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Introduction

Given k ∈ N -{0, 1}, let the finite subset of 2 k points belonging to the Euclidean space E ⊂ R k be defined as H(2, k) := {{0, 1} × {0, 1} × • • • × {0, 1}} ⊂ R k , where the symbol "×" denotes the well-known cartesian product. Then, the problem of joining all the nodes of H(2, k) with a connected set of segments having minimum cardinality is equivalent to asking to ourselves which is the minimum-link covering tree embedding all the nodes of a k-dimensional hypercube. This question is not an open problem, since Dumitrescu and Tóth (see [START_REF] Dumitrescu | Covering grids by trees[END_REF], Figure 2), in 2014, easily showed that it is sufficient to connect all the 2 k-1 pairs of opposite nodes with as many segments so that all of them (i.e., exactly 2 k-1 line segments) meet in the center, C ≡ 1 2 , 1 2 , . . . , 1 2 . Now, it is obvious to understand why the number of (line) segments of the above mentioned minumum-link covering tree for H(2, k) cannot match the link-length of any polygonal chain covering the same set of 2 k nodes.

Thus, we are interested in solving a multidimensional thinking outside the box problem, quite similar to the k-dimensional generalization of the infamous nine dots puzzle [START_REF] Chein | Working memory and insight in the nine-dot problem[END_REF][START_REF] Kershaw | Training for insight: The case of the nine-dot problem[END_REF][START_REF] Loyd | Cyclopedia of Puzzles[END_REF] which was definitely solved in 2020 by Ripà (see [START_REF] Ripà | Solving the 106 years old 3 k points problem with the clockwise-algorithm[END_REF]): the crucial special case of finding a minimum-link polygonal chain covering any given H(2, k) := {{0, 1}×{0, 1}ו • •×{0, 1}} ⊂ R k , a fascinating challenge belonging to the general problem of finding a minimum-link covering trail for every set H(n, k) (see [START_REF]Sequence A318165 in the On-line Encyclopedia of Integer Sequences[END_REF][START_REF] Ripà | General conjecture on the optimal covering trails for any k-dimensional cubic lattice N k[END_REF][START_REF] Ripà | Minimum-link covering trails for any hypercubic lattice[END_REF]).

In order to introduce the original results of the present paper (Section 2), let us give a few of definitions first. Definition 1.1. Let P(m) := (S 1 )-(S 2 )-. . . -(S m+1 ), a polygonal chain consisting of m links, be well-defined through the sequence of its m + 1 vertices, so

P(m) ≡ {S 1 S 2 ∪ S 2 S 3 ∪ • • • ∪ S m S m+1 }.
In particular, for any d ∈ Z + : d ≤ m+1, let the d-th vertex of P(m) ⊂ R k be univocally identified by the k-tuple (x 1 , x 2 , . . . , x k ) (e.g., given P(3) := (0, 0)-(1, 0)-(1, 1)-(0, 1) and d : d = 2, we have

x 1 (S d ) = 1 ∧ x 2 (S d ) = 0, since (x 1 (S 2 ), x 2 (S 2 )) ≡ (1, 0) for the aforementioned minimum-link polygonal chain covering H(2, 2) := {{0, 1} × {0, 1}}). Definition 1.2. Accordingly to Definition 1.1, let h(2, k) denote the link-length of the minimum-link polygonal chain P(h(2, k)) := (S 1 )-(S 2 )-. . . -(S h(2,k)+1 ) visiting all the nodes H(2, k) := {{0, 1} × {0, 1} × • • • × {0, 1}} of the k-dimensional hypercube {[0, 1] × [0, 1] × • • • × [0, 1]}.
Definition 1.3. Let P(h(2, k)) be a (possibly self-intersecting) path if there is not any element of the set H(2, k) which belongs to more than one link of P(h(2, k)). Then, let P(h(2, k)) be a cycle if it is a path such that (S 1 ) ≡ (S m+1 ) (i.e., we call a cycle any closed path). Furthermore, we define as "perfect covering cycle", C(h(2, k)), any closed path such that no element of the set {S j | j = 1, 2, . . . , m + 1} belongs to more than two links of the given covering path for H(2, k).

