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Abstract

Understanding both the epidemiological and evolutionary dynamics of antimicrobial resistance is a
major public health concern. In this paper, we propose a nested model, explicitly linking the within-
and between-host scales, in which the level of resistance of the bacterial population is viewed as a
continuous quantitative trait. The within-host dynamics is based on integro-differential equations
structured by the resistance level, while the between-host scale is additionally structured by the time
since infection. This model simultaneously captures the dynamics of the bacteria population, the
evolutionary transient dynamics which lead to the emergence of resistance, and the epidemic dynamics
of the host population. Moreover, we precisely analyze the model proposed by particularly performing
the uniform persistence and global asymptotic results. Finally, we discuss the impact of the treatment
rate of the host population in controlling both the epidemic outbreak and the average level of resistance,
either if the within-host scale therapy is a success or failure. We also explore how transitions between
infected populations (treated and untreated) can impact the average level of resistance, particularly in
a scenario where the treatment is successful at the within-host scale.

Key words. Antimicrobial resistance; Evolutionary dynamics; Nested models; Non-linear dynamical
system.

1 Introduction

Antimicrobial resistance (AMR) is one of the major challenges we face in the modern area [27]. An
antimicrobial substance is a chemical agent interacting with the physiology of a bacterial cell. The
antimicrobial activity on a given bacterium’s (S) is an increasing function of its concentration in the
medium (C), such that S (0) = 0 and S (C) → Ssat as C → Csat, where Ssat and Csat are saturating
constants. This intuitive approach implies that there exists C⋆ in (0, Csat) such that S (C⋆) is equal
to the intrinsic rate of increase and reverses the growth of a bacterial population. Such a threshold
concentration at which a bacterial population does not grow (at least in in vitro) is called the Minimum
Inhibitory Concentration (MIC). The level of resistance to a given antimicrobial is then a continuous trait
by nature referred to as antimicrobial quantitative resistance (qAMR), at least at the population level,
and qAMR is key to better understanding the evolutionary dynamics of AMR [16]. Here, we introduce
a quantitative descriptor x ∈ R –a label of the bacterial strain with resistance level x– describing the
level of resistance. Most of the modelling approaches devoted to AMR tackling the case of qualitative
(or “binary”) resistance are generally based on the dynamical interaction between two parasite strains
resulting in a discrete and finite formulation of MICs [5]. This analysis ignores the evolutionary short-term
transient dynamics which lead to the emergence of resistance (eg., [10, 11, 14, 26, 28, 36, 39]).

∗Corresponding author: R. Djidjou-Demasse (ramses.djidjoudemasse@ird.fr)
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Here, we proposed a nested (or embedded) model explicitly linking the within- and between-host
evolutionary dynamics. Such a nested structure is particularly important because, over the past few
decades, it is clear that ecological and evolutionary dynamics are influenced by processes operating across
scales [18]. Very few studies considered the continuous nature of AMR in the context of this work (eg.,
[16]), and few studies have implemented a nested model in this context so far (eg., [4, 37]). The bacterial
population is assumed to be phenotypically (and genetically) diverse through the level of antimicrobial
resistance x. This quantitative trait affects different components of the bacterial population life cycle,
such as growth and death rates. In addition to those effects on the death and birth rates, bacterial
population resistance level also mitigates the antimicrobial efficiency with respect to that population.
From a theoretical point of view, properties of the within-host model proposed here are based on previous
analytical quantitative genetics results developed in [7, 15].

An integro-differential equation is used to model the within-host dynamics of the bacterial population.
Such a within model formulation is previously proposed in [16]. Each host individual is classified as either a
treated host, labeled as T , or an untreated host, labeled as U . The model tracks the dynamics of a bacterial
population within a treated host (bT ) or an untreated host (bU ). At time τ , the bacteria density with
resistance level y ∈ R within a treated and untreated host is quantified by bTi (τ, y) and bUi (τ, y) respectively.
The subscript ”i” (with i ∈ I = {1, 2, · · · , n}) represents an individual immune system and then allows
taking into account the immune system heterogeneity in the host population. A bacteria with resistance
level y generate offspring with resistance level x at a per-capita rate J(x−y)p(y)bϑi (τ, y), where p(y) is the
bacterial intrinsic growth rate, and J(x− y) is the probability for a bacterial population with resistance
level y to mutate towards a level x during the reproduction process. Therefore, the total number of bacteria
produced at time τ with a resistance level x is quantified by

(
1 +

∫
R bϑi (τ, x)dx

)−κ ∫
R J(x−y)p(y)bϑi (τ, y)dy,

where κ is a positive parameter. The parameter κ > 0 is introduced to impose the bacterial population
homeostasis. The within-host model reads as∂τ b

ϑ
i (τ, x) =

1(
1 +Bϑ

i (τ)
)κ ∫

R
J(x− y)p(y)bϑi (τ, y)dy − ξϑi (x)b

ϑ
i (τ, x),

bϑi (0, ·) = b0(·),
(1.1)

where Bϑ
i (τ) =

∫
R bϑi (τ, x)dx, is the total bacteria load. The term ξϑi accounts for the individual clear-

ance of bacterial cells with resistance level x, either by the immune system (µi) or by the efficiency of
antimicrobial pressure (k). Thus, ξUi (x) = µi(x), for untreated host, and ξTi (x) = µi(x)+k(x), for treated
host. Here, it is assumed that bacteria are subject to a biocidal antimicrobial pressure, ie. killing and not
diminishing the birth rate of bacteria. Note that, the within-host model (1.1) allows to follow evolutionary
parameters such as the average level of resistance for treated (x̄Ti (τ)) and untreated (x̄Ui (τ)) individuals
τ -time post infection given by

x̄ϑi (τ) =

∫
R
x
bϑi (τ, x)

Bϑ
i (τ)

dx, ϑ ∈ {T,U}.

At the between-host scale, the host population is subdivided into three states. At any time t, an
individual –with the immune system’s response level i ∈ I– can be susceptible to the infection Si(t)
or infected Iϑi (t, τ, x̄

ϑ
i (τ)), ϑ = {T,U}. The variables τ and x̄ϑi (τ) respectively represent the time post-

infection and the average resistance level of the infected host. It is important to clearly understand the
meaning of infected individuals Iϑ(t, τ, x̄ϑi (τ)). Indeed, each infected individuals is potentially infected
with multiple bacteria strains with variable frequencies and resistance levels. Therefore, x̄ϑi (τ) represent
the individual resistance level quantified by the within-host dynamics through the above formula. How-
ever, for simplicity, and without loss of generality, we will note Iϑi (t, τ, x̄

ϑ
i (τ)) ≡ Iϑi (t, τ) for ϑ ∈ {T,U}

and i ∈ I.
Individual transmission and loss rates at the between-host scale, τ -time since infection, βϑ

i (τ) and
αϑ
i (τ), are linked to the within-host dynamics at time τ . As an example, these parameters can be
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represented as Holling functions of type II (or similarly the Beddington-DeAngelis functional response)
such that, for all ϑ ∈ {T,U},

βϑ
i (τ) =

β0B
ϑ
i (τ)

r0 +Bϑ
i (τ)

and αϑ
i (τ) =

α0B
ϑ
i (τ)

r0 +Bϑ
i (τ)

+ γϑ(τ), (1.2)

where β0 and α0 are scaling constants, and r0 is the half-saturation constant for the total bacterial load
Bϑ

i . Note that, for the loss rate of infected individuals αϑ
i , the term α0B

ϑ
i /(r0 + Bϑ

i ) represents the loss
due to the disease induced mortality while γϑ is the loss due to recovery. We can assume that the function
γϑ is of the form

γϑi (τ) =

{
0, if Bϑ

i (τ) > Bmin,
1, if Bϑ

i (τ) ≤ Bmin,
(1.3)

where Bmin is the threshold below which the infection becomes undetectable such that the infected
individuals is considered as recovered.

The force of infection induced by infected individuals at time t is then given by

λ(t) =
∑
i∈I

∫ ∞

0
[βT

i (τ)I
T
i (t, τ) + βU

i (τ)I
U
i (t, τ)]dτ.

The nested model proposed here then makes it possible to simultaneously track the epidemiological
dynamics of the host population as well as evolutionary quantities such as the average level of resistance
at both the within- and between-host scales. Such an approach is original and to our knowledge, no study
has considered nested models for the evolutionary dynamics of AMR, viewed as a continuous quantitative
trait.

The dynamics of newly infected individuals (i.e. τ = 0) in each group (treated or untreated) is thus
defined by (for ϑ ∈ {T,U})

Iϑi (t, τ = 0) = qϑi λ(t)Si(t), (1.4)

where qTi ∈ (0, 1) is the treatment rate in the host population and qUi = 1 − qTi . During their infection,
treated individuals can stop the treatment at rate ωT

U (τ), and untreated infections can join the treated
group at rate ωU

T (τ). The loss rate of infected individuals τ -time post infection occurs at rate αϑ
i (τ).

Susceptible individuals are recruited at a constant rate Λi and the natural death rate of the host population
is µh. The between-host model then reads

Ṡi(t) = Λi − Si(t)λ(t)− µhSi(t),

(∂t + ∂τ ) I
T
i (t, τ) = −

(
αT
i (τ) + ωT

U (τ) + µh

)
ITi (t, τ) + ωU

T (τ)I
U
i (t, τ),

(∂t + ∂τ ) I
U
i (t, τ) = −

(
αU
i (τ) + ωU

T (τ) + µh

)
IUi (t, τ) + ωT

U (τ)I
T
i (t, τ),

Si(0) = Si,0, Iϑi (0, τ) = Iϑi,0(τ).

(1.5)

Finally, the nested within-host (1.1) and between-host model (1.4)-(1.5) are summarised by Figure 1.
The main variables and parameters are listed in Table 1. We emphasize that the dynamical properties
(that we will recall later) of within-host model (1.1) are precisely analyzed in [16]. Therefore, our main
objective here is devoted to the analysis of the nested model (1.1)-(1.5).

The rest of this work is organized as follows. In Section 2, we state the main results of the nested
model that are obtained in this work. These include the existence of the globally defined non-negative
semiflow and the existence of the unique positive equilibrium for the within-host model, and global
threshold analysis results for the between-host model. The model’s typical dynamics are provided in
Section 3. This includes the within- and between-host models parameterization and the characterization
of the evolutionary parameters such as the average levels of resistance. In Section 4, we delve into the
effects of various parameters on the equilibrium structure of the host population, along with addressing
the parameterization issue within nested models. Section 5 focuses on providing preliminary results.
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Within-hostBetween-host

βϑ
i , α

ϑ
i are functions of the within-host dynamics’

ϑ ∈ {T, U}, T=treated and U=untreated

1

(1+
∫
+∞

−∞
bϑ
i
(τ,x)dx)

κ

∫ +∞

−∞
J(x− y)p(y)bϑi (τ, y)dy

Immune response µi(x) and
antimicrobial activity k(x)

ITi (t, τ = 0)

= qTi Si(t)λ(t)

Treated infectious

Untreated infectious

ωT
U(τ)

Treatment
stop

ωU
T (τ)

Treatment
start

λ(t) =
∑
i

∫
∞

0

[βT

i
(τ)IT

i
(t, τ) + βU

i
(τ)IU

i
(t, τ)]dτ

λ(t)

αT
i (τ) + µh

αU
i (τ) + µh

τ=time since infection

i=host immune response levels

x=resistance level

Λi

µh

Figure 1: Flow diagram of the nested model. Within-host model: The number of bacteria produced
at time τ with resistance level x is 1

(1+
∫+∞
−∞ bϑi (τ,x)dx)

κ

∫ +∞
−∞ J(x − y)p(y)bϑi (τ, y)dy, where J(x − y) is the

probability for a bacterial with resistance level y ∈ R to mutate towards a level x ∈ R and p(y) is the
bacterial intrinsic growth rate. Bacterial cells with resistance level x, within an individual with immune
system level i are cleared either by the immune system at rate µi(x) or by the antimicrobial efficiency at
rate k(x). Between-host model: Susceptible individuals are recruited at a constant rate Λi. ITi (t, τ)
and IUi (t, τ) are respectively treated and untreated infected individuals at time t, which are infected since
time τ . The force of infection in the whole population at time t is λ(t) =

∑
i∈I
∫∞
0 [βT

i (τ)I
T
i (t, τ) +

βU
i (τ)I

U
i (t, τ)]dτ , with βϑ

i (τ) the disease transmission rate of an infected individual τ -time post infection.
At the time t, new infections occur at rate λ(t)Si(t), and are either treated with a probability qTi or
untreated with a probability qUi = 1 − qTi . The natural death rate of individuals is µh. If infected since
time τ , the loss rate is αϑ

i (τ). Untreated individuals, and infected since time τ start the treatment at rate
ωU
T (τ) while treated individuals stop the treatment at rate ωT

U (τ).

Specifically, it addresses the existence and uniqueness of solutions, derivation of the basic reproduction
number, and the existence of a unique endemic equilibrium for System (1.4)-(1.5). Finally, Section 6 is
devoted to the proof of the global asymptotic results.

2 Main results

This section is devoted to the main results of the nested model (1.1)-(1.5). Such results include the
existence of the unique maximal bounded semiflow, and a precise description of the unique positive
equilibrium of Model (1.4)-(1.5). By providing global stability results, we will also conduct a precise
threshold analysis of the between-host model (1.4)-(1.5).

First of all, for biological feasibility of the nested model (1.1)-(1.5), we make use of the following
assumptions. More precisely, the within-host model (1.1) is formulated based on the following assumption

Assumption 2.1 1. Functions µi, k, ξ
ϑ
i , and p are always positive on R, with ϑ ∈ {T,U}. Further-

more, p is a bounded function on R and κ > 0. Finally, the function p
ξϑi

is continuous on R and

satisfies p
ξϑi

> 0 and lim
|x|→∞

p
ξϑi
(x) = 0.

