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Abstract

In this paper, a novel Finite Volume (FV) scheme for obtaining high order approximations of solutions of multi-
dimensional hyperbolic systems of conservation laws within an Adaptive Mesh Refinement framework is proposed. It
is based on a point-wise polynomial reconstruction that avoids the recalculation of reconstruction stencils and matrices
whenever a mesh is refined or coarsened. It also couples both the limiting of the FV scheme and the refinement
procedure, taking advantage of the Multi-dimensional Optimal Order Detection (MOOD) detection criteria. The
resulting computational procedure is employed to simulate test cases of increasing difficulty using two models of
Partial Differential Equations: the Euler system and the radiative M1 model, thus demonstrating its efficiency.
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1. Introduction

In this work we design a novel multi-dimensional high order explicit Finite Volume (FV) scheme within an Adaptive
Mesh Refinement (AMR) context. This method is dedicated to solving general time dependent hyperbolic systems
of non-linear conservation laws in multi-dimensions. The Finite Volume method is one of the preferred methods for
solving possibly discontinuous solutions of conservation laws [37]. It evolves a set of piece-wise constant averaged
cell centered values on structured and unstructured meshes.
However, because of Lax-Wendroff’s theorem [36], any high order numerical method must be conservative, and, be-
cause of Godunov’s theorem [29] it must also be non-linear. Several major improvements have been made to the
accuracy of the FV method since its introduction. In particular, second order accurate FV methods are nowadays
available in many commercial codes. Arbitrary High Order (HO) FV methods have still not gained this popularity,
despite their availability in many research laboratories.

Some of the main ingredients of an arbitrary HO FV scheme on general unstructured fixed grids are

1. First, an HO time discretization: for instance considering the classical Runge-Kutta time discretization [15, 30]
or even more recent ones like the ADER technique [55, 53].

2. Second, the HO space discretization: often based on cell-centered polynomial reconstruction by considering
a local stencil, for instance using piece-wise linear reconstruction (Monotonic Upstream-centered Scheme for
Conservation Laws, MUSCL, [58], Total Variation Diminishing/Bounded TVD, TVB), or higher than second
order (Piecewise Parabolic Method PPM [19], or arbitrary higher orders [3] to cite only two).

3. Third, a stabilization/limiting strategy: for instance by blending polynomials in an Essentially Non-Oscillatory
(ENO) manner [1, 48], with WENO (Weighted ENO) probably being the most popular one [32, 49]; or adapting
the notion of slope limiter to polynomials (hierarchical slope limiter [40, 56]); or using some more recent a
posteriori Multi-dimensional Optimal Order Detection (MOOD) strategy [16, 9], to cite only few1.

Of the three previous ingredients, the stabilization/limiting is still not entirely agreed upon amongst researchers. Also
for HO FV schemes, the main cost is due to the reconstruction/limiting procedure even in a parallel framework, see
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1Notice that exhaustively citing all spatial limited reconstruction techniques for FV scheme is almost impossible nowadays. Nonetheless most
rely on same key tool: some smoothness indicators to determine where to act and gradually drop to first-order dissipation.
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[26, 27]. Indeed, the polynomial reconstruction requires that one or more stencils of cell neighbors are chosen, to com-
pute several polynomials, and, further, that those polynomials are blended together with non-linear weights. The larger
the stencils, the more expensive the reconstruction step is, even if the mesh connectivity remains fixed. Moreover, if
some cells happen to change connectivity, then the impacted stencils must be reconstructed as well as the recon-
struction matrices. This increases even further the cost of this already expensive procedure. In addition, when steep
gradients (shocks, contacts, jumps or high gradients with respect to the space step) develop, then the properties of the
numerical solution such as robustness, accuracy, admissibility, stability, are almost entirely dependent on the quality
of the limiting strategy. In this work we rely on an a posteriori MOOD strategy, which has produced some interesting
results, by changing somewhat the paradigm of limiting HO schemes [16, 21, 22, 17, 9, 20, 10, 43, 11, 51, 38, 25]. In
a MOOD loop, instead of a priori inferring the best-fitted reconstructed polynomials, unlimited HO reconstructions
are first employed. Then, locally for the troubled cells, one decreases the polynomial degree of the reconstruction to
satisfy the so-called ’Detection criteria’. In the worst case scenario, a first order FV scheme is locally used for those
troubled cells, while in others a higher accurate unlimited reconstruction could be employed. The detection criteria are
based on physics (positivity, admissibility) and computational (no NaN) requirements, as well as numerical considera-
tion such as ENO behavior. The main originality of a MOOD approach is its a posteriori feature: a candidate solution
is computed at the next time step, but if this solution in a cell is observed to be inadequate, then only this cell and its
neighbors are sent back for re-computation. Usually we observe that a large majority of the cells does not require any
limiting [38]. Among those requiring some intervention, many drop to the first order scheme. This way of limiting
produces almost fail-safe schemes, and therefore extremely robust HO FV codes [38, 9, 51, 27, 47].

A complementary approach to improving the limiting strategy is to adapt the mesh. For instance, one can gather the
cells where the flow presents interesting physical features and, conversely, discard them in flat areas. This behavior
can be obtained either by moving the cells towards high gradients (Lagrangian schemes [39], Arbitrary-Lagrangian-
Eulerian schemes [12], mesh moving techniques [60], etc.), or, by maintaining a base mesh, but refining and coarsen-
ing the cells where appropriate (local AMR [5, 4, 47]). These two techniques may occasionally be coupled together
[42, 59]. The local AMR technique has become popular because it allows saving of a large amount of computational
resources when the solution presents only localised features and large zones away from perturbations. As such, AMR
FV schemes may solve problems that are intractable on a uniform grid. Moreover with a good and appropriate refine-
ment/coarsening strategy, we can hope to automatically adapt the mesh and the resolution to the underlying unsteady
flow. Many AMR libraries are nowadays available including patch-based (Clawpack [18]), cell-based (p4est [14]),
and block-based [33] ones. The AMR procedure generally acts serially after the HO FV scheme has produced a solu-
tion. Usually ”indicators” and ”thresholds” drive the AMR code to refine/coarsen and re-update the solution in some
area. The goal is to use a fine mesh on interesting physical features and a coarse one on flat area, thus saving compu-
tational resources. These physics-based and smoothness-based indicators are of paramount importance to ensure the
quality of the refinement and, as a consequence, the accuracy of the solution.

Coupling an AMR strategy and a HO FV scheme may seem simple at first glance. First the HO FV scheme produces
an accurate ENO numerical solution, then the AMR indicators refine/coarsen where appropriate and third, the solution
is interpolated/remapped on the new mesh. And the cycle continues. However, making the HO FV scheme work
in pair with the AMR strategy is not an easy task. It usually requires tailoring the refinement/coarsening thresholds.
Some examples of such a coupling is employed in several codes starting probably from [6, 7] and then others like
[45, 52, 34, 44, 2, 57, 24, 13, 47, 28] to cite but a few. Stated differently, it is important to design the numerical
scheme and the AMR procedure to ensure that they work appropriately together.
In this work we rely on p4est AMR environment [14] to manage the mesh data-structure and its evolution, and,
improve two aspects of an HO FV scheme under AMR framework:

• first, we plan to reduce the need to rebuild reconstruction stencils and matrices in the HO FV scheme when the
mesh changes connectivity after the AMR step;

• second, we couple the HO FV MOOD limiting procedure with the AMR refinement/coarsening strategy.

The article is organized as follows. In the second section we briefly present the context of our HO FV scheme within
an AMR framework, with a discussion on some weaknesses of the overall approach. The third section presents our
solution, consisting of a HO FV scheme with point-wise reconstruction with a stability analysis on advection equation
and its embedding into our AMR environment. Numerical experiments are gathered in the fourth section. Two main
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hyperbolic models are tested, an hydrodynamics model (Euler equations) and a radiative transfer one (M1 model).
Several tests are chosen to highlight specific properties of the overall HO FV AMR scheme: accuracy, ability to
capture isolated and complex interacting waves, ability to appropriately refine the mesh, physical admissibility of the
solutions, etc. Finally, conclusions are drawn and various perspectives are discussed.

2. Context of High Order Finite Volume schemes and Adaptive Mesh Refinement framework

In this section we introduce the hyperbolic systems of conservation laws under consideration. Next the family of HO
FV methods of Godunov type is described to setup notation. Then the AMR framework is briefly introduced and the
overall scheme is summarized. A final discussion of some weaknesses concludes this section.