Lastly, for clarity sake, let us specify that we will use vertices and links when we are referring to the turning points (usually we consider Steiner points which do not belong to

{[0, 1] × [0, 1] × • • • × [0, 1]} ⊂ R k ) of
the polygonal chains that we are taking into account, whereas we will prefer nodes and edges for the respective subsets of points entirely belonging to given k-dimensional hypercube.

Since the aim of this paper is to find polygonal chains, embedding H(2, k), which are optimal with respect to the number of line segments, we immediately point out that any covering cycle for H(2, k) is a covering path for the same set of points, and it is also a polygonal chain covering all the 2 k nodes of the hypercube

{[0, 1] × [0, 1] × • • • × [0, 1]} ⊂ R k .
Now, a constructive proof of the existence of covering cycles for H(2, 2) and H(2, 3) having link-length of only h(2, 2) = 3 and h(2, 3) = 6, respectively, has already been shown in Reference [START_REF] Ripà | General uncrossing covering paths inside the axis-aligned bounding box[END_REF] (e.g., the aforementioned paper, see pages 163-164 and Figures 7 to 9, provides an optimal upper bound for any k ∈ {2, 3} that is also achievable by taking into account only covering cycles, instead of generic polygonal chains, since H(2, 2)

⊂ P(3) = 1 2 , 3 2 -(2, 0)-(-1, 0)-1 2 , 3 2 and H(2, 3) ⊂ P(6) = 1 2 , 1 2 , 3 2 -(2, 2, 0)-(-1, -1, 0)-1 2 , 1 2 , 3 2 -(2, -1, 0)-(-1, 2, 0)-1 2 , 1 2 , 3 2 
). Thus, from here on, let us assume that k ≥ 2 is given. The goal of the present research paper is to show that h l (2, k) = 3 • 2 k-2 is a valid lower bound for any polygonal chain visiting all the elements H(2, k) and to constructively prove that the aforementioned lower bound is equal to the upper bound h u (2, k) = 3 • 2 k-2 [START_REF]Sequence A007283 in the On-line Encyclopedia of Integer Sequences[END_REF] which returns the minimum link-lenght of any perfect covering cycle for the same set of nodes.

It follows that we are going to prove that h u (2, k) = h l (2, k) by providing optimal covering cycles consisting of 3 • 2 k-2 links for any k ∈ N -{0, 1}, and this result will be shown in the next section.

Main Result

In order to prove that h l (2, k) = 3 • 2 k-2 holds for any k ∈ N -{0, 1}, we will introduce the following lemma.

Lemma 2.1. For any k ∈ N -{0, 1}, it is not possible to visit more than 4 distinct elements of the set

H(2, k) := {{0, 1} × {0, 1} × • • • × {0, 1}} ⊂ R k
by using a polygonal chain with 3 links.

Proof. We prove Lemma 2.1 by studying the generic trail P(3) ≡ {S 1 S 2 ∪ S 2 S 3 ∪ S 3 S 4 } that passes through 4 (distinct) nodes of H(2, k). Then, we will show that there is not a choice for these four nodes (and also for the considered Steiner points) that implies the existence of a fifth node belonging to P(3). We will start by demonstrating that there is not a trail P(2) that, passing through at least 3 nodes, visits a fourth node. Considering that we need to pass through at least 3 nodes, and being able to visit at most 2 nodes with the first segment, we can impose that S 1 S 2 passes through 2 nodes. Although, for convenience, we will impose S 1 ≡ V 1 ≡ O, the obtained result can be extended to any choice of S 1 .

