important step for CNN is
feature extraction. There are mainly three good features of CNNs: local perception, pa-
rameter sharing, and multi-kernel. CNN, however, also has a number of drawbacks when
it comes to extracting features. Firstly, there is the back propagation algorithm, which is
not an efficient method in deep learning due to its high data requirements. Another one is
translation invariance. Translation invariant means that neurons that recognize an object
may not be activated if its orientation or position is slightly changed. If a neuron is used to
recognize a cat, its parameters will change as the cat’s position and rotation change. The
problem has been partially solved by data augmentation, but not completely. The pooling
layer also has a shortcoming. As a result of the pooling layer, a lot of very valuable informa-
tion will be lost, and also the relationship between the whole and the part will be ignored.
In order to recognize a face, we must combine several features (mouth, eyes, face outline,
nose) together. According to CNN, if these five features appear together at the same time,
it is likely that the face is human. Merging layers is a big mistake because it loses a lot of
valuable information, and if we are talking about a face recognizer, it ignores the relation-
ship between parts and wholes, which means we must combine some features to prove it is a
face (mouth, eyes, oval face, nose). Consequently, CNN features are limited by their heavy
reliance on local image textures for classification [55] and their invariance to translation and
pooling.

6.2 Transformers as Global Feature Extractor

One key aspect of vision transformers is that they are global feature extractors, meaning
that they can process the entire input image at once, rather than processing small patches
or regions of the image separately. This allows them to capture long-range dependencies
and context in the image, which can be important for understanding the overall scene or
objects depicted in the image. Transformers rely on self-attention mechanisms, which allow
the model to weight the importance of different positions in the input image when processing
it. This allows the model to focus on relevant parts of the image and capture long-range
dependencies and context. CNNs are well-suited for tasks that require the extraction of local
features from images, while vision transformers are better at capturing global context and
dependencies in the input data. In case of evaluating the quality of an image we need global
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context rather than local features, therefore Transformer Score (TS) proves to be better
metric than Inception Score(IS).

7 Conclusion

Based on the findings presented, it appears that combining Generative Adversarial Networks
(GANs) with Variational Autoencoders (VAEs) can be an effective way of generating datasets
with specific attributes. The authors also introduced a new metric called Transformer Score
(TS) for evaluating the quality of the generated data, which was found to be superior to
the Inception Score. Overall, the results suggest that VAE and VAE-GAN models have
good sampling capacity and can produce high-quality data for training neural networks, but
VAE-GAN is difficult to train due to unstable training.
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