2.1. Governing equations

2D hyperbolic systems of conservation laws modeling gas dynamics and radiative transfer are considered in this work.
They are generically written as

∂U
∂t

+ ∇ · F(U) = 0, (1)

or

∂U
∂t

+
∂F(U)
∂x

+
∂G(U)
∂y

= 0, (2)

where U is the vector of conservative variables, F(U) = (F(U),G(U)) the associated flux vector, t the time and
x = (x, y) the space variable. U and F,G depend on the space and time variable, but we omit this dependency to
lighten the notation. The dimension in space is 2 while the dimension of the system is denoted by s. Two models
of Partial Differential Equations (PDEs) in 2D are considered in this work. First, the Euler hydrodynamics system of
conservation laws, which is a model of dimension s = 4 where

U = (ρ, ρu, ρv, ρE), F(U) = (ρu, ρu2 + p, ρuv, ρuE + pu), G(U) = (ρv, ρuv, ρv2 + p, ρvE + pv), (3)

where ρ is the gas density, u = (u, v)t its velocity vector and E the total energy. The system is closed by invoking a
complete equation of state (EOS) linking two thermodynamics variables, for instance the density ρ and the specific
internal energy ε = E − 1

2‖u‖
2. The EOS computes the pressure p and deduces the sound-speed a as

p ≡ p(ρ, ε) = (γ − 1)ρε, a2 = γ
p
ρ
, (4)

where γ is the ratio of specific heats, a constant which determines the kind of gas considered. This system of PDEs is
hyperbolic if the states are admissible and belong to, see [54],

A =
{
U = (ρ, ρu, ρv, ρE) ∈ R4 / ρ > 0, ε > 0

}
. (5)

The second model is the so-called M1 model of radiative transfer without source term of dimension s = 3 where

U = (ER, FR,x, FR,y), F(U) = (FR,x, c2PR,xxER, c2PR,xyER), G(U) = (FR,y, c2PR,yxER, c2PR,yyER), (6)

where c ' 2.998 × 108 m.s−1 is the speed of the light in vacuum. ER is the radiative energy, while FR = (FR,x, FR,y)t is

the radiative flux. The anisotropy factor, f =
‖FR‖

cER
, is an important derived quantity. The system is further closed by

an entropic closure relationship, which leads to the following expression of the radiative pressure tensor

PR =
1 − χ

2
I +

3χ − 1
2

FR ⊗ FR

‖FR‖
2 =

(
PR,xx PR,xy

PR,yx PR,yy

)
, with χ ≡ χ ( f ) =

3 + 4 f 2

5 + 2
√

4 − 3 f 2
,

where I is the identity matrix. This system of conservation laws is also hyperbolic provided that U ∈ A, see [23]

A =
{
U = (ER, FR,x, FR,y) ∈ R3 / ER > 0, ‖FR‖ < cER

}
. (7)

We can remark that the last physical criteria in A can be recast in terms of the anisotropy factor as f < 1. Moreover,
the M1 model is a stiff system compared to Euler hydrodynamics system of conservation laws.
These systems are further equipped with some initial data U(t = 0) ≡ U0 and boundary conditions.
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2.2. Finite volume discretization

The fixed computational domain Ω ∈ R2 is a polygon meshed with cells with neither gaps nor holes.

2.2.1. Mesh
Recall that we want to employ AMR technique later on. As a consequence, each cell Ωc is square, of size ∆x × ∆y
and is referred to with a single index 1 ≤ c ≤ M. The mesh has M cells and M may evolve in time. The sizes ∆x
and ∆y may be different from cell to cell, and, rigorously should be denoted ∆xc and ∆yc, but we omit the c index
whenever possible. The cell center is denoted (xc, yc) and the cell interfaces are horizontal and vertical segments. Let
us introduce the notation x±c = xc ±

∆x
2 and y±c = yc ±

∆x
2 , as such Ωc = [x−c ; x+

c ] × [y−c ; y+
c ]. The cell area (also referred

to as its ’volume’ by an abuse of semantics) is |Ωc| = ∆x2. Although each cell has a square shape, due to the AMR
nature of the mesh, it may be a degenerate polygon. In figure 1 two AMR meshes are plotted in panels (b) and (c). On
panel (b) the central cell c is a degenerate heptagon while in (c) it is a degenerate hexagon. The boundary of any cell

d

nc

∆ x

∆y

quadrature 
points

c

(a) Regular mesh and some quadrature
points.

c

(b) Valid AMR mesh, c is a degenerate
heptagon.

c

(c) Invalid AMR mesh. Two levels of
refinement for blue/black cells.

Figure 1: Notation and some valid/invalid AMR meshes. The invalidity comes from the fact that blue cells can not share an edge with black ones.

denoted by ∂Ωc consists of 4 to 8 vertical and horizontal edges. Each edge of cell c is common to a ’generic’ neighbor
cell d and this edge is denoted ecd of length`cd. The unit outward pointing normal to ∂Ωc is nc. The set of neighbor
cells sharing an edge with cell c is N(c), while the set of its neighbors is V(c). The time domain T = [0,T ] is split
into time steps [tn, tn+1], of size ∆t = tn+1 − tn subject to a CFL (Courant-Friedrichs-Lewy) like condition.

2.2.2. Numerical flux and discretization
In a FV context, the data within a cell is a constant approximating the mean value of the solution U(x, tn) over the cell
at time tn, that is

Un
c '

1
|Ωc|

∫
Ωc

U(x, tn) dv =
1

∆x2

∫ x+
c

x−c

∫ y+
c

y−c
U(x, y, tn) dx dy. (8)

The vector of all mean values at time tn is denoted as

Un =
{
Un

c
}
c=1,...,M . (9)

Integrating (1) in space over Ωc and time over [tn, tn+1], knowing Un
c for all cell c yields∫ tn+1

tn

∫
Ωc

(
∂U
∂t

+ ∇ · F(U)
)

dv dt = 0, (10)

which, given the definition (8), and considering an explicit time discretization, becomes

|Ωc|
(
Un+1

c − Un
c

)
+ ∆t

∫
∂Ωc

F(Un(s)) · nc ds = 0. (11)

Next the boundary ∂Ωc is split into its horizontal and vertical edges ecd shared by cells c and d, and

|Ωc|
(
Un+1

c − Un
c

)
+ ∆t

∑
d∈N(c)

∫
ecd

F(Un(s)) · ncd ds = 0. (12)
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Designing a FV numerical scheme consists of computing the above integral accurately. At cell interface the flux may
not be uniquely defined, i.e in general Un

c , Un
d, therefore F(Un

c ) , F(Un
d). Therefore we introduce the numerical fluxes

F and G in the horizontal and vertical directions respectively. Then, along cell edges ecd, we choose a 1D quadrature
formula made of G > 0 quadrature points and∫

ecd

F(Un(s)) · ncd ds '
G∑

g=1

`cdwgF
(
Ũn

c , Ũ
n
d; (xg)

)
, (13)

where ecd is a vertical or horizontal edge of length `cd between cell c and d, xg = (xg, yg) is a quadrature point along it,
and wg is its associated weight. The numerical flux F depends on the reconstructed polynomials Ũn

c in cell c evaluated
at point xg and its counterpart Ũn

d in cell d. The reconstruction operators are described in the next section.
Substituting (13) into (12), we write the generic FV scheme for any cell c as

Un+1
c = Un

c − ∆t
∑

d∈N(c)

`cd

|Ωc|

G∑
g=1

wgF
(
Ũn

c , Ũ
n
d; xg

)
. (14)

In this work the Rusanov, HLL and HLLC numerical fluxes are considered [54]. For instance, the Rusanov flux at any
point z on edge ecd is generically of the form

F
(
Ũn

c , Ũ
n
d; z

)
=

F
(
Ũn

c (z)
)

+ F
(
Ũn

d(z)
)

2
· ncd −

|Λcd |

2

(
Ũn

d(z) − Ũn
c (z)

)
· ncd. (15)

The first term is a centered physical flux while the second one is the dissipative term scaled by factor |Λcd |, which must
be larger than the largest eigenvalue of the flux’s Jacobian. For the Euler system we pick |Λcd | = max(|uc±cc|, |ud±cd |)
and for the M1 model we set |Λcd | = c . Both terms employ polynomial extrapolated values Ũn

c (z) and Ũn
c (z) at

quadrature point z.
The simplest first-order accurate scheme does not reconstruct any polynomial, that is Ũn

c (x) = Un
c for all point x ∈ Ωc,

and considers one quadrature point located at the edge center. Notice that the scheme (14) could be written in a
somewhat simpler form by using the fact that the normal is either (1, 0) or (0, 1). However, the unstructured point of
view in (14) allows for more generality when non-conformal AMR meshes with more than four edges are considered
(see figure 1).
Finally, let us recall that such an explicit Euler scheme is stable under the following CFL constraint

∆texpE ≤ CFL
∆x

4 maxcd |Λcd |
, (16)

where CFL number is a user-given constant usually 0 < CFL < 1.

2.2.3. Time discretization
The high order time discretization employs SSP-RK method (Strong Stability Preserving Runge-Kutta) [30]. The
same accuracy is chosen for time and space approximations. Because SSP schemes preserve the convex sets, the
limiting can essentially be undertaken in the space discretization, as outlined in the following sections. Here our third
order SSP-RK scheme is the SSP-RK(3,3) scheme

U(1)
h = Un

h + ∆tL(Un
h), (17)

U(2)
h = U(1)

h + ∆tL(U(1)
h ) → U∗h =

3
4

Un
h +

1
4

U(2)
h , (18)

U(3)
h = U(2)

h + ∆tL(U∗h) → Un+1
h =

1
3

Un
h +

2
3

U(3)
h . (19)

where L is our spatial FV discrete operator. For 2nd and 4th orders respectively, we rely on the SSP-RK(2,2) and
SSP-RK(5,4) schemes from [30, 50]. These schemes are stable provided that

∆t ≤ κs∆texpE , (20)

where s is the number of stages and κ ∈ (0, 1) is the efficiency coefficient of the SSP-RK scheme.
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2.2.4. Polynomial reconstruction from cell mean values
We have seen that the accuracy of flux (15) is linked to the quadrature formula, which we always assume to be
sufficiently accurate, and, more importantly, to the polynomial extrapolated states Ũn

c (z), Ũn
d(z). In order to compute

these extrapolated states seen in (14), a polynomial is reconstructed for each primitive/conservative variable and cell
at time tn. Notice that a reconstruction based on characteristic variables may improve the results for simple models.
However, for more complex ones, these variables are expensive to compute [38, 41], hence our choice to rely on
conservative/primitive ones. We search for a polynomial of degree d > 0 in each cell denoted Ũc ∈ Pd(Ωc) such that