Let S j be the origin of a given half-line q j . Given a parameter t j ∈ R : t j ≥ 0, the corresponding parametric equation is of the form q j = S j + t j • # » S j V j+1 , where V j indicates the i-th node of H(2, k) visited by P(m). In this way, for t j = 1, each of the Cartesian coordinates of the nodes must assume the value 0 or 1. Our goal is to show that this happens only for t j = 1, and if this occurs for other values of t j , then we want to show that the visited node is a node already visited previously.

Since the Steiner point S j+1 belongs to the considered half-line, let us denote by tj the value of the parameter t j such that S j+1 = S j + tj • # » S j V j+1 (i.e., S j+1 := S j+1 ( tj )).

The generic point S 2 is obtained as the last endpoint of a segment passing through V 2 ,

S 2 = S 1 + t1 • # » S 1 V 2 . (1) 
Now, from here on, we will indicate the i-th coordinate of the generic point P, belonging to the Euclidean space R k , as x i (P) (e.g., P ≡ (x 1 (P), x 2 (P), . . . , x k (P))).

Consequently, from Equation (1), it follows that

x i (S 2 ) = t1 • x i (V 2 ) , (2) 
where t1 ≥ 1.

Similarly, we will have that

S 3 = S 2 + t2 • # » S 2 V 3 . (3) 
Hence,

x i (S 3 ) = t1 • x i (V 2 ) + t2 • (x i (V 3 ) -t1 • x i • (V 2 )) = t1 • x i (V 2 ) • (1 -t2 ) + t2 • x i (V 3 ) , (4) 
where t2 ≥ 1.

Let us consider the segment S 2 S 3 . By disregarding the node V 3 , obtained by imposing t 2 = 1, we verify that it does not exist any node V j of H(2, k), belonging to S 2 S 3 , which has not been previously visited.

Thus, for i < k, we need to study all the x i (V j ) equations, showing that there are no solutions such that 0 < t 2 < 1. It is not necessary to continue beyond point V 3 , studying solutions for t 2 > 1.

If we encounter a node of the set H(2, k) after point V 3 , then we will necessarily have to study also the case in which point V 3 represents the furthest node and, with t 2 < 1, we will find the point studied previously.

As a result, we have to study the above mentioned x i (V j ) equations,

       t1 • x i (V 2 ) + t 2 • (x i (V 3 ) -t1 • x i (V 2 )) = x i (V j ) t1 > 1 . 0 < t 2 < 1 (5) 
Hence,

x i (V 2 ) = x i (V 3 ) = 0 ⇒ t 2 ∈ R : 0 < t 2 < 1, (6) 
x i (V 3 ) = 0 ⇒ t 2 = t1 -1 t1 . (7) 
Consequently, all the solutions imply

x i (V 3 ) = 0. If x i (V 3 ) = 0 holds for all i : i < k, then (V 3 ) = (V 1 ).
Now, we are finally ready to study the generic trail

P(3) ≡ {S 1 S 2 ∪ S 2 S 3 ∪ S 3 S 4 }.
Thanks to the results discussed above, we know that if S 2 S 3 visits two nodes, then S 1 S 2 and S 3 S 4 visit one node each, so we can impose (from the beginning) that S 1 S 2 visits two nodes of H(2, k).

Such trail, P(3), can be built starting from the just described trail P(2), by simply adding a fourth generic Steiner point whose coordinates satisfy

S 4 = S 3 + t3 • # » S 3 V 4 , (8) 
so we have

x i (S 4 ) = t1 • x i (V 2 ) • (1 -t2 ) + t2 • x i (V 3 ) + t3 • (x i (V 4 ) -( t1 • x i (V 2 ) • (1 -t2 ) + t2 • x i (V 3 ))) =( t1 • x i (V 2 ) • (1 -t2 ) + t2 • x i (V 3 )) • (1 -t3 ) + t3 • x i (V 4 ), (9) 
with t3 = 1.

Before moving on the segment S 3 S 4 , let us make some considerations for a better understanding of the nature of the next step of the present proof.

