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b Département Tronc Commun, École Polytechnique de Thiès, Sénégal

Abstract

Understanding both the epidemiological and evolutionary dynamics of antimicrobial resistance is a
major public health concern. In this paper, we propose a nested model, explicitly linking the within-
and between-host scales, in which the level of resistance of the host population is viewed as a continuous
quantitative trait. The within-host dynamics is based on integro-differential equations structured by
the resistance level, while the between-host scale is additionally structured by the time since infection.
This model simultaneously captures the dynamics of the bacteria population, the evolutionary transient
dynamics which lead to the emergence of resistance, and the epidemic dynamics of the host population.
Moreover, we precisely analyze the model proposed by particularly performing the uniform persistence
and asymptotic results. Finally, we discuss the impact of the treatment rate of the host population
in controlling both the epidemic outbreak and the average level of resistance, either if the within-host
scale therapy is a success or failure. We also explore how transitions between infected populations
(treated and untreated) can impact the average level of resistance, particularly in a scenario where the
treatment is successful at the within-host scale.

Key words. Antimicrobial resistance; Evolutionary dynamics; Nested models; Non-linear dynamical
system.

1 Introduction

Antimicrobial resistance (AMR) is one of the major challenges we face in the modern area [1, 30]. An
antimicrobial substance is a chemical agent interacting with the physiology of a bacterial cell. The
antimicrobial activity on a given bacterium’s survival (S) is an increasing function of its concentration in
the medium (C), such that S (0) = 0 and S (C) → Ssat as C → Csat, where Ssat and Csat are saturating
constants. This intuitive approach implies that there exists C⋆ in (0, Csat) such that S (C⋆) is equal to the
intrinsic rate of increase and reverses the growth of a bacterial population. Such a threshold concentration
at which a bacterial population does not grow (at least in in vitro) is called the Minimum Inhibitory
Concentration (MIC). The level of resistance to a given antimicrobial is then a continuous trait by nature
referred to as antimicrobial quantitative resistance (qAMR), and qAMR is key to better understand the
evolutionary dynamics of AMR [17]. Here, we introduce a quantitative descriptor x ∈ R –a label of
the bacterial strain with resistance level x– describing the level of resistance. Most of the modelling
approaches devoted to AMR tackling the case of qualitative (or “binary”) resistance are generally based
on the dynamical interaction between two parasite strains leading to a binary MIC formulation [6]. This
analysis ignores the evolutionary short-term transient dynamics which lead to the emergence of resistance.
We think that the literature is so vast that we would not know where to begin since the model used then
strongly depends on the question asked (eg., [12, 13, 15, 29, 31, 39, 42]).

∗Corresponding author: M. L. Mann-Manyombe (martinluther.mannmanyombe@ird.fr).
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Here, we proposed a nested (or embedded) model explicitly linking the within- and between-host
evolutionary dynamics. Such a nested structure is particularly important because, over the past few
decades, it is clear that ecological and evolutionary dynamics are influenced by processes operating across
scales [20]. Very few studies considered the continuous nature of AMR in the context of this work
(eg., [17]), and few studies have implemented a nested model in this context so far (eg., [5, 40]). At the
within-host scale, the model proposed is based on integro-differential equations, and the model follows the
dynamics of a bacterial population within either a treated host (bT ) or untreated host (bU ). The bacterial
population is assumed to be phenotypically (and genetically) diverse through the level of antimicrobial
resistance x. This quantitative trait affects different components of the bacterial population life cycle,
such as growth and death rates. In addition to those effects on the death and birth rates, bacterial
population resistance level also mitigates the antimicrobial efficiency with respect to that population.
From a theoretical point of view, properties of the within-host model proposed here are based on previous
analytical quantitative genetics results developed in [9, 16]. The main variables and parameters of the
within-host model are listed in Table 1. At the between-host scale, the host population is subdivided into
three states. At any time t, an individual –with the immune system’s response level i ∈ I = {1, · · · , n}–
can be susceptible to the infection Si(t), infected since time τ by a bacteria with resistant level x and
be either a treated infection ITi (t, τ, x) or untreated IUi (t, τ, x). Individual transmission probability τ -
time since infection, βϑi (τ, x), is linked to the individual’s within-host dynamics such that, βϑi (τ, x) =
βϑi
[
bϑi (τ, x)

]
. Similarly, the loss rate of infected individuals, αϑ

i , is also linked to the individual’s within-
host dynamics such that, αϑ

i (τ, x) = αϑ
i

[
bϑi (τ, x)

]
. The main variables and parameters of the within-host

model are listed in Table 1. The nested model proposed here then allows for simultaneous track the
epidemiological dynamics of the host population as well as evolutionary quantities such as the average
level of resistance at both the within- and between-host scales. Such an approach is original and to our
knowledge, no study has considered nested models for the evolutionary dynamics of AMR, viewed as a
continuous quantitative trait.

An integro-differential equation is used to model the within-host dynamics of the bacterial population.
Such a within model formulation is previously proposed in [17]. Any host individual is either a treated
host (labelled T ) or an untreated host (labelled U). At any time τ , the bacteria density with resistance
level y ∈ R within a treated and untreated host is quantified by bTi (τ, y) and bUi (τ, y) respectively. The
subscript ”i” (with i ∈ I = {1, 2, · · · , n}) represents an individual immune system and then allows taking
into account the immune system heterogeneity in the host population. A bacteria with resistance level
y generate offspring with resistance level x at a per-capita rate J(x − y)pi(y)b

ϑ
i (τ, y), where pi(y) is the

bacterial intrinsic growth rate, and J(x− y) is the probability for a bacterial population with resistance
level y to mutate towards a level x during the reproduction process. Therefore, the total number of bacteria
produced at time τ with a resistance level x is quantify by

(
1 +

∫
R b

ϑ
i (τ, x)dx

)−κ ∫
R J(x−y)pi(y)b

ϑ
i (τ, y)dy,

where κ is a positive parameter. The parameter κ > 0 is introduced to impose the bacterial population
homeostasis. The within-host model reads as∂τ b

ϑ
i (τ, x) =

1(
1 +Bϑ

i (τ)
)κ ∫ +∞

−∞
J(x− y)pi(y)b

ϑ
i (τ, y)dy − ξϑi (x)b

ϑ
i (τ, x),

bϑi (0, ·) = bϑi0(·),
(1.1)

where Bϑ
i (τ) =

∫ +∞
−∞ bϑi (τ, x)dx, is the total bacteria load. The term ξϑi accounts for the clearance of

the bacterial population with resistance level x, either by the immune system (µϑi ) or by the efficiency
of antimicrobial pressure (ki). Thus, ξUi (x) = µUi (x), for untreated host, and ξTi (x) = µTi (x) + ki(x), for
treated host.

At the between-host level, the host population is subdivided into three states. At the time t, an
individual (with the immune response level i) can be susceptible to the infection Si(t), infected by a
bacteria with resistant level x. Such an individual infection (infected since time τ) can be either treated
ITi (t, τ, x) or untreated IUi (t, τ, x). The force of infection underwent by susceptible individuals at time t
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is then given by

λ̄(t, x) =
∑
i∈I

∫ ∞

0
[βTi (b

T
i (τ, x))I

T
i (t, τ, x) + βUi (b

U
i (τ, x))I

U
i (t, τ, x)]dτ.

However, an infected individual with a resistance level y, will induce a new infection with a resistance
level x by the probability K(x − y). Such a probability is assumed to be the same for both treated and
untreated infections. Consequently, the disease is effectively transmitted by the quantity

λ(t, x) =

∫
R
K(x− y)λ̄(t, y)dy.

The dynamics of newly infected individuals (i.e. τ = 0) in each group (treated or untreated) is thus
defined by (for ϑ ∈ {T,U})

Iϑi (t, τ = 0, x) = pϑi (x)λ(t, x)Si(t), (1.2)

where the treatment rate in the host population pTi (x) is assumed to depend on the bacterial population
resistance level x, and pUi (x) = 1 − pTi (x). During their infection, treated individuals can stop the
treatment at rate ωT

U (τ, x), and untreated infections can join the treated group at rate ωU
T (τ, x). The loss

rate of infected individuals, infected since time τ with a resistance level x, occurs at rate αϑ
i (τ, x). The

whole population died naturally at rate µh. The between-host model then reads
Ṡi(t) = Λi − Si(t)

∫
R
λ(t, x)dx− µhSi(t),

(∂t + ∂τ ) I
T
i (t, τ, x) = −

(
αT
i (τ, x) + ωT

U (τ, x) + µh
)
ITi (t, τ, x) + ωU

T (τ, x)I
U
i (t, τ, x),

(∂t + ∂τ ) I
U
i (t, τ, x) = −

(
αU
i (τ, x) + ωU

T (τ, x) + µh
)
IUi (t, τ, x) + ωT

U (τ, x)I
T
i (t, τ, x),

Si(0) = Si,0, Iϑi (0, τ, x) = Iϑi,0(τ, x).

(1.3)

Finally, the nested within-host (1.1) and the between-host model (1.2)-(1.3) are summarised by Figure
1.

Model (1.1)-(1.3) will be considered under the following assumptions. Parameters βϑi and αϑ
i , with

ϑ ∈ {T,U}, are such that

Assumption 1.1 1. βϑi (0) ≥ 0, (βϑi (b
ϑ
i ))

′ > 0 and (βϑi (b
ϑ
i ))

′′ ≤ 0.

2. αϑ
i (0) ≥ 0, (αϑ

i (b
ϑ
i ))

′ > 0 and (αϑ
i (b

ϑ
i ))

′′ ≤ 0.

Here we recall that, for simplicity, we will sometimes use the following equivalencies βϑi (τ, x) ≡ βϑi
(
bϑi (τ, x)

)
and αϑ

i (τ, x) ≡ αϑ
i

(
bϑi (τ, x)

)
.

Moreover, parameters βϑi and αϑ
i can be defined using Holling type functional responses. The first

example is the Holling functional response of type I, assuming a linear increase of the transmission
probability and virulence with respect to the bacterial density within the infected host such that,

βϑi (τ, x) = β0 b
ϑ
i (τ, x) and αϑ

i (τ, x) = α0 b
ϑ
i (τ, x).