1
|Ωc|

∫
Ωc

Ũc(x) dv = Uc, (21)

and Ũc best fits the mean values of neighbor cells in the least-square sense. The stencil of neighbor cells is denoted by
Sd

c . In other words, the polynomial coefficients of Ũc ∈ Pd(Ωc) are computed by minimizing the cost function

J(Ũc) =
1
2

∑
d∈Sd

c

∣∣∣∣∣∣
(

1
|Ωd |

∫
Ωd

Ũc(x) dv
)
− Ud

∣∣∣∣∣∣2 . (22)

The stencil Sd
c should contain at least N =

(d+1)(d+2)
2 cells to solve (21)-(22) for degree d > 0. In practice, more cells

are considered, usually about b 3
2 Nc is employed [16]. The same degree is used for all physical variables in a cell, and

the quadrature formula is always assumed to be of at least the same order of accuracy than d. As already mentioned,
the reconstruction for d = 0 consists of Ũc(x) = Uc for all x in Ωc. Once the reconstructed polynomial Ũc in cell c of
degree d > 0 is computed, it is evaluated for each quadrature point z to compute (15) and then deduce (13).
In practice solving the least-square reconstruction problem consists in solving a linear system of size d×d. The matrix
depends on the location of each neighboring cell Ωd, d ∈ Sd

c relative to the current one. Therefore the choice of the
neighborhood Sd

c is crucial.
For instance, in figure 2-c we present the 13 cells neighborhood constructed by a two-layer face-based neighborhood.
However, this choice may lead to a geometrical bias in direction of large cells. More importantly, if the mesh changes
connectivity then these stencils have to be recomputed. In fact, the stencil selection is still a somewhat subjective
procedure for several polynomial based numerical schemes, like WENO, but also to determine the minimal/maximal
bounds used within classical slope limiters.
In summary, the classical polynomial reconstruction operator requires: a cell c, a polynomial degree d > 0, an
appropriately large enough set of neighbor mean values Ud

c =
{
Ud, s.t d ∈ Sd

c

}
from a stencil Sd

c . From this, the
operator reconstructs a polynomial of degree d which is conservative and corresponds to the least square approximation
of the cell mean valuesUd

c .

c

(a) Set of neighbors Sd
i (red

crosses) for polynomial recon-
struction in cell c.

6

2 3 4 5

1

6

2 3

4 5

7

12 13

10 11

8 9

1

7 13

8 9 10 11

12

− −

−

−

(b) Quadtree of an AMR mesh where the color cor-
responds to the level of refinement.

c

(c) Example neighbor cell sten-
cil (red+blue crosses) based on
face-neighbors.

Figure 2: (a) Example of the set of neighbors Sd
i (red crosses) adapted for polynomial reconstruction of degree d = 1 or 2 in central cell c for an

AMR mesh – (b) Example of quadtree mesh – (c) Example of the set of neighbors Sd
i (red and blue crosses) based on face-neighbors. Geometrical

bias can be created towards large cells.

2.3. A posteriori MOOD limiting strategy

Any high order scheme is subject to the Gibbs phenomenon, illustrated by the creation of spurious oscillations in the
vicinity of steep gradients. In this work we rely on a MOOD loop [16, 21, 22] to stabilize the solution. The MOOD
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paradigm assesses a posteriori the admissibility of a candidate numerical solution at time tn+1. If a cell does not fulfill
some physical and numerical validity criteria, it is recomputed with a more robust scheme, as illustrated in figure 3.

Cascade and parachute scheme. In order to design a MOOD loop the user must define an ordered list of schemes. This
ordered list is called the ’cascade’. At a minimum the cascade must be composed of two schemes: the most accurate,
often oscillatory scheme with reconstructions of degree dmax > 0, and, a dissipative, robust and fail-safe one called the
’parachute scheme’, in our case with d = 0. The unlimited high accurate scheme of (dmax + 1)th order is the first one
to be tried, while the first-order accurate one is the last one, that is the parachute scheme (d = 0). Some intermediate
schemes could be tried in-between. In this work we will employ the following cascade: dmax = 2 → 1 → 0 although
different cascades such as dmax = 2→ 0, or dmax = 2→ 1 + slope limiter→ 0 would be possible.

Detection criteria: Computer, Physical and Numerical admissibility. To assess if a numerical solution is accepted, we
design so called Detection criteria, see figure 3. If a candidate solution Un+1,∗

i in cell Ωi does not pass the criteria, it is
sent back at tn for re-computation following [16, 21, 22]. We design three sets of detection criteria

Computational - CAD. This criterion is employed to check for floating point exceptions, in other words the nu-
merical solution is assessed for the Computer Admissible Detection criteria if it does not present any NaN

(Not-a-Number), Inf (Infinite), etc. values.

Physical - PAD. The numerical solution in a given cell is assessed against the PAD criterion if it remains in the set of
admissible statesA. The PAD criteria is strongly related to the PDE model being solved.

Numerical - NAD. The numerical solution in a given cell Ωi is numerically admissible if it presents an ENO behavior.
Here we rely on a Relaxed Discrete Maximum Principle (RDMP) on the conservative variables, which writes
for any variable A in cell number i as

−δ + md
i ≤ An+1,∗

i ≤ Md
i + δ, (23)

where md
i = mink∈Sd

i
(An

k), Md
i = maxk∈Sd

i
(An

k) and An
k is the mean value of variable A in cell Ωk ∈ S

d
i at time tn.

The so-called relaxation parameter δ is δ = min
(
10−4, 10−3|Md

i − md
i |
)
. Note that if δ = 0, then a strict DMP is

forced for which a 2nd order accuracy bound would be observed in L∞ norm.

These criteria are of paramount importance for the detection of invalid cells, and, as such, should not be too permissive
nor too preventive.

MOOD loop. As seen in figure 3 the MOOD loop includes the FV scheme solver. At tn the maximal degree dmax

is set. The dmax + 1 order FV scheme is used to produce a candidate solution. Then the detection procedure splits
the admissible cells from the problematic/troubled ones. These troubled cells and their direct neighbors are then
re-calculated by the next and more robust scheme in the cascade. Once the next scheme in the cascade produces a
new candidate solution, it is then processed by the detection criteria. The new troubled cells are further corrected in
another iteration of the MOOD loop using an even more robust scheme. When the parachute scheme is reached in
the cascade, then the candidate solution is declared as admissible. The MOOD loop is rather inexpensive if few cells
require correction, and, more importantly, it always converges. The sketch from figure 3 represents the whole high
accurate a posteriori MOOD limited numerical scheme.

iU
n

i Detection U
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Figure 3: Sketch of a FV scheme stabilized by a MOOD loop.
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2.4. General context for Adaptive Mesh Refinement – Quadtree, indicators and projection
The AMR technique consists of refining the mesh to maintain important physical gradients in the finest cell level, and,
also coarsening it in flat/unimportant areas.
In the AMR context of p4est [14], the meshes are stored as quadtrees. An illustration is presented in figure 2(b). The
level of refinement of a cell corresponds to its level ` in the tree. Each cell is a square which is split into 4 smaller
squares when refined. When four neighbor cells, emanating from the same mother cell, are identified for coarsening,
they are merged back onto the mother cell. Usually a minimal and maximal level denoted l ≤ L are given by the user
to avoid extreme refinement or coarsening. As such, in 2D, the coarsest mesh has a minimum of (2l)2 cells, while the
finest possible one is (2L)2.
In order to refine or coarsen a cell, for classical cell-based AMR procedure, two indicators are in general defined.
Given the solution on the previous AMR mesh, a projection operator computes/interpolates/remaps the solution on
these newly refined/coarsened cells.
Refining/Coarsening indicators. We must determine locally computable and consistent refinement and coarsening
indicators Rc(U) and Cc(U) for cell c, and their associated thresholds R and C, so that

If Rc ≥ R =⇒ Cell c requires refinement.

If Cc ≤ C =⇒ Cell c requires coarsening.

Usually the gradient of a variable (density, entropy, etc.) is used with ad-hoc thresholds. There is no agreement on
an universal indicator, and, it is not the purpose of this work to optimize this choice. Here, instead of designing Rc,
we propose to take advantage of the detection criterion used by the MOOD loop to define an innovative refinement
strategy. The idea is to use the MOOD detection criterion to detect a troubled cell which will first be refined. If the
daughter cells are still troubled then limiting will occur. Only the coarsening strategy remains classical, that is the
threshold C and diagnostic Cc need to be chosen. To do so, we pick a classical and simple indicator related to the
gradient. The default setting is to consider the gradient of the first variable. Typically, in the case of Euler equations,
we therefore choose

Cc = ‖∇ρ‖2. (24)

Note that a cell is coarsened only if the three other sister cells also agree for coarsening.

Projection/Remapping operator. When a cell c is refined, it is split into four children square cells onto which the
solution must be projected. First one computes the reconstruction polynomial of degree d = dmax, Ũn

c ∈ Pd in cell c.
Recall that dmax + 1 is the maximal order of accuracy fixed by the user at the beginning of the computation. Then, for
any child cell ck, k = 1, 2, 3, 4, such that

⋃4
k=1 Ωck = Ωc, one defines

∀1 ≤ k ≤ 4, Un
ck

=
1
|Ωck |

∫
Ωck

Ũn
c (x) dv. (25)

The conservation is respected by construction because
4∑

k=1

|Ωck |U
n
ck

=

4∑
k=1

∫
Ωck

Ũn
c (x) dv =

∫
Ωc

Ũn
c (x) dv = Un

c , (26)

the last equality corresponding to equation (21). Notice that the projection in (25) is accurate but may lead to non-
physical values, for instance negative density. In this unlikely situation, the ”reconstruction” is restricted to Ũn

c = Un
c ∈

P0. We do not expect such situation to be encountered often as the operations of refining and coarsening are supposed
to occur in smooth regions.
When four child cells ck, k = 1, 2, 3, 4, are coarsened into their parent cell indexed by m, Ωm =

⋃4
k=1 Ωck , then the new

conservative mean value is computed as

Un
m =

1
|Ωm|

4∑
k=1

|Ωck |U
n
ck
. (27)

In this case no reconstruction is needed, and we notice that coarsening four cells, inexorably leads to some loss of
information. As such, coarsening must be done with care.