We have that t1 ≥ 1 and t2 > 1, since t2 = 1 would imply S 3 = V 3 . It follows that S 3 S 4 would visit V 2 and V 3 , whereas it could not visit other nodes, since the set H(2, k) has not more than 2 collinear nodes.

Under these constraints, the following results are obtained so that we can use them to find the solutions of Equation [START_REF] Ripà | General conjecture on the optimal covering trails for any k-dimensional cubic lattice N k[END_REF].

1. t1 • (1 -t2 ) < 0, since t1 > 0 and (1 -t2 ) < 0. 2. t1 • (1 -t2 ) + t2 < 1, since t1 = 1 implies t1 • (1 -t2 ) + t2 = 1 and ∂ ∂ t1 ( t1 • (1 -t2 ) + t2 ) < 0 ∀ t1 > 1, t2 > 1.
Now, we consider the segment S 3 S 4 . By disregarding the node V 4 , obtained by imposing t 3 = 1, we verify that it does not exist any unvisited node V j of H(2, k), belonging to S 3 S 4 .

Thus,

             t1 • x i (V 2 ) • (1 -t2 ) + t2 • x i (V 3 ) + t 3 • (x i (V 4 ) -( t1 • x i (V 2 ) • (1 -t2 ) + t2 • x i (V 3 ))) = x i (V j ) t1 > 1 t2 > 1 0 < t 3 < 1 .
(10) Hence,

x i (V 2 ) = x i (V 3 ) = x i (V 4 ) = x i (V j ) = 0 ⇒ t 3 ∈ R : 0 < t 3 < 1, (11) 
x i (V 2 ) = x i (V 3 ) = 1, x i (V 4 ) = x i (V j ) = 0 ∧ t1 = t2 t2 -1 ⇒ t 3 ∈ R : 0 < t 3 < 1, (12) 
x i (V 2 ) = x i (V 4 ) = 0, x i (V 3 ) = x i (V j ) = 1 ⇒ t 3 = t2 -1 t2 , (13) 
x i (V 2 ) = x i (V 3 ) = x i (V 4 ) = 1, x i (V j ) = 0 ⇒ t 3 = t1 (1 -t2 ) + t2 t1 (1 -t2 ) + t2 -1 . (14) 
There cannot be two indices i, i ′ such that 12)&( 14)), since by imposing t1 = t2 t2 -1 we obtain t 3 = 0.

(x i (V 2 ) = x i (V 3 ) = 1, x i (V 4 ) = 0) ∧ (x ′ i (V 2 ) = x ′ i (V 3 ) = x ′ i (V 4 ) = 1, x ′ i (V j ) = 0) (see (
The uniqueness of the indices that simultaneously verify (11),( 12)&(13) implies that V 1 is visited twice, while the uniqueness of the indices that simultaneously verify (11),( 14)&(13) implies that V 2 is visited twice. Therefore, it is not possible to join more than 4 nodes of the given set with a polygonal chain consisting of only 3 links, and this concludes the proof of Lemma 2.1.

By invoking Lemma 2.1, we can easily prove the following theorem.

Theorem 2.2. Let k ∈ N -{0, 1} be given. The link-length of the covering trail

P(h(2, k)) for the set H(2, k) satisfies h(2, k) ≥ 3 • 2 k-2 .
Proof. There is a total of 2 k nodes to be visited. By Lemma 2.1, we can join a maximum of 4 nodes with a polygonal chain of link-length 3. Since H(2, k) has 2 k 4 groups of 4 nodes, the 4 nodes of each of these groups require a minimum of 3 segments to be visited. Therefore, h(2, k) ≥ 3 • 2 k-2 . Now, we need to find the shortest possible covering path, P(h(2, k)). At this purpose, it is possible to prove the following result.