2. The mutation kernel J is bounded and integrable on R+, positive almost everywhere, and satisfies∫
R+ J(x)dx > 0, J(−x) = J(x), for all x.
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Table 1: Within- and between-host model variables and parameters
Notations

t Time
τ Time since infection (infection age)
x Resistance level
i host immune response level

Model state variables

Within-host
bTi (τ, x) Bacteria density with resistance level x at time τ in a treated host.
bUi (τ, x) Bacteria density with resistance level x at time τ in an untreated host.
Between-host
Si(t) Susceptible humans at time t
ITi (t, τ) Treated infected humans, infected since time τ
IUi (t, τ) Untreated infected humans, infected since time τ

Model parameters

Within-host
κ Limitation on bacterial growth factor
J(x− y) Mutation probability from resistance level x to y per cell division
p(x) Intrinsic growth rate of bacterial population with resistance level x
k(x) Killing rate of bacterial population with resistance level x due to drug
µi(x) Individual clearance rate of the bacterial cell with resistance level x

due to the immune response
ξUi (x) = µi(x) Bacteria clearance rate with resistance level x in untreated hosts
ξTi (x) = k(x) + µi(x) Bacteria clearance rate with resistance level x in treated hosts

due to the immune response and drug
Between-host
βϑ
i (τ), ϑ ∈ {T,U} Transmission rate of infected individuals

αϑ
i (τ), ϑ ∈ {T,U} Loss rate of infected individuals

ωT
U (τ) Rate of treatment cessation

ωU
T (τ) Rate of treatment start

qTi Proportion of treated hosts
qUi = 1− qTi Proportion of untreated hosts
Λi Recruitment rate of susceptibles
µh Human natural death rate

5



3. The mutation kernel J decays rather rapidly towards infinity in the sense that J(x) = O
(

1
|x|∞

)
as

|x| → ∞. In other words, lim
|x|→∞

|x|nJ(x) = 0, for all n ∈ N.

Furthermore, the between-host model’s parameters satisfy the following assumption.

Assumption 2.2 1. Recruitment rate Λi (i ∈ I) and natural death rate µh are positive constants.

2. The treatment rates qϑi (i ∈ I, ϑ ∈ {T,U}) are positive constants.

3. The rates ωT
U , ω

U
T belongs to L∞(R+), with respective essential upper bounds ωT

U , ω
U
T and positive

essential lower bounds ωT
U , ω

U
T .

4. Parameters βϑ
i and αϑ

i (i ∈ I, ϑ ∈ {T,U}) are such that βϑ
i , α

ϑ
i ∈ L∞(R+).

5. The transmission rates βϑ
i (·),s are Lipschitz continuous almost everywhere on R+.

2.1 Summary key findings on the within-host dynamics

The dynamical properties of the within-host model (1.1) have been precisely investigated in [16]. The
first result of Model (1.1) is about the existence of the unique maximal bounded semiflow. Such a result
reads as,

Theorem 2.3 Let Assumption 2.1 be satisfied. Let bϑi0 ∈ L1
+. Then,

1. There exists a unique global solution v(·, bϑi0) : [0,∞) → L1
+(R) of (1.1) with v(0, bϑi0) = bϑi0 and

v(τ, bϑi0) = bϑi (τ, ·) for all τ > 0.

2. The semi-flow defined by {v(τ, bϑi0)}τ is bounded dissipative and asymptotically smooth, and hence,
its admits a global attractor in L1

+(R).

3. The semi-flow {v(τ, bϑi0)}τ is such that for any bϑi0 ∈ L1
+(R) \ {0}, bϑi (τ, x) > 0, for all τ > 0, x ∈ R.

The basic reproduction number N ϑ
i0 – defined as the expected number of bacteria arising from one

bacterium in a bacteria-free environment– of the bacteria population with resistance level x, within an
individual with immune system level i, is calculated as

N ϑ
i0(x) =

p(x)

ξϑi (x)
, for ϑ ∈ {U, T}. (2.1)

Next, a non-trivial equilibrium of Model (1.1) is strongly related to the principal eigenpair of the
below linear integral operator Hϑ

i defined on Lp(R) (for any p ≥ 1), by

Hϑ
i [v

ϑ
i ](x) =

√
N ϑ

i0(x)

∫
R
J(x− y)

√
N ϑ

i0(y) v
ϑ
i (y)dy. (2.2)

We then have the following result.

Theorem 2.4 Let r(Hϑ
i ), the spectral radius of the operator Hϑ

i , and ϕ > 0 the associated eigenfunction
normalized such that ||ϕ||L1 = 1.

1. When r(Hϑ
i ) ≤ 1, the bacteria-free equilibrium F ϑ

i0 is the unique equilibrium of Model (1.1).
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2. When r(Hϑ
i ) > 1, in addition to F ϑ

i0, Model (1.1) has a unique equilibrium F
ϑ
i > 0 such that

F
ϑ
i (x) =

(r(Hϑ
i )
) 1

κ − 1∫
R

ϕ√
p ξϑi

dy

 ϕ(x)√
p(x)ξϑi (x)

. (2.3)

Furthermore, the semi-flow {v(τ, bϑi0)}τ is uniformly persistent, that is, there exists a constant η
such that for any bϑi0 ∈ L1

+(R) \ {0}, the unique solution v(τ, bϑi0) = bϑi (τ, ·) of Model (1.1) with
initial data bϑi0 satisfies lim

τ→∞
inf ∥bϑi (τ, ·)∥L1 > η.

3. The bacteria-free equilibrium F ϑ
i0 of Model (1.1) is asymptotically stable if r(Hϑ

i ) < 1 and unstable
if r(Hϑ

i ) > 1.

4. When r(Hϑ
i ) < 1, the bacteria-free equilibrium F ϑ

i0 is globally asymptotically stable in L1
+(R), that

is, for any solution bϑi (τ, ·) with initial bϑi0 ∈ L1
+(R)\{0}, we have bϑi (τ, ·) → 0 in L1

+(R), as τ → ∞.

We recall that the within-host model (1.1) is precisely analyzed in [16]. We then refer to Appendices F-I
in [16] for the detailed proof of Theorem 2.3 and 2.4. Note that the linear operator Hϑ

i naturally emerges
when characterizing the positive equilibrium of the within-host model (1.1) [16].

Furthermore, the estimate (2.3) gives that the endemic equilibrium F
ϑ
i of the within-host model (1.1)

basically relied to the principal eigenfunction of the linear operator Hϑ
i for any given probability kernel

J satisfying Assumption 2.1. However, the profile of the endemic equilibrium F
ϑ
i with respect to x ∈ R

can be precisely described when the mutation kernel J depends on a small positive parameter (let say
ε << 1) with the scaling form

Jε(x) = ε−1J
(
ε−1x

)
, (2.4)

where ε > 0 represents the mutation variance in the phenotypic space. More precisely, when ε > 0 is

small, then the endemic equilibrium F
ϑ
i concentrates on the set Sϑ

i defined by

Sϑ
i =

{
x ∈ R : N ϑ

i0(x) = ∥N ϑ
i0∥∞

}
.

The set Sϑ
i is referred to as the set of Evolutionary Attractors (or dominant strains) of the within-host

model in the classical adaptive dynamics theory (eg., [20, 35]). Furthermore, when the function N ϑ
i0 is

at least of class C1, with a finite number of maximum, it is shown in [15] that these dominant strains
coincide with the set Sϑ

i . Denoting by Hϑ
i,ε, the operator Hϑ

i –by replacing the kernel J by Jε– by results

in [15] (Theorem 2.2), the spectral radius r(Hϑ
i,ε) of H

ϑ
i,ε satisfied, for ε sufficiently small

r(Hϑ
i,ε) =

(
N ϑ

i0(x
∗)
)2

+O(ε), for all x∗ ∈ Sϑ
i .

By the above estimate, sign
[
r
(
Hϑ

i,ε

)
− 1
]
= sign

[
N ϑ

i0(x
∗)− 1

]
, for all x∗ ∈ and ε sufficiently small.

Furthermore, if ε ≪ 1, Sϑ
i = {x∗i } and Nϑ

i0(x
∗
i ) > 1, then the unique positive stationary state F

ϑ
i ≡ F

ϑ
i,ε,

given by (2.3), of the within-host model (1.1) is concentrated around the evolutionary attractor x∗i in the
space of resistance level R. In other words, x∗i is the average bacterial resistance level at the within-host

scale equilibrium and we have limε→0

∫
R u(x)F

ϑ
i,ε(x)x = u (x∗i ) for any continuous function u ∈ C (R). We

refer to Theorem 2.3 in [15] for such a concentration phenomenon.

2.2 Key findings of the nested within- and between-host dynamics

At the between-host scale, by setting S(t) = (Si(t))i∈I , Ii(t, τ) = (ITi (t, τ), I
U
i (t, τ)), I(t, τ) = (Ii(t, τ))i∈I ,

αi(τ) = diag(αT
i (τ), α

U
i (τ)), βi(τ) = (βT

i (τ), β
U
i (τ)), qi = (qTi , q

U
i ), ω(τ) =

(
0 ωU

T (τ)
ωT
U (τ) 0

)
, and
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e =

(
0 1
1 0

)
, System (1.4)-(1.5) rewrites into the following compact form,


Ṡ(t) = Λ− S(t)λ(t)− µhS(t),

I(t, τ = 0) = λ(t) diag(S(t))q,

(∂t + ∂τ ) I(t, τ) = (−diag(Φ(τ)) + diag(ω(τ))) I(t, τ),

(2.5)

where λ(t) =
∑

i

∫∞
0 ⟨βi(τ), Ii(t, τ)⟩dτ , Λ = (Λi)i∈I , q = (qi)i∈I , Φ(τ) = (Φi(τ))i∈I , with Φi(τ) =

eω(τ) +αi(τ) + µh.
Using the next-generation operator approach (eg., [12, 25]), the basic reproduction number Ri

0 of the
whole infected individuals of group i, is given by

Ri
0 =

Λi

µh

∑
k∈I

∫ ∞

0
⟨βk(τ),Πk(τ, 0)qk⟩ dτ =

Λi

µh

∑
k∈I

χk,

where

χk =

∫ ∞

0
⟨βk(τ),Πk(τ, 0)qk⟩dτ,

and where Πi(τ2, τ1), 0 ≤ τ1 ≤ τ2 < ∞, is the evolutionary system generated by the linear operator
[−Φi(τ) + ω(τ)]; see Remark 2.5 for some details on Πi. Moreover, the basic reproduction number R0

at the whole between-host scale is such that

R0 =
∑
i∈I

Λi

µh
χi =

∑
i∈I

χi∑
k∈I χk︸ ︷︷ ︸

Overall relative infectiousness
of individuals of group i.

×Ri
0. (2.6)

We refer to Section 5.2 for details of the computation of Ri
0,s and R0.

Note that the parameter χk quantifies the overall infectiousness of the whole infected individuals of
group k ∈ I. A more explicit expression of the infectiousness χk is difficult to obtain in general. However,
one can go further steps in some particular configurations of the treatment status transition rates ω(τ).
Indeed, assume that we can find τ0 > 0 and τ1 > 0 such that

ωU
T (τ) =

{
0, for τ < τ0,

ω̄1, for τ0 < τ < τ0 + τ1,
and ωT

U (τ) = 0, for, τ < τ0 + τ1. (2.7)

In the above scenario, the regimen (0, τ0)-post infection may corresponds to the initial phase where each
infections, either treated or untreated, remain to their initial treatment status. The second regimen
(τ0, τ0 + τ1)-post infection may corresponds to the phase during which previously untreated infections
becomes treated while treated infections remain to their initial status. In such a configuration, we have
(see Section 5.2 for details)

χk = qTk χ
T
k + qUk χ

U
k +O

(
e−ck(τ0+τ1)

)
,

with ck = µh + infτ α
U
k (τ) + infτ α

T
k (τ),

χT
k =

∫ τ0+τ1

0
βT
k (τ)Γ

k,T
0 (τ)dτ + Γk,T

0 (τ0)ω̄1

∫ τ0+τ1

τ0

βT
k (τ)

∫ τ

τ0

Γk,T
1 (τ)

Γk,T
1 (η)

Γk,U
1 (η)dηdτ,

χU
k =

∫ τ0

0
βU
k (τ)Γ

k,U
0 (τ)dτ + Γk,U

0 (τ0)

∫ τ0+τ1

τ0

βU
k (τ)

Γk,U
1 (τ)

Γk,U
1 (τ0)

dτ,
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and

Γk,ϑ
0 (τ) = e−µhτe−

∫ τ
0 αϑ

k (σ)dσ, ϑ ∈ {T,U},
Γk,U
1 (τ) = e−(ω̄1+µh)τe−

∫ τ
0 αU

k (σ)dσ, Γk,T
1 (τ) = e−µhτe−

∫ τ
0 αT

k (σ)dσ.

Note that parameters Γk,ϑ
0 ,s and Γk,ϑ

1 ,s are survival probabilities during phases (0, τ0) and (τ0, τ0+τ1)-post
infection of infected individuals of group k ∈ I, treated (ϑ = T ) or untreated (ϑ = U).