This concludes our ultra-simplified AMR context, recalling that more subtle and clever procedures could be designed
to better adapt the mesh to the flow.
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2.5. Summary

As a summary we can state that the FV numerical method presented in the previous section enjoys

1. an arbitrary order of accuracy in time thanks to SSP-RK discretization with a well defined CFL condition;
2. an arbitrary order of accuracy in space thanks to the polynomial reconstructions and the high order quadrature

formula for the integration along the edges;
3. an a posteriori MOOD limiting strategy to damp spurious oscillations and ensure physical admissibility;
4. an AMR procedure to refine/coarsen the mesh where appropriate according to ad-hoc indicators.

As already mentioned, due to the use of an AMR procedure the reconstruction stencils and matrices in step 2. need to
be re-updated when a cell changes its neighbors or is created by the AMR procedure.

2.6. Discussion: revamping stencils and reconstruction matrices

Inexorably the AMR procedure creates new cells and discards some others. Therefore the stencils Sd
i for all cells

i in the vicinity of a new or discarded cell must be reconstructed. Usually stencils in transition from coarse to fine
levels are not uniform, which does not help the general stability and the conditioning of the associated linear systems.
In figure 2 we present some examples of such non-uniformity. In fact, for a second-order scheme, refining one cell
impacts all its neighbours’ stencils: from 4 to 12 stencils may need modification, 3 new ones must be designed from
scratch. For a third or fourth order reconstructions, the stencils are wider, so that the number of stencils to be revamped
highly grows. On the other hand, coarsening four cells also leads to equivalent stencil reshaping. Accordingly, the
modification of the stencils implies that the associated reconstruction matrices must be re-assembled and inverted.
Designing the stencils and their associated reconstruction matrices is one of the main costs for a large number of high
order FV schemes on fixed grid, especially when truly high orders of accuracy are targeted, i.e. beyond 3rd order.
On an AMR grid, this cost is even higher because the mesh adapts dynamically to the flow without any possibility to
anticipate the evolution of the stencils2

Fortunately, this extra work could be drastically reduced if the polynomial reconstruction matrix would act on the
same ”stencil of points” independently of the underlying mesh configuration. This is the goal of the next section: to
design such a reconstruction procedure acting on a stencil of fixed point values rather than on a stencil of cells.
The primary goal of this work is to design a new point-wise FV scheme which is agnostic to cell neighborhood
changes, avoiding de facto the redefinition of stencils for the polynomial reconstruction within an AMR configuration.

3. High Order Finite Volume schemes with point-wise reconstruction (HOp)

3.1. General principles

The main idea is motivated by the observation that the polynomial reconstruction procedure can be designed from
highly accurate point values instead of cell-centered mean values, unlike in (22). The local polynomial reconstruction
problem is then stated as finding Ûc ∈ Pd(Ωc) defined in cell c such that (21) is fulfilled, and, Ûc fits at best P >
1
2 (d + 1)(d + 2) given point values (x̂p, Ûp,wp)1≤p≤P located at position x̂p close enough to cell c and with weight
wp > 0 for 1 ≤ p ≤ P. Let us denote the set of points by Pd

c =
{
x̂p, for 1 ≤ p ≤ P

}
. The least-square minimization

procedure (22) is replaced by

J(Ûc) =
1
2

∑
p∈Pd

c

wp

∣∣∣∣Ûc(x̂p) − Ûp

∣∣∣∣2 , (28)

under the constraint

1
|Ωc|

∫
Ωc

Ûn
c (x) dv = Uc. (29)

Notice that in (28) one evaluates the unknown polynomial at point x̂p, which we refer to as an “evaluation point”,
instead of computing the mean value over neighbor cells. With such a procedure, one must choose the number of
evaluation points P ≥ 1

2 (d + 1)(d + 2), their positions x̂p and weights wp and values Ûp to be matched with sufficient

2Notice that one could consider listing exhaustively all possible types of neighborhood and their associated matrix for any polynomial degree.
Perhaps tractable in 2D, this approach is not reasonable in 3D.
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accuracy. Then, one searches for the reconstruction polynomial Ũc of degree d (i.e (d + 1)th order accurate) which has
the same mean value as Un

c in cell c, and matches at best the point values (x̂p, Ûp)p∈Pd
c
. The weights are intended to

balance the relative importance of each point. The values Ûp should be accurate enough for the final scheme to have
the expected order, and must be constructed elsewhere.
The procedure is referred to as the Pd,h point-wise reconstruction procedure: d is the degree of the searched polynomial
Ûc, while h + 1 is the order of accuracy of the point-wise data. In figure 4 we present a possible distribution of P = 8
(left) (resp. P = 16 (right)) points for degrees 1 ≤ d ≤ 2 (resp. 1 ≤ d ≤ 3) for a uniform, and AMR mesh (right). The
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Figure 4: Left: 8 point distribution Pd
c around cell c usable for 1 ≤ d ≤ 2 on a uniform mesh — Middle: 16 point distribution for 1 ≤ d ≤ 4 on a

uniform mesh — Right: the same 16 point distribution on an AMR mesh.

main advantage of this approach is the fact that the evaluations points are chosen at the beginning of the simulation for
each degree and fixed during the entire AMR simulation. Any cell is always a square (homothetic to the unit square),
therefore only one reconstruction matrix per set of evaluation points must be stored. In addition, these matrices are
assembled once, at initialisation. Stated differently, this approach allows the AMR calculation to be in the same
reconstruction environment as when the mesh is fixed.

Evaluation point positions and number. The number of points is chosen close but superior to the optimal choice,
which is 1

2 (d+1)(d+2) for a degree d in 2D. Moreover, it may be wise to choose a multi-symmetric distribution, since
all cells are squares of size ∆x ×∆x. For simplicity, we distribute the points on the boundary of the homothetic square
of size (∆x + ξ)× (∆x + ξ) with 0 ≤ ξ ≤ 1

2 ∆x. The first set of N = 8 points consists of the four points located at corners
(points 1,5,9,13) and the mid-edge ones (points 3,7,11,15), for degrees less than d = 2, as shown in figure 4-left. For
degrees d ≤ 3 we may choose the distribution made of N = 16 points, as in figure 4-middle. In our work the choice

of the distance ξ is set to ξ =
∆x
2

to ensure that the evaluation points remain inside a neighboring cell. Finally, the

cell into which an evaluation point is located is identified by two indices c and p, such as Ω̂p,c. Notice that Ω̂p,c is
necessarily a neighbor cell of Ωc (node-wise). This feature simplifies the points localization’s procedure since only
the knowledge of the direct neighbors and their size are required. An evaluation point located on an edge is associated
with the two neighbouring cells, for instance see point 2 in figure 4-middle.
In the present study, we restrict ourselves to polynomials of degree 3, and thus to schemes of order 4. Going beyond
4th order would probably require increasing the number of evaluation points, but, even then, it is not clear that there
would be a suitable set of weights, nor that the benefit in an AMR code would be cost effective. The extension of this
method to order higher than 4 is therefore an open question.

Evaluation point values. The point values Ûp to be matched should naturally be h ≥ d accurate values. Due to
symmetries in the points’ distributions, we expect that h = d − 1 is enough. The numerical simulations in section 4
support this statement. For the sake of completeness, both situations are analyzed in the following.
The simplest first-order accurate version consists of setting the point value to the mean cell centered value, so that the
’associated reconstruction’ is first-order accurate with h = 0:

Ûp = Ud, where Ωd = Ω̂p,c, (30)

leading to a procedure Pd,0. For higher accuracy one can rely on local polynomial reconstruction Ũc(x) in cell c and
set

Ûp = Ũc(x̂p), where Ũc ∈ Ph(Ωc). (31)
10



The reconstruction Ũc usually involves only the direct neighbors of Ωc, which are easily accessible. If an eval-
uation point lies on the edge between two cells, says, c1 and c2, the point-wise value is set to be the average:

Ûp =
1
2

(
Ũc1 (x̂p) + Ũc2 (x̂p)

)
, for instance the mid-edge points 3,7,11,15 in figure 4.

Evaluation of point weights. The stability region of this reconstruction procedure can be increased by correctly de-
termining the weights. In practice the weights may modify the matrix conditioning, but do not change the matrix
structure. In the next subsections we propose a stability analysis to estimate some appropriate weight values for two
second-order procedures P1,0 and P1,1, two third-order ones P2,1 and P2,2 and a fourth-order one P3,2.

3.2. Stability analysis of High Order Finite Volumes point-wise reconstruction schemes for advection equation

The stability analysis is conducted on the 2D advection equation on a uniform 3×3 grid centered at the origin, meaning
that the current cell center is xc = (0, 0). The expansion of the polynomial writes for any degree d > 0:

Ûc(x, y) = α00 +

d∑
i, j=0
i+ j≤d

αi j

(
xiy j − Ii j

)
, where Ii j =

1
|Ωc|

∫
Ωc

xiy j dv, (32)

where α = (αi j)t
i, j is the vector of the unknown polynomial coefficients of size K =

(d+1)(d+2)
2 in 2D. Matching Ûc(x)

on the P evaluation points (x̂p,wp, Ûp)p∈Pd
c

leads to the following linear system:

w1

α00 +
∑
i, j

αi j

(
x̂i

1ŷ j
1 − Ii j

) = w1Û1,

w2

α00 +
∑
i, j

αi j

(
x̂i

2ŷ j
2 − Ii j

) = w2Û2,

...
...