Theorem 2.3. Given H(2, k) with k ∈ N -{0, 1}, it is always possible to construct a covering cycle P(h(2, k)) of link-length h(2, k) = 3 • 2 k-2 .
Proof. It is possible to create an algorithm that generates a covering circuit for H(2, k) whose link-length exactly coincides with the lower bound stated by Theorem 2.2. The algorithm is valid for any finite number of dimensions.

First of all, we notice that it is always possible to join the four nodes of a rectangle with a covering circuit of link-length 3. In fact, given the set {{0, 1} × {0, b}}, we can have the covering circuit (S 1 )-(S 2 )-(S 3 )-(S 1 ), with the elements of the set {S 1 , S 2 , S 3 } given by

S 1 ≡ b 2 , 3 2 ; 
S 2 ≡ (-b, 0) S 1 + 1 3 • # » S 1 S 2 = (0, 1); S 3 ≡ (0, 2 • b) S 2 + 1 3 • # » S 2 S 3 = (0, 0), S 2 + 2 3 • # » S 2 S 3 = (b, 0); S 4 ≡ S 1 S 3 + 2 3 • # » S 3 S 4 = (b, 1).
We consider the sheaf of planes that has in common the line r := C + t • #» e k , where C ≡ 1 2 , 1 2 , . . . , 1 2 , 0 and #» e k := (0, 0, . . . , 0, 1) is the second vector of the canonical basis. These planes have parametric equation

C + t • #» e k + u • #» s with #» e k and #» s being linearly independent vectors. Let #» s l ∈ {{-1 2 } × {-1 2 , 1 2 } × {-1 2 , 1 2 } × • • • × {-1 2 , 1 2 } × {0}} ⊆ R k-2 be the vector such that l ∈ N : l < 2 k-2 . If t = u = 1, then we obtain the point V 4l+1 ∈ H(2, k) such that V 4l+1 ≡ (0, x 2 (V 4l+1 ), x 3 (V 4l+1 ), . . . , x k-1 (V 4l+1 ), 1), where    x i (V 4l+1 ) = 1 if x i ( #» s l ) = + 1 2 x i (V 4l+1 ) = 0 if x i ( #» s l ) = -1 2 . ( 15 
) If t = 0 ∧ u = 1, then we obtain the point V 4l+2 ∈ H(2, k) such that V 4l+2 ≡ (0, x 2 (V 4l+2 ), x 3 (V 4l+2 ), . . . , x k-1 (V 4l+2 ), 1), where    x i (V 4l+2 ) = 1 if x i ( #» s l ) = + 1 2 x i (V 4l+2 ) = 0 if x i ( #» s l ) = -1 2 . ( 16 
) If t = 0 ∧ u = -1, then we obtain the point V 4l+3 ∈ H(2, k) such that V 4l+3 ≡ (0, x 2 (V 4l+3 ), x 3 (V 4l+3 ), . . . , x k-1 (V 4l+3 ), 1), where    x i (V 4l+3 ) = 0 if x i ( #» s l ) = + 1 2 x i (V 4l+3 ) = 1 if x i ( #» s l ) = -1 2 . ( 17 
) If t = 1 ∧ u = -1, then we obtain the point V 4l+4 ∈ H(2, k) such that V 4l+4 ≡ (0, x 2 (V 4l+4 ), x 3 (V 4l+4 ), . . . , x k-1 (V 4l+4 ), 1), where    x i (V 4l+4 ) = 0 if x i ( #» s l ) = + 1 2 x i (V 4l+4 ) = 1 if x i ( #» s l ) = -1 2 . ( 18 
)
Being {σ} l := {σ l : l = 0, 1, 2, . . . , 2 k-2 -2, 2 k-2 -1} the set of the planes containing r and C + #» s l , in total we will have exactly 4 nodes of H(2, k) lying on each one of the aforementioned planes (i.e., there are 2 k-2 planes σ l such that 0 ≤ l < 2 k-2 , being 2 k-2 the multisubsets of size k -2 from the set { 1 2 , -1 2 }). Since each of the 2 k-2 multisubsets is different from all the others, it follows that it does not exists any pair of positive integers (j, j ′ ) : j ̸ = j ′ such that V j ≡ V j ′ . Consequently, each plane contains exactly 4 nodes that does not belong to any other plane σ l .