Remark 2.5 Let Πi(τ2, τ1), 0 ≤ τ1 ≤ τ2 < ∞, the evolutionary system generated by the linear operator
Ai(τ) := −Φi(τ) + ω(τ). It means that Πi is generated from the following evolutionary system

(∂t + ∂τ ) Ii(t, τ) = Ai(τ)Ii(t, τ). (2.8)

If, for example, the linear operator Ai is diagonal, we have

Ii(t, τ) =

{
e
∫ τ
0 Ai(η)dηIi(t− τ, 0) = Πi(τ, 0)Ii(t− τ, 0); t > τ

e
∫ τ
τ−t Ai(η)dηIi(0, τ − t) = Πi(τ, τ − t)Ii(0, τ − t); t < τ.

In such a configuration we explicitly have Πi(τ2, τ1) = e
∫ τ2
τ1

Ai(η)dη. However, obtaining an explicit expres-
sion for Πi may not always be straightforward or possible in general. A naive approach would be to solve
problem (2.8) as above, but it is well known that such an exponent formula does not give a solution to the
problem at hand.

In addition to the disease-free equilibrium –the DFE– E0 = (S0,0L1((0,∞),R2n)), with S0 = (Λi/µh)i∈I ,
which is always an equilibrium of Model (1.4)-(1.5), this model also exhibits an endemic equilibrium given
by the following result

Theorem 2.6 Let Assumptions 2.1 and 2.2 hold. If R0 > 1, then system (1.4)-(1.5) has a unique
endemic equilibrium E∗ = (S∗, I∗(τ)), such that ∀i ∈ I,

S∗
i =

S0
i

R0
and I∗i (τ) = λ∗S∗

i Πi(τ, 0) qi,

where λ∗ = µh(R0 − 1).

Therefore, the threshold dynamics of Model (1.4)-(1.5) is summarized as follows

Theorem 2.7 Let Assumptions 2.1 and 2.2 hold. Then,

(i) If R0 ≤ 1 or
∑

i∈I
∫∞
0 ⟨βi(τ), Ii0(τ)⟩ dτ = 0, then the disease-free equilibrium E0 = (S0, 0L1((0,∞),R2n))

t

of system (1.4)-(1.5) is globally asymptotically stable in the sens that

lim
t→∞

(
Si(t), I

T
i (t, ·), IUi (t, ·)

)
i∈I = E0,

where the above convergence holds for the topology of Rn × L1((0,∞),R2n).

(ii) If R0 > 1 and
∑

i∈I
∫∞
0 ⟨βi(τ), Ii0(τ)⟩ dτ > 0, then the endemic equilibrium E∗ of system (1.4)-(1.5)

is globally asymptotically stable, that is,

lim
t→∞

(
Si(t), I

T
i (t, ·), IUi (t, ·)

)
i∈I = E∗,

for the topology of Rn × L1((0,∞),R2n).
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3 Numerical illustrations

Here, we present a series of numerical simulations employing semi-explicit finite difference numerical
schemes. We refer to [13] for an example of a code repository within the context of the model proposed
here. We illustrate an example of typical dynamics that can be simulated by the nested model (1.1)-
(1.5). The model simultaneously captures the outbreak dynamics as well as the evolutionary dynamics of
the average resistance level within the host population. The within-host model parameters are basically
the same as in [16]. Intuitively there exist two threshold levels, assumed here 0 and 1 (called reference
”sensitive” and ”resistant” strains) such that, a strain with resistance level x can be classically referred to
as ”sensitive”, ”intermediate”, or ”resistant” depending on whether x < 0, 0 < x < 1, or x > 1. For sake
of simplicity, we assume that the host population is homogeneous in terms of immune system level, i.e.,
card(I) = 1. For all illustrative scenarios, we will have R0 > 1 such that the disease is persistent at the
between-host scale (Theorem 2.7). The probability density function at the within-host scale (J ≡ Jε) is

assumed of type (2.4). Specifically, we define Jε as a Gaussian distribution Jε(x) =
1

ε
√
2π
e−

1
2(

x
ε )

2

, where

ε > 0 represents a small parameter that signifies the mutation variance within the phenotypic space.

Within-host parameterization. The antimicrobial killing rate function k(·) is a decreasing function

with respect to the resistance level x such that, k(x) = k0

(
k1
k0

)x
, where k0 and k1 are the antimicro-

bial activity undergone by the reference sensitive and resistant strains. Moreover, knowing p0 and p1,
respectively the intrinsic growth rate of reference strains 0 and 1, a suitable expression for function of p

is p(x) = pm

[
1 +

(
pm−p0

p0

)(
p0
p1

· pm−p1
pm−p0

)x]−1
, where pm is the upper bound of the intrinsic growth rate p

and 0 < p1 < p0 < pm. The qualitative behaviour of functions k and p can be found in ([16], Figure 2).
We assume that the clearance rate of the bacteria cell due to the immune response, µ(·), is a constant
function given by µ(x) = µ. Furthermore, the average fitness cost-benefit ratio of resistance within a

bacterial population can be expressed as cb =
log(∆)
log(1+δ) . Here, ∆ = (pm−p1)/p1

(pm−p0)/p0
> 1 quantifies the relative

cost of resistance, while δ = k0−k1
k1

> 0 measures the fitness advantage of the reference resistant strain
(see [16] for details).

Between-host parameterization. Parameters βϑ
i and αϑ

i are defined using Holling type functional
responses introduce by (1.2). For all simulations, the threshold Bmin, introduced by (1.3), below which
the infection becomes undetectable such that the infected individuals is considered as recovered is fixed
as Bmin = 10−3B0, with B0 = B(0) the initial total bacteria load. The total bacteria load (Bϑ

i (τ)) and
the recovery probability (1− exp(−

∫ τ
0 γϑi (s)ds), τ -time post infection, are illustrated in Figure 2.

Furthermore, an untreated infected individual joins the treated compartment when her total bacteria
load is above a threshold (1 + θ)B0, with θ ≥ 0. Therefore, the influx rate from untreated to treated is
assumed to be a function with respect to time τ and is defined as follows

ωU
T (τ) =

{
0, if BU (τ) ≤ (1 + θ)B0,
1, if BU (τ) > (1 + θ)B0.

(3.1)

Similarly, we assume that an infected individual under treatment can drop down such a treatment
when the bacteria load reach the same range as before the treatment. Therefore, the influx rate from
treated to untreated is given by

ωT
U (τ) =

{
0, if BT (τ) ≤ B0,
1, if BT (τ) > B0.

(3.2)
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Figure 2: Illustration of the within- and between-host parameterization of infected individuals, either
untreated –U, under treatment failure –TF, or under treatment with success –TS. (A) The total bacteria
load Bϑ(τ). (B) The recovery probability 1− exp(−

∫ τ
0 γϑ(s)ds).

Initial conditions and model outputs. The initial bacterial population bϑ0 (x) is assumed to be
composed by a sensitive bacterial population with average resistance level x = 0. Hence, we set bϑ0 (x) =
m0×N (0, σ0, x), where N (0, σ0, x) stands for the normalized density function of the Gaussian distribution
at x with mean 0 and variance σ2

0. This means that the initial bacterial population is mostly composed
of the reference ”sensitive” strain. At the between-host scale, the initial condition of the epidemiological
model is taken such that the susceptible population starts close to its disease-free equilibrium. More
precisely, assuming an initial infection prevalence denoted as Prev = 10%, we derive the initial susceptible
population as S0 = (1−Prev)

Λ
µh

, along with the initial distribution of infectives which consists of IT0 (τ) = 0

and IU0 (τ) = Prev
Λ
µh

× L(τ) for all τ ≥ 0. Here, L(τ) = 10 ln(10) × 10−10τ , and it is important to note
that L symbolizes the arbitrary initial distribution of individuals who have been infected since time τ .
This distribution is scaled so that

∫
R L(τ)dτ = 1.

The average level of resistance at within-host scale (η(t)) of the host population at time t is such that

η(t) =

∫ ∞

0

(
x̄T (τ)

IT (t, τ)

I(t)
+ x̄U (τ)

IU (t, τ)

I(t)

)
dτ,

where x̄ϑ,s are the individual average level of resistance and I(t) =
∫∞
0

(
IT (t, τ) + IU (t, τ)

)
dτ.

Simulated scenarios. Two simulated scenarios are considered, the first when the treatment is success-
ful at the within-host level, and the second when the treatment failed at the within-host level. For all
our simulated scenarios, the infection is assumed here to be always successful for untreated individuals,
ie., the immune system alone is no more enough to control the infection such that maxx∈RNU

0 (x) > 1,
leading to the bacterial persistence for untreated infections.

Our first scenario is for the case where the treatment is successful at the within-host level, ie., the
basic reproduction number of treated individuals N T

0 is such that maxx∈RN T
0 (x) < 1 (Figure 3C). In such

a situation, the bacterial load is under control in the relatively short term for treated individuals (Figure
3A), while it remains persistent for untreated individuals (Figure 3B). At the between-host scale, the
treatment rate have a strong effect on the epidemic outbreak (Figure 3F,G,H). More precisely, increasing
the treatment rate qT in the host population strongly reduce the overall epidemic size (Figure 3F,G,H),
with R0 = 4.7815, 2.6750 and 0.5685, respectively. Furthermore, the average resistance level in the host
population rapidly reach an equilibrium for which the level of resistance is moderately high compared to
the initial resistance level of the host population (Figure 3E).

In the second scenario, the treatment is assumed unsuccessful at the within-host level, ie., the basic
reproduction number of treated individuals N T

0 is such that maxx∈RN T
0 (x) > 1 (Figure 4C). In such a
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situation, the bacterial load remains persistent for both treated and untreated infections (Figure 4A,B).
Indeed, while we can observe an apparent decreasing of the bacteria load for some period of time for
treated infections (Figure 4A), at the end, we have the re-emergence of the bacteria population at within-
host scale. Such a transient dynamics is explain by the fact that the initiation of treatment modifies the
fitness landscape by shifting the maximum point of the within-host basic reproduction number N T

0 to
the point x = x∗ > 0 (Figure 4C). In contrast to the treatment success scenario (Figure 3), increasing
the treatment rate qT in the host population have marginal effect in controlling the epidemic outbreak
(Figure 4F,G,H). In fact, with qT = 0.1, 0.5 and 0.9, the outbreak remains persistent with R0 = 10.9451,
9.5855 and 8.2259, respectively. Significantly, it is worth noting that although the average resistance level
in the host population continues to rise with the treatment rate qT at equilibrium (Figure 4E), there is a
substantial increase in the range of resistance levels compared to the initial resistance level. This stands
in contrast to the treatment success scenario (Figure 3E), where the range of resistance levels remained
relatively low. Additionally, in the treatment success scenario (Figure 3E), the average resistance level in
the host population quickly reaches equilibrium. However, in the treatment failure scenario (Figure 4E),
there is a comparatively longer transient period before the average resistance level in the host population
reaches equilibrium. Overall, during the transient regimen, there is an initial subsequent increase in the
average level of resistance to significantly higher levels, followed by a small decrease (Figure 4E). This
behavior is mostly attributed to the alteration of the fitness landscape caused by the treatment (Figure
4C).

4 Discussion

Optimizing the treatment rate in the host population is key to controlling both the epidemic
outbreak and the average level of resistance. Increasing the treatment rate in the host population
contributes to reducing the epidemic size at the between-host scale, although the effect is quite marginal in
the treatment failure scenario at the within-host scale (Figures 3F,G,H and 4F,G,H). This can be primarily
attributed to the fact that, even in cases of treatment failure, the within-host infection remains controlled
for a certain period (Figure 4A). However, the subsequent phase is characterized by an increase in bacterial
population density (Figure 4A). Conversely, raising the treatment rate within the host population leads to
an elevation in the average resistance level of that population, regardless of the treatment scenario at the
within-host scale (Figures 3E and 4E). However, this increase in the average resistance level is particularly
pronounced in the case of treatment failure (Figure 4E), in comparison to the case of treatment success
(Figure 3E). In the case of treatment success, the resistance level remains highly similar to that of the
initial bacterial population. Consequently, depending on the treatment regimen implemented within the
host population, it becomes essential and intriguing to determine an optimal treatment rate to effectively
manage both the outbreak and the average level of antimicrobial resistance.

The delay for treating infections can impact the epidemic outbreak as well as average level
of resistance. Assume the scenario where the treatment is successful at the within-host scale (Figure
3A) and at least 50% of infected individuals are under treatment (qT ≥ 0.5). Two configurations are
introduced. In the first configuration, untreated individuals begin treatment at a rate ωU

T (defined by
(3.1)) when their total bacterial load reaches a threshold value of 1.5 × B0, ie., θ = 0.5. In the second
configuration, untreated individuals start treatment at a rate ωU

T when their total bacterial load reaches
a threshold value of 2 × B0, ie., θ = 1. The case of θ = 0.5 indicates a situation where the delay before
initiating the treatment is very short. On the other hand, in the case of θ = 1, the delay before starting
the treatment is relatively more significant (Figure 2A). In general, the average resistance level in the
host population decreases as the delay before initiating treatment increases (Figure 5A, B). One possible
explanation is that untreated infected individuals do not significantly contribute to the increase in the
average resistance level within the host population. Nevertheless, although early treatment effectively
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controls the epidemic outbreak for both moderate and high treatment rates (Figure 5C,D) –with R0 =
0.3922 and 0.1120, respectively– delaying the treatment of infected individuals leads to an epidemic that
is out of control, except in cases where the treatment rate is exceptionally high (Figure 5E,F) –with
R0 = 2.6750 and 0.5685, respectively.

Nested models parameterization issue. Explicitly connecting the within- to and between-host scales
are crucial to gain a more realistic picture aiming to integrate into the same modelling framework the
epidemic dynamics and the evolutionary dynamics of antimicrobial resistance. However, such an approach
requires making assumptions about the parameters at the within-host scale that are equally unknown
as the parameters at the between-host scale and hence leading to uncertainty about the appropriate
parametrization [41]. Such uncertainty is amplified by our approach where the level of resistance is
considered a continuous quantitative trait, compared to the classical qualitative (or ”binary”) approaches
[16].

