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Abstract—The ever-increasing complexity of both Deep Neural
Networks (DNN) and hardware accelerators has made the co-
optimization of these domains extremely complex. Previous works
typically focus on optimizing DNNs given a fixed hardware
configuration or optimizing a specific hardware architecture
given a fixed DNN model. Recently, the importance of the
joint exploration of the two spaces drew more and more
attention. Our work targets the co-optimization of DNN and
hardware configurations on edge GPU accelerators. We propose
an evolutionary-based co-optimization strategy by considering
three metrics: DNN accuracy, execution latency, and power
consumption. By combining the two search spaces, a larger
number of configurations can be explored in a short time
interval. In addition, a better tradeoff between DNN accuracy
and hardware efficiency can be obtained. Experimental results
show that the co-optimization outperforms the optimization of
DNN for fixed hardware configuration with up to 53% hardware
efficiency gains with the same accuracy and inference time.

Index Terms—DNN, Edge GPU, Hardware-aware Neural Ar-
chitecture Search, Multi-objective optimization

I. INTRODUCTION AND RELATED WORKS

Deep Neural Networks (DNN) and hardware accelerators
are both leading forces for the observed progress in Machine
Learning (ML). However, DNN architectures are becoming
more and more complex and resource-demanding. When these
architecture have to be supported by edge systems, they need
careful optimization to achieve the best tradeoff between
accuracy and hardware efficiency. To meet this challenge,
Hardware-aware Neural Architecture Search (HW-NAS) has
been proposed [1] in which DNN hardware efficiency is
considered during the exploration process.

Nevertheless, hardware efficiency depends not only on the
DNN architecture but also on the hardware configuration [2],
[3]. Most existing works on HW-NAS fall into the optimiza-
tion of DNN without considering the reconfigurability of the
hardware accelerator. As discussed in [4], this approach is
sub-optimal because the HW-NAS search space is narrower
when considering only a fixed hardware configuration. Thus,
by considering the hardware design space, it is possible to find
tailor-made DNNs for each hardware configuration and vice-
versa. The joint exploration of both search spaces is referred
to as the co-optimization in this paper.

Recent works [5]-[12] have tackled the co-optimization
problem where DNN architectures are optimized jointly with

hardware configurations. Multiple DNN-HW pairs are gener-
ated and evaluated during the exploration process to choose the
best pair(s). However, this strategy incurs a huge search time
given the complexity of the joint search space [13]. Therefore,
another co-exploration strategy has been proposed in [14]-
[16], where DNN and hardware optimizations are done in a
separate way. The two optimization algorithms communicate
and exchange information to adjust the exploration process at
some points.

However, although this strategy solves the drawback of the
first joint approach, the sub-optimality of the final results
remains its critical issue. The works mentioned above can
also be classified according to the following factors [4]: DNN
search space, targeted hardware accelerator and the exploration
algorithm implementation in terms of objective functions and
fitness evaluation strategy.

Nevertheless, only few works have attempted to consider the
co-optimization problem for GPU-based hardware platforms.
Recent edge GPUs allow the reconfigurability of different
components such as the number of the processing units or
the operating frequencies. The impact of these parameters on
DNN performance has been well discussed and analyzed in
[17], [18].

For instance, the authors in [2] adjust both the configuration
of the GPU operating frequencies and the batch size of the
DNN to maximize the inference hardware efficiency. However,
no prior work has studied the joint optimization of DNN
and hardware configurations on edge GPUs to the best of
our knowledge. Therefore, we tackle this problem and give
a detailed study about the impact of the hardware configu-
ration on the DNN efficiency. Our obtained results motivate
considering the hardware reconfigurability in Hardware-aware
Neural Architecture Search to support the DNN accuracy and
latency requirements under minimal power consumption.

Our paper is structured as follows. In section II we present
and explain the motivation of our work. In section III we first
formulate our multi-objective co-optimization problem. Then,
we describe and explain our optimization approach. Section IV
presents our experimental setup and results. Then we discuss
our obtained results and compare them to other approaches
and state-of-the-art solutions. Finally, the conclusion will be
given in section V.
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Fig. 1. The results of performing an HW-NAS under fixed edge GPU’s
hardware configuration.

