N

N

Identifying Similar Test Cases That Are Specified in
Natural Language
Amey Joshi, Ranit Ganguly, Ritik Gandhi

» To cite this version:

Amey Joshi, Ranit Ganguly, Ritik Gandhi. Identifying Similar Test Cases That Are Specified in
Natural Language. University of Alberta. 2022. hal-03911555

HAL Id: hal-03911555
https://hal.science/hal-03911555
Submitted on 23 Dec 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-03911555
https://hal.archives-ouvertes.fr

Identifying Similar Test Cases That
Are Specified in Natural Language

Ritik Gandhi Ranit Ganguly
rgandhil@ualberta.ca ranit@ualberta.ca
University of Alberta University of Alberta
Amey Joshi

ameyanan@ualberta.ca
University of Alberta

Abstract

In today’s rapidly advancing software industry, we experience exciting technological growth
every year in an extensive range of fields such as innovative Al-powered development, cloud
and edge computing, machine learning, progressive and lightweight web and mobile applica-
tions etc. However, it is not quite relevant to the Software Testing industry. Most companies
still rely on the outdated manual testing process despite the availability of Automation test-
ing procedures. It may work for small teams testing the software using a limited number
of test cases. Although, with the increase in team size and the number of test cases over
time, the cost, effort and time needed to manually validate and review the test cases increase
tenfold. It often leads to recurrent and unclear test cases in the test suite, delivered by dif-
ferent employees who often work across teams. These test cases are represented in Natural
Language. Also, the redundant test cases can impact the manual testing process by testing
the same feature multiple times and can reduce the possibility of writing multiple methods
to test the same feature when automating tests in the future. Hence, in this project, we pro-
pose to address the problem of similar test cases using an unsupervised learning approach.
Additionally, after removing redundancy in the test suite, we intend to identify key features
in the software to be tested based on the description of the test cases in the suite, and group
multiple test cases into a software feature. This feature can be directly assigned to a Quality
Assurance engineer for testing.

Related Work

In this section, we discuss prior work that applies Natural Language Processing techniques
to Software Testing. Viggiato et al. [29] use an unsupervised approach to identify similar test
cases using a combination of text embedding, text similarity and clustering techniques. The
approach supports the creation and maintenance of a high-quality, more consistent and more

standardized test suite. The automated framework as used in the paper provides feedback to
improve the test cases designed to test the Prodigy math game which is an online web-based
educational math game with millions of users around the world. Embedding techniques such
as Word2Vec, BERT, Sentence-BERT, Universal Sentence Encoder and TF-IDF have been
used. The two similarity metrics used in this paper are Word Mover’s Distance and cosine
similarity. Hierarchical Agglomerative Clustering and K-Means are used for evaluation. Fol-
lowing a modular approach, they start with test case pre-processing wherein they split the
test cases into test steps, followed by test step clustering which involves computation of text
embedding and applying clustering techniques to cluster test steps. The last stage involves
grouping similar test cases by identifying test step clusters belonging to each test case. The
approach upon evaluation achieved an F-score of 86.13% in the best case.

Pass et al. [30] proposed an automated framework which provides feedback on improving
a newly added manual test case based on recommendations. The framework is used after a
new test case is specified so that feedback can be provided to improve the test case descrip-
tion. The project is divided into 3 main components namely (1) Data preparation component
in which existing test cases are pre-processed to generate new test cases. (2) Analysis Compo-
nent wherein recommendations are provided such as improving the terminologies to a newly
added test case based on the existing test cases via language modelling, through Frequent
itemset and Association Rule mining, recommendations are given on potentially missing test
cases and recommendations of similar test cases are given through Word Mover’s Distance
and Cosine Similarity. (3) Report Generation Component has the purpose to aggregate the
outputs of each used analysis module and presenting results to QA engineers for testing.
Word2Vec is used for embedding, Word Mover’s Distance for computing between test step
embeddings and K-means algorithm for clustering. An F-score of approximately 83% was in
the best case.

Li et al. [18] automated test automation on WeChat, which is a large industrial mobile
application. The key insight highlighted in the paper is that semantically similar test steps
can be implemented by the same test API method. The dataset used has a simple grammat-
ical structure, with synonyms being frequent. The authors have devised a new tool called
Clustep which receives test cases and in turn generates step clusters. These step clusters gen-
erate the test API methods through which an executable test script is generated. They tend
to achieve high clustering accuracy, with a lesser number of clusters and editable clustering
results so that wrong clusters can be fixed easily. Starting with preprocessing, they perform
word embedding training, followed by distance measurement and clustering and finally post
refining the k-means clustering results. The proposed approach has a few drawbacks such
as inappropriate handling of the main executor, bad word embedding for a few words, and
ignorance of the difference between a few important words.