Time-scale separation hypothesis. Within the context of nesting within- and between-host scales,
for the modelling of the epidemiology and evolution of pathogens, some studies assumed that the epi-
demiological and evolutionary time scales are distinct, ie., the within-host dynamic is fast relative to the
between-host dynamic such that the within-host model remains at equilibrium, eg. [1, 2, 6, 9, 21, 44].
Although such an assumption on the within-host equilibrium dynamic’ might be appropriate for chronic
infections, it leads to a population-scale model that does not explicitly account for the individual time-
dependent infectiousness dynamics [24]. Furthermore, our illustrative examples (Figures 3,4) strongly
highlight the infectiousness’ time-dependency of infected individuals and show that the between-host
dynamic is not necessarily faster compared to the within-host dynamic.

5 Preliminaries and technical materials

We will go through details on the proof of our main results, namely Theorem 2.7. We will first discuss
the existence of a positive global solution of the nested model. Next, we will give details on the derivation
of the basic reproduction number of System (1.4)-(1.5) for individuals with an immune system of level i.
We will also derive the existence of a unique endemic equilibrium of System (1.4)-(1.5) when R0 > 1, as
well as the long-term persistence of the epidemic in such a case.

5.1 Existence of the semiflow

We establish the existence of a positive global solution of the system (2.5). We first formulate system (2.5)
in an abstract Cauchy problem. For that, we introduce the Banach space X = Rn×R2n×L1((0,∞),R2n),
endowed with the usual product norm ∥ · ∥X as well as its positive cone X+. Let A : D(A) ⊂ X → X be
the linear operator defined by D(A) = Rn × {0R2n} ×W 1,1((0,∞),R2n) and

A(S,0R2n , I) =
(
− µhS,−I(0),−∂τI+ (−diag(Φ(τ)) + diag(ω(τ))) I

)
. (5.1)

Let us introduce the non-linear map F : D(A) → X defined by

F (S,0R2n , I) = (Λ− S(t)λ(t), λ(t) diag(S(t))q,diag(ω(·))I) .

By identifying φ(t) together with (S(t),0L1 , I(t, ·))t and by setting φ0 = (S0,0L1 , I0(·))t the associated
initial condition, System (2.5) becomes dφ(t)

dt
= Aφ(t) + F (φ(t)),

φ(0) = φ0.
(5.2)
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Figure 3: Dynamics of the nested model when the therapeutic treatment is successful. (A,B) The
bacterial population (treated and untreated) with respect to time τ and resistance level x. (C) The basic
reproduction numbers at the within-host level N T

0 (x) and NU
0 (x), with and without drug respectively.

(D) The average resistance level x̄ϑ(τ), ϑ ∈ {T,U} of the infected host. (E) The average resistance level
η(t) of the host population. (F,G,H) The between-host dynamics with respect to the treatment rate
where R0 = 4.7815, 2.6750 and 0.5685, respectively. Parameter values are (σ0,m0, k0, p1/p0, k1/k0, µ) =
(0.05, 0.05, 20, 0.5, 0.3, 0.8598) and Λ = 5e4, µh = 5.2675e − 2, β0 = 1.2e − 3, α0 = 7.5e − 2, θ = 1,
r0 = 9e3.
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Figure 4: Dynamics of the nested model when the therapeutic treatment failed. (A,B) The bacte-
rial population (treated and untreated) with respect to time τ and resistance level x. (C) The ba-
sic reproduction numbers at the within-host level N T

0 (x) and NU
0 (x), with and without drug respec-

tively. (D) The average resistance level x̄ϑ(τ), ϑ ∈ {T,U} of the infected host. (E) The aver-
age resistance level η(t) of the host population. (F,G,H) The between-host dynamics with respect
to the treatment rate where R0 = 10.9451, 9.5855 and 8.2259, respectively. Parameter values are
(σ0,m0, k0, p1/p0, k1/k0, µ) = (0.05, 0.05, 3, 0.5, 0.01, 0.8598) and Λ = 5e4, µh = 5.2675e−2, β0 = 1.2e−3,
α0 = 7.5e− 2, θ = 1, r0 = 9e3.
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Figure 5: The effect of delay for treating infections on the epidemic outbreak and the average level of
resistance when the therapeutic treatment is successful. Line 1. The treatment rate qT = 0.5. (A)
The average resistance level η of the host population for θ ∈ {0.5, 1}. (C,E) The between-host dynamics
for θ = 0.5 and 1, where R0 = 0.3922 and 2.6750 respectively. Line 2. As in line 1 for qT = 0.9
where R0 = 0.1120 and 0.5685 respectively. Other parameter values are (σ0,m0, k0, p1/p0, k1/k0, µ) =
(0.05, 0.05, 20, 0.5, 0.3, 0.8598) and Λ = 5e4, µh = 5.2675e− 2, β0 = 1.2e− 3, α0 = 7.5e− 2, r0 = 9e3.

By setting X0 = D(A) and X0+ = X0 ∩X+, the positivity and boundedness of the solutions of System
(2.5) are provided by the following result.

Theorem 5.1 There exists a unique strongly continuous semiflow {Ψ(t, ·) : X0 → X0}t≥0 such that, for
each φ0 ∈ X0+, the map φ ∈ C ([0,∞),X0+) defined by φ = Ψ(·,φ0) is a mild solution of (5.2). That
is,
∫ t
0 φ(s)ds ∈ D(A) and φ(t) = φ0 + A

∫ t
0 φ(s)ds +

∫ t
0 F (φ(s)) ds for all t ≥ 0. Moreover, {Ψ(t, ·)}t

satisfies the following properties:

1. Let Ψ(t,φ0) = (S(t),0R2n , I(t, ·))t, then the following Volterra formulation holds true for all i ∈ I

Ii(t, τ) =


Πi(τ, τ − t) Ii0(τ − t), if t ≤ τ,

λ(t− τ) Si(t− τ) Πi(τ, 0) qi, if t > τ,
(5.3)

coupled with the Si(t) equation of (2.5), and where Πi(τ2, τ1), 0 ≤ τ1 ≤ τ2 < ∞, is the evolutionary
system generated by the linear operator [−Φi(τ) + ω(τ)].

2. For all φ0 ∈ X0+, and for all t ≥ 0, one has∑
i∈I

(
Si(t) +

∫ ∞

0

(
ITi (t, τ) + IUi (t, τ)

)
dτ

)
≤ max

{
Λ

µh
, N0

}
, (5.4)

where Λ =
∑

i∈I Λi and N0 =
∑

i∈I

(
Si0 +

∫∞
0

(
ITi0(τ) + IUi0(τ)

)
dτ
)
. Furthermore, the subset of

the phase space{
(S, I) ∈ Rn × L1((0,∞),R2n)

∣∣∣ ∑
i∈I

(
Si(t) +

∫ ∞

0

(
ITi (t, τ) + IUi (t, τ)

)
dτ

)
≤ Λ

µh

}
,

is positively invariant and attracts all nonnegative solutions.
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3. The semiflow {Ψ(t, ·)}t generated by (2.5) is bounded dissipative, that is, there exists a bounded set
B ⊂ X0 such that for any bounded set U ⊂ X0, we can find σ = σ(U,B) ≥ 0 such that Ψ(t, U) ⊂ B
for t ≥ σ.

Proof. It is easy to check that the operator A is a Hille-Yosida operator. Then standard results apply
to provide the existence and uniqueness of a mild solution to (2.5) (we refer to [31, 40] for more details).
The Volterra formulation is also standard and we refer to [29, 43] for more details.

The Si equation of (2.5) gives Ṡi(t) ≤ Λi − µhSi(t), that is

Si(t) ≤ max

{
Λi

µh
, Si0

}
.

Next, for estimate (5.4), let φ0 ∈ X0+, then adding up the Si,s equation together with the ITi ,s and
IUi ,s equations of (1.5) yields for all i ∈ I

d

dt

(
Si(t) +

∫
R

∫ ∞

0

(
ITi (t, τ) + IUi (t, τ)

)
dτ

)
≤ Λi − µhSi(t)− µh

∫
R

∫ ∞

0

(
ITi (t, τ) + IUi (t, τ)

)
dτ.

It comes

lim sup
t→∞

∑
i∈I

(
Si(t) +

∫
R

∫ ∞

0
(ITi (t, τ) + IUi (t, τ))dτ

)
≤ Λ

µh
,

with Λ =
∑

i∈I Λi. From where one deduces estimate (5.4) and which ends item 2. of the theorem.
The bounded dissipativity of the semiflow {Ψ(t, ·)}t is a direct consequence of estimate 2.
The following result is straightforward.

Lemma 5.2 Let 0 ≤ τ1 ≤ τ2 < ∞. By setting Πi(τ2, τ1) =
(
Πk

i,j(τ2, τ1)
)
k,j

, with k, j ∈ {T,U}, we have

γ0e
−(µh+α0)(τ2−τ1) ≤ Πk

i,j(τ2, τ1) ≤ γ1e
−µh(τ2−τ1), (5.5)

where γ0, γ1 > 0 and α0 = maxi(supα
T
i , supα

U
i ).

Proof. Let 0 ≤ τ1 ≤ τ2 < ∞. Note that, for all τ ≥ 0, we have −ω1 ≤ ωT
U (τ) ≤ ω1 and −ω2 ≤ ωU

T (τ) ≤ ω2,
with ωi > 0. Then, for all τ ≥ 0,(

−ω1 − α0 − µh ω2

ω1 −ω2 − α0 − µh

)
≤ −Φi(τ) + ω(τ) ≤

(
−ω1 − µh ω2

ω1 −ω2 − µh

)
.

Therefore,
e−(µh+α0)(τ2−τ1)Γ(τ2, τ1) ≤ Πi(τ2, τ1) ≤ e−µh(τ2−τ1)Γ(τ2, τ1),

where

Γ(τ2, τ1) =


ω1e

−(τ2−τ1)(ω1+ω2) + ω2

ω1 + ω2

ω2

ω1 + ω2

(
1− e−(τ2−τ1)(ω1+ω2)

)
ω1

ω1 + ω2

(
1− e−(τ2−τ1)(ω1+ω2)

) ω2e
−(τ2−τ1)(ω1+ω1) + ω2

ω1 + ω2

 .

Note that

Γ ≤ Γ(τ2, τ1) ≤ Γ, where Γ =

(
1 ω2

ω1+ω2
ω1

ω1+ω2
1

)
and Γ =

( ω2
ω1+ω2

0

0 ω1
ω1+ω2

)
.

Thus,
e−(µh+α0)(τ2−τ1)Γ ≤ Πi(τ2, τ1) ≤ e−µh(τ2−τ1)Γ,

from where inequality (5.5) follows, and this ends the proof of the lemma.
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5.2 The basic reproduction number

In the absence of infection, that is I(t, τ) = 0L1((0,∞),R2n), the system (2.5) has a disease-free equilibrium

(DFE) given by E0 = (S0,0L1((0,∞),R2n)), with S0 = (Λi/µh)i∈I . Let Θi(t) be the number of new infections
in the host population of group i at time t. Then in an initially infection-free population, by (2.5), we
have

Θi(t) = λ(t) S0
i =

(∑
k∈I

∫ ∞

0
⟨βk(τ), Ik(t, τ)⟩ dτ

)
S0
i ,

where ⟨·; ·⟩ is the usual scalar product.
Linearizing the Volterra formulation (5.3) at the DFE, it comes

Ik(t, τ) =


Πk(τ, τ − t) Ik0(τ − t), if t ≤ τ,

λ(t− τ)S0
k Πk(τ, 0)qk, if t > τ.

From where,

Θi(t) =S0
i

∑
k∈I

∫ t

0
λ(t− τ)S0

k ⟨βk(τ),Πk(τ, 0)qk⟩ dτ + fi(t), ∀t ≥ 0,

=S0
i

∑
k∈I

∫ t

0
⟨βk(τ),Πk(τ, 0)qk⟩Θk(t− τ)dτ + fi(t), ∀t ≥ 0,

where fi(t) is the number of new infections produced by the initial population. Therefore, the basic
reproduction number Ri

0 of individuals of group i is calculated as

Ri
0 = S0

i

∑
k∈I

∫ ∞

0
⟨βk(τ),Πk(τ, 0)qk⟩ dτ = S0

i

∑
k∈I

χk,

with

χk =

∫ ∞

0
⟨βk(τ),Πk(τ, 0)qk⟩ dτ.

The term χk(τ) = ⟨βk(τ),Πk(τ, 0)qk⟩ quantifies the infectiousness at τ -time post infection of the whole
infected individuals of group k ∈ I.

Next, let Θ(t) = (Θi(t))i∈I , the number of new infections in all groups at time t and, f(t) = (fi(t))i∈I
the number of new infections produced by the initial population. We have

Θ(t) =

(
S0
i

∑
k∈I

∫ t

0
χk(τ)Θk(t− τ)dτ

)
i∈I

+ f(t)

=

(∫ t

0

(
S0
i χk(τ)

)
i,k∈I Θ(t− τ)dτ

)
+ f(t), ∀t > 0,

Due to the above formulation, the basic reproduction number R0 of all individuals is calculated as the
spectral radius of the matrix (ai,k)i,k∈I , where

ai,k = S0
i

∫ ∞

0
χk(τ)dτ = S0

i χk.