II. MOTIVATION

Figure 1 shows that different DNN models give different
tradeoffs between accuracy and hardware efficiency under a
fixed hardware configuration. In this paper the term hardware
efficiency refers to the trade-off between latency and power
consumption in the inference. This figure gives the results of a
Hardware-aware Neural Architectural Search (HW-NAS) that
we performed on the NVIDIA Jetson AGX edge GPU. The
DNN models are sampled from the trained supernet proposed
by AttentiveNAS [19]. Each point represents a DNN model in
the search space. The x-axis and y-axis represent the measured
latency and power consumption, respectively, on the edge
GPU. The color of the points indicates the TOP-1 accuracy of
the DNN. Figure 1 shows that different tradeoffs are obtained
between accuracy and hardware efficiency for each explored
DNN model. Figure 2 illustrates that the hardware efficiency of
a single DNN varies when varying the hardware configuration.
This figure gives the results of an exhaustive exploration of
hardware configurations for a fixed DNN model, EfficientNet-
BO [20] in this case. To showcase the impact of the hardware
configuration on the overall hardware efficiency of the DNN,
we compare the obtained results with the predefined default
hardware configurations proposed by NVIDIA. In this figure
MAXN (resp. MINN) is the NVIDIA Jetson AGX config-
uration with the highest (resp. the smallest) allowed clock
frequency. MAXN (resp. MINN) in general maximizes (resp.
minimises) the processing speed at the cost of a high (resp.
low) power consumption. The other configurations (i.e., from
conf_1 to conf_5) are proposed to achieve a tradeoff between
MAXN and MINN'. Remarkably, the optimal Pareto front,
marked in blue in Figure 2) and obtained by an exhaustive
exploration identifies hardware configurations that completely
dominate all NVIDIA’s predefined default configurations. It’s
important to mention that the Pareto front does not contain any
of the NVIDIA’s predefined configurations (MAXN, MINN

IJetson developer kits and modules: https://docs.nvidia.com/jetson/14t/
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Fig. 2. The results of optimizing edge GPU’s hardware configuration for
a fixed DNN model.

and conf_1 to conf_5). Furthermore, the dominant solutions
in the Pareto front improve upon the default configurations of
NVIDIA (i.e., MAXN and MINN) by 57% and 40% for power
consumption and latency, respectively This result shows the
necessity to explore the space of the hardware configurations,
to enhance the hardware efficiency of the DNN.
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Fig. 3. Impact of GPU frequency on latency and power consumption

To better understand the impact of the hardware parameters,
in figure 3 we report the impact of the GPU frequency values
on the DNN hardware efficiency (i.e., latency and average
power consumption). We vary one frequency at once while
fixing the other frequencies (i.e., CPU and EMC frequencies)
to their maximum value. We note that similar trend has been
also observed when varying the CPU and EMC frequency.

From figure 3, we observe that the latency decreases by
increasing the frequency from 400 MHz to 900MHz. How-
ever, after 900MHz, the latency remains the same, but the
power consumption keeps increasing drastically. Hence, it is
necessary to determine which configurations give the minimal
latency and the lowest power consumption. From figure 3, it
is evident that a frequency of 900 MHz gives the best tradeoff
between latency and power consumption. However, this value
can be further optimized by choosing adequate CPU and EMC
frequency values. Furthermore, the optimal values of frequen-
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cies change according to the DNN workload. Thus, there is
no optimal hardware configuration for all the DNNs. From the
above discussion, we can conclude that the performances of
a DNN model are determined by the DNN architecture and
the HW configuration. However, understanding the impact of
these factors is not straightforward, which motivates the co-
optimization of DNN and hardware configurations.

III. PROPOSED APPROACH
A. Problem formulation

Our DNN-HW co-optimization problem can be formulated
as a multi-objective problem. As exploring the whole HW
space and the whole DNN space is time-consuming and costly
in terms of development efforts, we need a tool for a rapid
DNN/HW co-design space exploration. Furthermore, while
accelerating the co-design space exploration, the tool must
adequately provide good approximation of the Pareto front.
In this paper, we focus on solutions depicting the highest
DNN accuracy and hardware efficiency. The mathematical
formulation of our problem is as follows:

min F(dnn, he) = [(E(dnn), L(dnn, he), P(dnn, he)]”
s.t.  (dnn,hc) € (DNN x HWConf) (1)

Where dnn represents a DNN model defined by the DNN
decision variables detailed in table 1. hc represents a hardware
configuration defined by the hardware decision variables listed
in table . DNN and HWConf are the decision spaces of
DNNs and hardware configurations, respectively, detailed in
table I.