Goals and Objectives

Understanding if we can effectively identify similar test steps automatically allows us to
reduce redundancy as much as possible and group similar test cases together for a more
innovative approach. Also, a method will be utilized to find test cases that are related
based just on their natural language descriptions. Since neither labelled data nor human
supervision is required, we emphasize that the method is unsupervised. More specifically, to
put the finishing touches on a technique for finding related test cases with natural language
specifications, we will use text embedding, text similarity, and clustering approaches to group
related results that make up test cases, and then we evaluate test cases based on how similar
they are to one another in terms of the steps that are in the same cluster. We hope to aid
developers and the quality assurance team by enhancing the effectiveness and productivity
of testing by removing similar test cases that were previously a part of the test suite. Finally,
as redundant test cases can affect manual testing by testing the same feature more than once,
and as they can reduce the possibility of writing multiple methods to test the same feature
when automating tests in the future, our method should significantly increase productivity
and decrease downstream manual work in a context with large industry.

Apply data-

Input unlabeled i Perform text-
Start . preprocessing erfor Xi
test-cases dataset techniques to the test- embedding operations
cases
Identify similar test case Identify clusters OBl clstenn
based on the mapped — mapped to each test — ptpe?:lhni - s
cluster case S
Eliminate redundant G.roup similar test-cases _ Stop
test cases into software features

Figure 1: Flowchart depicting the key aspects of the project

Literature Review

Review of Test Automation and Prioritization

Thummalapenta et al. [27] propose an approach to infer a sequence of action-target-data
tuples from manually written test cases in Natural Language. FEach tuple consists of an

action, a target user interface and a data value. A manual test case is converted into a non-
deterministic program that encodes all alternative interpretations of the test steps. However,
the paper fails to detect similarities between test steps and generates DOM UI test cases
only for web applications and not for generalized test steps. By categorizing test artifacts
into test entities and test morphisms, it combines test techniques to produce test sets that
sufficiently cover mutant test situations, Zhu et al. [33] automation presents an automated
tool for metamorphic testing. The authors describe a sentence generator powered by NLP
that may be utilized by well-known automated testing tools and frameworks like Selenium
as test input for conversational Al bots.

Ranking test cases is critical when test execution is time-consuming because the goal is to
find the error as quickly as possible. The current case prioritizing system bases its decisions
on code coverage and necessitates access to the source code for black box manual testing.
The difficulty in Test-Case prioritization is that they are written in everyday language [10].
Black-box meta-data, test case history, and descriptions of the test cases in natural language
are used for prioritization. SVM ranking is used to assess the quality of two subject systems.
A binary linear classifier that assigns new instances to one category or the other is created
by the SVM training method. Utilizing the APFD metric, the technique is evaluated on the
test systems for early failure identification [15]. The effectiveness of prioritization strategies
is improved by the requirements-based grouping methodology. Lines of code settled square
depth, and cyclomatic complexity is measures of program complexity that are the main
factors to determine the priority [14].

Review of Word Embedding techniques

The word2vec algorithm by Mikolov et al. is used for computing continuous vector represen-
tations of words from very large data sets and demonstrates that the algorithm performs well
in word similarity tests. In this technique, billions of words are learned from large data sets,
each of which contains millions of words. The output is a vector representation with multiple
degrees of similarity [20]. As part of research entitled "Word Embeddings for the Software
Engineering Domain,” a word2vec model was trained on textual data from Stack Overflow
posts to capture semantic information targeting information retrieval tasks in software engi-
neering aiming to develop a general-purpose lexical model to represent software engineering
knowledge. As a result, discussion topics, duplicate questions and semantically linked ques-
tions can be identified, code snippet usability and social aspects can be assessed [7].

BERT uses a multi-layer bidirectional Transformer encoder as its model architecture. Larger
BERT models lead to strict accuracy improvements when trained with different numbers of
layers, hidden units, and attention heads. A larger model size will result in continued im-
provements on large-scale tasks, as well as large improvements on very small-scale tasks
provided that the model is sufficiently pre-trained [6]. One research application is 'BERT-
Based Sentiment Analysis: A Software Engineering Perspective’, which uses BERT-based
models to analyze sentences from GitHub comments, Jira comments, and Stack Overflow
posts to improve software engineering tools. The study proposes a robust method of classi-
fying SE-specific datasets [3].

Another word embedding technique is TF-IDF which computes the importance of a word
to a document by combining the word frequency in the document and the word frequency
across all other documents. Numeric vectors for each document are built using the word im-
portance values. Zero is assigned to the words that are not present in the document. TF-IDF
gives importance to uncommon words rather than treating all words as equal in the case of a
binary bag of words model. In this case, [13], test steps are considered as documents. Albitar
et al. [2] propose a new measure called SemTFIDF for finding semantic similarity between
concepts representing the compared text documents pair-to-pair. Semantics is involved in
Supervised Text classification involved during indexing, training and prediction. The au-
thors also conclude that semantic similarities are more adequate than classical similarities
like Cosine similarities in comparing texts.