Some calculations give

R0 =
∑
k∈I

S0
k

∫ ∞

0
χk(τ)dτ =

∑
k∈I

S0
k χk.
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A more explicit expression of the infectiousness χk is difficult to obtain in general. However, one
can go further steps in some particular configurations of the treatment status transition rates ω(τ) =(

0 ωU
T (τ)

ωT
U (τ) 0

)
. Indeed, assume that (2.7) holds. In such a configuration, we have

Πk(τ, 0) =


Πk0(τ, 0), if 0 < τ < τ0,
Πk0(τ0, 0)Πk1(τ, τ0), if τ0 < τ < τ0 + τ1,
O (e−ckτ ) , if τ > τ0 + τ1,

with ck = µh + infτ α
U
k (τ) + infτ α

T
k (τ), and

Πk0(τ, 0) = e−µhτdiag
(
e−

∫ τ
0 αT

k (σ)dσ, e−
∫ τ
0 αU

k (σ)dσ
)
,

Πk1(τ, 0) = diag

(
ω̄1

∫ τ

0
e−µh(τ−η)e−

∫ τ
η αT

k (σ)dσe−(ω̄1+µh)ηe−
∫ η
0 αU

k (σ)dσdη, e−(ω̄1+µh)τe−
∫ τ
0 αU

k (σ)dσ

)
.

From where, by setting

Γk,ϑ
0 (τ) = e−µhτe−

∫ τ
0 αϑ

k (σ)dσ, ϑ ∈ {T,U},
Γk,U
1 (τ) = e−(ω̄1+µh)τe−

∫ τ
0 αU

k (σ)dσ,

Γk,T
1 (τ) = e−µhτe−

∫ τ
0 αT

k (σ)dσ,

it comes
χk = qTk χ

T
k + qUk χ

U
k +O

(
e−ck(τ0+τ1)

)
,

where

χT
k =

∫ τ0+τ1

0
βT
k (τ)Γ

k,T
0 (τ)dτ + Γk,T

0 (τ0)ω̄1

∫ τ0+τ1

τ0

βT
k (τ)

∫ τ

τ0

Γk,T
1 (τ)

Γk,T
1 (η)

Γk,U
1 (η)dηdτ,

χU
k =

∫ τ0

0
βU
k (τ)Γ

k,U
0 (τ)dτ + Γk,U

0 (τ0)

∫ τ0+τ1

τ0

βU
k (τ)

Γk,U
1 (τ)

Γk,U
1 (τ0)

dτ.

5.3 Proof of Theorem 2.6

The equilibrium of system (2.5) is obtained by solving the following system for all i ∈ I
0 = Λi − S∗

i λ
∗ − µhS

∗
i ,

I∗i (τ = 0) = λ∗S∗
i qi,

∂τI
∗
i (τ) = (−eω(τ)−αi(τ)− µh + ω(τ))I∗i (τ),

(5.6)

where

λ∗ =
∑
i∈I

∫ ∞

0
⟨βi(τ) , I

∗
i (τ)⟩dτ. (5.7)

Solving (5.6) for S∗
i and I∗i yields

S∗
i =

Λi

µh + λ∗ and I∗i (τ) = λ∗ S∗
i Πi(τ, 0) qi. (5.8)

Replacing (5.8) in (5.7) leads to
(
1 + µ−1

h λ∗)λ∗ = R0λ
∗ and since λ∗ > 0, we have λ∗ = µh(R0 − 1).

It follows that system (2.5) has a unique positive endemic equilibrium when R0 > 1, such that ∀i ∈ I,

S∗
i =

S0
i

R0
and I∗i (τ) = λ∗S∗

i Πi(τ, 0) qi,

where λ∗ = µh(R0 − 1).
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5.4 Technical materials

Before proceed to the proof Theorem 2.7, we introduce some technical materials including the existence
of a global compact attractor for the solution semiflow of Model (2.5), the spectral properties of the
linearized semiflow of Model (2.5) at any given equilibrium, and the uniform persistence of Model (2.5)
when R0 > 1.

5.4.1 Global compact attractor

To derive the global properties of the solution dynamics, it is necessary to show that the semiflow generated
by system (2.5) has a global compact attractor. Denote by

Y = Rn × L1((0,∞),R2n) and Y+ = Rn
+ × L1

+((0,∞),R2n),

and endow the set Y with the norm

∥(S, I(·))∥ =
∑
i∈I

(
|Si|+

∫ ∞

0

(
|ITi (t, τ)|+ |IUi (t, τ)|

)
dτ

)
.

For any initial condition φ0 ∈ Y, the solution semiflow of system (2.5) in Y+ is denoted by Ψ∗(t,φ0) =
(S(t), I(t, ·))t. From the Volterra formulation (5.3), we rewrite system (2.5) as follows for all i ∈ I :

Ṡi(t) = Λi − Si(t)λ(t)− µhSi(t),

ITi (t, τ) =

{
ΠT

i,T (τ, τ − t) ITi0(τ − t) + ΠT
i,U (τ, τ − t) IUi0(τ − t), if t ≤ τ,

ΠT
i (τ, 0)λ(t− τ) Si(t− τ), if t > τ,

(5.9)

IUi (t, τ) =

{
ΠU

i,T (τ, τ − t) ITi0(τ − t) + ΠU
i,U (τ, τ − t) IUi0(τ − t), if t ≤ τ,

ΠU
i (τ, 0)λ(t− τ) Si(t− τ), if t > τ,

(5.10)

where

ΠT
i (τ, 0) = ΠT

i,T (τ, 0)q
T
i +ΠT

i,U (τ, 0)q
U
i and ΠU

i (τ, 0) = ΠU
i,T (τ, 0)q

T
i +ΠU

i,U (τ, 0)q
U
i .

We need to prove the following claim.

Claim 5.3 Let Assumption 2.2 be satisfied. Then, function λ(·) is Lipschitz continuous on R+.

Proof of Claim 5.3. Let C0 ≥ max
{

Λ
µh

, ∥φ0∥
}
, ∥βi∥∞ = max

{
∥βT

i ∥∞, ∥βU
i ∥∞

}
and ∥β∥∞ = maxi∈I ∥βi∥∞.

Then, |λ(t)| ≤ C0∥β∥∞. Let t > 0 and h > 0. It comes that

λ(t+ h)− λ(t) =
∑
i∈I

∫ h

0
⟨βi(τ), Ii(t+ h, τ)⟩dτ +

∑
i∈I

∫ ∞

h
⟨βi(τ), Ii(t+ h, τ)⟩dτ −

∑
i∈I

∫ ∞

0
⟨βi(τ), Ii(t, τ)⟩dτ

=
∑
i∈I

∫ h

0
⟨βi(τ),Πi(τ, 0)Ii(t+ h− τ, 0)⟩dτ +

∑
i∈I

∫ ∞

h
⟨βi(τ), Ii(t+ h, τ)⟩ dτ

−
∑
i∈I

∫ ∞

0
⟨βi(τ), Ii(t, τ)⟩dτ

≤ C2
0∥β∥2∞h+

∑
i∈I

∫ ∞

0
⟨βi(τ + h), Ii(t+ h, τ + h)⟩dτ −

∑
i∈I

∫ ∞

0
⟨βi(τ), Ii(t, τ)⟩dτ.
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Recalling (5.3) and combining the integrals, we obtain

λ(t+ h)− λ(t) ≤ C2
0∥β∥2∞h+

∑
i∈I

∫ ∞

0
⟨βi(τ + h), (Πi(τ + h, τ)− I)Ii(t, τ)⟩ dτ

+
∑
i∈I

∫ ∞

0
⟨βi(τ + h)− βi(τ), Ii(t, τ)⟩ dτ

≤ C2
0∥β∥2∞h+

∑
i∈I

∫ ∞

0

〈
βi(τ + h), (γ1e

−µhh − 1)Ii(t, τ)
〉
dτ

+
∑
i∈I

∫ ∞

0
⟨βi(τ + h)− βi(τ), Ii(t, τ)⟩ dτ.

We have |γ1e−µhh − 1| ≤ |e−µhh − 1| ≤ µhh. Using the Lipschitzianity of βϑ
i , we find a positive constant

Cβ such that

|λ(t+ h)− λ(t)| ≤ C2
0∥β∥2∞h+ C0∥β∥∞µhh+ CβC0h ≤ Cλh,

where Cλ = C2
0∥β∥2∞ + C0∥β∥∞µh + CβC0.

Next, we will show that system (2.5) has a global attractor. By using the similar method as in [8, 34],
we can state the following result.

Lemma 5.4 There exists A0, a compact subset of Y+, which is a global attractor for the solution semiflow
of system (2.5). Moreover, A0 is invariant under the solution semiflow, that is

Ψ∗(t,φ0) ⊆ A0, for every φ0 ∈ A0, ∀t ≥ 0.

Proof. We show that Ψ∗ satisfies the assumptions of Lemma 3.2.3 and Theorem 3.4.6 in [22]. To
this end, we split the solution semiflow into two parts. For any initial condition φ0 ∈ Y+, we let

Ψ∗(t,φ0) = Ψ̂
∗
(t,φ0) + Ψ̃

∗
(t,φ0), where

Ψ̂
∗
(t,φ0) =

{
(0Rn ,0L1), t > τ,
(0Rn , I(t, τ)), t ≤ τ,

and Ψ̃
∗
(t,φ0) =

{
(S(t), I(t, τ)), t > τ,
(S(t),0L1), t ≤ τ.

In such a way, we need to prove the following claim :

Claim 5.5 (1) Ψ̂
∗
(t,φ0) → 0 as t → ∞ for every φ0 in Y.

(2) For a fixed t and any bounded set B in Y, the set {Ψ̃
∗
(t,φ0) : φ0 ∈ B} is precompact.

Proof of Claim 5.5. Now, we show that the first claim holds.
From (5.9) and Lemma 5.2, we have

∥Ψ̂
∗
(t,φ0)∥ =

∑
i∈I

∫ ∞

0

(
|ITi (t, τ)|+ |IUi (t, τ)|

)
dτ

=
∑
i∈I

∫ ∞

0
[ΠT

i,T (τ, τ − t) + ΠU
i,T (τ, τ − t)]ITi0(τ − t)dτ

+
∑
i∈I

∫
R

∫ ∞

0
[ΠT

i,U (τ, τ − t) + ΠU
i,U (τ, τ − t)]IUi0(τ − t)dτ

≤ 2γ1e
−µht∥φ0∥,

Note that for any bounded φ0, 2γ1e
−µht∥φ0∥ → 0 as t → ∞. This completes the first claim.
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To show that the second claim holds, let B ⊂ Y be a bounded subset such that Ψ∗(t, ·)B ⊂ B. Choose
C0 > 0 such that ∥φ0∥ ≤ C0 for all φ0 ∈ B. From Theorem 5.1 Item 2, ∪φ0∈B{S(t)} is bounded in Rn

and then is precompact in Rn. Hence, to show the compactness, it suffices to show that the set Ψ̃
∗
(t,φ0)B

is precompact for

Ĩ(t, τ) =

{
I(t, τ), t > τ,
0L1 , t ≤ τ.

(5.11)

By Frechet-Kolmogorov theorem (see Theorem B.2 in [38]), it is sufficient to verify the following conditions
:

(i) sup
φ∈B

∑
i∈I
∫∞
0

(
ĨTi (t, τ) + ĨUi (t, τ)

)
dτ < ∞,

(ii) lim
h→∞

∑
i∈I
∫∞
h

(
|ĨTi (t, τ)|+ |ĨUi (t, τ)|

)
dτ = 0 uniformly with respect to φ0 ∈ B.

(iii) lim
h→0

∑
i∈I
∫∞
0

(
|ĨTi (t, τ)− ĨTi (t, τ + h)|+ |ĨUi (t, τ)− ĨUi (t, τ + h)|

)
dτ = 0 uniformly with respect to

φ0 ∈ B.

(iv) lim
h→0

∑
i∈I
∫ h
0

(
|ĨTi (t, τ)|+ |ĨUi (t, τ)|

)
dτ = 0 uniformly with respect to φ0 ∈ B.

By (5.11) we have for all i ∈ I

Ĩi(t, τ) =

{
λ(t− τ)Si(t− τ)Πi(τ, 0)qi, t > τ,
0L1 , t ≤ τ.

It follows that above conditions (i), (ii) and (iv) are satisfied.
Now, we show that condition (iii) holds. We have for i ∈ I and h ≤ t,∫ ∞

0
|ĨTi (t, τ)− ĨTi (t, τ + h)|dτ

=

∫ t−h

0

∣∣∣ΠT
i (τ, 0)λ(t− τ)Si(t− τ)−ΠT

i (τ + h, 0)λ(t− τ − h)Si(t− τ − h)
∣∣∣dτ

+

∫ t

t−h

∣∣∣ΠT
i (τ, 0)λ(t− τ)Si(t− τ)

∣∣∣dτ
:= C1(t, h) + C2(t, h).