Another example is the Holling functional response of type II (or similarly the Beddington-DeAngelis
functional response) such that

βϑi (τ, x) =
β0b

ϑ
i (τ, x)

r0 + bϑi (τ, x)
and αϑ

i (τ, x) =
α0b

ϑ
i (τ, x)

r0 + bϑi (τ, x)
, (1.4)

where β0 and α0 are scaling constants, and r0 is the half-saturation constant for the bacterial load. In this
later example, the transmission probability and the virulence of an infected host increase monotonically
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Within-hostBetween-host

βϑ
i , α

ϑ
i are function of the microbial load bϑi

ϑ ∈ {T, U}, T=treated and U=untreated

1

(1+
∫
+∞

−∞
bϑ
i
(τ,x)dx)

κ

∫ +∞

−∞
J(x− y)pi(y)b

ϑ
i (τ, y)dy

Immune response µi(x) and
antimicrobial activity ki(x)

ITi (t, τ = 0, x)

= pTi (x)Si(t)λ(t, x)

Treated infectious

Untreated infectious

ωT
U(τ, x)

Treatment
stop

ωU
T (τ, x)

Treatment
start

λ(t, x) =
∫

+∞

−∞

K(x− y)
∑
i

∫
∞

0

[βT

i
(bT

i
(τ, y))IT

i
(t, τ, y) + βU

i
(bU

i
(τ, y))IU

i
(t, τ, y)]dτdy

λ(t, x)

αT
i (b

T
i (τ, x)) + µh

αU
i (b

U
i (τ, x)) + µh

τ=time since infection

i=host immune response levels

x=resistance level

Λi

µh

Figure 1: Flow diagram of the nested model. Within-host model: The number of bacteria produced
at time τ with resistance level x is 1

(1+
∫+∞
−∞ bϑi (τ,x)dx)

κ

∫ +∞
−∞ J(x− y)pi(y)b

ϑ
i (τ, y)dy, where J(x− y) is the

probability for a bacterial with resistance level y ∈ R to mutate towards a level x ∈ R and pi(y) is the
bacterial intrinsic growth rate. A bacterial population with resistance level x, within an individual with
immune system level i, is cleared either by the immune system at rate µϑi (x) or by the antimicrobial
efficiency at rate ki(x). Between-host model: Susceptible individuals are recruited at a constant
rate Λi. Infectious individuals at time t, which are infected since time τ , are in two states, either
treated ( ITi (t, τ, x)) or untreated (IUi (t, τ, x)). The force of infection in the whole population at time t is
λ(t, x) =

∫
RK(x−y)

∑
i∈I
∫∞
0 [βTi (b

T
i (τ, y))I

T
i (t, τ, y)+β

U
i (b

U
i (τ, y))I

U
i (t, τ, y)]dτdy, with βϑi (b

ϑ
i (τ, x)) the

probability of disease transmission of an infected individual with a bacterial load bϑi (τ, x). At the time t,
new infections with resistance level x occur at rate λ(t, x)Si(t), and are either treated with a probability
pTi (x) or untreated with a probability pUi (x). The natural death rate of individuals is µh. If infected since
time τ , the disease induced mortality is αϑ

i (b
ϑ
i (τ, x)). Untreated individuals with a resistance level x, and

infected since time τ start the treatment at rate ωU
T (τ, x) while treated individuals stop the treatment at

rate ωT
U (τ, x).

with the within-host bacterial load, but their increase would be slower than the linear formulation for
higher bacteria density.

The rest of this work is organized as follows. In Section 2, we state the main results of the nested
model that are obtained in this work. These include the existence of the globally defined non-negative
semiflow and the existence of the unique positive equilibrium for the within-host model, and threshold
analysis results for the between-host model. The model’s typical dynamics and discussion are provided
in Section 3. This includes the within- and between-host models parameterization, the characterization
of the evolutionary parameters such as the average levels of resistance for bacterial and host populations,
and the impacts of some parameters on host population structure at equilibrium. Section 4 is dedicated
to preliminaries results. More precisely, the existence and uniqueness of solutions, the derivation of the
basic reproduction number as well as the existence of a unique endemic equilibrium of System (1.2)-(1.3).
Section 5 is devoted to the proof of the main result stated by Theorem 2.7.
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Table 1: Within- and between-host model variables and parameters
Notations

t Time
τ Time since infection (infection age)
x Resistance level
i host immune response level

Model state variables

Within-host
bTi (τ, x) Density of treated bacterial population with resistance level x at time τ
bUi (τ, x) Density of untreated bacterial population with resistance level x at time τ
Between-host
Si(t) Susceptible humans at time t
ITi (t, τ, x) Treated infected humans, infected since time τ , with resistance level x
IUi (t, τ, x) Untreated infected humans, infected since time τ , with resistance level x

Model parameters

Within-host
J(x− y) Mutation probability from resistance level x to y per cell division
pi(x) Intrinsic growth rate of bacterial population with resistance level x
ki(x) Killing rate of bacterial population with resistance level x due to drug
µϑi (x), ϑ ∈ {T,U} Clearance rate of the bacterial population with resistance level x

due to the immune response
Between-host
βTi (τ, x) Transmission rate of treated infected
βUi (τ, x) Transmission rate of untreated infected
αT
i (τ, x) Treated infected death rate induced by the infection
αU
i (τ, x) Untreated infected death rate induced by the infection
ωT
U (τ, x) Rate of treatment cessation
ωU
T (τ, x) Rate of treatment start
pTi (x) Treatment rate

5



2 Main results

This section is devoted to the main results of the nested model (1.1)-(1.3). Such results include the
existence of the unique maximal bounded semiflow, and a precise description of the unique positive
equilibrium of Model (1.1). By providing local stability results, we will also conduct a precise threshold
analysis of the between-host model (1.2)-(1.3).

First of all, for biological feasibility of the between-host model (1.2)-(1.3), the model’s parameters
satisfy the following assumption for i ∈ I.

Assumption 2.1 1. Recruitment rate Λi and natural death rate µh are positive constants.

2. The functions pϑi ∈ L∞
+ (R) are continuous and bounded.

3. The rates ωT
U , ω

U
T belongs to L∞

+ (R+×R), with respective essential upper bounds ωT
U , ω

U
T and positive

essential lower bounds ωT
U , ω

U
T for each (τ, x) ∈ R+ × R.

Furthermore, the within-host model (1.1) is formulated based on the following assumption

Assumption 2.2 1. Functions µϑi , ki, ξ
ϑ
i , and pi are always positive on R, with ϑ ∈ {T,U}. Further-

more, pi is a bounded function on R and κ > 0. Finally, the function pi
ξϑi

is continuous on R and

satisfies pi
ξϑi
> 0 and lim

|x|→∞
pi
ξϑi
(x) = 0.

2. The mutation kernel J is bounded and integrable on R+, positive almost everywhere, and satisfies∫
R+ J(x)dx > 0, J(−x) = J(x), for all x.

3. The mutation kernel J decays rather rapidly towards infinity in the sense that J(x) = O
(

1
|x|∞

)
as

|x| → ∞. In other words, lim
|x|→∞

|x|nJ(x) = 0, for all n ∈ N.

The dynamical properties of the within-host model (1.1) have been precisely investigated in [17]. Here
we recall such results and refer to [17] for more details about their proof. The first result of Model (1.1)
is about the existence of the unique maximal bounded semiflow. Such a result reads as,

Theorem 2.3 Let Assumption 2.2 be satisfied. Let bϑi0 ∈ L1
+. Then,

1. There exists a unique global solution v(·, bϑi0) : [0,∞) → L1
+(R) of (1.1) with v(0, bϑi0) = bϑi0 and

v(τ, bϑi0) = bϑi (τ, ·) for all τ > 0.

2. The semi-flow defined by {v(τ, bϑi0)}τ is bounded dissipative and asymptotically smooth, and hence,
its admits a global attractor in L1

+(R).

3. The semi-flow {v(τ, bϑi0)}τ is such that for any bϑi0 ∈ L1
+(R) \ {0}, bϑi (τ, x) > 0, for all τ > 0, x ∈ R.

Since the within-host densities bϑi ,s are bounded (Theorem 2.3) and differentiable with respect to τ ,
by Assumption 1.1 we have the following remark.

Remark 2.4 (i) Transmission rates βϑi ,s are Lipschitz continuous almost everywhere on L1
+(R).

(ii) Mortality rates αϑ
i ,s are such that there exists a constant α0 > 0 so that αϑ

i (τ, x) < α0 for each
(τ, x) ∈ R+ × R.

The basic reproduction number N ϑ
i0 – defined as the expected number of bacteria arising from one

bacterium in a bacteria-free environment– of the bacteria population with resistance level x, within an
individual with immune system level i, is calculated as

N ϑ
i0(x) =

pi(x)

ξϑi (x)
, for ϑ ∈ {U, T}. (2.1)
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Next, a non-trivial equilibrium of Model (1.1) is strongly related to the principal eigenpaire of the
below linear integral operator Hϑ

i defined on Lp(R) (for any p ≥ 1), by

Hϑ
i [v

ϑ
i ](x) =

√
N ϑ

i0(x)

∫
R
J(x− y)

√
N ϑ

i0(y) v
ϑ
i (y)dy. (2.2)

We then have the following result.

Theorem 2.5 Let r(Hϑ
i ), the spectral radius of the operator Hϑ

i , and ϕ > 0 the associated eigenfunction
normalized such that ||ϕ||L1 = 1.

1. When r(Hϑ
i ) ≤ 1, the bacteria-free equilibrium F ϑ

i0 is the unique equilibrium of Model (1.1).

2. When r(Hϑ
i ) > 1, in addition to F ϑ

i0, Model (1.1) has a unique equilibrium F
ϑ
i > 0 such that

F
ϑ
i (x) =

(r(Hϑ
i )
) 1

κ − 1∫
R

ϕ√
piξϑi

dy

 ϕ(x)√
pi(x)ξϑi (x)

.

Furthermore, the semi-flow {v(τ, bϑi0)}τ is uniformly persistent, that is, there exists a constant η
such that for any bϑi0 ∈ L1

+(R) \ {0}, the unique solution v(τ, bϑi0) = bϑi (τ, ·) of Model (1.1) with
initial data bϑi0 satisfies lim

τ→∞
inf ∥bϑi (τ, ·)∥L1 > η.

3. The bacteria-free equilibrium F ϑ
i0 of Model (1.1) is asymptotically stable if r(Hϑ

i ) < 1 and unstable
if r(Hϑ

i ) > 1.

4. When r(Hϑ
i ) < 1, the bacteria-free equilibrium F ϑ

i0 is globally asymptotically stable in L1
+(R), that

is, for any solution bϑi (τ, ·) with initial bϑi0 ∈ L1
+(R)\{0}, we have bϑi (τ, ·) → 0 in L1

+(R), as τ → ∞.

We refer to Appendices F-I in [17] for the detailed proof of the above theorem.

Moreover, the profile of the endemic equilibrium F
ϑ
i with respect to x ∈ R has been described in [16]

when the mutation kernel J depends on a small positive parameter (let say ε << 1) with the scaling form

Jε(x) = ε−1J
(
ε−1x

)
. (2.3)

More precisely, when ε > 0 is small, then the endemic equilibrium F
ϑ
i concentrates on the set Sϑ

i defined
by

Sϑ
i =

{
x ∈ R : N ϑ

i0(x) = ∥Nϑ
i0∥∞

}
.

The set Sϑ
i is referred to as the set of Evolutionary Attractors of the within-hots model in the classical

adaptive dynamics theory (eg., [22, 38]). Furthermore, when the function N ϑ
i0 is at least of class C1, with a

finite number of maximum, it is shown in [16] that the spectral radius r(Hϑ
i,ϵ) of the operator H

ϑ
i,ϵ defined

by (2.2) –by replacing the kernel J by Jε– satisfied, for ϵ sufficiently small

r(Hϑ
i,ϵ) = max

x∈R

(
Nϑ

i0(x)
)2

+O(ϵ2).

At the between-host scale, using the next-generation operator approach (eg., [14, 28]), the basic
reproduction number Ri

0(x) of an infected individual of a group i, with resistance level x, is given by

Ri
0(x) =

∫
R
K(x− y)Ri

0(y)dy,

7



where

Ri
0(x) =

Λi

µh

∑
k∈I

χk(x),

and

χk(x) =

∫ ∞

0
⟨βk(bk(τ, x)),Πk(τ, 0, x)pk(x)⟩ dτ.

The quantity χk(x) is the infectiousness of individuals with an immune system of level k, and a resistance
level x to the antimicrobial. Moreover, Πi(a, b, x), 0 ≤ b ≤ a < ∞, is the evolutionary system generated
by the linear operator Φi(τ, x) = ω(τ, x) − αi(bi(τ, x)) − µh, with pi(x) = (pTi (x), p

U
i (x)), αi(bi(τ, x)) =

diag(αT
i (b

T
i (τ, x)), α

U
i (b

U
i (τ, x))), βi(bi(τ, x)) = (βTi (b

T
i (τ, x)), β

U
i (b

U
i (τ, x))), and

ω(τ, x) =

(
−ωT

U (τ, x) ωU
T (τ, x)

ωT
U (τ, x) −ωU

T (τ, x)

)
.