Each hardware configuration hc consists of 3 components:
a Central Processing Unit (CPU), a Graphical Processing
Unit (GPU) and an External Memory Controller (EMC).
Each component has an independent and programmable clock
frequency. Finally, F' is the objective vector to optimize by
minimizing the DNN error E (i.e., maximizing accuracy) on a
user-defined dataset, DNN latency L and power consumption
P on the hardware configuration hc.

Overview on the proposed co-optimization approach based on NSGA-II

We note that the F(aka., Error) is measured by calculating
the TOP-1 error rate, which is the percentage of images from
dataset for which the correct label is not the class label pre-
dicted by the DNN. L(aka., Latency) is the execution time (in
milliseconds) of dnn on the hardware accelerator HW 4cc.
Finally, P(aka., Powerconsumption) is the average power
consumption (in milliwatt) observed when executing dnn on
the hardware accelerator hc.

B. Optimization Methodology

To solve the above problem, we propose an evolutionary-
based co-optimization strategy, where we search for both the
optimal DNN architecture and hardware configuration. The
search is done by exploring DNN and HW search spaces.
Figure 4 details the proposed co-optimization approach. Our
methodology includes three main components:

o Joint search space: We extend the search space of
the HW-NAS by including the hardware configurations.
Furthermore, by definition, the joint search space can
be generalized to any DNN, task, dataset, and hardware
accelerator. Thus, these four factors are considered as
inputs in our co-optimization framework. In this paper,
we use the joint search space detailed in table I. We note
that all the considered decision variables are discrete.

o Optimization algorithm: We choose NSGA-II [21] as an
evolutionary algorithm to explore the joint search space.
NSGA-II is a widely used algorithm for NAS problems
in general, and HW-NAS in particular [22]. Moreover,
it typically provides a fast and efficient convergence by
searching a wide range of solutions. These two abilities
are due to its selection strategy based on non-dominated
sorting and crowding distance, which allow for both
convergence and diversity of solutions. In this paper, the
parameters used for NSGA-II are detailed in table II. We
first initialize the population using the Latin HyperCube
Sampling (LHS) method. Then, next populations are gen-
erated from: 1) Selecting the best solutions using the non-
dominated sorting algorithm of NSGA-II and 2) Applying



TABLE I

THE JOINT SEARCH SPACE OF DNN AND HARDWARE PARAMETERS

TABLE 11
NSGA-II PARAMETERS
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mutation and crossover on these best solutions to create
the offspring population. We choose a high crossover
probability of 80% to increase the reproducibility of good
candidate solutions. However, we decrease the probability
of mutation to 30% to prevent the risk of losing traces
of good candidate solutions. Crossover and mutation are
chosen uniformly.

o Evaluation strategy: The explored pairs are evaluated
regarding the DNN accuracy and hardware efficiency.
A) The DNN accuracy is evaluated in two stages: 1)
We use a fast evaluation technique using an accuracy
prediction model proposed in [19] to quickly determine
the DNN accuracy during the exploration, then after the
exploration, 2) We perform a more complete evaluation
of the DNN accuracy for the elite solutions. We note that
the results of the two evaluation techniques are highly
correlated. B) The DNN hardware efficiency (latency and
power) is directly measured by executing the DNN on the
hardware accelerator under the specified configuration.
As a reduced number of configurations is explored in the
search algorithm, this step is not time consuming. Using
a surrogate model for the hardware efficiency evaluation
is considered as one possible extension of the work.