By Lemma 5.2, and the boundedness of the semiflow, we can find a positice constant C0 such that

C2(t, h) =

∫ t

t−h

∣∣∣ΠT
i (τ, 0)λ(t− τ)Si(t− τ)

∣∣∣dτ ≤ C2
0∥β∥∞γ1h → 0 as h → 0. (5.12)
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Again by Lemma 5.2, we have

C1(t, h) ≤
∫ t−h

0
ΠT

i (τ, 0)Si(t− τ)
∣∣∣λ(t− τ)− λ(t− τ − h)

∣∣∣dτ
+

∫ t−h

0
λ(t− τ − h)

∣∣∣ΠT
i (τ, 0)Si(t− τ)−ΠT

i (τ + h, 0)Si(t− τ − h)
∣∣∣dτ

≤
∫ t−h

0
ΠT

i (τ, 0)Si(t− τ)
∣∣∣λ(t− τ)− λ(t− τ − h)

∣∣∣dτ
+

∫ t−h

0
λ(t− τ − h)Si(t− τ)

∣∣∣ΠT
i (τ, 0)−ΠT

i (τ + h, 0)
∣∣∣dτ

+

∫ t−h

0
λ(t− τ − h)ΠT

i (τ + h, 0)
∣∣∣Si(t− τ)− Si(t− τ − h)

∣∣∣dτ
≤ C2

0∥β∥∞
∫ ∞

0

∣∣∣ΠT
i (τ, 0)−ΠT

i (τ + h, 0)
∣∣∣dτ + γ1C0

∫ t−h

0
e−µhτ

∣∣∣λ(t− τ)− λ(t− τ − h)
∣∣∣dτ

+γ1C0∥β∥∞
∫ t−h

0
e−µhτ

∣∣∣Si(t− τ)− Si(t− τ − h)
∣∣∣dτ

≤ C2
0∥β∥∞

∣∣∂τΠT
i (τ, 0)

∣∣ |h|+ (γ1C0Cλ + γ1C0CSi∥β∥∞
)
h

∫ t−h

0
e−µhτdτ

≤ C2
0∥β∥∞

∣∣∂τΠT
i (τ, 0)

∣∣ |h|+ γ1C0

µh

(
Cλ + CSi∥β∥∞

)
h → 0 as h → 0, (5.13)

with CSi = Λi+Ci0(C0∥β∥∞+µh). By (5.12) and (5.13) one concludes that the criterion (iii) holds, and
then the second claim holds.

This completes the proof of the lemma.

5.4.2 Spectral properties of the linearized semiflow

The next result is concerned with spectral properties of the linearized semiflow Ψ of Model (2.5) at a
given equilibrium point φ̃ ∈ X0+. The associated linearized system (2.5) at the point φ̃ reads as

dφ(t)

dt
= (A+G[φ̃])φ(t),

where A is the linear operator defined in (5.1) while G[φ̃] ∈ L(X0,X ) is the bounded linear operator
defined by :

G[φ̃]φ =

 −Sλ̃− S̃λ

λ̃diag(S)q+ λdiag(S̃)q
0L1((0,∞),R2n)

 ,

where λ̃ =
∑

i

∫∞
0

〈
βi(τ), Ĩi(τ)

〉
dτ and λ =

∑
i

∫∞
0 ⟨βi(τ), Ii(τ)⟩ dτ . We then have the following lemma.

Lemma 5.6 Let us set Ω = {ν ∈ C : Re(ν) > −µh}. Then, the spectrum σ(A + G[φ̃]) ∩ Ω ̸= ∅ only
consists of the point spectrum and one has

σ(A+G[φ̃]) ∩ Ω = {ν ∈ Ω : ∆(ν, φ̃) = 0},

where function ∆(·, φ̃) : Ω −→ C is defined by

∆(ν, φ̃) = 1−Rν [φ̃] +
Rν [φ̃] λ̃

ν + µh + λ̃
, (5.14)

with Rν [φ̃] =
∑

i∈I S̃i

∫∞
0 ⟨βi(τ),Πi(τ, 0) qi⟩ e−ντdτ.
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Proof.
Let us denote by A0 : D(A0) ⊂ X0 → X0 the part of A in X0 = D(A), which is defined by

A0φ = Aφ, ∀φ ∈ D(A0) = {φ ∈ D(A) : Aφ ∈ D(A)}.

Then, it is the infinitesimal generator of a C0-semigroup on X0 denoted by {TA0(t)}t≥0. Let φ =
(S,0R2n , I(·))t. We find that

TA0(t)φ(τ) =


(
e−µhtS,0R2n ,Π(τ, τ − t) I(τ − t)

)t
, ∀t ≤ τ,(

e−µhtS,0R2n ,0L1((0,∞),R2n)

)t
, ∀t > τ.

Then, for t ≥ τ0, we have ∥TA0(t − τ0)φ∥X ≤ e−µh(t−τ0)∥φ∥X ,∀t ≥ τ0. We deduce that the growth

rate ω0(A0) = lim
t→+∞

ln

(
∥TA0

(t)∥L(X )

)
t of this semigroup satisfies ω0(A0) ≤ −µh. Since operator Gi[φ̃] is

compact, the results in [3] or [17] apply and provided that the essential growth rate of
{
T(A+G[φ̃])0(t)

}
t≥0

-

the C0-semigroup generated by the part of (A+G[φ̃]) in X0 satisfies

ω0,ess((A+G[φ̃])0) ≤ ω0,ess(A0) < ω0(A0) ≤ −µh.

By results in [19, 42], the latter inequality ensures that Ω ∩ σ(A+G[φ̃]) ̸= ∅, and it is only composed of
point spectrum of (A+G[φ̃]).

It remains to derive the characteristic equation. Let ν ∈ ρ(A + G[φ̃]), where ρ(·) stands for the
resolvent. For φ̂ = (Ŝ, û, Î(·))t ∈ X and φ = (S, 0L1 , I(·))t ∈ D(A), we have (νI −A−G[φ̃])φ = φ̂, that
is (νI −A)φ−G[φ̃]φ = φ̂, and from where

φ = (νI −A)−1φ̂+ (νI −A)−1G[φ̃]φ. (5.15)

Since

(νI −A)−1φ̂ =

((
Ŝi

ν + µh

)
i∈I

, 0R2n ,

(
e−ν·Πi(·, 0)ûi +

∫ ·

0
Πi(·, s)̂Ii(s)e−ν(·−s)ds

)
i∈I

)t

,

we find that

(νI −A)−1G[φ̃]φ =


(
−Siλ̃− S̃iλ

ν + µh

)
i∈I

0R2n(
e−ν·Πi(·, 0)

(
Siλ̃ qi + S̃iλ qi

))
i∈I

 .

Thus, for all i ∈ I, equality (5.15) rewrites as(
1 +

λ̃

ν + µh

)
Si +

S̃iλ

ν + µh
=

Ŝi

ν + µh
,


Si =

Ŝi

ν + µh + λ̃
− S̃iλ

ν + µh + λ̃

Ii(τ) = e−ντΠi(τ, 0)
(
Siλ̃qi + S̃iλqi

)
+ e−ντΠi(τ, 0)ûi +

∫ τ
0 Πi(τ, s)̂Ii(s)e

−ν(τ−s)ds.

(5.16)
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Substituting (5.16) into expression for λ, it comes(
1−Rν [φ̃] +

Rν [φ̃] λ̃

ν + µh + λ̃

)
λ =

Rν [φ̂] λ̃

ν + µh + λ̃
+
∑
i∈I

∫ ∞

0
⟨βi(τ), ŷi(τ)⟩ dτ, (5.17)

whereRν [φ̃] =
∑
i∈I

S̃i

∫ ∞

0
⟨βi(τ),Πi(τ, 0)qi⟩ e−ντ dτ and ŷi(τ) = e−ντΠi(τ, 0)ûi+

∫ τ
0 Πi(τ, s)̂Ii(s)e

−ν(τ−s)ds.

Therefore, we can isolate λ in system (5.17) if and only if ∆(ν, φ̃) = 1−Rν [φ̃] +
Rν [φ̃] λ̃

ν + µh + λ̃
̸= 0.

5.5 Uniform persistence

Our next technical material concerns the uniform persistence of Model (2.5) when R0 > 1 by using the
method developed in Theorem 5.2 in [38]. For the invariant sets of uniform persistence, we introduce

M = Rn × {0R2n} ×MI , and ∂M = X0+ \M,

where

MI =

{
I ∈ L1

+((0,∞),R2n) :
∑
i∈I

∫ ∞

0
⟨βi(τ), Ii(τ)⟩dτ > 0

}
.

For the unique solution φ = (S,0R2n , I) of system (2.5) associated to the initial condition φ0 =
(S0,0R2n , I0(·)) ∈ M, we define Ψ(t,φ0) = (S(t),0R2n , I(t, ·)) the semiflow of Model (2.5) passing through
φ0. Next, we first claim that

Claim 5.7 The subsets M and ∂M are positively invariant with respect to the semiflow Ψ(t, ·) generated
by system (2.5). Furthermore, lim

t→∞
Ψ(t,φ0) = (S0,0R2n ,0L1

+((0,∞),R2n))
T for each φ0 ∈ ∂M.

Proof of Claim 5.7. Let φ0 = (S0,0R2n , I0(·))T ∈ M be given and Ψ(t,φ0) = (S,0R2n , I(t, ·))T , the orbit
passing through φ0. Since φ0 ∈ M, then λ(0) > 0. Through a direct calculation, we have

∂tλ(t) =
∑
i∈I

∫ ∞

0
⟨βi(τ), ∂tIi(t, τ)⟩ dτ,

≥ −(α0 + ω0 + µh)λ(t),

where α0 = maxi∈I{supαT
i , supα

U
i } and ω0 = max{ωU

T , ω
T
U}. Thus, one obtains that

λ(t) ≥ e−(α0+ω0+µh)λ(0) > 0,

for t ≥ 0. This complete the fact that M is positively invariant.
Now, let φ0 ∈ ∂M. Since for all i ∈ I, Si(t) ≤ S0

i as t is large enough, the comparison principle
implies that

Ii(t, τ) ≤ Ĩi(t, τ), ∀i ∈ I, (5.18)

where Ĩi(t, τ) is the solution of the following system
Ĩi(t, τ = 0) = λ̃(t)S0

i qi,

Ĩi(0, τ) = Ii0(τ),

(∂t + ∂τ ) Ĩi(t, τ) = (−eω(τ)−αi(τ)− µh + ω(τ))̃Ii(t, τ).

(5.19)

By the Volterra formulation, we have from (5.19) that

Ĩi(t, τ) =

{
Πi(τ, τ − t) Ii0(τ − t), if t ≤ τ,

Πi(τ, 0) qi S
0
i λ̃(t− τ), if t > τ,
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where λ̃(t) satisfies

λ̃(t) =
∑
k∈I

S0
k

∫ t

0
⟨βk(τ),Πk(τ, 0)qk⟩ λ̃(t− τ)dτ

+
∑
k∈I

∫ ∞

t
⟨βk(τ),Πk(τ, τ − t)Ik0(τ − t)⟩ dτ.

The initial condition with
∑
k∈I

∫ ∞

0
⟨βk(τ), Ik0(τ)⟩dτ = 0, leads to

λ̃(t) =
∑
k∈I

S0
k

∫ t

0
⟨βk(τ),Πk(τ, 0)qk⟩ λ̃(t− τ)dτ.

Since λ̃(0) = 0, we have λ̃(t) = 0 for all t ≥ 0, and then Ĩi(t, ·) = 0 for all i ∈ I and t ≥ 0. The comparison
in (5.18) implies that Ii(t, ·) = 0 for all i ∈ I and t ≥ 0 and then ∂M is positively invariant under the
semiflow Ψ(t, ·). In addition, it is clear for the solution remaining in ∂M, we have for all i ∈ I, Si → S0

i .
Hence, lim

t→∞
Ψ(t,φ0) = (S0,0R2n ,0L1

+((0,∞),R2n))
T for each φ0 ∈ ∂M. This ends the proof of Claim 5.7.

Finally, we end this technical material section by establishing the uniform persistence of system (2.5).

Theorem 5.8 The semiflow {Ψ(t, ·)}t≥0 generated by system (2.5) is uniformly persistent in M with
respect to (M, ∂M), that is, there exists a constant η > 0 such that for each φ0 ∈ M,

lim inf
t→∞

S(t) ≥ η,

and
lim inf
t→∞

∥I(t, ·)∥L1
+
≥ η whenever R0 > 1.

Furthermore, there exists compact global attractor A1 in M for the semiflow {Ψ(t, ·)}t≥0.

Proof. In the following, we will prove that WS({E0}) ∩M = ∅, where

WS({E0}) = {φ0 ∈ X0+ : lim
t→+∞

Ψ(t,φ0) = E0}.

Since from Claim 5.7 the disease-free equilibrium E0 is globally asymptotically stable in ∂M, we need
only to study the behavior of the solution starting in M in some neighborhood of E0. To this end, it is
sufficient to show that there exists σ > 0 satisfying for each φ ∈ {v ∈ M : ∥E0 − v∥ ≤ σ} there exists
t0 ≥ 0 such that ∥Ψ(t,φ0)−E0∥ > σ.

By the way of contradiction, suppose that for each integer n ≥ 0 there exists a φn
0 = (Sn

0 ,0L1 , In0 ) ∈
{v ∈ M : ∥E0 − v∥ ≤ σ} such that

∥E0 −Ψ(t,φn
0 )∥ ≤ 1

n+ 1
, ∀t ≥ 0.

Denote Ψ(t,φn
0 ) = (Sn(t),0R2n , In(t, ·)), then for all t ≥ 0 we have

|Sn(t)− S0| ≤ 1

n+ 1
, ∀t ≥ 0. (5.20)

It follows that for all i, we have Sn
i (t) ≥ S0

i − 1
n+1 for all t ≥ 0. Consider the following system

(∂t + ∂τ ) I
n(t, τ) = (−diag(Φ(τ)) + diag(ω(τ))) In(t, τ),

In(t, 0) = λn(t) diag(Sn(t)) q,

Sn(0) = Sn
0 , In(0, ·) = In0 (·), (Sn

0 , I
n
0 ) ∈ M,
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where λn(t) =
∑
i∈I

∫ t

0
⟨βi(τ), I

n
i (t, τ)⟩dτ , Sn

0 = (Sn
i0)i∈I and In0 (·) = (Ini0(·))i∈I . By the comparison

principle, we have
In(t, ·) ≥ Ĩ

n
(t, ·), (5.21)

where Ĩ
n
(t, ·) is the solution of the following auxiliary system

(∂t + ∂τ ) Ĩ
n
(t, τ) = (−diag(Φ(τ)) + diag(ω(τ)))̃I

n
(t, τ),

Ĩ
n
(t, 0) = λ̃n(t) diag

(
S0 − 1

n+ 1
I

)
q,

Ĩ
n
(0, ·) = In0 (·),

which gives for all i, 
(∂t + ∂τ ) Ĩ

n

i (t, τ) = (−Φi(τ) + ω(τ))̃I
n

i (t, τ),

Ĩ
n

i (t, 0) = λ̃n(t)

(
S0
i −

1

n+ 1

)
qi,

Ĩ
n

i (0, ·) = Ini0(·).