Review of Sentence Embedding techniques

Le et al. [16] presented doc2vec as a simple extension to word2vec to embed word sequences
in a document. The doc2vec is a method for learning fixed-length feature representations
from variable-length text pieces, including sentences, paragraphs, and documents. In this
model, word vectors are trained to predict words in paragraphs. Word vectors are shared
among paragraphs, but paragraph vectors are unique [1]. An application of doc2vec is ‘Bug
Prediction Using Source Code Embedding’ where the source code is represented by traversing
the abstract syntax tree, then multiple doc2Vec models are trained using different parame-
ters. The trained models are used to generate fixed-length vectors derived from the source
code. For bug prediction, the sequences generated from tokens are treated as documents,
and a fixed-size vector is assigned to each class.

BERT has achieved state-of-the-art performance on supervised tasks such as semantic textual
similarity. However, because of its construction, it is unsuitable for unsupervised tasks such
as clustering. Sentence-BERT (SBERT) is a modification of the BERT network. SBERT
searches for semantically similar sentences and clusters them using a siamese network archi-
tecture and similarity measures. As a result, SBERT can be used for both semantic similarity
searches and clustering. Lastly, SBERT is computationally efficient and is suitable for mod-
eling tasks that are computationally infeasible with BERT [24]. The paper ‘An Unsupervised
Sentence Embedding Method by mutual Information Maximization’ uses an unsupervised
sentence embedding model with a light-weight feature extractor on top of BERT for sen-
tence encoding and trains it with the objective that maximizes the mutual information (MI)
between the global sentence embedding and all its local contexts embeddings [32].

Universal Sentence Encoder proposed by Cer et al. [4] is used for NLP tasks by encod-
ing sentences into embedding vectors. The model maps sentences to a fixed-length vector
representation which encodes the meaning of the sentences. Naive techniques to get sentence
embeddings have challenges which involve loss of information and no proper ordering. The
Universal sentence encoder summarizes any given sentence into a 512-dimensional sentence
embedding. Upon multiple iterations, it captures the most informative features and discards
noise. In the first step, the sentences are tokenized using the Penn Treebank (PTB) tok-

enizer. Two architectures for the encoder have been proposed based on the differences in
accuracy and inference speed.

The first variant is a transformer encoder [28] which consists of 6 stacked transformer layers,
with each layer having a self-attention module followed by a feed-forward network. Word
order is taken into consideration for each word representation and a 512-dimensional vector
is generated as output sentence embedding. A drawback of this architecture is high memory
usage due to complex architecture. The second variant is based on Deep Averaging Network
(DAN) [12] proposed by Iyyer et al. The embeddings for word and bi-grams are passed
through a 4-layer feed-forward deep DNN and a 512-dimensional sentence embedding is gen-
erated as the output. The embeddings for the same are learned during training. Compared
to [28] it has a slightly reduced accuracy but the inference time is efficient and compute time
is of linear complexity.

Review of Similarity Techniques

Text similarity measures are used in information retrieval, text classification, document
clustering, topic detection, tracking, question generation, answering, essay scoring, short
answer scoring, machine translation, text summarization and others [9]. Fry et al. use
a metric that multiplies the frequencies of terms in two documents by the idf weight of
those terms. The aggregate sum over all words’ values then serves as the similarity measure
for those two documents [8]. Additional three different approaches to text similarities are
String-based, Corpus-based and Knowledge-based similarities. String similarity operates
on string sequences and character composition. Latent Semantic Analysis (LSA) uses a
mathematical technique called singular value decomposition (SVD) to reduce the number of
columns while preserving the similarity structure among rows. Knowledge-Based Similarity
is based on information derived from semantic networks [9]. Another Text-Similarity method
is Distance Weighted Cosine Similarity Measure. Cosine is calculated as a dot-product of
two normalized vectors and is overly biased by the features of higher values [17].

Review of Clustering techniques

Walting et al. [31] propose a test case synthesis method wherein after removing redundant
test steps, all test steps are arranged into a new set of test cases. A path-finding algorithm is
used to find an optimized test step execution for each test case. Along with logic operators,
the natural language descriptions of test cases are converted into a representation form of pa-
rameters. However, all test steps are supposed to have a formal description of precondition,
action and postcondition. Chetouane et al. [5] focus on test suite minimization, i.e finding
a subset of redundant test cases from the actual test suite. An approach using K-means
clustering along with binary search is proposed. Binary search is used for looking for the
exact number of clusters that allows the test suite to not deviate from the mutation score
obtained in the initial test suite. However, a potential drawback is that this approach must
have source codes of the test cases. Pei et al. [21] use a technique called Dynamic Random
Testing (DRT) strategy which guides the test case selection by using testing results and in
turn enhances the fault detection effectiveness. The vectorized test cases are further clas-

sified into subdomains through clustering methods. Clustering techniques such as K-means
clustering, hierarchical clustering and K-medoids were used. The distance matrix is then
calculated which identifies the similarities based on the classification results. The evaluation
was done using Java programs and it was concluded that fault detection effectiveness was
achieved with a low computational cost.