Next, the existence of a positive equilibrium of Model (1.1)-(1.3) is strongly related to the spectral

properties of the linear operator M̂ define by

M̂ [φ] : L1(R) ∋ φ(·) 7−→
∫
R
K(· − y)R0(y)φ(y)dy ∈ L1(R),

where

R0(x) =
∑
k∈I

Λk

µh
χk(x). (2.4)

In addition to the disease-free equilibrium –the DFE–E0 = (S0,0L1((0,∞)×R,R2n)), with S0 = (Λi/µh)i∈I ,
which is always an equilibrium of Model (1.2)-(1.3), this model also exhibits an endemic equilibrium given
by the following result

Theorem 2.6 Let Assumptions 2.2 and 2.1 hold. If the spectral radius r(M̂) of M̂ is such that r(M̂) > 1,
then system (1.2)-(1.3) has a unique endemic equilibrium E∗ = (S∗, I∗(τ, x)), such that ∀i ∈ I,

S∗
i =

S0
i

r(M̂)
and I∗i (τ, x) = µh(r(M̂)− 1)ϕ∗

M̂
(x)S∗

i Πi(τ, 0, x) pi(x),

where ϕ∗
M̂

is principal eigenfunction of M̂ , associated to r(M̂) and normalized such that ∥ϕ∗
M̂
∥L1 = 1.

Therefore, the threshold dynamics of Model (1.2)-(1.3) is summarize as follows

Theorem 2.7 Let Assumptions 2.2 and 2.1 hold. Then,

(i) If r(M̂) < 1 or
∑

i∈I
∫∞
0 ⟨βi(bi,0(τ, x)), Ii,0(τ, x)⟩dτ = 0, then the disease-free equilibrium E0 =

(S0, 0L1((0,∞)×R,R2n))
t of system (1.2)-(1.3) is globally asymptotically stable in the sens that

lim
t→∞

(
Si(t), I

T
i (t, ·, ·), IUi (t, ·, ·)

)
i∈I = E0,

where the above convergence holds for the topology of Rn × L1((0,∞) × R,R2n). Moreover, the

disease-free equilibrium E0 becomes unstable whenever r(M̂) > 1.

(ii) If r(M̂) > 1 and
∑

i∈I
∫∞
0 ⟨βi(bi,0(τ, x)), Ii,0(τ, x)⟩ dτ > 0, then the semiflow {Ψ(t, ·)}t≥0 generated

by system (1.2)-(1.3) is uniformly persistent in the sens that, there exists a constant η > 0 such that

lim inf
t→∞

∥
(
ITi (t, ·, ·), IUi (t, ·, ·)

)
i∈I ∥L1

+
≥ η.
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The above result describes the asymptotic behaviour of Model (1.2)-(1.3) for any given probability den-
sity function K. However, we can go further in our analysis when the probability kernel K is highly
concentrated with the scaling form

Kξ(x) = ξ−1K(ξ−1x). (2.5)

Furthermore, we shall make use of the following assumption

Assumption 2.8 We assume that, the kernel K is symmetric, the function R0 defined by (2.4) is at
least of class C2, satisfies R0(x) → 0 as |x| → ∞, and the set

N =
{
x ∈ R : R0(x) = ∥R0∥∞

}
̸= ∅.

Similarly to the within-host scale where sets S,s are introduced, note that the set N is referred to as the
set of Evolutionary Attractors of the between-hots model.

Denoting by M̂ξ, the operator M̂ where the kernel K is replace by Kξ, it follows from [16] that the

spectral radius r(M̂ξ) of the operator M̂ξ have an asymptotic expansion of the form

r(M̂ξ)

∥R0∥∞
= 1 + ζ1[x]ξ + ζ2[x]ξ

2 +O(ξ3), for all x ∈ N ,

where ζ1[x] = −
√
− R′′

0 (x)

2∥R0∥∞
while ζ2[x] depends on the successive derivatives R(l)

0 (x), l ≥ 2.

Moreover, the principal eigenfunction ϕ∗
M̂ξ

, associated with r(M̂ξ), exhibits a concentration phe-

nomenon in the set of resistance levels. More precisely, let us define x∗ ∈ N the unique point of N
such that, for each other point x ∈ N , we have (ζj [x

∗])j > (ζj [x])j . Such a relation is written in the sense
of a lexicographical order, that is, either ζ1[x

∗] > ζ1[x], or (ζ1[x
∗] = ζ1[x]; ζ2[x

∗] > ζ2[x]), and so on. We
then have (see [16]), for all ν > 0∫

R\B(x∗,ν)
ϕ∗
M̂ξ

dx = C(ν, ξ) with C(ν, ξ) = O (ξ∞) as ξ → 0,

and for each continuous and bounded function f ∈ C0
b(R) one has

lim
ξ→0

∫
R
ϕ∗
M̂ξ
fdx = f(x∗).

In particular, the unique endemic equilibrium E∗
ξ = (S∗

ξ , I
∗
ξ(τ, x)) at the within-host scale dynamics, when

K ≡ Kξ, is such that,

lim
ξ→0

∫
R
I∗i,ξ(·, x)dx =

(
∥R0∥∞ − 1

) µhS
0
i

∥R0∥∞
Πi(·, 0, x∗)pi(x

∗), ∀i ∈ I.

3 Model’s typical dynamics and discussion

We illustrate an example of typical dynamics that can be simulated by the nested model (1.1)-(1.3). The
model simultaneously captures the outbreak dynamics as well as the evolutionary dynamics of the average
resistance level within the host population. The within-host model parameters are basically the same as
in [17]. Intuitively there exist two threshold levels, assumed here 0 and 1 (called reference ”sensitive” and
”resistant” strains) such that, a strain with resistance level x can be classically referred to as ”sensitive”,
”intermediate”, or ”resistant” depending on whether x < 0, 0 < x < 1, or x > 1. For sake of simplicity,
we assume that the host population is homogeneous in terms of immune system level, i.e., card(I) = 1.
For all illustrative scenarios, we will assume that the disease is persistent in the host population, i.e., the
∥R0∥∞ > 1. The probability density functions at the within-host scale (J ≡ Jε) and the between-host
scale (K ≡ Kξ) are assumed of type (2.3) and (2.5) respectively.
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Within-host parameterization. The antimicrobial killing rate function k(·) is a decreasing function

with respect to the resistance level x such that, k(x) = k0

(
k1
k0

)x
, where k0 and k1 are the antimicro-

bial activity undergone by the reference sensitive and resistant strains. Moreover, knowing p0 and p1,
respectively the intrinsic growth rate of reference strains 0 and 1, a suitable expression for function of p

is p(x) = pm

[
1 +

(
pm−p0

p0

)(
p0
p1

· pm−p1
pm−p0

)x]−1
, where pm is the upper bound of the intrinsic growth rate p

and 0 < p1 < p0 < pm. The qualitative behaviour of functions k and p can be found in ([17], Figure 2).

Between-host parameterization. Transmission rates βϑ,s and disease-induced mortality rates αϑ

are assume of the form (1.4). The rate at which infected individuals are treated pT (·) is assumed to be
a decreasing function with respect to the resistance level x. The main idea behind such an assumption
is that the probability of treating an infection with a given antimicrobial diminishes when the resistance
to this antimicrobial increases. By setting pmax as the maximum treatment rate allowed in the host
population, the function pT is defined such that pT (−1) = 0.99× pmax, and p

T (1) = 0.5× pmax. That is,

pT (x) =
pmax

1 + (1/99)× 99(x+1)/2
.

Next, let ωmax be the maximum influx rate between treated (IT ) and untreated (IU ) states in the
whole population. We assume that the rate at which infected individuals stop the treatment with a given
antimicrobial increases with the resistance level such that ωT

U (−1) = 10−3×ωmax and ωT
U (1) = 0.99×ωmax.

That is, individuals with low resistance levels (x ≈ −1) will mainly stay in the treatment regimen,
while those with higher resistance levels (x ≈ 1) will leave the treatment with a higher rate such that,

ωT
U (x) = ωmax × fTU (x), with fTU (x) =

[
1 + 99−(x+1)/2 × 999−(x−1)/2

]−1
. Finally, the rate at which

untreated infections become treated is such that ωU
T (x) = ωmax ×

(
1− fTU (x)

)
.

Initial conditions and model outputs. The initial bacterial population bϑ0 (x) is assumed to be
composed by a sensitive bacterial population with average resistance level x = 0. Hence, we set bϑ0 (x) =
m0×N (0, σ0, x), where N (0, σ0, x) stands for the normalized density function of the Gaussian distribution
at x with mean 0 and variance σ20. This means that the initial bacterial population is mostly composed
of the reference ”sensitive” strain. At the between-hots scale, the initial condition of the epidemiological
model is taken randomly.
Moreover, the within-host model (1.1) allows to follow evolutionary parameters such as the average level
of resistance for treated (ηT ) and untreated (ηU ) bacteria. For individuals infected since time τ , this

reads as ηT (τ) =
∫
R x

bT (τ,x)
BT (τ)

dx, and ηU (τ) =
∫
R x

bU (τ,x)
BU (τ)

dx. At the between-host level, Model (1.2)-(1.3),

the average level of resistance (η(t)) of the host population at time t is such that

η(t) =

∫
R
x

∫∞
0 IT (t, τ, x)dτ +

∫∞
0 IU (t, τ, x)dτ

I(t)
dx,

where I(t) =
∫∞
0

∫
R
(
IT (t, τ, x) + IU (t, τ, x)

)
dxdτ. Two simulated scenario are then considered, the first

when the treatment is successful at the within-host level, and the second when the treatment failed at
the within-hots level.

Simulated scenarios. For all our simulated scenarios, the infection is assumed here to be always
unsuccessful for untreated individuals, ie., the immune system alone is no more enough to control the
infection such that maxx∈RNU

0 (x) > 1, leading to the bacterial persistence for untreated infections.
Our first scenario is for the case where the treatment is successful at the within-host level, ie.,

maxx∈RN T
0 (x) < 1 (Figure 2C). In such a situation, the bacterial load is under control in the rela-

tively short term (Figure 2A). The average proportion of treated infections in the host population has a
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moderate impact on the average level of resistance in this population. Indeed, increasing the value of pmax

has a marginal effect on the evolutionary dynamics of the resistance level η (Figure 2D), and the average
resistance of the bacterial population is not higher compared to the one of the initial bacterial population
(Figure 2D). Because the epidemic is persistent at the between-host level, ie. R0 > 1, the outbreak will
be not under control whatever the treatment rate of the host population (Figure 2G,H,I). However, the
prevalence of the infection can be very small for some duration. Such a period during which the outbreak
remains under control strongly increases with the treatment rate of the host population (Figure 2G,H,I).

In the second scenario, the treatment is assumed unsuccessful at the within-host level, ie., maxx∈RN T
0 (x) >

1 (Figure 3C). In such a situation, the bacterial load also remains persistent for treated infections (Figure
3A). In contrast to the treatment success scenario (Figure 2), the average proportion of treated infections
in the host population strongly impacts the average level of resistance in this population. Indeed, increas-
ing the value of pmax has a strong effect on the evolutionary dynamics of the resistance level η (Figure
3D), and the average resistance of the bacterial population becomes much higher compared to the one
of the initial bacterial population (Figure 3D). Such an increase in the bacterial resistance level in the
host population strongly increases with the treatment rate of this population (Figure 3D). Similarly to
the previous scenario, the epidemic is persistent at the between-host level because R0 > 1, and so the
outbreak will be not under control whatever the treatment rate of the host population, but the prevalence
of the infection can be very small for some duration (Figure 3G,H,I). However, compared to the situation
where the treatment is a success at the within-host scale (Figure 2G,H,I), the frequency at which the host
population is treated has a marginal effect of such a period during which the outbreak remains under
control (Figure 3G,H,I).