Thus, there are 2 k-2 planes that include 4 different nodes each, for a total of 2 k distinct nodes. Since a k-dimensional hypercube has exactly 2 k nodes, we conclude that each point lies on one and only one plane σ l .

Let l ∈ N 0 : 0 ≤ l ≤ 2 k-2 -1 be given. Then, the four points V 4l+1 ,V 4l+2 ,V 4l+3 , and V 4l+4 identify the nodes of a rectangle with base 1 and height 2 • (k -1). In fact, #» e 2 = (0, 1, 0, 0, . . . , 0) forms an orthogonal basis with vector #» s that has coordinate s 2 = 0.

We have already proven that the nodes in this orthogonal basis are in position (0, -1); (0, 1); (1, 1); (1, -1) so that, in this basis, they are vertices of a rectangle of base 1 and height 2.

Consequently, being 1 2 • (k -1) the magnitude of vector #» s , we get a height of 2• 1 2 • (k -1) = 2 • (k -1) in the canonical basis of the space E.

Finally, we have 2 k-2 rectangles, whose vertices can be covered by 2 k-2 covering circuits of link-length 3 (see Figures 1&2). 

= 1 2 , 1 2 , 2 --1 2 , -1 2 , 0 -( 3 2 , 3 2 , 0)-1 2 , 1 2 , 2 -(-1 2 , 3 2 , 0)-( 3 2 , -1 2 , 0)-1 2 , 1 2 
, 2 visits all the nodes of H(2, 3) once and only once (picture realized with GeoGebra [START_REF] Hohenwarter | [END_REF]). Lastly, using the described covering circuits, we get a circuit that starts and ends at a point that lies on the generating line of the sheaf of planes that contains all the planes belonging to {σ} l . Thus,

{V 4l+1 , V 4l+2 , V 4l+3 , V 4l+4 } ⊂ P m (4) ⇒ ∃! l ∈ {0, 1, . . . , 2 k-2 -1} : (S 3l+1 )-(S 3l+2 )-(S 3l+3 )-(S 3l+4 ) ⊂ {σ} l . (19 
) As shown in Figure 3, we obtain a covering cycle for H(2, k) by the repetition, for every l ∈ {0, 1, 2, . . . , 2 k-2 -1}, of the covering circuit described by 

S 3l+1 ≡ C + 3 2 • #» e 1 ; S 3l+2 ≡ C + 3 • #» s l S 3l+1 + 1 3 • # » S 3l+1 S 3l+2 ≡ V 4l+1 ; S 3l+3 ≡ C -3 • #» s l S 3l+2 + 1 3 • # » S 3l+2 S 3l+3 ≡ V 4l+2 , S 3l+2 + 2 3 • # » S 3l+2 S 3l+3 ≡ V 4l+3 ; S 3l+4 ≡ S 3l+1 S 3l+3 + 2 3 • # » S 3l+3 S 3l+4 ≡ V 4l+4 .
= 1 2 , 1 2 , 1 2 , 3 2 -(-1, -1, -1, 0)-(2, 2, 2, 0)-1 2 , 1 2 , 1 2 , 3 2 -(-1, -1, 2, 0)-(2, 2, -1, 0)- 1 2 , 1 2 , 1 2 , 3 2 -(-1, 2, -1, 0)-(2, -1, 2, 0)-1 2 , 1 2 , 1 2 , 3 2 -(-1, 2, 2, 0)-(2, -1, -1, 0)-1 2 , 1 2 , 1 2 , 3 2 
joins all the nodes of H(2, 4) (picture realized with GeoGebra [START_REF] Hohenwarter | [END_REF]).