Using the deterministic annealing (DA) approach to clustering, this paper discusses an op-
timization problem in clustering. DA aims at finding the global minimum of an energy
function, instead of getting greedily attracted to a nearby local minimum. It is a useful ap-
proach to clustering and related optimization problems that are derived from fundamental
principles and are completely independent of the initial configuration used [26].To determine
centroid distributions, two connected problems are solved: identifying appropriate forms
for cluster membership and centroid distributions and maximizing the degree of a good fit
between clusters and clusters. A two-stage iterative process, similar to the EM method, is
used to determine the membership probabilities by maximizing the relative entropy between
the centroid distributions of objects and clusters. In the presence of a critical value, the
original cluster splits into two new clusters. We then search for the lowest free energy (local)
minimum for a single leaf cluster split. The procedure is then repeated until the desired
number of clusters is achieved [22].

This paragraph highlights document clustering techniques using an unsupervised approach
based on language modeling and wordnet-based similarity measures. Agglomerative Clus-
tering algorithm to determine the set of flat clusters for each different threshold defined by
the joining points for the polish language dataset [19]. Different types of clustering methods
can also be categorized between hierarchical and partitioning methods. Hierarchical algo-
rithms cannot scale well and have huge I/O costs. Partitioning methods move instances
between clusters, typically by iterative optimization. To achieve global optimality, an ex-
haustive enumeration process of all possible partitions is required. As here an application
of the K-means algorithm is that it partitions the data into K clusters, represented by their
centers or means. Khan et al. [25] found that K -means was the most efficient method in
terms of execution time and that GA obtained the best solution faster than TS and SA.
There are several methods to improve the performance of k-means. In order to improve the
probability of a small cluster getting a seed in k-means initializing, we extend the value of k.
In the Hierarchical K-means clustering algorithm, we use the random initialization method
to choose k starting centers, assign points into k clusters, get feature values of mean for each
cluster, perform hierarchical clustering along with k-means adjusting iteration, and perform
top-n nearest clusters merging [23]. Finally the important five measures for text document
clustering: are Euclidean distance, cosine similarity, Jaccard coefficient, Pearson correlation
coefficient and averaged Kullback-Leibler divergence. The averaged Kullback-Leibler diver-
gence showed the highest effectiveness in clustering text. The study found that except for
the Euclidean distance measure, the other measures have comparable effectiveness for the
partitional text document clustering task [11].

Dataset

Li et al. [18] studied natural language test cases of a large industrial app (WeChat). Viggiato
et al.[29] studied natural language test cases of Prodigy Game which is an educational math
game company. Their dataset consisted of 3,233 test cases since the company provided the
data.Since we did not have a publicly available dataset related to software testing cases
we decided to create our own dataset based on which we could test whether our method
works or not. We decided to manually write our own test cases along with test steps based
on different software testing parameters. Based on our research we tried to incorporate
different test cases related to databases, OTP Validation, Profile Creation, Injection Attacks
and many more and finally created 127 test cases and 369 test cases. To test our methodology
we duplicated certain test cases by changing the tense of the sentence, adding similar words
to those test steps to check whether the embedding techniques perform well or not, however
kept the interpretation the same so that we could check whether we are able to remove the
redundant test cases or not.

Type Key | Case_Name Step_ID Steps
OTP Validation | TC1 Chec.k if User is able to edit the 1 Enter the phone number
mobile number
OTP Validation | TC1 | Chock if User is able o edit the 2 Send OTP
mobile number
OTP Validation | TC1 Che(.:k if User is able to edit the 3 Click edit button
mobile number
OTP Validation | TC2 | Verity if ten digit number is accepted 1 Enter ten digit phone number
OTP Validation | TC2 | Verify if ten digit number is accepted 2 Send OTP button should become active
OTP Validation | TC3 Verify if OTP is received on user 1 Enter the phone number
number
OTP Validation | TC3 Verify if OTP is received on user 9 Send OTP
number
OTP Validation | TC3 Verify if OTP is received on user 3 Check inbox of the mobile phone
number
Table 1: Sample of the dataset
Implementation