...

wP

α00 +
∑
i, j

αi j

(
x̂i

Pŷ j − Ii j

) = wPÛP,

(33)

which in matrix form yields

W Mα = WÛ, (34)

where

M =


1 x̂1 − I10 ŷ1 − I01 x̂1ŷ1 − I11 . . .

1 x̂2 − I10 ŷ2 − I01 x̂2ŷ2 − I11 . . .
...

...
...

1 x̂P − I10 ŷP − I01 x̂Pŷ2 − I11 . . .

 , W = diag(w), and Û =
(
Û1, Û2, · · · ÛP

)t
, (35)

where diag(w) is a diagonal matrix, the terms of which are the components of w = (w1, . . . ,wP)t. The linear system is
a priori rectangular with more points than unknown coefficients: P > K. One solves

Mt W Mα = Mt W Û =⇒ α =
(
MtW M

)−1
Mt W Û. (36)

We carry out a stability analysis in order to choose the weights and point positions. The linear stability study uses
these reconstructions in an upwind FV scheme solving the 2D advection equation at constant velocity (1, 1). Then
a von Neumann stability analysis is performed. To ease the study, the weights are split into three families: centered
weights arbitrarily set to wc = 1 (points 3,7,11,15 in figure 4), corners weights wcn (points 1,5,9,13), and mid-edge
weights we > 0 (points 2,4,6,8,10,12,14,16). As such, only two parameters remain: wcn > 0 and we > 0. We resort
to numerical sampling to check under which ∆t constraint all Fourier modes are damped. Therefore there exists a
stability region bounded by a maximal CFL number.
Some results for varying weights are summarized in Table 1. It can be seen that the influence of the weights on the
stability region is important for the second order schemes. If the sensitivity is high for the P1,1 scheme, some values
make it possible to reach a CFL value close to one. On the other hand, it does not seem possible to achieve this with
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P1,0

Points wcn we wc CFLmax

12 0 10 1 '0.0

12 0 0.1 1 '0.0

16 0.1 0.1 1 0.04

16 10 0.1 1 0.20

16 10 5 1 0.20

P1,1

Points wcn we wc CFLmax

12 0 10 1 0.92

12 0 0.1 1 0.52

16 0.1 0.1 1 0.68

16 10 0.1 1 '0.0

16 10 5 1 0.96

P2,1

Points wcn we wc CFLmax

16 0.1 0.1 1 0.96

16 10 0.1 1 0.96

16 10 5 1 1.00

16 1 1 1 0.96

16 0.5 0.8 1 0.92

P2,2

Points wcn we wc CFLmax

16 10 0.1 1 0.96

16 10 5 1 0.96

16 1 1 1 0.96

16 0.5 0.8 1 1.00

P3,2

Points wcn we wc CFLmax

16 10 0.1 1 1.04

16 10 5 1 1.00

16 1 1 1 1.00

16 0.5 0.8 1 1.00

Table 1: Maximal CFL number (16) computed by the von Neumann analysis for the upwind HOp FV scheme on 2D avection equation.

the P1,0 scheme, which is much less stable in general. Therefore, the latter is not used in practice, and reference will
be made to P1,1 when referring to a second order scheme. On the other hand, any reasonable choice of weights gives
close to optimal stability for orders 3 and 4.

Since these schemes are to be integrated in a MOOD structure, and for the sake of simplicity in the programming, the
same set of weights is chosen in the following to obtain the highest possible stability for all orders: (10, 5, 1).
Naturally, it would be possible to choose two different sets of weights, but we have chosen the same ones for both
reconstructions. In addition to simplifying the stability study, it allows us to use the coefficients previously obtained
in the computation of the cell polynomial to compute the point values at the next time step.

3.3. High order FV numerical scheme with point-wise reconstruction and integration in an AMR framework

The previous sections have introduced a FV numerical scheme for which the reconstructed states at the quadrature
points used to estimate the flux functions are given at ’fixed’ points independent of the shape and the number of sur-
rounding neighbor cells. Recall that the cell neighborhood often changes in an AMR simulation. The goal of our
approaches is to avoid exploring each modification of neighborhood to reconstruct the cell stencils and matrices, as it
is classically done for cell-based polynomial reconstructions.
The HOp numerical scheme can be written as (14), except that the polynomial reconstructions Ũn

c are replaced by
point values Ûc(x̂p) at fixed positions x̂p. This procedure is called ’point-wise polynomial reconstruction’. We adopt
the 16 points depicted in figure 4 along with the associated weights 10, 5 and 1 obtained from the stability analysis in
section 3.2. This set of points allows computation of second, third and fourth order accurate polynomial reconstruc-
tions, hence d ≤ 3. The rest of the numerical method remain the same. At the beginning of any time-step the cell mean
values in a given mesh are required and also the point-wise value at each evaluation points. We employ the initial
condition to set up the cell mean values and the point-wise ones for n = 0.
Within an AMR environment and considering the MOOD limiting strategy, we perform the updates as follows.

• We take advantage of the MOOD criterion to detect the cells that must be recomputed with a lower order, and
those that must be refined. First, an unlimited candidate solution is computed and checked against the detection
criteria in order to identify the troubled cells. These troubled cells are first refined, and, an unlimited candidate
solution is re-computed. We then enter the classical MOOD loop illustrated in figure 3. This use of the MOOD
criterion avoids the tailoring of any refinement parameters.

• In order to simplify the computational procedure, the update of the point values is performed at the end of
the loop using the coefficients already computed for the polynomial reconstruction in the cells. To put it more
clearly, in each cell the point values necessary for the next iteration are computed by evaluating the polynomial
as in (32) where α00 = U s+1

c and the other coefficients αi j of the cell reconstruction at Runge-Kutta stage s
are reused to avoid additional computations. These coefficients are thus shifted by one stage (i.e. one stage of
the Runge-Kutta method). This shift does not affect the order of the method as will be shown in the numerical
results.
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Figure 5: Sketch of the FV scheme stabilized by a MOOD loop within our AMR framework.

A sketch of our AMR strategy for the current HO FV scheme based on MOOD limiting is depicted in figure 5. As
expected, after the troubled cells have been refined, we retrieve the classical FV MOOD based scheme, as in figure 3.
The blue boxes, ’Refine’ and ’Coarsen’, include the computation of the new values in the refined/coarsen cells. As
usual in a MOOD-like strategy, if no cell is detected as troubled,then the solution at tn+1 is unlimited with dth order
of accuracy. On the other hand, if some cells are troubled, they are first refined and, then, recomputed. The second
detection pass states if they are accepted or sent back to be recomputed with a lower order scheme in the cascade.
To complete this description of the computational procedure, we mention three practical points:

• The coarsening is not necessarily performed at each update, but only after a given number of time steps (3 by
default in the numerical simulations presented later). It seems indeed unreasonable to coarsen after each stage
of the Runge-Kutta method. Furthermore, the objective in this article is not to obtain an optimal coarsened mesh
but to always ensure an accurate approximation.

• The reconstructions for cells on the boundaries are computed using the same stencils as inside the domain
without taking into account exterior ”ghost” points. The weights are of course different, and, it is therefore
necessary to pre-compute an adapted reconstruction for the boundary cells. The approach remains the same as
inside the domain except that there are not enough points left to obtain a 4th order reconstruction. This is why
we restrict ourselves to 3rd order accurate schemes in the numerical section.

• The choice to refine before lowering the order of the scheme is made for the sake of consistency and in the spirit
of trying to obtain the most accurate approximation possible. It would indeed be possible to refine after the
MOOD loop though in this case another detection criterion should be designed.

This concludes the description of the numerical simulation. It is validated on several numerical experiments in the
following section.

4. Numerical experiments

In this paper we restrict the maximal polynomial degree to d = 2. Several key points are tested:

• the point-wise reconstruction accuracy on smooth test case;

• the FV scheme with point-wise reconstruction on fixed mesh with limiting for Euler and M1 models;

• the coupling of the HO FV scheme with point-wise reconstruction in the AMR environment. Recall that our
strategy consists of refining the troubled cells and coarsening only at the end of the time-step.

In order to test these key points we propose several appropriate problems. First, the order of convergence and the
accuracy of the second-order (P1,1) and third-order (P2,2) schemes are monitored for the Euler model employing the

13



vortex test case on fixed Cartesian and AMR meshes. Being regular, this problem does not need any limiting. We also
gives the results obtained by a classical cell-centered reconstruction for comparison purposes. Next, the results of the
FV scheme under MOOD limiting with point-wise reconstruction on a fixed Cartesian mesh are presented for the M1

model on a filamenting test case. Then, the behavior of the complete AMR simulation code is tested on the cylindrical
Sod shock tube to show the impact of the refinement/coarsening strategy coupled with the limiting. Next, on two 2D
Riemann problems with 4 shocks and 4 contact discontinuities, we pursue the testing campaign of the AMR code on
Euler model. In the latter case, the influence of the selection of the first order solver used as a basis for the method is
investigated by comparing the results achieved with HLL and HLLC Riemann solvers.
Finally, a 2D Riemann problem with highly twisted and distorted behavior for the M1 model is considered. This test
reveals the flexibility of the overall AMR method to complex and intricate situations.
In the following, the AMR mesh is defined with the two user-specified parameters (l, L): the coarsest possible level of
refinement l and the finest ones L ≥ l. The number of allowed refinement steps is therefore Nr = L − l + 1, and, if
l = L then the mesh can not be refined nor coarsened. On the unit square, the (l, L) AMR mesh corresponds to cells of
minimal and maximal lengths in the range 1/2l ≤ ∆x = ∆y ≤ 1/2L. For instance the parameters (l, L) = (4, 7) allows
Nr = 4 levels of refinements with the coarsest cell length ∆x = 2−4 = 1/16, and finest one ∆x = 2−7 = 1/128.