(5.22)

For ease of notation, let us rewrite the system (5.22) as the following form :

dṽn
i (t)

dt
=
(
Ãn

i + L̃n
i

)
ṽn
i (t), ∀t ≥ 0, (5.23)

ṽn
i (0) ∈ D(Ãn

i ), the closure of D(Ãn
i ) = {0R2} ×W 1,1((0,∞),R2), where ṽn

i (t) = (0R2 , Ĩ
n

i (t, ·))t and the

operators Ãn
i and L̃n

i are defined as

Ãn
i (0R2 , Ĩ

n

i ) =
(
− Ĩ

n

i (0) , −∂τ Ĩ
n

i + (−Φi(τ) + ω(τ)) Ĩ
n

i

)
and

L̃n
i (0R2 , Ĩ

n

i ) =

(
λ̃n(t)

(
S0
i −

1

n+ 1

)
qi , 0L1((0,∞),R2)

)
.

Similarly to the proof of Lemma 5.6, we can derive the characteristic equation ∆(νn) = 0 for system
(5.22), where

∆(νn) = 1−
∑
i∈I

(
S0
i −

1

n+ 1

) ∫ ∞

0
⟨βi(τ),Πi(τ, 0)qi⟩ e−νnτ dτ.

Since R0 > 1, there exists n0 > 0 large enough such that for n ≥ n0,

Rn
0 =

∑
i∈I

(
S0
i −

1

n+ 1

) ∫ ∞

0
⟨βi(τ),Πi(τ, 0)qi⟩ dτ > 1.

The largest eigenvalue ν∗n of system (5.23) satisfies the characteristic equation ∆(νn) = 0. Furthermore,
Rn

0 > 1 implies the existence of a dominant eigenvalue ν∗n > 0 such that ∆(ν∗n) = 0. Therefore, ν∗n > 0 is

a simple dominant eigenvalue of (Ãn
i + L̃n

i ). From Lemma 5.6, we have shown that ω0,ess(Ã
n
i + L̃n

i ) ≤ −µh

and since the semigroup
{
T
(Ãn

i +L̃n
i )
(t)
}
t≥0

is irreducible, it follows from Corollary 4.6.8 in [32] that{
T
(Ãn

i +L̃n
i )
(t)
}
t≥0

has asynchronous exponential growth with intrinsic growth constant ν∗n ∈ R. Therefore,
using Theorem 3.9 in [30], we have

T
(Ãn

i +L̃n
i )0

(t) Π̃ν∗n = Π̃ν∗n T(Ãn
i +L̃n

i )0
(t) = eν

∗
nt Π̃ν∗n , ∀t ≥ 0,
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and there exist constants ε0 > 0 and η0 > 0 such that

∥T
(Ãn

i +L̃n
i )0

(t) (I − Π̃ν∗n)∥ ≤ η0e
(ν∗n−ε0)t ∥(I − Π̃ν∗n)∥, ∀t ≥ 0,

where Π̃ν∗n is the projector on the generalized eigenspace associated with the largest eigenvalue ν∗n > 0.
We deduce that

Π̃ν∗n ṽ
n
i (t) = eν

∗
nt Π̃ν∗n ṽ

n
i0.

Since ν∗n > 0, it follows that lim
t→∞

∥Π̃ν∗n ṽ
n
i (t)∥L1 = +∞. Therefore, lim

t→∞
∥Ĩ

n

i (t, ·)∥L1 = +∞ and from

(5.21), we have lim
t→∞

∥Ini (t, ·)∥L1 = +∞, which is a contradiction to the boundedness of the solution.

Thus, WS({E0}) ∩ M = ∅ and we derive from Theorem 4.2 in [23] that the semiflow {Ψ(t, ·)}t≥0 is
uniform persistent with respect to the pair (M, ∂M). Moreover, by Theorem 3.7 in [33], there exists a
compact global attractor A1 ⊂ M for the semiflow {Ψ(t, ·)}t≥0.

6 Proof of Theorem 2.7

The proof of Theorem 2.7 is decomposed into two parts. The first part is devoted to the global stability
of the disease-free equilibrium, while the second part is devoted to the global stability of the endemic
equilibrium.

6.1 Proof of Theorem 2.7 (i): global stability of the disease-free equilibrium

When the initial condition of System (2.5) satisfies φ0 ∈ ∂M, i.e.,
∑

i∈I
∫∞
0 ⟨βi(τ), Ii0(τ)⟩dτ = 0, by

Claim 5.7, it comes that the semiflow Ψ(t,φ0) generated by system (2.5) is such that lim
t→∞

Ψ(t,φ0) =

(S0,0R2n ,0L1
+((0,∞),R2n)). It then remain to prove the global stability of the disease-free equilibrium when

R0 ≤ 1.

Theorem 6.1 If R0 ≤ 1 then, the disease-free equilibrium E0 = (S0, 0L1((0,∞)×R,R2n)) of system (2.5) is
globally asymptotically stable.

Proof. By Theorem 5.8, we introduce the following well defined Lyapunov functional V (t) = V1(t)+V2(t),
with

V1(t) =
∑
k∈I

(
Sk − S0

k − S0
k ln

Sk

S0
k

)
and V2(t) =

∑
k∈I

∫ ∞

0

(
cTk (τ)I

T
k (t, τ) + cUk (τ)I

U
k (t, τ)

)
dτ,

where ck(τ) = (cTk (τ), c
U
k (τ))

T is a vector of positive constants such that

ck(τ) = S
0
∫ ∞

τ

tΠk(σ, τ)βk(σ)dσ, (6.1)

with S
0
=
∑
k∈I

S0
k and ck(τ) → 0 as τ → ∞. From (6.1), we have


S
0
βT
k (τ) + ∂τ c

T
k (τ)− γTk (τ)c

T
k (τ) + ωT

U (τ)c
U
k (τ) = 0,

S
0
βU
k (τ) + ∂τ c

U
k (τ)− γUk (τ)c

U
k (τ) + ωU

T (τ)c
T
k (τ) = 0,

(6.2)

with
γTk (τ) = αT

k (τ) + ωT
U (τ) + µh and γUk (τ) = αU

k (τ) + ωU
T (τ) + µh.
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Differentiating V1(t) and using Λk = µhS
0
k , we have

dV1(t)

dt
=

∑
k∈I

(
1−

S0
k

Sk

)
(Λk − Sk(t)λ(t)− µhSk(t))

=
∑
k∈I

Λk

(
2−

S0
k

Sk
− Sk

S0
k

)
+
∑
k∈I

(
λ(t)S0

k − λ(t)Sk

)
=

∑
k∈I

Λk

(
2−

S0
k

Sk
− Sk

S0
k

)
−
∑
k∈I

λ(t)Sk

+
∑
k∈I

S
0
∫ ∞

0

(
βT
k (τ)I

T
k (t, τ) + βU

k (τ)I
U
k (t, τ)

)
dτ.

Differentiating V2(t), we have

dV2(t)

dt
=

∑
k∈I

∫ ∞

0

(
cTk (τ)

∂

∂t
ITk (t, τ) + cUk (τ)

∂

∂t
IUk (t, τ)

)
dτ

= −
∑
k∈I

∫ ∞

0
cTk (τ)

(
∂

∂τ
ITk (t, τ) + γTk (τ)I

T
k (t, τ)− ωU

T (τ)I
U
k (t, τ)

)
dτ

−
∑
k∈I

∫ ∞

0
cUk (τ)

(
∂

∂τ
IUk (t, τ) + γUk (τ)I

U
k (t, τ)− ωT

U (τ)I
T
k (t, τ)

)
dτ.

By integrating by parts, we have∑
k∈I

∫ ∞

0
cTk (τ)

∂

∂τ
ITk (t, τ) dτ = −

∑
k∈I

cTk (0)I
T
k (t, 0)−

∑
k∈I

∫ ∞

0
∂τ c

T
k (τ)I

T
k (t, τ) dτ

and ∑
k∈I

∫ ∞

0
cUk (τ)

∂

∂τ
IUk (t, τ) dτ = −

∑
k∈I

cUk (0)I
U
k (t, 0)−

∑
k∈I

∫ ∞

0
∂τ c

U
k (τ)I

U
k (t, τ) dτ.

Replacing these expressions in dV2(t)
dt and using the fact that ITk (t, 0) = qTk λ(t)Sk(t) and IUk (t, 0) =

qUk λ(t)Sk(t), we have

dV2(t)

dt
=

∑
k∈I

λ(t)Sk

(
cTk (0)q

T
k + cUk (0)q

U
k

)
+
∑
k∈I

∫ ∞

0

(
∂τ c

T
k (τ)− γTk (τ)c

T
k (τ) + ωT

U (τ)c
U
k (τ)

)
ITk (t, τ)dτ

+
∑
k∈I

∫ ∞

0

(
∂τ c

U
k (τ)− γUk (τ)c

U
k (τ) + ωU

T (τ)c
T
k (τ)

)
IUk (t, τ)dτ.

Finally, combining dV1(t)
dt and dV2(t)

dt , gathering some terms and using (6.2), it follows that

dV (t)

dt
=

∑
k∈I

Λk

(
2−

S0
k

Sk
− Sk

S0
k

)
+
∑
k∈I

λ(t)Sk

(
cTk (0)q

T
k + cUk (0)q

U
k − 1

)
+
∑
k∈I

∫ ∞

0

(
S
0
βT
k (τ) + ∂τ c

T
k (τ)− γTk (τ)c

T
k (τ) + ωT

U (τ)c
U
k (τ)

)
ITk (t, τ)dτ

+
∑
k∈I

∫ ∞

0

(
S
0
βU
k (τ) + ∂τ c

U
k (τ)− γUk (τ)c

U
k (τ) + ωU

T (τ)c
T
k (τ)

)
IUk (t, τ)dτ

=
∑
k∈I

Λk

(
2−

S0
k

Sk
− Sk

S0
k

)
+
∑
k∈I

λ(t)Sk

(
⟨ck(0),qk⟩ − 1

)
.
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Using (6.1), we have∑
k∈I

S0
k ⟨ck(0),qk⟩ = S

0∑
k∈I

S0
k

∫ ∞

0
⟨βk(τ),Πk(τ, 0)qk⟩dτ = S

0 R0

=
∑
k∈I

S0
k R0 ≤

∑
k∈I

S0
k , since R0 ≤ 1.

That implies that for all k, ⟨ck(0),qk⟩ ≤ 1, when R0 ≤ 1. Therefore, we have dV (t)
dt ≤ 0 when R0 ≤ 1. The

strict equality holds only if Sk(t) = S0
k hold simultaneously with either R0 = 1 or Ik(t, 0) = 0. It is easy

to verify that largest invariant set in
{
dV
dt = 0

}
is the singleton {E0}. Thus, all solutions of system (2.5)

converge to the disease-free equilibrium E0. Hence, E0 is globally asymptotically stable when R0 ≤ 1.

6.2 Proof of Theorem 2.7 (ii): global stability of the endemic equilibrium

Theorem 6.2 Assume R0 > 1, then the endemic equilibrium E∗ = (S∗, I∗)t of system (2.5) is globally
asymptotically stable in Y+.

Proof. By Theorem 5.8, we introduce the following well defined Lyapunov functional L(t) = L1(t) +
L2(t) + L3(t), where

L1(t) =
∑
k∈I

S∗
kh

(
Sk

S∗
k

)
,

L2(t) =
∑
k∈I

∫ ∞

0
dTk (τ)I

T∗
k (τ)h

(
ITk (t, τ)

IT∗
k (τ)

)
dτ and L3(t) =

∑
k∈I

∫ ∞

0
dUk (τ)I

U∗
k (τ)h

(
IUk (t, τ)

IU∗
k (τ)

)
dτ,

with h the function defined by h(z) = z − 1 − ln z (z ∈ R+), and dk(τ) = (dTk (τ), dUk (τ))
T a vector of

positive constants given by

dk(τ) = S
∗
∫ ∞

τ

tΠk(σ, τ)βk(σ)dσ, (6.3)

where S
∗
=
∑

k∈I S
∗
k and dk(τ) → 0 as τ → ∞. From (6.3), we have

∂τdk(τ)−
(
− teω(τ)−αk(τ)− µh + ω(τ)

)
dk(τ) = −S

∗
βk(τ). (6.4)

By using the property of function h, we find that the function L(t) is nonnegative with its global minimum
point E∗.

Step 1 : Differentiating L1(t) along the solution of system (1.5) and using Λk = S∗
kλ

∗ + µhS
∗
k , we

obtain

dL1(t)

dt
=

∑
k∈I

(
1−

S∗
k

Sk

)
(Λk − Sk(t)λ(t)− µhSk(t))

=
∑
k∈I

µhS
∗
k

(
2−

S∗
k

Sk
− Sk

S∗
k

)
+
∑
k∈I

λ∗S∗
k

(
1 +

λ(t)

λ∗ − λ(t)Sk

λ∗S∗
k

−
S∗
k

Sk

)
=

∑
k∈I

µhS
∗
k

(
2−

S∗
k

Sk
− Sk

S∗
k

)
+
∑
k∈I

λ∗S∗
k

[
h

(
λ(t)

λ∗

)
− h

(
S∗
k

Sk

)
− h

(
λ(t)Sk(t)

λ∗S∗
k

)]
.