Test-case similarity using Clustering

The data obtained as the input [Refer: Table 1] contains multiple columns which include
Type which corresponds to a feature in which this test case exists, the Key, which is a unique
identifier for each test case, the Case_Name, which refers to the title of the test-case. Now,
a test case involves multiple steps, so the Step_ID column refers to the identifier for each of
the test steps in a test case. Lastly, column Steps refers to a description for verifying the
test case written in natural language. We perform pre-processing on this data to generate
a result as shown in Figure-3. In order to achieve this, the following steps are performed
for the columns Case_Name and Steps. Initially, we get the number of unique words in the
data set for both columns followed by the frequency for each word in order to find the words
which have the highest and lowest frequencies. Next data cleaning is performed where we

Preprocessing

1. Remove URL, HTML
tags, paths, whitespaces,
punctuations, stopwords

Calculating test- and digits.
case similarity 2.Convert to lowercase,
tokeninze and lemmitize.
3.Remove frequently
occuring words based on
a threshold.

Text Embedding Similarity Clustering
Train dataset on
—> Word2Vec model t0 —
generate text
embeddings

Compute similarity Cluster similar test-
using Word-Mover's cases using K-Means
Distance clustering

Figure 2: Block diagram explaining the steps involved in clustering similar test cases

initially clean the URLs, paths, HT'ML tags, and punctuation, and remove extra spaces and
stop-words. It is followed by converting the strings into lowercase followed by removing digits
and words which have digits. Lastly, we tokenize, lemmatized and remove words which are
repeated more than a certain number of times.

(1.0, ['enter', 'the', 'phone', 'number'])

(2.0, ['send', 'otp'])

(3.0, ['click', 'edit', 'button'])

(1.0, ['enter', 'ten', 'digit', 'phone', 'number'])

(2.0, ['send', 'otp', 'button', 'should', 'become', 'active'])

Figure 3: Tuple after preprocessing

The next step involves performing training on a pre-trained Word2Vec model using [7]
having a dimensionality of 200, a context of 2, a downsampling of 0.001 and using Continious-
Bag-of-Words (CBOW). The pre-trained model is then updated using the new vocabulary
from our training corpus. Next, we build tuples as shown in Figure-2 with the (Step_ID,
Step) which is used to retrieve the step ID in the end after the clustering and get only test
steps for clustering. The second step involves creating and initializing a distance matrix with
zeros and assigning the number of test steps to rows and columns. Then, we compute the
distances between the test-step rows and columns using the Word-Movers Distance and save
the distance matrix as shown in Figure-4. The average word vector of a test step is then
calculated.

1.25E+00 1.24E+00 5.19E-01 1.25E+00
1.28E+00 9.64E-01 1.25E+00 1.22E+00
9.39E-01 1.03E+00 1.04E+00 5.49E-01
1.38E+00 5.24E-01 1.48E+00 6.23E+00

Figure 4: Similarity matrix using word mover’s distance

Lastly, we perform K-means clustering on the distance matrix obtained from the previous
step where we calculate the average sentence vector between the selected sentences. As a
result, we obtain the file which shows the clusters with similar test steps. This is then
provided as input for the ensembling approach.

Ensembling approach and computing similarity

Since we performed different embedding techniques we tend to obtain different clusters of
test steps. To get better clarity for certain tasks such as classification and clustering we use
an ensemble approach that uses majority voting similar to [29]. The clusters are generated
by getting the set of all test steps in the data. We then perform an iteration through each
of the test steps and perform a pairwise comparison with other test steps. The majority
voting technique also assigns a threshold value and it is decided whether the particular test
step belongs to the same cluster or to a different cluster. After this, we have the test steps
that belong to the same cluster. After the ensemble approach, we try different techniques to
identify similar test cases. The first technique that we tried uses Simple Overlap to compute
groups of similar test cases. We use the identifiers of test step clusters to represent test
cases. A simple overlap metric is used to determine the pairwise similarity, which indicates
the proportion of overlap that test cases have. We also vary the threshold value to find
out the optimal similarity threshold. The second technique that we tried uses a binary
representation of test cases, wherein we generate a binary vector for each test case. A binary
matrix is created where the row corresponds to the test case and the column corresponds to
the test step. We finally compute the pairwise similarity of the test cases using the Jaccard
index. If the Jaccard index is greater than a certain threshold value then we identify the
corresponding test cases to be similar. Finally, the third technique used was representing
the test steps as a numeric vector and the numeric vector corresponds to the number of test
steps that the test case has in each cluster. Cosine similarity between the test steps was then
computed between the test steps to identify whether they are similar or not. The weighted
sum between the similarity score obtained with test step clusters is used to compute the final
similarity score for test cases.

TC17
TC20
TC23
TC26
TC32
TC127
TC57
TC115
TC120
TC1

AWWIN|N|=2|=2|0O|O|0O

Figure 5: Output generated after computing the similarity

The test cases are then clustered based on the similarity score. Test cases that are similar
or have similar test steps are assigned the same similarity score as shown in Figure 5. After

10

computing the similarity, we then remove the redundant test steps and test cases based on
the test steps which we computed using the ensemble approach. Finally, we remove the
redundant test cases and test steps from the input file and generate a new output file with
all the non-redundant test cases and test steps.