4.1. Euler model: vortex test case

This first test case involves the Euler system of conservation laws, with the goal of checking the numerical accuracy
and orders of convergence of the method. It consists of the transport of a vortex in the computational domain Ω =

[−5, 5] × [−5, 5] with periodic boundary conditions. The following initial condition is used

H0(x, y) = (ρ0(x, y), u0(x, y), v0(x, y), p0(x, y))t =


(1 − 25(γ−1)e1−r2

8γπ2 )
1
γ−1

1 − 5ye0.5(1−r2)

2π

1 + 5xe0.5(1−r2)

2π

(1 − 25(γ−1)e1−r2

8γπ2 )
γ
γ−1


, r =

√
x2 + y2, γ = 1.4. (37)

Here, the simulations are performed on a hierarchy of fixed meshes until the final time tfinal = 5× 10−2 is reached. The
numerical approximations obtained with both the point-wise and classical cell-wise reconstructions are then compared
with the exact solution. The errors are gathered in table 2, where we can observe that the expected 2nd and 3rd orders of
convergence are attained for the cell-wise and point-wise schemes. The errors given by the two types of reconstructions
are comparable, but marginally better for the classical reconstruction on coarse meshes. Notice that for the point-wise
reconstruction the correct orders of convergence are also obtained with different weights, even if the errors may be
slightly different (not shown here).

Classical cell-wise reconstruction Point-wise reconstruction

Nc L1 error L2 error L1 order L2 order L1 error L2 error L1 order L2 order

2
n
d
-o
rd
er

sc
h
em

e

32 × 32 1.34× 10−2 3.96× 10−3 — — 1.53× 10−2 4.52× 10−3 — —

64 × 64 2.39× 10−3 6.52× 10−4 2.49 2.60 2.62× 10−3 7.27× 10−4 2.54 2.64

128 × 128 4.63× 10−4 1.17× 10−4 2.37 2.48 4.86× 10−4 1.25× 10−4 2.43 2.54

256 × 256 1.03× 10−4 2.51× 10−5 2.16 2.22 1.05× 10−4 2.57× 10−5 2.21 2.28

Expected order→ 2 2 Expected order→ 2 2

Nc L1 error L2 error L1 order L2 order L1 error L2 error L1 order L2 order

3
rd
-o
rd
er

sc
h
em

e

32 × 32 9.60× 10−3 3.02× 10−3 — — 1.06× 10−2 3.24× 10−3 — —

64 × 64 1.35× 10−3 4.30× 10−4 2.83 2.81 1.48× 10−3 4.57× 10−4 2.84 2.83

128 × 128 1.75× 10−4 5.58× 10−5 2.95 2.95 1.91× 10−4 5.92× 10−5 2.95 2.95

256 × 256 2.21× 10−5 7.05× 10−6 2.99 2.99 2.42× 10−5 7.53× 10−6 2.98 2.97

512 × 512 2.79× 10−6 8.91× 10−7 2.99 2.98 3.11× 10−6 9.71× 10−7 2.96 2.95

Expected order→ 3 3 Expected order→ 3 3

Table 2: L1 and L2 errors and convergence rates for the unlimited HO Finite Volume scheme equipped either with the classical cell-wise recon-
struction or the current point-wise one for second and third order versions.

Next, we present the errors and convergence rates for the 3rd order scheme employing 3 AMR grids with 3 levels of
refinement. They are compared with the fixed grid schemes. The grid is initially refined around the vortex where the
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gradients are large and the mesh is coarse elsewhere. Notice that the AMR parameters are not optimised for this test,
but the refined grid follows the vortex. We observe in table 3 that the optimal rates of convergence are reached also
when AMR grid is used. Moreover the AMR errors are about ∼ 1.7 − 1.8 times larger than the fixed grid ones for the
finest resolution, that is comparing 3.31 × 10−4 for the AMR grid and 1.91 × 10−4 for the fixed grid (128 × 128 mesh).
Compared to the coarsest fixed grid results (32 × 32), the AMR errors are about 32 times smaller.

Point-wise reconstruction

AMR Fixed Fixed grid results AMR grid results Ratio

3
rd
-o
rd
er

sc
h
em

e (l, L) Nmax
c L1 err L2 err L1 ord L2 ord L1 err L2 err L1 ord L2 ord L1 L2

(8,32) 32 × 32 1.06× 10−2 3.24× 10−3 — — 1.86× 10−2 6.02× 10−3 — — 1.75 1.86

(16,64) 64 × 64 1.48× 10−3 4.57× 10−4 2.84 2.83 2.60× 10−3 7.56× 10−4 2.84 2.99 1.76 1.65

(32,128) 128 × 128 1.91× 10−4 5.92× 10−5 2.95 2.95 3.31× 10−4 1.06× 10−4 2.97 2.83 1.73 1.79

Expected order→ 3 3 Expected order→ 3 3 ∼1.75 ∼1.77

Table 3: L1 and L2 errors and convergence rates for the unlimited third-order HO Finite Volume scheme equipped with the current point-wise
reconstruction with fixed or AMR grids.

4.2. M1 model: 2D Riemann problem with shocks

The test case considered here is a 2D 4-state Riemann problem for the M1 model (6), which was first proposed in [8].
The initial solution is given by

U0(x, y) = (E0
R(x, y), F0

R,x(x, y), F0
R,y(x, y)) =


(E0, F0, 0) if x ≤ 0.5 and y ≤ 0.5,
(E0, 0, F0) if x ≤ 0.5 and y ≥ 0.5,

(E0, 0,−F0) if x ≥ 0.5 and y ≤ 0.5,
(E0,−F0, 0) if x ≥ 0.5 and y ≥ 0.5,

(38)

where E0 = 7.56 × 10−4 J · m−3, and F0 = (1 − 10−8)cE0 W · m−2.
It is a particularly demanding test case for several reasons. On the one hand, the solution remains close to the limit
of admissible states in a large part of the domain throughout the simulation. On the other hand, it presents complex
structures, including filamentary shocks which are delicate and difficult to capture with low order schemes or brutal
limiting strategy. To achieve a good approximation, a numerical method must be highly accurate and robust. This
problem is tested on fixed Cartesian meshes and the results are shown in Figure 6.
One represents at tfinal = 2 × 10−9s the values of the anisotropy factor f =

‖FR‖

cER
and the radiative energy ER and the

distribution of the polynomial degrees used for the reconstruction. The results obtained using the point-wise recon-
struction on meshes with 1282 and 2562 cells are compared to those given by the classical scheme using cell-centered
polynomial reconstruction on a mesh with 2562 cells. It can be seen that the schemes capture all the characteristics of
the solution with 2562 cells, which is still relatively coarse. No important difference is visible between the scheme with
point-wise reconstruction and the classical one, which confirms the results observed in the previous section. Moreover,
only a few cells switch back to the first order in figure 6-bottom. The highest order scheme is therefore used for most
cells.
This example shows that the point-wise reconstruction provides approximations which are comparable to those given
by the classical cell-based FV scheme. HOp scheme can be tested with confidence in an AMR simulation code.
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Figure 6: M1 model — Filament test case — Simulation at tfinal = 2 × 10−9 s — Comparison of the HO FV point-wise scheme results with fixed
meshes (l, L) = (7, 7) (left column) and (8, 8) (middle) versus the classical cell-centered based reconstruction FV scheme with ∆x = 1/28 (right) —
From top to bottom: anisotropy factor, energy and polynomial degrees. The same legend applies to each line.
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4.3. Euler model: cylindrical Sod shock

This problem is used as a sanity test to validate the ability of the scheme to solve a 1D cylindrical problem with
separate waves unaligned with the mesh. AMR is activated in all remaining experiments allowing testing the quality
of the full simulation code.
The initial condition on the domain Ω = [−1, 1]× [−1, 1] is split into the following inside and outside cylindrical states

H0(r) = (ρ0(r), u0(r), v0(r), p0(r)) =

{
(1, 0, 0, 1) if r ≤ 0.5,

(0.125, 0, 0, 0.1) if r > 0.5
C =

√
x2 + y2, γ = 1.4. (39)

These two states generate moving cylindrical waves: a rarefaction traveling inward, and a contact discontinuity plus a
shock wave traveling outward. The computation is performed until final time tfinal = 0.25. For this test we present the
density profile in colors and the associated AMR mesh.

Comparison between different levels of refinement. First of all we present the behavior of the current HOp scheme
when a (l, L) = (4, 7) and (5, 8) sets of parameters are employed. In figure 7 we present the density (colors) and the
mesh at final time. The coarsening acts every other iteration, with parameter C = 8 × 10−1. We observe that the
AMR mesh is correctly refined on steep gradients and coarsened on regular regions. Both simulations capture the
main waves and, as expected the solution is visually sharper for the (5, 8) mesh. As expected, a smaller coarsening
parameter C = 8 × 10−2 generated less coarsening (bottoms panels) showing that the threshold parameters in a AMR
context have an important impact although fixing them a priori is not an easy task.