IV. EVALUATION

Fig. 5. DNN search space encoding: A candidate DNN architecture is real-encoded using a single vector that comprises five sub-vectors depicting: input
resolution, depth, width, kernel size, and expansion ratio of each block

e DNN search space: We use the same search space pro-

vided by [19], [23]. The search space contains 10'! DNN
architectures, as detailed in table I and figure 5. The
authors in [19] provide a prediction model for accuracy
assessment, as a fast evaluation tool, and a pretrained
supernet, as a complete evaluation tool. However, the
second strategy is time-consuming as the sampled DNN
needs to be calibrated on the entire training dataset (Im-
ageNet). Thus, we used a fast evaluation strategy during
the exploration then performed a complete evaluation
using the pretrained supernet only for the elite solutions.

o Dataset: We choose to explore the joint search space

for a state-of-art dataset such as ImageNet. Thus, the
DNN accuracy are calculated on the ImageNet [24]
validation dataset. All images are preprocessed using data
augmentation techniques such as whitening, upsampling,
random cropping, and random horizontal flipping, before
feeding them to the DNN.

o Hardware search space: We choose the NVIDIA Jetson

AGX Xavier GPU as as a hardware accelerator?. NVIDIA
Jetson GPU accelerators allow the reconfigurability of
different hardware parameters such as the number of
operating cores. It also allows to have different operating
clock frequency in the cores, GPU, and memory units.
The chosen values of these parameters depend on the
application requirements. For our case, we only vary the

A. Experimental Setup

Our co-optimization problem has the following inputs:

operating frequencies as detailed in table I

2Jetson AGX Xavier: https:/developer.nvidia.com/embedded/jetson-agx-

xavier-developer-kit



B. Experimental Results

1) Co-optimization Results: In this section we will discuss

the obtained results from two main perspectives:

o Efficiency of the co-exploration: To underline the co-
exploration’s importance, we compare the results ob-
tained when co-exploring the joint search space and when
performing a typical HW-NAS under fixed hardware
configurations. We choose two default configurations
proposed by the hardware manufacturer, NVIDIA in our 70848 6.0E+8 0.0E+8
case: MAXN and MINN. Figure 6 gives the results of Hyper-volume
the co-exploration, where figure 7 depicts a comparison
between the results of the three approaches (i.e., joint,
MAXN, and MINN), marked with different points shapes.
Each point in the figures corresponds to a (dnn,hc)

Co-exploration

MAXN

Optimization strategy

MINN

Fig. 8. Hypervolume results of the three optimization approaches

configuration. the hypervolumes of the HW-NAS under MAXN and
MINN.
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After analyzing the two figures, we can clearly see that
the region explored in the joint space is much larger
than the regions explored when fixing the hardware Fig. 10. Explored DNN models
configuration to MAXN or MINN. Furthermore, the
explored regions when fixing the hardware configuration Furthermore, we give figures 10 and 9 to show the
are included in the co-exploration. Indeed, the joint search diversity of the explored solutions. The white points
space allows for exploring much larger solutions and correspond to all the explored solutions, whereas the
hence different tradeoffs between DNN accuracy and solutions of the Pareto set are marked in blue. In figure 9,
hardware efficiency. The obtained hypervolume results we show the explored hardware decision space. From this
presented in figure 8 confirm this observation. The ob- figure, we can observe that the Pareto optimal solutions

tained hypervolume from the co-exploration is larger than are diverse and well distributed. This confirms our earlier



TABLE III
PERFORMANCE OF THE BASELINE MODELS PROPOSED BY ATTENTIVENAS [19] COMPARED TO OUR TOP SOLUTIONS FROM THE PARETO FRONT

DNN, hw_conf TOP-1 Acc (%) | Latency (ms) | Power consumption (mw)
AttentiveNAS-A2, MAXN 78.8% 29.91 6575
AttentiveNAS-A3, MAXN 79.1% 33.51 6575
AttentiveNAS-A4, MAXN 79.8% 32.67 7033
AttentiveNAS-AS, MAXN 80.1% 35.66 6881
Ours-B0, hc0 79.0% 28.85 4744
QOurs-B1, hel 79.6% 30.82 4591
Ours-B2, hc2 79.9 % 33.03 4591
Ours-B3, he3 80.2% 34.10 6118