Results

Based on the different embedding and clustering techniques that we used, we were able to
achieve considerable results and functionalities wherein we were able to identify similar test
steps, identify similar test cases and remove the redundant test cases and steps as well. For
the 127 test cases we had in the input file, we duplicated 5 of the test cases in a different
manner and were able to successfully remove those redundant 5 test cases from the output
file. Although the size of the input file is small and the number of test cases were less as
well | we believe there might be certain edge cases where our implementation might not be
able to remove all the redundant test cases. Based on the different word embedding and
sentence embedding techniques that we adapted we are also trying different techniques such
as fasttext and infersent and study the similarity metrics so that we are able to use them
for our purpose as well.

Type Key | Case_Name Step_ID Steps

Profile creation Validation | TC17 | Verify if it allows to Click on "Next” 1 Leave any of the parameter fields empty

Profile creation Validation | TC17 | Verify if it allows to Click on ”Next” 2 Check for the appropriate error message from frontend
Profile creation Validation | TC18 | Verify if ”Go back” is working 1 Press back button from Step two screen

Profile creation Validation | TC18 | Verify if ”Go back” is working 2 Should return back to Step one Screen

Profile creation Validation | TC19 | Verify if data is retained after user presses ”Go Back” 1 Press back button from Step two screen

Profile creation Validation | TC19 | Verify if data is retained after user presses ”Go Back” 2 All user input data should be retained

Profile creation Validation | TC20 | Verify if data is retained after user presses ”Go Back” 1 Leave any of the parameter fields empty

Profile creation Validation | TC20 | Verify if data is retained after user presses ”Go Back” 2 Check for the appropriate error message from frontend

Table 2: A sample of the input file having redundant test steps

To be able to understand the removal of redundant test cases, an example has been shown.
In Table 2 we have a common test type which is Profile creation Validation along with 4
different test cases and their corresponding test steps. Although TC19 and TC20 have the
exact same test case description, they are not similar because they have different test steps
and hence the purpose of those test cases becomes completely different. However TC17 and
TC20 have the same test steps and functionality as highlighted despite having different test
case descriptions. Table 3 shows the sample from the output file wherein TC20 along with
other redundant test cases has been removed and the test team finally gets a new output

11

file with all the new test cases and test steps without any redundancy which will save a lot
of time and resources.

Type Key | Case Name Step ID Steps

Profile creation Validation | TC17 | Verify if it allows to Click on "Next” 1 Leave any of the parameter fields empty

Profile creation Validation | TC17 | Verify if it allows to Click on "Next” 2 Check for the appropriate error message from frontend
Profile creation Validation | TC18 | Verify if " Go back” is working 1 Press back button from Step two screen

Profile creation Validation | TC18 | Verify if ”Go back” is working 2 Should return back to Step one Screen

Profile creation Validation | TC19 | Verify if data is retained after user presses ”Go Back” 1 Press back button from Step two screen

Profile creation Validation | TC19 | Verify if data is retained after user presses ”Go Back” 2 All user input data should be retained

Table 3: Output sample file generated after removing redundant test steps

Future Scope

The main intention for the future of this project is to overcome limitations that were faced
during the process; some of which are identified and mentioned below.

1. Increase size of the dataset: One way to increase the size of our dataset is to collect
more data through various methods. Here are a few ideas:

e Web scraping: we can use tools like Beautiful Soup or Selenium to scrape data from
websites and add it to our dataset.

e Surveys and experiments: we can conduct surveys or experiments to collect data from
participants.

e Crowdsourcing: we can use platforms like Amazon Mechanical Turk to gather data
from a large number of people.

e Public datasets: There are many public datasets available online that we can use to
supplement our own data. Some examples include the UCI Machine Learning Reposi-
tory, Kaggle datasets, and data from government agencies.

It’s important to keep in mind that the quality of the data is also important, not just
the quantity. Make sure to validate the data and ensure it is accurate and relevant to
our research or project.

2. Try similarity metrics on fasttext and infersent: Using FastText for unsupervised
learning we got incorrect similarity outputs as we carried out training the data with more
datasets.As with fairly small size of dataset the quality cannot be ensured. Furthermore,
having issues with the model after multiple trials we found it worth considering different
model. Different approaches to text classification and similarity, and it may be that a dif-
ferent approach is more suitable for our specific problem. We were unable to use Infersent
due to computing limitations, there may be other NLP models or approaches that we can
use that are more suitable for our specific needs and resources. For example, we may be

12

able to use a smaller or less resource-intensive model, or we could try using pre-trained word
embeddings instead of a full NLP model.