Mesh adaptation in time. We present the case (l, L) = (5, 8) and C = 8 × 10−1 in figure 8-top. We observe that the
mesh is appropriately refined and coarsened, following the main waves in time. The final time result of this simulation
is plotted on the middle panels of figure 7. Moreover, on the right panels we present the cell polynomial degrees
employed showing that the maximal degree 2 is used on safe zones, while 0 is selected around steep gradients. There
are also some cells that switch back to first order in the areas where the solution is flat. In this case however, the quality
of the approximation is not negatively impacted. Finally, in figure 9 we present the number of cells as a function of
time with comparison to the maximal and minimal allowed numbers related to the (l, L) = (5, 8) parameters. We
observe that the AMR strategy gently increases the number of cells, without any spurious effects, to reach about 37%
of the maximal value and an average of 26% for the entire simulation.
These results on the cylindrical Sod problem show that the scheme manages to adapt the mesh to the underlying
solution, also maintaining an almost rotation-invariant mesh. Moreover the mesh is refined everywhere the solution
presents some features. The results become more precise as the number of levels of refinement is increased. Notice
that the 1D profiles of density confirm these statements which we omit to save space. We have observed that the
coarsening parameter plays a major role in obtaining a more or less adapted mesh, i.e a mesh that is appropriately
coarsened in space/time according to the underlying solution. In our case these parameters have been chosen only to
illustrate the behavior of the AMR numerical scheme. More tailored parameters would certainly produce even better
AMR meshes. However, the focus of this work is not to discuss how to achieve such optimal parameters, should they
exist. At last we have observed that the distribution of polynomial degrees follows the main waves, and, the number
of AMR cells remains at the order of 33% of the maximal allowed number of cells for this specific test case.

4.4. Euler model: a 4-shock 2D Riemann problem

This test and the one in section 4.5 are four state 2D Riemann problems for the Euler system of conservation laws
(see [46] or [35] for a numerical study). Both act on the computational domain Ω = [−1, 1] × [−1, 1]. This first 2D
Riemann problem considers the following initial condition

H0(x, y) = (ρ0(x, y), u0(x, y), v0(x, y), p0(x, y)) =


(0.138, 1.206, 1.206, 0.029) if x ≤ 0.5 and y ≤ 0.5,

(0.5323, 1.206, 0.0, 0.3) if x ≤ 0.5 and y ≥ 0.5,
(0.5323, 0.0, 1.206, 0.3) if x ≥ 0.5 and y ≤ 0.5,

(1.5, 0.0, 0.0, 1.5) if x ≥ 0.5 and y ≥ 0.5.
(40)

The final time is set to tfinal = 0.3. This initialization corresponds to the 3rd configuration in [46, 35] which develops
four main shocks and a central zone of complex interactions. Three AMR configurations are run: (l, L) = (4, 7), (4, 8)
and (8, 8), where (l, L) = (8, 8) corresponds to a fixed mesh made of 2562 square cells. In figure 10 we present the
density variable and the AMR meshes colored by density. The bottom left panel shows the fixed fine mesh result.
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Figure 7: Euler equation — Cylindrical Sod problem — Simulation at tfinal = 0.25 — Density and mesh — Comparison of the results with levels
of refinement (l, L) = (4, 7) (top), (5, 8) with C = 8 × 10−1 (middle) and (5, 8) with C = 8 × 10−2 (bottom).

The middle panels show the AMR results with (4, 8), while the top ones present the (4, 7) AMR ones. The AMR
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Figure 8: Euler equation — Cylindrical Sod problem — Density and mesh — Comparison of the results for (l, L) = (5, 8) levels of refinement and
coarsening parameter 8 × 10−1 — Top to bottom: different intermediate times starting at t = 0 — Left: density and mesh — Right: cell polynomial
degrees.
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Figure 9: Euler equation — Cylindrical Sod problem — Number of cells as a function of time for (l, L) = (5, 8) levels of refinement and coarsening
parameter 8 × 10−1.

simulations have a well-adapted mesh to the underlying solution. As expected one more level of refinement helps to
capture more structures in the central part. The bottom-right panel presents the evolution of the number of cells as a
function of time. We observe that less than 10% of the maximal number of cells (at level 8) is attained, and, on average
only 7% are used. Even with the extra-cost of the AMR procedure the gain is largely in favour of the AMR simulation
compared to the fixed fine mesh simulation.
Next, in figure 11 we focus on the polynomial degree distribution at the final time for the three simulations. Interest-
ingly most of the cells are updated with the unlimited highest order scheme. The limited ones are aligned with the
main shocks, and, appropriately located just ahead and behind. We also observe that some cells are troubled even if
they seem located on ”flat” regions. But this does not deteriorate the accuracy.
Finally, in figure 12, we report the distribution of cells in each level of refinement (left) and the percentage of covered
surface (right) for the (l, L) = (4, 7) simulation for which the maximal number of cells is 1282 = 16384 while the
minimal one is 162 = 256. We gather some of these percentages in table 4. We observe that the surfaces covered
by each level are well balanced at about 25% at the end of the simulation. This solution is self-similar and complex,
therefore it is expected that the number of fine cells increases over time.

Iteration
Number of cells per level Percentage of surface covered by level

` = 4 ` = 5 ` = 6 ` = 7 Total ` = 4 ` = 5 ` = 6 ` = 7 Total

1 194 122 248 1024 1588 76% 12% 6% 6% 100%
300 131 144 585 3356 4216 51% 14% 15% 20% 100%
700 106 164 748 3984 5002 42% 16% 18% 24% 100%
1000 84 204 814 4488 5590 33% 20% 20% 27% 100%
1397 65 229 891 4996 6181 25% 22% 22% 31% 100%

Table 4: Euler equation — 4-shocks Riemann problem — AMR simulation with (l, L) = (4, 7) levels — Number of cells per level and percentage
of surface covered by each level for several iterations. The maximal number of cells is 16384.

4.5. Euler: 4-contact-wave 2D Riemann problem

This next 2D Riemann problem for Euler’s equations corresponds to the 6th configuration in [46, 35], its solution
contains 4 planar contact discontinuities which interact in the central region. The initial condition on the computational
domain is

H0(x, y) = (ρ0(x, y), u0(x, y), v0(x, y), p0(x, y)) =


(1.0,−0.75, 0.5, 1.0) if x ≤ 0.5 and y ≤ 0.5,
(2.0, 0.75, 0.5, 1.0) if x ≤ 0.5 and y ≥ 0.5,

(3.0,−0.75,−0.5, 1.0) if x ≥ 0.5 and y ≤ 0.5,
(1.5, 0.75,−0.5, 1.0) if x ≥ 0.5 and y ≥ 0.5.

(41)
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Figure 10: Euler equation — 4-shocks Riemann problem — Simulation at tfinal = 0.3 — Comparison of the results with different levels of refinement
(l, L) = (4, 7) (top), (4, 8) (middle) and (8, 8) (bottom) Left column: Density. Right: Mesh colored by density — Bottom-right: evolution of the
number of cells for the (4, 7) simulation.

Two different sets of simulations are performed. The first set employs the HLL [31] numerical flux while the second
one uses HLLC one [54]. The later is known to better capture contacts. Indeed, in figure 13 we present the specific
internal energy at final time tfinal = 0.3 for the AMR meshes (l, L) = (4, 7) (left panels) or (l, L) = (5, 8) (right panels).
The top/bottom panels present the HLL/HLLC results. For this test case the coarsening does not truly act, hence the
results are mainly those obtained by the scheme on a fixed finest mesh. As expected one more level of refinement
produces more accurate results. Also the HLLC Riemann solver produces sharper and finer central structures which
was expected. Next, in order to understand why the coarsening does not seem to act much, we propose in figure 14 the
AMR (5, 8) results with HLLC Riemann solver for several intermediate times. A bird’s eye view is plotted, that is a 3D
view seen from top with elevation and color representing the value of the variable. Here, the specific internal energy
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Figure 11: Euler equation — 4-shocks Riemann problem — Simulation at tfinal = 0.3 — Polynomial degrees — Comparison of the results with
(l, L) = (4, 7) (left), (4, 8) (middle) and (8, 8) (right).
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Figure 12: Euler equation — 4-shocks Riemann problem — Simulation at tfinal = 0.3 — Left: Number of cells in each level as function of iteration
number — Right: Percentage of surface covered by each level of refinement.

(top panels) and the AMR mesh (bottom panels) are presented. For a different perspective, figure 15 shows the AMR
(4, 7) meshes colored by the specific internal energy with HLLC Riemann solver for several intermediate times. There
are several reasons why the mesh remains at high levels of refinement over a significant portion of the domain. In
addition to the initial discontinuities, the central structure is found to be relatively large and contains high gradients. It
is therefore expected that the mesh be refined in the corresponding area. In addition, extra 1D waves of low amplitude
can be seen propagating. These waves are artifacts due to the fact that the initial states only approximately lie on the
curves of a contact. A good HO scheme must capture and follow those waves which are indeed the correct solution
for this problem. Any extra coarsening on these waves would represent a failure of the AMR strategy to maintain the
highest accuracy possible on physical waves. A similar phenomenon also occurs in the 4-shock case studied earlier.
One could probably obtain a little more coarsening by relaxing the MOOD criterion a little less, however one does not
expect the gain to be substantial. This test case is therefore not genuinely favorable to an AMR strategy. It is interesting
to look at the impact on the computation time on this unfavorable test case and this is the subject of paragraph 4.7.