observation that no a priori knowledge can be used to
choose the best-suited hardware configuration without
actual exploration and evaluation. Figure 10 gives the
characteristics of the explored DNN models in terms of
input resolution, depth (i.e., number of layers), and size
of trainable parameters (in Mega-Bytes). Similarly, the
Pareto optimal solutions are well distributed and diverse.
This also supports the importance of the exploration as
we can assume a priori which DNN model will be Pareto
optimal without actual evaluation of its performance.
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Fig. 11. ImageNet-1k accuracy v.s. average energy consumption of the top
(DNN, hw-conf) pairs from the co-optimization Pareto front and the baseline
configurations from AttentiveNas [19]

o Optimality of the obtained results: To further investigate
the efficiency of the co-exploration, we select four
pairs of (DNN, hardware configuration) from the Pareto
front and compare them to state of the art DNN
models under the widely used default configuration
proposed by NVIDIA, MAXN. The four pairs of (DNN,
hardware configuration) give different trade-offs between
(accuracy, inference time and power consumption). Table
IIT and figure 11 detail the obtained results. We also
give a comparison with the top four (04) models from
AttentiveNAS (A2-A5) [19]. We refer to these models
to as AttentiveNAS-A(2-5). Our obtained solutions
(i.e., combinations of DNN models and hardware
configuration) are referred to as Ours-B(0-3), hc(0-3).
Our co-optimization approach was able to identify better
solutions in terms of accuracy and hardware efficiency.
We can notice a power gains of up to 53% under the

same latency constraints. Furthermore, we observe an
accuracy improvement of up to 0.5% on the ImageNet
dataset with the a better hardware efficiency.

2) Fine-tuning on CIFAR10 and CIFAR100: To further
investigate the performance of the obtained top models, we
apply a fine-tuning to CIFAR10 and CIFAR100 datasets. Since
the obtained models are sampled from the pretrained SuperNet
of AttentiveNAS [19], we do not need to train them from
scratch. Instead, we apply a transfer learning from ImageNet
to the new datasets. We apply the same fine-tuning strategy
proposed in [20] by taking the ImageNet pretrained models
checkpoints and fine-tuning on the new datasets. Thus, the
fine-tuning is applied to the overall model’s parameters (not
only the classifier). For training, we apply the same settings
used to train the SuperNet in [19].

TABLE IV
FINE-TUNING RESULTS TO CIFAR-10 AND CIFAR-100
Models ImageNet-Tk  Cifar-100  Cifar-10
AttentiveNAS-A2° 78.8% 86.13% 97.45%
AttentiveNAS-A3? 79.1% 86.21%  97.61%
AttentiveNAS-A4? 79.8% 86.72% 97.71%
AttentiveNAS-A5® 80.1% 86.92% 97.83%
Ours-B0 79.0% 86.12% 97.47 %
Ours-B1 79.6 % 86.69 % 97.75 %
Ours-B2 79.9 % 86.95% 97.62%
Ours-B3 80.2% 87.03% 98.05 %

The models are trained using the SGD as an optimizer,
with a weight decay of le-5 and momentum of 0.9. The
learning rate is initialized at 0.1 and decays by 97% every
three epochs. The training is done on eight distributed GPUs
with a budget fixed to 100 epochs and a batch size of
128. Table IV summarizes the obtained results. We compare
the obtained results with the baseline models of AttentiveNAS.

3) Neural Graph Post-Optimization with TensorRT: We
further boost the hardware efficiency of the obtained models by
post-optimizing the neural graph using TensorRT*. TensorRT
is an SDK developed by NVIDIA to accelerate the deep learn-
ing inference. Figure 12 depicts the workflow to create an op-
timized inference engine using the TensorRT Builder module.

3In the original paper of AttentiveNas [19], the authors didn’t report the
results on CIFAR-10 and CIFAR-100. Therefore, we fine-tune the baselines
models on the new datasets using our implementation
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First, the network description and other optimization options
such as kernel/data quantization and computation mapping
strategy should be provided as input. Then, TensorRT creates
an optimized engine by applying the specified optimization
options and other internal optimization strategies such as layer
fusion. The optimized engine creates an execution context to
perform the inference. Finally, an execution context is mapped
into a single (or multiple) CUDA stream(s) for execution.
We optimize the obtained top models (i.e., Ours-B(0-3), hc(0-
3)) by exploring the aforementioned TensorRT optimization
parameters. We report the results of this post-optimization in
figures 13 and 14.
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These two figures depict latency and power consumption
during inference of the obtained optimized models. We report
the speedup in latency by calculating the ratio of the optimized
models with TensorRT to the non-optimized models before
applying TensorRt. For a better interpretation, the results are
reported in percentage (%). Regarding power consumption,
TensorRT incurs higher power consumption compared to the
non-optimized implementation. We compare the performance
when choosing MaxN as hardware configuration (referred to as
MaxN in the figures) and when choosing the optimal hardware
configuration found by our co-optimization approach (referred
to as Co-Opt in the figures). In figure 13, we only apply