3.Explore more different clustering techniques such as Gaussian mixture model:
A probabilistic model called a Gaussian mixture model (GMM) posits that the underlying
data was produced by combining a limited number of Gaussian distributions with unknow-
able parameters. Because it uses a soft clustering method, each data point is given a chance
of becoming a member of each cluster rather than being categorically allocated to one. GMM
has the ability to model more complex distributions than k-means, which presumes that the
clusters are spherical and of equal size, is one advantage of GMMs. Clusters with varying
sizes and forms can also be handled by GMMs. GMMs can, however, be sensitive to how
the parameters are initialised, and selecting the right number of mixing components can be

difficult.

4. Try and achieve a better F score once we have a proper dataset: To improve
the F-score of a model, we can try the following strategies:

e Collect more and high-quality data: The model may be better able to generalise and
generate more precise predictions with additional data. Similar to this, having high-
quality data—data that is accurate and representative of the target population—can
also enhance the performance of the model.

e Fine-tune the model’s hyperparameters: Different hyperparameters control the be-
haviour of various models. The model’s performance can be enhanced by tuning these
hyperparameters. we can change the maximum depth of the tree, the minimum num-
ber of samples needed to divide a node, and other parameters in a decision tree model,
for instance.

e Use a different model: We can experiment with employing a new model that might
be more suited to the task if the one we are using isn’t performing as expected. A
non-linear model may produce superior results, for instance, if we are using a linear
model and the data is significantly non-linear.

e Use feature engineering: The quality and relevance of the input features can have a
significant impact on the model’s performance. we can try different feature engineer-
ing techniques, such as feature selection, dimensionality reduction, or creating new
features, to see if they improve the model’s F-score.

e Use class weights or imbalance handling techniques: The model might be biased in
favour of the class that is more prevalent if the classes in the dataset are unbalanced
(i.e., there are noticeably more cases of one class than the other). In certain circum-
stances, class weighting or imbalance handling strategies can aid in raising the model’s
F-score.

13

Conclusion

In this research, we suggest an automated methodology for identifying and eliminating simi-
lar test cases by automatically analyzing and producing output. We go over various analysis
modules that have so far been used with our framework. The modules are capable of rec-
ommending improvements to the recommendations of similar test cases that already exist in
the test suite. Also, on average, our association rules can correctly recommend redundant
test steps most of the time per test case. Finally, we can identify similar test cases with high
performance using text embedding, text similarity, and clustering techniques. Our suggested
framework automatically analyzes test cases written in plain language using a creative and
effective method of fusing conventional and cutting-edge methodologies. The framework
is capable of offering practical advice, which was the significant challenge presented to us,
and taking into account the multiple recurrences of test cases in the software business (in
particular, the Testing industry).

References

[1] Tamas Aladics, Judit Jasz, and Rudolf Ferenc. Bug prediction using source code em-
bedding based on doc2vec. In International Conference on Computational Science and
Its Applications, pages 382-397. Springer, 2021.

[2] Shereen Albitar, Sébastien Fournier, and Bernard Espinasse. An effective tf/idf-based
text-to-text semantic similarity measure for text classification. In International Confer-
ence on Web Information Systems Engineering, pages 105-114. Springer, 2014.

[3] Himanshu Batra, Narinder Singh Punn, Sanjay Kumar Sonbhadra, and Sonali Agarwal.
Bert-based sentiment analysis: A software engineering perspective. In International
Conference on Database and Expert Systems Applications, pages 138-148. Springer,
2021.

[4] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St John,
Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, et al. Universal
sentence encoder. arXiw preprint arXiw:1803.11175, 2018.

[5] Nour Chetouane, Franz Wotawa, Hermann Felbinger, and Mihai Nica. On using k-means
clustering for test suite reduction. In 2020 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), pages 380-385. IEEE, 2020.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[7] Vasiliki Efstathiou, Christos Chatzilenas, and Diomidis Spinellis. Word embeddings for
the software engineering domain. In Proceedings of the 15th international conference on
maning software repositories, pages 3841, 2018.

14

8]

[9]

[10]

[11]

[12]

[16]

[17]

[18]

Zachary P Fry and Westley Weimer. Fault localization using textual similarities. arXiv
preprint arXiw:1211.2858, 2012.

Wael H Gomaa, Aly A Fahmy, et al. A survey of text similarity approaches. international
journal of Computer Applications, 68(13):13-18, 2013.

Hadi Hemmati, Zhihan Fang, and Mika V Mantyla. Prioritizing manual test cases in
traditional and rapid release environments. In 2015 IEEE Sth International Conference
on Software Testing, Verification and Validation (ICST), pages 1-10. IEEE, 2015.