Optimizing the treatment rate in the host population is key to controlling both the epidemic
outbreak and the average level of resistance. Increasing the treatment rate in the host population
contributes to reducing the epidemic size at the between-host scale whatever the treatment outcome
at the within-host scale (Figures 2G,H,I and 3G,H,I). This is mainly explained by the fact that, even
in the scenario of treatment failure, the within-host infection is under control for some period (Figure
3A), but the second phase begins with an increase in the bacterial population density (Figure 3A). In
contrast, increasing the treatment rate in the host population strongly increases the bacterial resistance
level in the case of treatment failure (Figure 3D), compared to the case of treatment success (Figure
2D) where the level of resistance remains very similar to the one of the initial bacterial population.
Therefore, depending on the treatment regimen introduced in the host population, it becomes necessary
and interesting to determine an optimal treatment rate for this population to control both the outbreak
as well as the average level of antimicrobial resistance.

Transitions between infected populations (treated and untreated) can impact the average
level of resistance. Assume the scenario where the treatment is successful at the within-host scale
(Figure 2A), and a high proportion of infected individuals is under treatment, pmax = 0.9. While the
transition rates of the infected individuals between treated and untreated status have a marginal impact
on the host population’s epidemiological dynamics (Figure 4D,E,F), the situation is quite contrasting
with the evolutionary dynamics of the average resistance level (Figure 4A). Indeed, even in the case of
treatment success at the within-host scale, increasing the rate at which the host population can move
from a treated infection to an untreated infection, and vice-versa, contributes to having a much higher
average resistance level in the host population compared to the initial resistance level (Figure 4D).

Nested models parameterization issue. Explicitly connecting the within- to and between-host scales
are crucial to gain a more realistic picture aiming to integrate into the same modelling framework the
epidemic dynamics and the evolutionary dynamics of antimicrobial resistance. However, such an approach
requires making assumptions about the parameters at the within-host scale that are equally unknown
as the parameters at the between-host scale and hence leading to uncertainty about the appropriate
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parametrization [44]. Such uncertainty is amplified by our approach where the level of resistance is
considered a continuous quantitative trait, compared to the classical qualitative (or ”binary”) approaches
[17].

Time-scale separation hypothesis. Within the context of nesting within- and between-host scales,
for the modelling of the epidemiology and evolution of pathogens, some studies assumed that the epi-
demiological and evolutionary time scales are distinct, ie., the within-host dynamic is fast relative to the
between-host dynamic such that the within-host model remains at equilibrium, eg. [2, 3, 7, 11, 23, 47].
Although such an assumption on the within-host equilibrium dynamic’ might be appropriate for chronic
infections, it leads to a population-scale model that does not explicitly account for the individual time-
dependent infectiousness dynamics [26]. Furthermore, our illustrative examples (Figures 2,3) strongly
highlight the infectiousness’ time-dependency of infected individuals and show that the within-host dy-
namic is not necessarily faster compared to the within-host dynamic.

4 Preliminaries and technical materials

We will go through details on the proof of our main results, namely Theorem 2.7. We will first discuss the
existence of a positive global solution of the nested model. Next, we will give details on the derivation of
the basic reproduction number of System (1.2)-(1.3) for individuals with an immune system of level i and
resistance level x. We will also derive the existence of a unique endemic equilibrium of System (1.2)-(1.3)

when r(M̂) > 1, as well as the long-term persistence of the epidemic in such a case.

4.1 Existence of the semiflow

By setting S(t) = (Si(t))i∈I , Ii(t, τ, x) = (ITi (t, τ, x), I
U
i (t, τ, x)) and I(t, τ, x) = (Ii(t, τ, x))i∈I , it is useful

to write System (1.2)-(1.3) into a compact form. That is,
Ṡ(t) = Λ− S(t)

∫
R
λ(t, x)dx− µhS(t),

I(t, τ = 0, x) = λ(t, x) diag(S(t))p(x),

(∂t + ∂τ ) I(t, τ, x) = diag(Φ(τ, x))I(t, τ, x),

(4.1)

where λ(t, x) =
∫
RK(x − y)

∑
i

∫∞
0 ⟨βi(bi(τ, y)), Ii(t, τ, y)⟩dτdy, Λ = (Λi)i∈I , p(x) = (pi(x))i∈I , and

Φ(τ, x) = (Φi(τ, x))i∈I .
Next, we establish the existence of a positive global solution of the system (4.1). We first formulate

system (4.1) in an abstract Cauchy problem. For that, we introduce the Banach space X = Rn ×
L1(R,R2n)×L1((0,∞)×R,R2n), endowed with the usual product norm ∥ · ∥X as well as its positive cone
X+. Let A : D(A) ⊂ X → X be the linear operator defined by D(A) = Rn×{0L1}×W 1,1((0,∞)×R,R2n)
and

A(S,0L1 , I) =
(
− µhS,−I(0, x),−∂τI+ diag(Φ(τ, x))I

)
. (4.2)

Let us introduce the non-linear map F : D(A) → X defined by

F (S,0L1 , I) =

(
Λ− S(t)

∫
R
λ(t, x)dx, λ(t, x) diag(S(t))p(x), 0L1((0,∞)×R,R2n)

)
.

By identifying φ(t) together with (S(t),0L1 , I(t, ·, ·))t and by setting φ0 = (S0,0L1 , I0(·, ·))t the associated
initial condition, System (4.1) becomes dφ(t)

dt
= Aφ(t) + F (φ(t)),

φ(0) = φ0.
(4.3)
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Figure 2: Dynamics of the nested model when the therapeutic treatment is successful. (A,B) Distribution
of the bacterial population (treated and untreated) with respect to time τ and resistance level x. (C)
The basic reproduction numbers at the within-host level N T

0 (x) and NU
0 (x), with and without drug

respectively. (D) Time evolution of the average resistance level η(t) of the host population. (E,F)
Distribution of the infectious individuals (treated and untreated) with respect to time t and resistance
level x. (G,H,I) Time evolution of the proportion of individuals with respect to the treatment rate.
Parameter values are (σ0,m0, k0, p1/p0, k1/k0) = (0.05, 0.05, 20, 0.5, 0.3) and Λ = 5e4, µh = 5.2675e − 2,
β0 = 1.848e− 3, α0 = 7.5e− 2, ωmax = 1e− 3, r0 = 9e2.
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Figure 3: Dynamics of the nested model when the therapeutic treatment failed. (A,B) Distribution of the
bacterial population (treated and untreated) with respect to time τ and resistance level x. (C) The basic
reproduction numbers at the within-host level N T

0 (x) and NU
0 (x), with and without drug respectively.

(D) Time evolution of the average resistance level η(t) of the host population. (E,F) Distribution of
the infectious individuals (treated and untreated) with respect to time t and resistance level x. (G,H,I)
Time evolution of the proportion of individuals with respect to the treatment rate. Parameter values
are (σ0,m0, k0, p1/p0, k1/k0) = (0.05, 0.05, 3, 0.5, 0.01) and Λ = 5e4, µh = 5.2675e − 2, β0 = 1.848e − 3,
α0 = 7.5e− 2, ωmax = 1e− 3, r0 = 9e2.
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Figure 4: Dynamics of the nested model when the therapeutic treatment is successful and the maximum
treatment rate pmax is high. (A) Time evolution of the average resistance level η(t) of the host population.
(B,C) Distribution of the infectious individuals (treated and untreated) with respect to time t and
resistance level x. (D,E,F) Time evolution of the proportion of individuals with respect to the maximum
rate at which individuals are leaving the treatment. Parameter values are (σ0,m0, k0, p1/p0, k1/k0) =
(0.05, 0.05, 20, 0.5, 0.3) and Λ = 5e4, µh = 5.2675e − 2, β0 = 1.848e − 3, α0 = 7.5e − 2, pmax = 0.9,
r0 = 9e2.
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By setting X0 = D(A) and X0+ = X0 ∩X+, the positivity and boundedness of the solutions of System
(4.1) are provided by the following result.

Theorem 4.1 There exists a unique strongly continuous semiflow {Ψ(t, ·) : X0 → X0}t≥0 such that, for
each φ0 ∈ X0+, the map φ ∈ C ([0,∞),X0+) defined by φ = Ψ(·,φ0) is a mild solution of (4.3). That
is,
∫ t
0 φ(s)ds ∈ D(A) and φ(t) = φ0 + A

∫ t
0 φ(s)ds +

∫ t
0 F (φ(s)) ds for all t ≥ 0. Moreover, {Ψ(t, ·)}t

satisfies the following properties:

1. Let Ψ(t,φ0) = (S(t),0L1 , I(t, ·, ·))t, then the following Volterra formulation holds true for all i ∈ I

Ii(t, τ, x) =


Πi(τ, τ − t, x) Ii0(τ − t, x), if t ≤ τ,

Πi(τ, 0, x) pi(x) λ(t− τ, x) Si(t− τ), if t > τ,
(4.4)

coupled with the Si(t) equation of (4.1).

2. For all φ0 ∈ X0+, and for all t ≥ 0, one has∑
i∈I

(
Si(t) +

∫
R

∫ ∞

0

(
ITi (t, τ, x) + IUi (t, τ, x)

)
dτdx

)
≤ max

{
Λ

µh
,
∑
i∈I

(
Si0 +

∫
R

∫ ∞

0

(
ITi0(τ, x) + IUi0(τ, x)

)
dτdx

)}
,

(4.5)
where Λ =

∑
i∈I Λi. Furthermore, the subset of the phase space

Γ =

{
(S, I) ∈ Rn × L1((0,∞)× R,R2n)

∣∣∣ ∑
i∈I

(
Si(t) +

∫
R

∫ ∞

0

(
ITi (t, τ, x) + IUi (t, τ, x)

)
dτdx

)
≤ Λ

µh

}
,

is positively invariant and attracts all nonnegative solutions.

3. The semiflow {Ψ(t, ·)}t generated by (4.1) is bounded dissipative, that is, there exists a bounded set
B ⊂ X0 such that for any bounded set U ⊂ X0, we can find σ = σ(U,B) ≥ 0 such that Ψ(t, U) ⊂ B
for t ≥ σ.

Proof. It is easy to check that the operator A is a Hille-Yosida operator. Then standard results apply
to provide the existence and uniqueness of a mild solution to (4.1) (we refer to [34, 43] for more details).
The Volterra formulation is also standard and we refer to [32, 46] for more details.

The Si equation of (4.1) gives Ṡi(t) ≤ Λi − µhSi(t), that is

Si(t) ≤ max

{
Λi

µh
, Si0

}
.

Next, for estimate (4.5), let φ0 ∈ X0+, then adding up the Si,s equation together with the ITi ,s and
IUi ,s equations of (1.3) yields for all i ∈ I
d

dt

(
Si(t) +

∫
R

∫ ∞

0

(
ITi (t, τ, x) + IUi (t, τ, x)

)
dτdx

)
≤ Λi−µhSi(t)−µh

∫
R

∫ ∞

0

(
ITi (t, τ, x)+I

U
i (t, τ, x)

)
dτdx.