4.6. M1 model: 2D Riemann problem with contact discontinuities

The second test-case for the M1 model is original and called twist in the following. The initial solution is given by

U0(x, y) = (E0
R(x, y), F0

R,x(x, y), F0
R,y(x, y)) =


(E0, F0, 0) if x ≤ 0.5 and y ≤ 0.5,

(E0, 0,−F0) if x ≤ 0.5 and y ≥ 0.5,
(E0, 0, F0) if x ≥ 0.5 and y ≤ 0.5,

(E0,−F0, 0) if x ≥ 0.5 and y ≥ 0.5,

(42)

where E0 = 7.56 × 10−4 SI and F0 = (1 − 10−8)cE0 SI and the final time is set to tfinal = 1.5 × 10−9s. This test
contains relatively narrow structures and steep gradients that evolve over time entrained by a rotation like motion.
Moreover, some of these structures are associated with contact discontinuities. Likewise for Euler equations, the
contact discontinuities of the M1 model are intermediate waves which are somewhat difficult to capture for a Rusanov
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Figure 13: Euler model — 4-contact-waves Riemann problem — Simulation at tfinal = 0.3 — Specific internal energy — Comparison of the results
with AMR (l, L) = (4, 7) (left) or (l, L) = (5, 8) (right) and HLL (top) or HLLC Riemann solver (bottom).

numerical flux. We consider three meshes: a fixed Cartesian one with (l, L) = (8, 8) corresponding to 2562 cells, a
(l, L) = (4, 7) AMR mesh and a (l, L) = (5, 8) one. The HO FV scheme with point-wise reconstruction is considered
for the AMR meshes whereas the classical HO FV with cell-centered reconstruction is used for the fixed grid. The
results can be seen in the figure 16 for the radiative energy variable ER on the left panels and the anisotropy factor
f on the right ones. We observe that the HOp scheme with the same nominal mesh accuracy (middle panels) produces
comparable results with the fixed mesh and cell-centered reconstruction (bottom panels) of figure 16. As expected,
if one less level of refinement is allowed (top panels), then the sharpness of the waves is less pronounced and fewer
small scale features are captured. Nonetheless the overall solution is well resolved. Next, in figure 17 we plot the last
polynomial degrees used and observe that most of the cells are updated with high order. Only few cells in the plateaus
and on the surrounding area of the main waves are still limited. It does not seem that the HOp scheme increases
the number of troubled cells compared to the classical HO FV scheme with cell-centered reconstruction. Finally, in
figure 18 we present the AMR mesh and the radiative flux vector (FR,x, FR,y) for the (4, 7) case for three intermediate
times. The mesh and the flux are colored with respect to the magnitude of the anisotropy factor. We can clearly see the
rotational structure in the center and the steep gradients which are appropriately anticipated and covered by the finest
mesh level. The overall AMR procedure based on MOOD criteria is therefore able to maintain the highest accuracy
where appropriate. Of course, tailored coarsening parameters would have increased the number of coarsened zones
but at the price of lengthy search for these parameters. While feasible, this would not strengthen this proof of concept.
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Figure 14: Euler model — 4-contact-waves Riemann problem — Intermediate times — Specific internal energy (color and elevation) (top panels)
and mesh (bottom panels) — AMR (l, L) = (5, 8) mesh and HLLC Riemann solver.

Figure 15: Euler model — 4-contact-waves Riemann problem — Intermediate times — Specific internal energy and AMR mesh — Results with
AMR (l, L) = (4, 7) and HLLC Riemann solver.

4.7. CPU time

In this section we present a rough comparison of CPU times for the Riemann problem 3 for Euler model and the twist
problem for M1 model. Our AMR simulation code has only been designed to be a proof of concept for the HO FV
scheme with point-wise reconstruction and the use of MOOD criteria as an AMR refinement strategy. Therefore our
sequential AMR code is by no means optimal or even designed towards efficiency, which may be the topic of a future
work. Nonetheless we can still compare the relative cost of the AMR simulations against the fixed grid ones, recalling
that those ’efficiency’ records could drastically be improved. The results are gathered in Table 5, where we express the
CPU time ratio with respect to the fixed grid simulation time. The two problems illustrate either a relatively favorable
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Figure 16: M1 model — Twist test case — Simulation at tfinal = 1.5 × 10−9 s — Comparison of the results with AMR meshes (l, L) = (4, 7) (top)
and (5, 8) (middle) versus the classical cell-centered based reconstruction FV scheme with ∆x = 1/28 (bottom) — Left: Energy, right: anisotropy
factor.

situation or a genuinely unfavorable one for the AMR efficiency. For the Riemann problem we see that for a compa-
rable quality of approximation, see figure 10, the use of AMR allows to speed up the computation by a factor of 2.3.
It should be noted that this value is far from being optimal since on the one hand the code can still be improved, and,
on the other hand, the refinement and coarsening parameters have been fixed to default values for all test cases. Even
in this context using an AMR code significantly reduces the CPU time.
For the M1 Twist test case, see figure 16, for which an excessive refinement is observed, one notices a gain in compu-
tation time of about 18%. This gain is obviously less important than for the previous case, but still significant. Even if
one expects to save time on the first iterations where only few cells are refined, the interaction with the AMR library
usually lowers the expected gain and, consequently, lowers the overall efficiency.
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Figure 17: M1 model — Twist test case — Simulation at tfinal = 1.5 × 10−9 s — Comparison of the results with AMR meshes (l, L) = (4, 7) (left)
and (5, 8) (middle) versus the classical cell-centered based reconstruction FV scheme with ∆x = 1/28 (right) — Polynomial degrees.

Figure 18: M1 model — Twist test case — Simulation at tfinal = 1.5 × 10−9 s — Results with AMR mesh (l, L) = (4, 7) at three intermediate times
— Top: Radiative flux vectors — Bottom: Meshes. Both are colored with respect to the magnitude of the anisotropy factor.

These results could be improved by choosing well suited AMR parameters for each test case, in particular the coars-
ening ones. However we observe that even for the unfavorable test cases and our non optimal code, the AMR strategy
improves the overall efficiency.

AMR AMR Fixed grid

(l, L) = (4, 7) (l, L) = (5, 8) (l, L) = (8, 8)
RP 3 2.61% 43.4% 100%

M1 Twist 3.95% 84.5% 100%

Table 5: CPU time comparisons between AMR and fixed grid simulations.

5. Conclusion and perspectives

In this paper we have introduced an innovative point-wise polynomial reconstruction procedure to pair up with a high-
order Finite Volume (FV) scheme stabilized by an a posteriori Multi-dimensional Optimal Order Detection (MOOD)
paradigm within a local cell-based Adaptive Mesh Refinement (AMR) framework, called HOp. This scheme is devoted
to solve hyperbolic systems of partial differential equations in multi-dimensions, such as Euler or radiative M1 systems
in this work.
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When the mesh is modified during the AMR stage of an HO FV scheme, the cell-centered reconstruction matrices
and associated stencils must be rebuilt. This is an expensive cost of the overall method especially when frequent
refinement/coarsening stages occur. We have designed a new point-wise polynomial reconstruction which is essentially
independent of the surrounding stencil because it is based on point-wise values at fixed points in the vicinity of the
current cell. As such it does not require such an expensive stencil and matrix rebuilding. We have analysed the
stability of some point-wise based reconstruction schemes by varying the weight distribution. Next we have included
this reconstruction within a HO FV scheme limited by a MOOD procedure. Some tests for Euler and M1 models have
shown that this scheme produces equivalent accurate solutions than the classical cell-centered reconstruction based
scheme on fixed grids.
Additionally, we have revamped the AMR refinement procedure. Classically it requires the user to choose a diagnostic,
for instance the norm of the density gradient, and one threshold value. Both the diagnostic and the threshold are not
obvious to determine. Worse, they may depend on the test case. We have re-used the MOOD detection criteria to
determine which cells must be refined. In short, a detected troubled cell is first refined. Then, only in the second
MOOD iteration it is limited. Coarsening is applied at the very end of the time-step on an admissible solution using
a classical diagnostic/threshold procedure. The coarsening step does discard some information by averaging, and, as
such must be carefully manipulating. In our scheme only genuinely flat regions are allowed for coarsening. On the
contrary, refinement must occur to ensure that the high accuracy is maintained wherever the HO FV scheme is acting.
This HOp FV scheme has been implemented within the p4est AMR framework [14] on 2D quad-tree mesh. Several
schemes up to order 3 –to keep a consistent expression of the boundary conditions– have been implemented and tested
on a series of examples of increasing difficulty. The test cases assess that the AMR mesh appropriately adapts to
the underlying solution. Moreover, the solution seems to be captured with high accuracy and no positivity issue as
expected. As such it validates the use of the MOOD detection criteria as a refinement criterion. In addition the troubled
cells detected and limited by MOOD seem appropriately located. We have also observed that the total number of cells
remains on average largely smaller than the one of the finest possible mesh. Although the implementation is far from
being optimal, some gains in CPU time are observed. The gain is more or less important for the test cases depending
on the surface covered by the fine scale structures, and, the finest cell level. Obviously with a fine tuning of the
coarsening parameters we could improve the CPU time by reducing the number of fine cells, but this is not the goal
of this article to play with parameters. Here we focus on maintaining the high accuracy of the FV scheme in an AMR
framework simplifying the refinement criteria and reducing the cost of reconstruction. Notice that the scheme is also
flexible in terms of the system of PDEs and baseline numerical flux (Rusanov, HLL, HLLC. . . ). The results show the
applicability of the point-wise reconstruction and the MOOD-based refinement technique.
From this point on, several extensions are envisioned: A 3D version, a parallel and optimized code being the most
natural possibilities without any additional limitation. One can also consider other types of models, for example taking
into account certain source terms and for which numerical schemes based on approximate Riemann solvers do exist.
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