Anna Huang et al. Similarity measures for text document clustering. In Proceedings of
the sizth new zealand computer science research student conference (NZCSRSC2008),
Christchurch, New Zealand, volume 4, pages 9-56, 2008.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber, and Hal Daumé III. Deep un-
ordered composition rivals syntactic methods for text classification. In Proceedings of
the 53rd annual meeting of the association for computational linguistics and the 7th

international joint conference on natural language processing (volume 1: Long papers),
pages 1681-1691, 2015.

Thorsten Joachims. A probabilistic analysis of the rocchio algorithm with tfidf for text
categorization. Technical report, Carnegie-mellon univ pittsburgh pa dept of computer
science, 1996.

Rayapureddy Kalyani, Padmanabhuni Sai Mounika, Ravipati Naveen, Gnaneswari
Maridu, and Paruchuri Ramya. Test case prioritization using requirements clustering.
International Journal of Applied Engineering Research, 13(15):11776-11780, 2018.

Remo Lachmann, Sandro Schulze, Manuel Nieke, Christoph Seidl, and Ina Schaefer.
System-level test case prioritization using machine learning. In 2016 15th IEEE Inter-
national Conference on Machine Learning and Applications (ICMLA), pages 361-368.
IEEE, 2016.

Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents.
In International conference on machine learning, pages 1188-1196. PMLR, 2014.

Baoli Li and Liping Han. Distance weighted cosine similarity measure for text clas-
sification. In International conference on intelligent data engineering and automated
learning, pages 611-618. Springer, 2013.

Linyi Li, Zhenwen Li, Weijie Zhang, Jun Zhou, Pengcheng Wang, Jing Wu, Guanghua
He, Xia Zeng, Yuetang Deng, and Tao Xie. Clustering test steps in natural language
toward automating test automation. In Proceedings of the 28th ACM Joint Meeting
on FEuropean Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pages 1285-1295, 2020.

Michal Marcinczuk, Mateusz Gniewkowski, Tomasz Walkowiak, and Marcin Bedkowski.
Text document clustering: Wordnet vs. tf-idf vs. word embeddings. In Proceedings of
the 11th Global Wordnet Conference, pages 207-214, 2021.

15

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

[28]

[29]

[31]

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

Hanyu Pei, Beibei Yin, Min Xie, and Kai-Yuan Cai. Dynamic random testing with test
case clustering and distance-based parameter adjustment. Information and Software
Technology, 131:106470, 2021.

Fernando Pereira, Naftali Tishby, and Lillian Lee. Distributional clustering of english
words. arXiv preprint cmp-lg/9408011, 1994.

Jianpeng Qi, Yanwei Yu, Lihong Wang, Jinglei Liu, and Yingjie Wang. An effective and
efficient hierarchical k-means clustering algorithm. International Journal of Distributed
Sensor Networks, 13(8):1550147717728627, 2017.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese
bert-networks. arXiv preprint arXiv:1908.10084, 2019.

Lior Rokach and Oded Maimon. Clustering methods. In Data mining and knowledge
discovery handbook, pages 321-352. Springer, 2005.

Kenneth Rose. Deterministic annealing for clustering, compression, classification, re-
gression, and related optimization problems. Proceedings of the IEEE, 86(11):2210-2239,
1998.

Suresh Thummalapenta, Saurabh Sinha, Nimit Singhania, and Satish Chandra. Au-
tomating test automation. In 2012 34th International Conference on Software Engi-
neering (ICSE), pages 881-891. IEEE, 2012.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

Markos Viggiato, Dale Paas, Chris Buzon, and Cor-Paul Bezemer. Identifying simi-
lar test cases that are specified in natural language. IEEFE Transactions on Software
Engineering, pages 1-1, 2022.

Markos Viggiato, Dale Paas, Chris Buzon, and Cor-Paul Bezemer. Using natural lan-
guage processing techniques to improve manual test case descriptions. In International
Conference on Software Engineering-Software Engineering in Practice (ICSE-SEIP)
Track.(May 8, 2022), 2022.

Benedikt Walter, Maximilian Schilling, Marco Piechotta, and Stephan Rudolph. Im-
proving test execution efficiency through clustering and reordering of independent test
steps. In 2018 IEEE 11th International Conference on Software Testing, Verification
and Validation (ICST), pages 363-373. IEEE, 2018.

Yan Zhang, Ruidan He, Zuozhu Liu, Kwan Hui Lim, and Lidong Bing. An unsuper-
vised sentence embedding method by mutual information maximization. arXiv preprint
arXiw:2009.12061, 2020.

16

[33] Hong Zhu, Ian Bayley, Dongmei Liu, and Xiaoyu Zheng. Automation of datamor-
phic testing. In 2020 IEEFE International Conference On Artificial Intelligence Testing
(AlTest), pages 64-72. IEEE, 2020.

17