It comes

lim sup
t→∞

∑
i∈I

(
Si(t) +

∫
R

∫ ∞

0
(ITi (t, τ, x) + IUi (t, τ, x))dτdx

)
≤ Λ

µh
.

From where one deduces estimate (4.5) and which ends item 2. of the theorem.
The bounded dissipativity of the semiflow {Ψ(t, ·)}t is a direct consequence of estimate 2.
By using the similar method as in [8] (see Lemma 2.1), the following result is straightforward.

Lemma 4.2 Denote Πi(a, b, x) =
(
Πk

i,j(a, b, x)
)
k,j

, with k, j ∈ {T,U}. For fixed b ≥ 0, there exists some

constants γ0 > 0 and γ1 > 0 such that

γ0 ≤ Πk
i,j(a, b, x) ≤ γ1 e

−µh(a−b) ≤ γ1,

for all i ∈ I, k, j ∈ {T,U}, x ∈ R and a ≥ b.
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4.2 The basic reproduction number

In the absence of infection, that is I(t, τ, x) = 0, the system (4.1) has a disease-free equilibrium (DFE)
given by E0 = (S0,0L1((0,∞)×R,R2n)), with S0 = (Λi/µh)i∈I . Let Θi(t, x) be the number of new infections
in the host population of group i at time t, and with resistance level x. Then in an initially infection-free
population, by (4.1), we have

Θi(t, x) = λ(t, x) S0
i =

(∫
R
K(x− y)

∑
k∈I

∫ ∞

0
⟨βk(bk(τ, y)), Ik(t, τ, y)⟩ dτdy

)
S0
i ,

where ⟨·; ·⟩ is the usual scalar product.
Linearizing the Volterra formulation (4.4) at the DFE, it comes

Ik(t, τ, x) =


Πk(τ, τ − t, x) Ik0(τ − t, x), if t ≤ τ,

λ(t− τ, x)S0
k Πk(τ, 0, x)pk(x), if t > τ.

From where,

Θi(t, x) =

∫
R
K(x− y)

(
S0
i

∑
k∈I

∫ t

0
λ(t− τ, y)S0

k ⟨βk(bk(τ, y)),Πk(τ, 0, y)pk(y)⟩dτ

)
dy + fi(t, x), ∀t ≥ 0,

=

∫
R
K(x− y)

(
S0
i

∑
k∈I

∫ t

0
⟨βk(bk(τ, y)),Πk(τ, 0, y)pk(y)⟩Θk(t− τ, y)dτ

)
dy + fi(t, x), ∀t ≥ 0,

where fi(t, x) is the number of new infections produced by the initial population. Therefore, the basic
reproduction number Ri

0(x) of individuals of group i is calculated as

Ri
0(x) =

∫
R
K(x− y)Ri

0(y)dy,

where

Ri
0(x) = S0

i

∑
k∈I

∫ ∞

0
⟨βk(bk(τ, x)),Πk(τ, 0, x)pk(x)⟩dτ = S0

i

∑
k∈I

χ(x).

4.3 Proof of Theorem 2.6

The equilibrium of system (4.1) is obtained by solving the following system
0 = Λi − S∗

i

∫
R λ

∗(z)dz − µhS
∗
i ,

I∗i (τ = 0, x) = pi(x)λ
∗(x)S∗

i ,

∂τI
∗
i (τ, x) = (ω(τ, x)−αi(bi(τ, x))− µh)I

∗
i (τ, x),

(4.6)

where

λ∗(x) =

∫
R
K(x− y)

∑
i∈I

∫ ∞

0
⟨βi(bi(τ, y)) , I

∗
i (τ, y)⟩dτdy. (4.7)

Solving (4.6) for S∗
i and I∗i yields

S∗
i =

Λi

µh +
∫
R λ

∗(z)dz
(4.8)

and
I∗i (τ, x) = λ∗(x) S∗

i Πi(τ, 0, x) pi(x). (4.9)
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Replacing (4.9) and (4.8) in (4.7) leads to(
1 + µ−1

h

∫
R
λ∗(z)dz

)
λ∗(x) =

∫
R
K(x− y)R0(y)λ

∗(y)dy,

where R0 is given by (2.4).
The above equality rewrites

M̂ [λ∗](x) =

(
1 + µ−1

h

∫
R
λ∗(z)dz

)
λ∗(x), (4.10)

where M̂ is the operator defined by

M̂ [φ] : L1(R) ∋ φ(·) 7−→
∫
R
K(· − y)R0(y)φ(y)dy ∈ L1(R).

Therefore, the existence of λ∗ > 0 is strongly related to the spectral property of the operator M̂ . Since
M̂ is positive, compact and irreducible, then from the Krein-Rutman theorem (see [18]), there exists an
eigenfunction ϕ∗ ∈ L1(R), ϕ∗ > 0 normalized by ∥ϕ∗∥L1 = 1 such that

M̂ [ϕ∗] = r(M̂)ϕ∗.

From (4.10), we find

r(M̂) = 1 + µ−1
h

∫
R
λ∗(z)dz and λ∗ = c∗ϕ∗, (4.11)

for some constant c∗ > 0. It comes that µh(r(M̂)− 1) =
∫
R λ

∗(z)dz > 0, that is r(M̂) > 1. To compute

c∗ > 0, we replace λ∗ = c∗ϕ∗ in r(M̂) and we obtain

c∗ = µh(r(M̂)− 1).

It follows that system (4.1) has a unique positive endemic equilibrium when r(M̂) > 1, such that ∀i ∈ I,

S∗
i =

S0
i

r(M̂)
and I∗i (τ, x) = c∗ϕ∗(x)S∗

i Πi(τ, 0, x) pi(x),

where c∗ = µh(r(M̂)− 1).

4.4 Technical materials

Before proceed to the proof Theorem 2.7, we introduce some technical materials including the existence
of a global compact attractor for the solution semiflow of Model (4.1), the spectral properties of the
linearized semiflow of Model (4.1) at any given equilibrium, and the uniform persistence of Model (4.1)

when r(M̂) > 1.

4.4.1 Global compact attractor

To derive the global properties of the solution dynamics, it is necessary to show that the semiflow generated
by system (4.1) has a global compact attractor. Denote by

Y = Rn × L1((0,∞)× R,R2n) and Y+ = Rn
+ × L1

+((0,∞)× R,R2n),

and endow the set Y with the norm

∥(S, I(·, ·))∥ =
∑
i∈I

(
|Si|+

∫ ∞

0

∫
R

(
|ITi (t, τ, x)|+ |IUi (t, τ, x)|

)
dxdτ

)
.
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For any initial condition φ0 ∈ Y, the solution semiflow of system (4.1) in Y+ is denoted by Ψ∗(t,φ0) =
(S(t), I(t, ·, ·))t. From the Volterra formulation (4.4), we rewrite system (4.1) as follows :

Ṡi(t) = Λi − Si(t)

∫
R
λ(t, x)dx− µhSi(t),

ITi (t, τ, x) =

{
ΠT

i,T (τ, τ − t, x) ITi0(τ − t, x) + ΠT
i,U (τ, τ − t, x) IUi0(τ − t, x), if t ≤ τ,

ΠT
i (τ, 0, x)λ(t− τ, x) Si(t− τ), if t > τ,

(4.12)

IUi (t, τ, x) =

{
ΠU

i,T (τ, τ − t, x) ITi0(τ − t, x) + ΠU
i,U (τ, τ − t, x) IUi0(τ − t, x), if t ≤ τ,

ΠU
i (τ, 0, x)λ(t− τ, x) Si(t− τ), if t > τ,

(4.13)

where

ΠT
i (τ, 0, x) = ΠT

i,T (τ, 0, x)p
T
i (x)+ΠT

i,U (τ, 0, x)p
U
i (x) and ΠU

i (τ, 0, x) = ΠU
i,T (τ, 0, x)p

T
i (x)+ΠU

i,U (τ, 0, x)p
U
i (x).

We need to prove the following claim.

Claim 4.3 Let Assumption 2.1 and Remark 2.4 be satisfied. Then, ∀x ∈ R, function λ(·, x) is Lipschitz
continuous on L1(R).

Proof of Claim 4.3. Let C0 ≥ max
{

Λ
µh
, ∥φ0∥

}
, ∥βi∥∞ = max

{
∥βTi ∥∞, ∥βUi ∥∞

}
and ∥β∥∞ =

∑
i∈I ∥βi∥∞.

By Theorem 4.1, for all x ∈ R and i ∈ J , there exists a bounded function Qi(x) > 0, Qi ∈ L1(R) such
that

∫∞
0 |ITi (t, τ, x) + IUi (t, τ, x)|dτ < Qi(x). Let t > 0, h > 0 and x ∈ R. It comes that

λ(t+ h, x)− λ(t, x)

=
∑
i∈I

∫ h

0
⟨βi(τ, x), Ii(t+ h, τ, x)⟩ dτ +

∑
i∈I

∫ ∞

h
⟨βi(τ, x), Ii(t+ h, τ, x)⟩dτ −

∑
i∈I

∫ ∞

0
⟨βi(τ, x), Ii(t, τ, x)⟩ dτ

=
∑
i∈I

∫ h

0
⟨βi(τ, x),Πi(τ, 0, x)Ii(t+ h− τ, 0, x)⟩ dτ +

∑
i∈I

∫ ∞

h
⟨βi(τ, x), Ii(t+ h, τ, x)⟩dτ

−
∑
i∈I

∫ ∞

0
⟨βi(τ, x), Ii(t, τ, x)⟩ dτ.

Since the semiflow is bounded, we can find Q(x) =
∫
RK(x− y)Q(y)dy > 0, Q(x) =

∑
i∈I Qi(x) such that

λ(t+ h, x)− λ(t, x)

≤ C0∥β∥2∞Q(x)h+
∑
i∈I

∫ ∞

0
⟨βi(τ + h, x), Ii(t+ h, τ + h, x)⟩ dτ −

∑
i∈I

∫ ∞

0
⟨βi(τ, x), Ii(t, τ, x)⟩dτ.

Recalling (4.4) and combining the integrals, we obtain

λ(t+ h, x)− λ(t, x) ≤ C0∥β∥2∞Q(x)h+
∑
i∈I

∫ ∞

0
⟨βi(τ + h, x), (Πi(τ + h, τ, x)− I)Ii(t, τ, x)⟩ dτ

+
∑
i∈I

∫ ∞

0
⟨βi(τ + h, x)− βi(τ, x), Ii(t, τ, x)⟩dτ

≤ C0∥β∥2∞Q(x)h+
∑
i∈I

∫ ∞

0

〈
βi(τ + h, x), (γ1e

−µhh − 1)Ii(t, τ, x)
〉
dτ

+
∑
i∈I

∫ ∞

0
⟨βi(τ + h, x)− βi(τ, x), Ii(t, τ, x)⟩ dτ.
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We have |γ1e−µhh− 1| ≤ γ1µhh. Using the Lipschitzianity of βϑi , we find a positive constant Cβ such that

|λ(t+ h, x)− λ(t, x)| ≤ C0∥β∥2∞Q(x)h+ ∥β∥∞µhγ1Q(x)h+ CβQ(x)h ≤ Cλ(x)h,

where Cλ(x) = C0∥β∥2∞Q(x) + ∥β∥∞µhγ1Q(x) + CβQ(x).
Next, we will show that system (4.1) has a global attractor. By using the similar method as in

[8, 10, 37], we can state the following result.

Lemma 4.4 There exists A0, a compact subset of Y+, which is a global attractor for the solution semiflow
of system (4.1). Moreover, A0 is invariant under the solution semiflow, that is

Ψ∗(t,φ0) ⊆ A0, for every φ0 ∈ A0, ∀t ≥ 0.