4NVIDIA TensorRT: https://developer.nvidia.com/tensorrt/
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the internal optimization of TensorRT, whereas in figure 14,
we apply a post-quantization to FP16. First, when executing
our models with the MaxN configuration, TensorRT boosts
up the hardware efficiency of the models with a latency
speedup up to 81% and 88% for non-quantized and quantized
models, respectively. However, this comes at the expense
of an increased power consumption up to 189% and 112%
for non-quantized and quantized models, respectively. This is
explained by the ability of TensorRT to take advantage of the
GPU computation units during the inference. The optimized
engine is highly parallel, which maximizes the GPU utilization
ratio and thus incurs an increase in power consumption.
Second, by optimizing the hardware configuration (Co-
Opt)), we were able to reduce the increase in power
consumption from 189% and 112% to 73% and 33% for
non-quantized and quantized models, respectively. Regarding
latency, we notice a small average gap of 7% in the
latency speedups of the MaxN and the optimal hardware
configurations found by our algorithm. Nevertheless, since
the two hardware configurations (i.e., MaxN and optimal
configurations (hc-(0-3)) speed up the computations latency
by a ratio of 85% to 88%, this small gap becomes negligible
when considering the power saving from of up to 61%
achieved by the optimal hardware configuration found by
our co-optimization approach. Therefore, to balance latency
speedup and power saving, co-optimization remains important
even when using high-performance SDK such as TensorRT.

4) On the importance of the co-optimization: Our results
demonstrated that the co-optimization of both DNN and hard-
ware configurations on Edge GPUs is extremely important
to balance both DNN performance and hardware efficiency.
On the one hand, edge GPUs are heterogeneous embedded
systems and can execute multiple applications concurrently.
In this case, the availability of hardware resources (e.g., com-
putation units and operating frequencies) varies due to other
concurrent applications’ execution. Thus, the performance of
an application changes under different resource availability
scenarios. Therefore, knowing beforehand which DNN model



is adapted to each scenario can prevent the violation of the ap-
plication’s performance requirements and meet the power and
resources budget constraints. On the other hand, the optimal
hardware configurations for a single application can be used
at runtime to dynamically scale the hardware platform for the
performance requirements and the power budget constraints.
Therefore, our proposed co-optimization framework can be
integrated into a real-time scheduling algorithm to dynamically
adjust DNN and hardware configurations according to resource
availability. It can also be used as a dynamic frequency scaling
governor at runtime instead of the currently used heuristics
that have been proved to be weak in capturing the correlation
between the hardware configuration, the application workload
and the availability of hardware resources.

V. CONCLUSION

In this paper, we investigated the importance of the joint ex-
ploration of DNN and hardware configurations for edge GPU
accelerators. We propose a co-optimization approach based
on an evolutionary algorithm (NSGA-II) to explore these two
search search spaces. The aim was to minimize three objective
functions: DNN TOP-1 error, latency and power consumption.
Experimental results on the Jetson AGX Xavier NVIDIA GPU
demonstrated the efficiency of the co-optimization compared
to typical HW-NAS under fixed hardware configurations.
Moreover, the top pairs found by our co-optimization are
more energy-efficient with up to 53% gains than solutions
found by state-of-the-art models under the same accuracy and
latency constraints. We have also demonstrated the importance
of the co-optimization when using a high performance SDK
such as TensorRT. The results depict a latency speedup up
to 81% and power saving of 61% compared to the MaxN
configuration. As future work, we plan to enhance our co-
optimization strategy by proposing more efficient selection and
recombination operators for the optimization algorithm. We
also aim to investigate more hardware configurations and DNN
benchmarks to showcase the importance of co-optimization.
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