Therefore, we have constructively proven that h(2, k) ≤ 3 • 2 k-2 , for any k ∈ N -{0, 1}.

Lastly, we note that it is also possible to generate a covering cycle that does not have coincident Steiner points, except for the first and the last one, following a variation of the previous algorithm, as shown by Corollary 2.4 (see also Figures 4&5).

We can choose x k (S 3l+1 ) := l+2 2 to obtain

S 3l+1 ≡ C + l + 2 2 • #» e 2 ;
(20)

S 3l+2 ≡ C + 1 + 1 l • #» s l S 3l+1 + l + 1 2l + 3 • # » S 3l+1 S 3l+2 ≡ V 4l+1 ; S 3l+3 ≡ C -1 + 1 l • #» s l S 3l+2 + l + 1 2l + 3 • # » S 3l+2 S 3l+3 ≡ V 4l+2 ; S 3l+2 + l + 2 2l + 3 • # » S 3l+2 S 3l+3 ≡ V 4l+3 ; S 3l+4 ≡ C + l + 3 2 • #» e 2 S 3l+3 + l + 2 2l + 3 • # » S 3l+3 S 3l+4 ≡ V 4l+4 .
Therefore, for any given k ∈ N -{0, 1} we have provided a perfect covering cycle, for H(2, k), which is characterized by a link-length of 3 • 2 k-2 and such that no Steiner point is visited more than once, with the only exception of the starting/ending point,

S 1 ≡ S 1+3•2 k-2 .
This concludes the proof of Corollary 2.4.

Conclusion

Although for any H(2, k) we have constructively shown the existence of perfect covering cycles whose link-length is equal to 3 • 2 k-2 , the problem of finding an analogous formula concerning optimal covering paths for any given set H(n, k) := {1, 2, . . . , n} × {1, 2, . . . , n} × • • • × {1, 2, . . . , n} ⊂ R k , such that n ≥ 4 ∧ k ≥ 3, remains completely open [START_REF] Ripà | Minimum-link covering trails for any hypercubic lattice[END_REF] (e.g., we can only say that h(4, 3) ∈ {21, 22, 23} [START_REF]Sequence A318165 in the On-line Encyclopedia of Integer Sequences[END_REF][START_REF] Ripà | General conjecture on the optimal covering trails for any k-dimensional cubic lattice N k[END_REF]).

Figure 1 : 3 2

 13 Figure 1: The minimum-link perfect covering cycle C(h(2, 2)) := 1 2 , 3 2 -(-1, 0)-(2, 0)-1 2 , 3 2

Figure 2 :

 2 Figure 2: The minimum-link closed polygonal chain P(6) := 1 2 , 1 2 , 2 --1 2 , -1 2 , 0 -( 3 2 , 3 2 , 0)-1 2 , 1 2 , 2 -(-1 2 , 3 2 , 0)-( 3 2 , -1 2 , 0)-1 2 , 1 2, 2 visits all the nodes of H(2, 3) once and only once (picture realized with GeoGebra[START_REF] Hohenwarter | [END_REF]).

Figure 3 :

 3 Figure 3: The minimum-link closed polygonal chain P(12) := 1 2 , 1 2 , 1 2 , 3 2 -(-1, -1, -1, 0)-(2, 2, 2, 0)-1 2 , 1 2 , 1 2 , 3 2 -(-1, -1, 2, 0)-(2, 2, -1, 0)-
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, 2 joins all the nodes of H(2, 3) (picture realized with GeoGebra [START_REF] Hohenwarter | [END_REF]). 

visits all the nodes of H(2, 4) once and only once (picture realized with GeoGebra [START_REF] Hohenwarter | [END_REF]).

Proof. We constructively prove the corollary by following the same approach that has been introduced in the proof of Theorem 2.3, taking also into account that the Steiner points of the type S 3l+1 , that lie on the straight line r, must have the coordinates x k (S 3l+1 ) different from each other.