Proof. We show that Ψ∗ satifies the assumptions of Lemma 3.2.3 and Theorem 3.4.6 in [24]. To this
end, we split the solution semiflow into two parts. For any initial condition φ0 ∈ Y+, we let Ψ∗(t,φ0) =

Ψ̂
∗
(t,φ0) + Ψ̃

∗
(t,φ0), where

Ψ̂
∗
(t,φ0) =

{
(0Rn ,0L1), t > τ,
(0Rn , I(t, τ, x)), t ≤ τ,

and Ψ̃
∗
(t,φ0) =

{
(S(t), I(t, τ, x)), t > τ,
(S(t),0L1), t ≤ τ.

In such a way, we need to prove the following claim :

Claim 4.5 (1) Ψ̂
∗
(t,φ0) → 0 as t→ ∞ for every φ0 in Y.

(2) For a fixed t and any bounded set B in Y, the set {Ψ̃
∗
(t,φ0) : φ0 ∈ B} is precompact.

Proof of Claim 4.5. Now, we show that the first claim holds.
From (4.12) and Lemma 4.2, we have

∥Ψ̂
∗
(t,φ0)∥ =

∑
i∈I

∫
R

∫ ∞

0

(
|ITi (t, τ, x)|+ |IUi (t, τ, x)|

)
dτdx

=
∑
i∈I

∫
R

∫ ∞

0
[ΠT

i,T (τ, τ − t, x) + ΠU
i,T (τ, τ − t, x)]ITi0(τ − t, x)dτdx

+
∑
i∈I

∫
R

∫ ∞

0
[ΠT

i,U (τ, τ − t, x) + ΠU
i,U (τ, τ − t, x)]IUi0(τ − t, x)dτdx

≤ 2γ1e
−µht∥φ0∥.

Define k(r, t) = 2rγ1e
−µht. Then, k(r, t) → 0 as t → ∞ and ∥Ψ̂

∗
(t,φ0)∥ ≤ k(r, t) for ∥φ0∥ ≤ r. This

complete the first claim.
To show that the second claim holds, let B ⊂ Y be a bounded subset such that Ψ∗(t, ·)B ⊂ B. Choose

C0 > 0 such that ∥φ0∥ ≤ C0 for all φ0 ∈ B. From Theorem 4.1 Item 2, ∪φ0∈B{S(t)} is bounded in Rn

and then is precompact in Rn. Hence, to show the compactness, it suffices to show that the set Ψ̃
∗
(t,φ0)B

is precompact for

Ĩ(t, τ, x) =

{
I(t, τ, x), t > τ,
0L1 , t ≤ τ.

(4.14)

By Frechet-Kolmogorov theorem (see Theorem B.2 in [41]), it is sufficient to verify the following conditions
:

(i) sup
φ∈B

∑
i∈I
∫
R
∫∞
0

(
ĨTi (t, τ, x) + ĨUi (t, τ, x)

)
dτdx <∞,

(ii) lim
(h,k)→∞

∑
i∈I
∫∞
k

∫∞
h

(
|ĨTi (t, τ, x)|+ |ĨUi (t, τ, x)|

)
dτdx = 0 uniformly with respect to φ0 ∈ B.
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(iii) lim
(h,k)→(0,0)

∑
i∈I
∫
R
∫∞
0

(
|ĨTi (t, τ, x)− ĨTi (t, τ + h, x+ k)|+ |ĨUi (t, τ, x)− ĨUi (t, τ + h, x+ k)|

)
dτdx = 0

uniformly with respect to φ0 ∈ B.

(iv) lim
(h,k)→(0,0)

∑
i∈I
∫ k
0

∫ h
0

(
|ĨTi (t, τ, x)|+ |ĨUi (t, τ, x)|

)
dτdx = 0 uniformly with respect to φ0 ∈ B.

By (4.14) and Lemme 4.2, we have for all i ∈ I

Ĩi(t, τ, x) =

{
λ(t− τ, x)Si(t− τ)Πi(τ, 0, x)pi(x), t > τ,
0L1 , t ≤ τ.

}
≤ γ1e

−µhτCi0∥β∥∞Q(x) pi(x),

where Q(x) =
∫
RK(x− y)Q(y)dy. It follows that above conditions (i), (ii) and (iv) are satisfied.

Now, we show that condition (iii) holds. We have for i ∈ I,∫
R

∫ ∞

0
|ĨTi (t, τ + h, x+ k)− ĨTi (t, τ, x)|dτdx

=

∫
R

∫ ∞

0
|ĨTi (t, τ + h, x+ k)− ĨTi (t, τ, x+ k) + ĨTi (t, τ, x+ k)− ĨTi (t, τ, x)|dτdx

≤
∫
R

∫ ∞

0
|ĨTi (t, τ + h, x+ k)− ĨTi (t, τ, x+ k)|dτdx+

∫
R

∫ ∞

0
|ĨTi (t, τ, x+ k)− ĨTi (t, τ, x)|dτdx.

On the one hand, we have for h ≤ t,∫
R

∫ ∞

0
|ĨTi (t, τ, x+ k)− ĨTi (t, τ + h, x+ k)|dτdx

=

∫
R

∫ t−h

0

∣∣∣ΠT
i (τ, 0, x+ k)λ(t− τ, x+ k)Si(t− τ)−ΠT

i (τ + h, 0, x+ k)λ(t− τ − h, x+ k)Si(t− τ − h)
∣∣∣dτdx

+

∫
R

∫ t

t−h

∣∣∣ΠT
i (τ, 0, x+ k)λ(t− τ, x+ k)Si(t− τ)

∣∣∣dτdx
≤

∫
R

∫ t−h

0
γ1 e

−µhτλ(t− τ, x+ k)Si(t− τ)

∣∣∣∣1− ΠT
i (τ + h, 0, x+ k)

ΠT
i (τ, 0, x+ k)

∣∣∣∣ dτdx
+

∫
R

∫ t−h

0
γ1 e

−µhτ
ΠT

i (τ + h, 0, x+ k)

ΠT
i (τ, 0, x+ k)

∣∣∣λ(t− τ, x+ k)Si(t− τ)− λ(t− τ − h, x+ k)Si(t− τ − h)
∣∣∣dτdx

+

∫
R

∫ t

t−h

∣∣∣ΠT
i (τ, 0, x+ k)λ(t− τ, x+ k)Si(t− τ)

∣∣∣dτdx
:= C1(t, h) + C2(t, h) + C3(t, h).

Note that

C1(t, h) ≤
∫ ∞

0
γ1Ci0 ∥β∥∞ e−µhτ

∫
R
Q(x+ k)

∣∣∣∣1− ΠT
i (τ + h, 0, x+ k)

ΠT
i (τ, 0, x+ k)

∣∣∣∣ dxdτ → 0 as h→ 0 (4.15)

and

C3(t, h) =

∫
R

∫ t

t−h

∣∣∣ΠT
i (τ, 0, x+ k)λ(t− τ, x+ k)Si(t− τ)

∣∣∣dτdx ≤ γ1Ci0 ∥λ∥L1 h→ 0 as h→ 0. (4.16)
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From Lemma 4.2, there exists a constant δ > 0 such that
ΠT

i (τ+h,0,x+k)

ΠT
i (τ,0,x+k)

< δ. Hence,

C2(t, h) =

∫
R

∫ t−h

0
γ1 e

−µhτ
ΠT

i (τ + h, 0, x+ k)

ΠT
i (τ, 0, x+ k)

∣∣∣λ(t− τ, x+ k)Si(t− τ)− λ(t− τ − h, x+ k)Si(t− τ − h)
∣∣∣dτdx

≤ γ1 δ

∫
R

∫ t−h

0
e−µhτSi(t− τ)

∣∣∣λ(t− τ, x+ k)− λ(t− τ − h, x+ k)
∣∣∣dτdx

+γ1 δ

∫
R

∫ t−h

0
e−µhτλ(t− τ − h, x+ k)

∣∣∣Si(t− τ)− Si(t− τ − h)
∣∣∣dτdx

≤
(
γ1δCi0∥Cλ∥L1h+ γ1δ∥λ∥L1CSih

)∫ t−h

0
e−µhτdτ ≤ γ1δ

µh

(
Ci0∥Cλ∥L1 + ∥λ∥L1CSi

)
h,

where CSi = Λi + Ci0(∥λ∥L1 + µh). It follows that

C2(t, h) ≤
γ1δ

µh

(
Ci0∥Cλ∥L1 + ∥λ∥L1CSi

)
h→ 0 as h→ 0. (4.17)

On the other hand, we have∫
R

∫ ∞

0
|ĨTi (t, τ, x+ k)− ĨTi (t, τ, x)|dτdx

=

∫
R

∫ ∞

0
Si(t− τ)

∣∣∣ΠT
i (τ, 0, x+ k)λ(t− τ, x+ k)−ΠT

i (τ, 0, x)λ(t− τ, x)
∣∣∣dτdx

≤
∫
R

∫ t

0
λ(t− τ, x+ k)Si(t− τ)|ΠT

i (τ, 0, x+ k)−ΠT
i (τ, 0, x)|dτdx

+

∫
R

∫ t

0
Si(t− τ)ΠT

i (τ, 0, x)|λ(t− τ, x+ k)− λ(t− τ, x)|dτdx

≤ Ci0γ1∥β∥∞
∫
R

∫ t

0
e−µhτQ(x+ k)

∣∣∣∣ΠT
i (τ, 0, x+ k)

ΠT
i (τ, 0, x)

− 1

∣∣∣∣dτdx
+Ci0γ1

∫
R

∫ t

0
e−µhτ |λ(t− τ, x+ k)− λ(t− τ, x)|dτdx

≤ Ci0γ1∥β∥∞
∫
R

∫ t

0
e−µhτQ(x+ k)

∣∣∣∣ΠT
i (τ, 0, x+ k)

ΠT
i (τ, 0, x)

− 1

∣∣∣∣dτdx
+Ci0γ1∥λ∥L1∥Tk[K]−K∥L1(R)

∫ t

0
e−µhτdτ,

where Tk is the translation operator in L1, i.e. Tk[v] = v(·+ k) for each v ∈ L1(R). It follows that∫
R

∫ ∞

0
|ĨTi (t, τ, x+ k)− ĨTi (t, τ, x)|dτdx (4.18)

≤ Ci0γ1∥β∥∞
∫
R

∫ ∞

0
e−µhτQ(x+ k)

∣∣∣∣ΠT
i (τ, 0, x+ k)

ΠT
i (τ, 0, x)

− 1

∣∣∣∣ dτdx+
Ci0γ1
µh

∥λ∥L1∥Tk[K]−K∥L1(R) → 0 as k → 0.

By (4.15), (4.16), (4.17) and (4.18) one concludes that the criterion (iii) holds, and then the second claim
holds.

This completes the proof of the lemma.

4.4.2 Spectral properties of the linearized semiflow

The next result is concerned with spectral properties of the linearized semiflow Ψ of Model (4.1) at a
given equilibrium point φ̃ ∈ X0+. The associated linearized system (4.1) at the point φ̃ reads as

dφ(t)

dt
= (A+G[φ̃])φ(t),
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where A is the linear operator defined in (4.2) while G[φ̃] ∈ L(X0,X ) is the bounded linear operator
defined by :

G[φ̃]φ =

 −S

∫
R
λ̃(x)dx− S̃

∫
R
λ(x)dx

λ̃(x) diag(S)p(x) + λ(x) diag(S̃)p(x)
0L1((0,∞)×R,R2n)

 ,

where λ̃(x) =
∫
RK(x−y)

∑
i

∫∞
0

〈
βi(bi(τ, y)), Ĩi(τ, y)

〉
dτdy and λ(x) =

∫
RK(x−y)

∑
i

∫∞
0 ⟨βi(bi(τ, y)), Ii(τ, y)⟩ dτdy.