Step 2 : Note that

∂τI
T∗
k (τ) = −γTk (τ)I

T∗
k (τ) + ωU

T (τ)I
U∗
k (τ) and ∂τI

U∗
k (τ) = −γUk (τ)I

U∗
k (τ) + ωT

U (τ)I
T∗
k (τ). (6.5)
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Using (6.5), we have(
1−

IT∗
k (τ)

ITk (t, τ)

)
∂

∂τ
ITk (t, τ) = IT∗

k (τ)
∂

∂τ
h

(
ITk (t, τ)

IT∗
k (τ)

)
−
(
1−

IT∗
k (τ)

ITk (t, τ)

)(
γTk (τ)− ωU

T (τ)
IU∗
k (τ)

IT∗
k (τ)

)
ITk (t, τ).

(6.6)

Differentiating L2(t) and, using (6.6) and integration by parts, we obtain

dL2(t)

dt
= −

∑
k∈I

∫ ∞

0
dTk (τ)

(
1−

IT∗
k (τ)

ITk (t, τ)

)(
∂

∂τ
ITk (t, τ) + γTk (τ)I

T
k (t, τ)− ωU

T (τ)I
U
k (t, τ)

)
dτ

= −
∑
k∈I

∫ ∞

0
dTk (τ)

[
IT∗
k (τ)

∂

∂τ
h

(
ITk (t, τ)

IT∗
k (τ)

)
− ωU

T (τ)I
U∗
k (τ)− ωU

T (τ)I
U
k (t, τ)

+ ωU
T (τ, x)I

U∗
k (τ)

ITk (t, τ)

IT∗
k (τ)

+ ωU
T (τ)I

T∗
k (τ)

IUk (t, τ)

ITk (t, τ)

]
dτ

= −
∑
k∈I

dTk (τ)I
T∗
k (τ) h

(
ITk (t, τ)

IT∗
k (τ)

)∣∣∣∣∣
τ=∞

τ=0

+
∑
k∈I

∫ ∞

0
dTk (τ)ω

U
T (τ)I

U∗
k (τ)

[
1 +

IUk (t, τ)

IU∗
k (τ)

−
ITk (t, τ)

IT∗
k (τ)

−
IT∗
k (τ)IUk (t, τ)

ITk (t, τ)I
U∗
k (τ)

]
dτ

+
∑
k∈I

∫ ∞

0
h

(
ITk (t, τ)

IT∗
k (τ)

)(
IT∗
k (τ)∂τd

T
k (τ) + dTk (τ)∂τI

T∗
k (τ)

)
dτ

=
∑
k∈I

dTk (0)I
T∗
k (0) h

(
ITk (t, 0)

IT∗
k (0)

)

+
∑
k∈I

∫ ∞

0
dTk (τ)ω

U
T (τ)I

U∗
k (τ)

[
1 +

IUk (t, τ)

IU∗
k (τ)

−
ITk (t, τ)

IT∗
k (τ)

−
IT∗
k (τ)IUk (t, τ)

ITk (t, τ)I
U∗
k (τ)

]
dτ

+
∑
k∈I

∫ ∞

0
h

(
ITk (t, τ)

IT∗
k (τ)

)(
IT∗
k (τ)∂τd

T
k (τ) + dTk (τ)∂τI

T∗
k (τ)

)
dτ.

Since IT∗
k (0) = qTk λ

∗S∗
k and ITk (t, 0) = qTk λ(t)Sk(t), then we have

dL2(t)

dt
=

∑
k∈I

λ∗S∗
k dTk (0)q

T
k h

(
λ(t)Sk(t)

λ∗S∗
k

)

+
∑
k∈I

∫ ∞

0
dTk (τ)ω

U
T (τ)I

U∗
k (τ)

[
1 +

IUk (t, τ)

IU∗
k (τ)

−
ITk (t, τ)

IT∗
k (τ)

−
IT∗
k (τ)IUk (t, τ)

ITk (t, τ)I
U∗
k (τ)

]
dτ

+

∫
R

∑
k∈I

∫ ∞

0
h

(
ITk (t, τ)

IT∗
k (τ)

)(
IT∗
k (τ)∂τd

T
k (τ) + dTk (τ)∂τI

T∗
k (τ)

)
dτ.

By a similarly manner, the derivative of L3(t) gives

dL3(t)

dt
=

∑
k∈I

λ∗S∗
k dUk (0)q

U
k h

(
λ(t)Sk(t)

λ∗S∗
k

)

+
∑
k∈I

∫ ∞

0
dUk (τ)ω

T
U (τ)I

T∗
k (τ)

[
1 +

ITk (t, τ)

IT∗
k (τ)

−
IUk (t, τ)

IU∗
k (τ)

−
IU∗
k (τ)ITk (t, τ)

IUk (t, τ)IT∗
k (τ)

]
dτ

+
∑
k∈I

∫ ∞

0
h

(
IUk (t, τ)

IU∗
k (τ)

)(
IU∗
k (τ)∂τd

U
k (τ) + dUk (τ)∂τI

U∗
k (τ)

)
dτ.
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Step 3: Finally, combining dL1(t)
dt , dL2(t)

dt and dL3(t)
dt , we obtain

dL(t)

dt
=

∑
k∈I

µhS
∗
k

(
2−

S∗
k

Sk
− Sk

S∗
k

)
+
∑
k∈I

λ∗S∗
k

[
h

(
λ(t)

λ∗

)
− h

(
S∗
k

Sk

)
− h

(
λ(t)Sk(t)

λ∗S∗
k

)]
+
∑
k∈I

λ∗S∗
k ⟨dk(0),qk⟩h

(
λ(t)Sk(t)

λ∗S∗
k

)

+
∑
k∈I

∫ ∞

0
h

(
ITk (t, τ)

IT∗
k (τ)

)(
IT∗
k (τ)∂τd

T
k (τ) + dTk (τ)∂τI

T∗
k (τ)

)
dτ

+
∑
k∈I

∫ ∞

0
h

(
IUk (t, τ)

IU∗
k (τ)

)(
IU∗
k (τ)∂τd

U
k (τ) + dUk (τ)∂τI

U∗
k (τ)

)
dτ

+
∑
k∈I

∫ ∞

0
dTk (τ)ω

U
T (τ)I

U∗
k (τ)

[
1 +

IUk (t, τ)

IU∗
k (τ)

−
ITk (t, τ)

IT∗
k (τ)

−
IT∗
k (τ)IUk (t, τ)

ITk (t, τ)I
U∗
k (τ)

]
dτ

+
∑
k∈I

∫ ∞

0
dUk (τ)ω

T
U (τ)I

T∗
k (τ)

[
1 +

ITk (t, τ)

IT∗
k (τ)

−
IUk (t, τ)

IU∗
k (τ)

−
IU∗
k (τ)ITk (t, τ)

IUk (t, τ)IT∗
k (τ)

]
dτ.

We observe that dTk (τ) and dUk (τ) satisfy

dUk (τ)ω
T
U (τ)I

T∗
k (τ) = dTk (τ)ω

U
T (τ)I

U∗
k (τ). (6.7)

By using (6.7), (6.5), and (6.4), we obtain

∂τd
ϑ
k(τ)I

ϑ∗
k (τ) + dϑk(τ)∂τI

ϑ∗
k (τ) = −S

∗
βϑ
k (τ)I

ϑ∗
k (τ), ϑ = {T,U}. (6.8)

Moreover, by using (5.7) and (5.8), we have

λ∗ = λ∗
∑
k∈I

S∗
k

∫ ∞

0
⟨βk(τ),Πk(τ, 0)qk⟩ dτ. (6.9)

Thus, using (6.3) and (6.9), it can be verified that∑
k∈I

λ∗S∗
k ⟨dk(0),qk⟩ = λ∗S

∗∑
k∈I

S∗
k

∫ ∞

0
⟨βk(τ),Πk(τ, 0)qk⟩dτ = λ∗S

∗
=
∑
k∈I

λ∗S∗
k , (6.10)

which implies that for all k, ⟨dk(0),qk⟩ = dTk (0)q
T
k + dUk (0)q

U
k = 1. In addition, note that∑

k∈I
λ∗S∗

k h

(
λ(t)

λ∗

)
=
∑
k∈I

∫ ∞

0
S
∗
(
βT
k (τ)I

T∗
k (τ) + βU

k (τ) I
U∗
k (τ)

)
h

(
λ(t)

λ∗

)
dτ. (6.11)

Replacing (6.7), (6.8), (6.10) and (6.11) in dL(t)
dt and gathering some terms, we obtain

dL(t)

dt
=

∑
k∈I

µhS
∗
k

(
2−

S∗
k

Sk
− Sk

S∗
k

)
−
∑
k∈I

λ∗S∗
k h

(
S∗
k

Sk

)

+
∑
k∈I

∫ ∞

0
S
∗
βT
k (τ) I

T∗
k (τ)

[
h

(
λ(t)

λ∗

)
− h

(
ITk (t, τ)

IT∗
k (τ)

)]
dτ

+
∑
k∈I

∫ ∞

0
S
∗
βU
k (τ) I

U∗
k (τ)

[
h

(
λ(t)

λ∗

)
− h

(
IUk (t, τ)

IU∗
k (τ)

)]
dτ

+
∑
k∈I

∫ ∞

0
dTk (τ)ω

U
T (τ)I

U∗
k (τ)

(
2−

IT∗
k (τ)

ITk (t, τ)

IUk (t, τ)

IU∗
k (τ)

−
IU∗
k (τ)

IUk (t, τ)

ITk (t, τ)

IT∗
k (τ)

)
dτ.
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Note that

h

(
λ(t)

λ∗

)
− h

(
Iϑk (t, τ)

Iϑ∗k (τ)

)
= −h

(
Iϑk (t, τ)λ

∗

Iϑ∗k (τ)λ(t)

)
+

(
λ(t)

λ∗ − 1

)(
1−

Iϑk (t, τ)λ
∗

Iϑ∗k (τ)λ(t)

)
, ϑ = {T,U}.

Hence, we have

dL(t)

dt
=

∑
k∈I

µhS
∗
k

(
2−

S∗
k

Sk
− Sk

S∗
k

)
−
∑
k∈I

∫ ∞

0
S
∗
βT
k (τ) I

T∗
k (τ) h

(
ITk (t, τ)λ

∗

IT∗
k (τ)λ(t)

)
dτ

−
∑
k∈I

λ∗S∗
k h

(
S∗
k

Sk

)
−
∑
k∈I

∫ ∞

0
S
∗
βU
k (τ) I

U∗
k (τ) h

(
IUk (t, τ)λ∗

IU∗
k (τ)λ(t)

)
dτ

+
∑
k∈I

∫ ∞

0
dTk (τ)ω

U
T (τ)I

U∗
k (τ)

(
2−

IT∗
k (τ)

ITk (t, τ)

IUk (t, τ)

IU∗
k (τ)

−
IU∗
k (τ)

IUk (t, τ)

ITk (t, τ)

IT∗
k (τ)

)
dτ

+

(
λ(t)

λ∗ − 1

)∑
k∈I

∫ ∞

0

[
S
∗
βT
k (τ)I

T∗
k (τ)

(
1−

ITk (t, τ)λ
∗

IT∗
k (τ)λ(t)

)

+ S
∗
βU
k (τ, )I

U∗
k (τ)

(
1−

IUk (t, τ)λ∗

IU∗
k (τ)λ(t)

)]
dτ.

Note that∑
k∈I

∫ ∞

0

[
S
∗
βT
k (τ)I

T∗
k (τ)

(
1−

ITk (t, τ)λ
∗

IT∗
k (τ)λ(t)

)
+ S

∗
βU
k (τ)I

U∗
k (τ)

(
1−

IUk (t, τ)λ∗

IU∗
k (τ)λ(t)

)]
dτ = 0.

Finally, we have

dL(t)

dt
=

∑
k∈I

µhS
∗
k

(
2−

S∗
k

Sk
− Sk

S∗
k

)
−
∑
k∈I

∫ ∞

0
S
∗
βT
k (τ) I

T∗
k (τ) h

(
ITk (t, τ)λ

∗

IT∗
k (τ)λ(t)

)
dτ

−
∑
k∈I

λ∗S∗
k h

(
S∗
k

Sk

)
−
∑
k∈I

∫ ∞

0
S
∗
βU
k (τ) I

U∗
k (τ) h

(
IUk (t, τ)λ∗

IU∗
k (τ)λ(t)

)
dτ

+
∑
k∈I

∫ ∞

0
dTk (τ)ω

U
T (τ)I

U∗
k (τ)

(
2−

IT∗
k (τ)

ITk (t, τ)

IUk (t, τ)

IU∗
k (τ)

−
IU∗
k (τ)

IUk (t, τ)

ITk (t, τ)

IT∗
k (τ)

)
dτ.

Thus,
dL(t)

dt
≤ 0 with equality if and only if Sk(t) = S∗

k , I
T
k (t, τ) = IT∗

k (τ) and IUk (t, τ) = IU∗
k (τ). Then,

it can be verified that largest invariant set in
{
dL
dt = 0

}
is the singleton {E∗}. It follows that the compact

global attractor A0, stated by Lemma 5.4, is such that A0 = {E∗}. Therefore, the endemic equilibrium
E∗ is globally asymptotically stable in Y+ when R0 > 1.
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