We then have the following lemma.

Lemma 4.6 Let us set Ω = {ν ∈ C : Re(ν) > −µh}. Denote by Σ the spectrum of A+G[φ̃] in Ω. Then,
Σ is the set of ν ∈ Ω such that there exists a positive functional λ ∈ L1

+(R) for which

λ(x)− Lν [φ̃]λ(x) +
Lν [φ̃]λ̃(x)

∫
R λ(z)dz

ν + µh +
∫
R λ̃(z)dz

= 0,

where for all ψ ∈ L1(R),

Lν [φ̃]ψ(x) =

∫
R
K(x− y) Rν [φ̃](y) ψ(y)dy,

with Rν [φ̃](x) =
∑

i∈I S̃i
∫∞
0 ⟨βi(bi(τ, x)),Πi(τ, 0, x)pi(x)⟩ e−ντdτ.

Proof.
Let us denote by A0 : D(A0) ⊂ X0 → X0 the part of A in X0 = D(A), which is defined by

A0φ = Aφ, ∀φ ∈ D(A0) = {φ ∈ D(A) : Aφ ∈ D(A)}.

Then, it is the infinitesimal generator of a C0-semigroup on X0 denoted by {TA0(t)}t≥0. Let φ =
(S,0L1 , I(·, ·))t. We find that

TA0(t)φ(τ, x) =


(
e−µhtS,0L1(R,R2n),Π(τ, τ − t, x) I(τ − t, x)

)t
, ∀t ≤ τ,(

e−µhtS,0L1(R,R2n),0L1((0,∞)×R,R2n)

)t
, ∀t > τ.

Then, for t ≥ τ0, we have ∥TA0(t − τ0)φ∥X ≤ e−µh(t−τ0)∥φ∥X ,∀t ≥ τ0. We deduce that the growth

rate ω0(A0) = lim
t→+∞

ln

(
∥TA0

(t)∥L(X )

)
t of this semigroup satisfies ω0(A0) ≤ −µh. Since operator Gi[φ̃] is

compact, the results in [4] or [19] apply and provided that the essential growth rate of
{
T(A+G[φ̃])0(t)

}
t≥0

-

the C0-semigroup generated by the part of (A+G[φ̃]) in X0 satisfies

ω0,ess((A+G[φ̃])0) ≤ ω0,ess(A0) < ω0(A0) ≤ −µh.

By results in [21, 45], the latter inequality ensures that Ω ∩ σ(A+G[φ̃]) ̸= ∅, and it is only composed of
point spectrum of (A+G[φ̃]).

It remains to derive the characteristic equation. Let ν ∈ ρ(A + G[φ̃]), where ρ(·) stands for the
resolvent. For φ̂ = (Ŝ, q̂, Î(·, ·))t ∈ X and φ = (S, 0L1 , I(·, ·))t ∈ D(A), we have (νI − A − G[φ̃])φ = φ̂,
that is (νI −A)φ−G[φ̃]φ = φ̂, and from where

φ = (νI −A)−1φ̂+ (νI −A)−1G[φ̃]φ. (4.19)

Since

(νI −A)−1φ̂ =

((
Ŝi

ν + µh

)
i∈I

, 0L1(R,R2n),

(
e−ν·Πi(·, 0, x)q̂i +

∫ ·

0
Πi(·, s, x)̂Ii(s, x)e−ν(·−s)ds

)
i∈I

)t

,
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we find that

(νI −A)−1G[φ̃]φ =


(
−Si

∫
R λ̃(x)dx− S̃i

∫
R λ(x)dx

ν + µh

)
i∈I

0L1(R,R2n)(
e−ν·Πi(·, 0, x)

(
Siλ̃(x)pi(x) + S̃iλ(x)pi(x)

))
i∈I

 .

Thus, for all i ∈ I, equality (4.19) rewrites as(
1 +

∫
R λ̃(x)dx

ν + µh

)
Si +

S̃i
∫
R λ(x)dx

ν + µh
=

Ŝi
ν + µh

,



Si =
Ŝi

ν + µh +
∫
R λ̃(x)dx

−
S̃i
∫
R λ(x)dx

ν + µh +
∫
R λ̃(x)dx

Ii(τ, x) = e−ντΠi(τ, 0, x)
(
Siλ̃(x)pi(x) + S̃iλ(x)pi(x)

)
+ e−ντΠi(τ, 0, x)q̂i

+
∫ τ
0 Πi(τ, s, x)̂Ii(s, x)e

−ν(τ−s)ds.

(4.20)

Substituting (4.20) into expression for λ(x), it comes

λ(x)−
∫
R
K(x− y)Rν [φ̃](y) λ(y)dy +

∫
RK(x− y)Rν [φ̃](y) λ̃(y)dy

ν + µh +
∫
R λ̃(z)dz

∫
R
λ(x)dx (4.21)

=

∫
RK(x− y)Rν [φ̂](y) λ̃(y)dy

ν + µh +
∫
R λ̃(z)dz

+

∫
R
K(x− y)

∑
i∈I

∫ ∞

0
⟨βi(bi(τ, y)), ŷi(τ, y)⟩ dτdy,

where Rν [φ̃](x) =
∑
i∈I

S̃i

∫ ∞

0
⟨βi(bi(τ, x)),Πi(τ, 0, x)pi(x)⟩ e−ντ dτ and ŷi(τ, x) = e−ντΠi(τ, 0, x)q̂i +∫ τ

0 Πi(τ, s, x)̂Ii(s, x)e
−ν(τ−s)ds.

Setting,

Lν [φ̃]ψ(x) =

∫
R
K(x− y) Rν [φ̃](y) ψ(y)dy, (4.22)

the above equality rewrites

λ(x)− Lν [φ̃]λ(x) +
Lν [φ̃]λ̃(x)

ν + µh +
∫
R λ̃(z)dz

∫
R
λ(x)dx = f [φ̃, φ̂](x), (4.23)

with f [φ̃, φ̂](x) = Lν [φ̃]λ̃(x)

ν+µh+
∫
R λ̃(z)dz

+
∫
RK(x− y)

∑
i∈I

∫∞
0 ⟨βi(bi(τ, y)), ŷi(τ, y)⟩ dτdy.

5 Proof of Theorem 2.7

To study the local stability of the disease-free equilibrium of System (4.1), we have to know the structure of
spectral properties of the linearized semiflow of System (4.1) at the disease-free equilibrium E0. Recalling
Lemma 4.6 at the disease-free equilibrium E0, the set of characteristic value is given by

Σ := σ(A+G[E0]) =
{
ν ∈ C : 1 ∈ σ(Lν [E

0])
}
,

where Lν [E
0] is defined in (4.22).

In the following, we will use elements of positive operator theory on ordered Banach spaces (see [27]).
Next, we give some properties of Lν [E

0].
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Lemma 5.1 Let Assumption 2.1 and Remark 2.4 be satisfied. Then the operator Lν [E
0] is compact and

non-supporting for all ν ∈ R.

Proof. Under Assumption 2.1 and Remark 2.4, it is easy to see from the well-known compactness criterium
in L1 that the operator Lν [E

0] is compact for all ν ∈ C. Next, for ν ∈ R, we can be checked that

Lν [E
0]ψ ≥ ⟨Gν , ψ⟩ · e, ψ ∈ L1

+(R), e ≡ 1 ∈ L1
+(R), (5.1)

where Gν ∈ (L1(R))′ is a positive linear functional defined by

⟨Gν , ψ⟩ := γ0

∫
R
K(x− y)

(∑
i∈J

S0
i

∫ ∞

0
⟨βi(bi(τ, y)),pi(y)⟩ e−ντdτ

)
ψ(y)dy,

with γ0 given in Lemma 4.2. Moreover, for any n ∈ N, we have

Ln+1
ν [E0]ψ ≥ ⟨Gν , ψ⟩ ⟨Gν , e⟩n · e.

Hence, we obtain
〈
G,Ln+1

ν [E0]ψ
〉
> 0, n ≥ 1 for every pair ψ ∈ L1

+ \ {0}, G ∈ (L1
+)

′ \ {0}, that is Lν [E
0]

is a non-supporting operator.
Moreover, we have the following lemma.

Lemma 5.2 Assumption 2.1 and Remark 2.4, the following holds :

(i) Σ = σp(A+G[E0]) =
{
ν ∈ C : 1 ∈ σp(Lν [E

0])
}
, where σp(T ) denotes the set of point spectrum of

the operator T .

(ii) The spectral radius r(Lν [E
0]), ν ∈ R is strictly decreasing and,

lim
ν→−∞

r(Lν [E
0]) = +∞ and lim

ν→+∞
r(Lν [E

0]) = 0.

(iii) There exists a unique ν0 ∈ R ∩ Σ such that

r(Lν0 [E
0]) = 1 and


ν0 > 0 if r(L0[E

0]) > 1,

ν0 = 0 if r(L0[E
0]) = 1,

ν0 < 0 if r(L0[E
0]) < 1.

(iv) ν0 > sup
{
ℜν : ν ∈ Σ \ {ν0}

}
.

Proof.

(i) Since Lν [E
0] is compact, σ(Lν [E

0]) \ {0} = σp(Lν [E
0]) \ {0}, hence (i) follows.

(ii) Let f : R → C, ν 7→ r(Lν [E
0]) and ν1, ν2 ∈ R such that ν1 < ν2. Since Rν [E

0] is strictly
decreasing with respect to ν ∈ R, it follows that Rν1 [E

0] > Rν2 [E
0], that is, Lν1 [E

0] > Lν2 [E
0].

Since Lν1 [E
0] and Lν2 [E

0] are compact and non-supporting operators, we deduce that r(Lν1 [E
0]) >

r(Lν2 [E
0]) i.e. f(ν1) > f(ν2). Hence, the function f is strictly decreasing. Moreover, let ϕν be

the positive eigenfunctional of Lν [E
0] that corresponds to the eigenvalue r(Lν [E

0]). From (5.1), we
have r(Lν [E

0]) ⟨ϕν , ψ⟩ ≥ ⟨Gν , ψ⟩ ⟨ϕν , e⟩. Taking ψ = e, it follows that r(Lν [E
0]) ≥ ⟨Gν , e⟩ → +∞

as ν → −∞. Hence, lim
ν→−∞

r(Lν [E
0]) = +∞. Since ∥Lν [E

0]∥L1 → 0 when ν → +∞, then we obtain

lim
ν→+∞

r(Lν [E
0]) = 0. This ends the proof of item (ii).
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(iii) The limits of the function f at −∞ and +∞ give that there exists a unique ν0 ∈ R ∩ Σ such that
r(Lν0 [E

0]) = 1. It follows that if r(L0[E
0]) > 1 then f(0) > f(ν0) which implies that ν0 > 0 because

the function f is strictly decreasing. If r(L0[E
0]) < 1 then f(0) < f(ν0) which implies that ν0 < 0.

Finally, r(L0[E
0]) = r(Lν0 [E

0]) = 1 implies ν0 = 0. Hence, item (iii) follows.

(iv) We can use the idea in Proposition 3.3 in [27] to show result (iv). Let ν ∈ Σ. There exists
ϕ∗ ∈ L1(R) such that Lν [E

0]ϕ∗ = ϕ∗. We have, |ϕ∗| = |Lν [E
0]ϕ∗| ≤ Lℜν [E

0]|ϕ∗|. Let ϕℜ(ν) be the

positive eigenfunction associated to the eigenvalue r(Lℜ(ν)[E
0]) of the operator Lℜ(ν)[E

0]. We have〈
ϕℜ(ν) , |ϕ∗|

〉
≤
〈
ϕℜ(ν) , Lν [E

0]|ϕ∗|
〉
= r(Lℜ(ν)[E

0])
〈
ϕℜ(ν) , |ϕ∗|

〉
. This implies r(Lℜ(ν)[E

0]) ≥ 1

i.e. f(ℜ(ν)) ≥ f(ν0) and therefore, ℜ(ν) ≤ ν0. To end the proof of this item, let us show that if
ℜ(ν) = ν0 then ν = ν0. We know that |ϕ∗| ≤ Lℜ(ν)[E

0]|ϕ∗| = Lν0 [E
0]|ϕ∗|. If Lν0 [E

0]|ϕ∗| > |ϕ∗|,
taking duality pairing with the eigenfunctional Gν0 corresponding to the eigenvalue r(Lν0 [E

0]) = 1
on the both sides yields

〈
Gν0 , Lν0 [E

0]|ϕ∗|
〉
= ⟨Gν0 , |ϕ∗|⟩ > ⟨Gν0 , |ϕ∗|⟩ which is a contradiction.

Hence, Lν0 [E
0]|ϕ∗| = |ϕ∗|. Then, it follows that there is no element ν ∈ Σ such that ℜ(ν) = ν0 and

ν ̸= ν0.

We can state the following threshold criterion from the above result.

Lemma 5.3 The equilibrium φ̃ = (S̃, Ĩ(·, ·)) is locally asymptotically stable if r(L0[φ̃]) < 1 and unstable
if r(L0[φ̃]) > 1.

Proof. From Lemma 5.2 items (iii) and (iv), we deduce that sup
{
ℜ(ν) : 1 ∈ σp(Lν [φ̃])

}
= ν0. Thus

s(A + G[φ̃]) = sup
{
ℜ(ν) : 1 ∈ σp(Lν [φ̃])

}
< 0 if r(L0[φ̃]) < 1 and s(A + G[φ̃]) = sup

{
ℜ(ν) : 1 ∈

σp(Lν [φ̃])
}
> 0 if r(L0[φ̃]) > 1.

5.1 Proof of Theorem 2.7 (i): global stability of the disease-free equilibrium

When the initial condition of System (4.1) satisfies φ0 ∈ ∂M, i.e.,
∑

i∈I
∫∞
0 ⟨βi(bi,0(τ, x)), Ii,0(τ, x)⟩dτ =

0, by Claim 5.5, it comes that the semiflow Ψ(t,φ0) generated by system (4.1) is such that lim
t→∞

Ψ(t,φ0) =

(S0,0L1(R,R2n),0L1
+((0,∞)×R,R2n)).

The local stability of the disease-free equilibrium E0 is a direct application of Lemma 5.3. Indeed,
at E0, we have L0[E

0] = M̂ . It follows that r(L0[E
0]) = r(M̂). From Lemma 5.3, we deduce that

if r(M̂) = r(L0[E
0]) < 1 the disease-free equilibrium is locally asymptotically stable and unstable if

r(M̂) = r(L0[E
0]) > 1.

It then remain to prove the global stability of the disease-free equilibrium when r(M̂) < 1.

Theorem 5.4 If r(M̂) < 1 then, the disease-free equilibrium E0 = (S0, 0L1((0,∞)×R,R2n)) of system (4.1)
is globally asymptotically stable.

Proof.
Using the Volterra formulation (4.4) in λ(t, x), it comes

λ(t, x) =

∫
R
K(x− y)

∑
k

∫ ∞

0
⟨βk(bk(τ, y)), Ik(t, τ, y)⟩dτdy

=

∫
R
K(x− y)

(∑
k

∫ t

0
⟨βk(bk(τ, y)),Πk(τ, 0, y)pk(y)⟩Sk(t− τ)λ(t− τ, y)dτ + fk(t, y)

)
dy

≤
∫
R
K(x− y)

(
S0
k

∑
k

∫ t

0
⟨βk(bk(τ, y)),Πk(τ, 0, y)pk(y)⟩λ(t− τ, y)dτ + fk(t, y)

)
dy,
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where

fk(t, x) =

∫ ∞

t
⟨βk(bk(τ, x)), Ik0(τ − t, x)⟩dτ,

with lim
t→∞

fk(t, x) = 0. It follows that

λ∞(x) ≤
∫
R
K(x− y)λ∞(y)

(∑
k

S0
k

∫ ∞

0
⟨βk(bk(τ, y)),Πk(τ, 0, y)pk(y)⟩ dτ

)
dy

≤
∫
R
K(x− y)R0(y)λ

∞(y)dy,

where λ∞(x) = lim
t→∞

supλ(t, x). We obtain

λ∞(x) ≤ M̂ [λ∞](x). (5.2)

Since r(M̂) < 1, then we have λ∞(x) = 0. It follows from (4.4) that lim
t→∞

Ii(t, τ, x) = 0 for all i ∈ I. This

implies that lim
t→∞

λ(t, x) = 0. Then, we are easy to obtain that lim
t→∞

Si(t) =
Λi

µh
. Hence, we prove the

global attractivity of E0. Combining with the above local stability of E0, we obtain that E0 is globally
asymptotically stable. This completes the proof.

5.2 Proof of Theorem 2.7 (ii): uniform persistence

Our next technical material concerns the uniform persistence of Model (4.1) when r(M̂) > 1 by using the
method developed in Theorem 5.2 in [41]. For the invariant sets of uniform persistence, we introduce

M = Rn × {0L1(R,R2n)} ×MI , and ∂M = X0+ \M,

where

MI =

{
I ∈ L1

+((0,∞)× R,R2n) :

∫
R

∑
i∈I

∫ ∞

0
⟨βi(bi(τ, x)), Ii(τ, x)⟩dτdx > 0

}
.

For the unique solution φ = (S,0L1 , I) of system (4.1) associated to the initial condition φ0 =
(S0,0L1 , I0(·, ·)) ∈ M, we define Ψ(t,φ0) = (S(t),0L1 , I(t, ·, ·)) the semiflow of Model (4.1) passing
through φ0. Next, we first claim that

Claim 5.5 The subsets M and ∂M are positively invariant with respect to the semiflow Ψ(t, ·) generated
by system (4.1). Furthermore, lim

t→∞
Ψ(t,φ0) = (S0,0L1(R,R2n),0L1

+((0,∞)×R,R2n))
T for each φ0 ∈ ∂M.

Proof of Claim 5.5. Let φ0 = (S0,0L1 , I0(·, ·))T ∈ M be given and Ψ(t,φ0) = (S,0L1 , I(t, ·, ·))T , the
orbit passing through φ0. Since φ0 ∈ M, then

∫
R λ(0, x)dx > 0. Through a direct calculation, we have

∂tλ(t, x) =

∫
R
K(x− y)

∑
i∈I

∫ ∞

0
⟨βi(bi(τ, y)), ∂tIi(τ, y)⟩dτdy,

≥ −(α0 + ω0 + µh)λ(t, x),

where α0 = max{αT
i , α

U
i } and ω0 = max{ωU

T , ω
T
U}. Thus, one obtain that

λ(t, x) ≥ e−(α0+ω0+µh)λ(0, x) > 0,

for t ≥ 0. This complete the fact that M is positively invariant.
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Now, let φ0 ∈ ∂M. Since for all i ∈ I, Si(t) ≤ S0
i as t is large enough, the comparison principle

implies that
Ii(t, τ, x) ≤ Ĩi(t, τ, x), ∀i ∈ I, (5.3)

where Ĩi(t, τ, x) is the solution of the following system
Ĩi(t, τ = 0, x) = pi(x)λ̃(t, x)S

0
i ,

Ĩi(0, τ, x) = Ii0(τ, x),

(∂t + ∂τ ) Ĩi(t, τ, x) = (ω(τ, x)−αi(bi(τ, x))− µh)̃Ii(t, τ, x).

(5.4)

By the Volterra formulation, we have from (5.4) that

Ĩi(t, τ, x) =

{
Πi(τ, τ − t, x) Ii0(τ − t, x), if t ≤ τ,

Πi(τ, 0, x) pi(x)S
0
i λ̃(t− τ, x), if t > τ,

where λ̃(t, x) satisfies

λ̃(t, x) =

∫
R
K(x− y)

∑
k∈I

S0
k

∫ t

0
⟨βk(bk(τ, y)),Πk(τ, 0, y)pk(y)⟩ λ̃(t− τ, y)dτdy

+

∫
R
K(x− y)

∑
k∈I

∫ ∞

t
⟨βk(bk(τ, y)),Πk(τ, τ − t, y)Ik0(τ − t, y)⟩ dτdy.

The initial condition with
∑
k∈I

∫ ∞

0
⟨βk(bk(τ, x)), Ik0(τ, x)⟩ dτ = 0, leads to

λ̃(t, x) =

∫
R
K(x− y)

∑
k∈I

S0
k

∫ t

0
⟨βk(bk(τ, y)),Πk(τ, 0, y)pk(y)⟩ λ̃(t− τ, y)dτdy.

Since λ̃(0, ·) = 0, we have λ̃(t, ·) = 0 for all t ≥ 0, and then Ĩi(t, ·, ·) = 0 for all i ∈ I and t ≥ 0. The
comparison in (5.3) implies that Ii(t, ·, ·) = 0 for all i ∈ I and t ≥ 0 and then ∂M is positively invariant
under the semiflow Ψ(t, ·). In addition, it is clear for the solution remaining in ∂M, we have for all i ∈ I,
Si → S0

i . Hence, lim
t→∞

Ψ(t,φ0) = (S0,0L1(R,R2n),0L1
+((0,∞)×R,R2n))

T for each φ0 ∈ ∂M. This ends the

proof of Claim 5.5.
Finally, we end this technical material section by establishing the uniform persistence of system (4.1).

Theorem 5.6 The semiflow {Ψ(t, ·)}t≥0 generated by system (4.1) is uniformly persistent in M with
respect to (M, ∂M), that is, there exists a constant η > 0 such that for each φ0 ∈ M,

lim inf
t→∞

S(t) ≥ η,

and
lim inf
t→∞

∥I(t, ·, ·)∥L1
+
≥ η whenever r(M̂) > 1.

Furthermore, there exists compact global attractor A1 in M for the semiflow {Ψ(t, ·)}t≥0.

Proof. In the following, we will prove that WS({E0}) ∩M = ∅, where

WS({E0}) = {φ0 ∈ X0+ : lim
t→+∞

Ψ(t,φ0) = E0}.

Since from Claim 5.5 the disease-free equilibrium E0 is globally asymptotically stable in ∂M, we need
only to study the behavior of the solution starting in M in some neighborhood of E0. To this end, it is
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sufficient to show that there exists σ > 0 satisfying for each φ ∈ {v ∈ M : ∥E0 − v∥ ≤ σ} there exists
t0 ≥ 0 such that ∥Ψ(t,φ0)−E0∥ > σ.

By the way of contradiction, suppose that for each integer n ≥ 0 there exists a φn
0 = (Sn

0 ,0L1 , In0 ) ∈
{v ∈ M : ∥E0 − v∥ ≤ σ} such that

∥E0 −Ψ(t,φn
0 )∥ ≤ 1

n+ 1
, ∀t ≥ 0.

Denote Ψ(t,φn
0 ) = (Sn(t),0L1 , In(t, ·, ·)), then for all t ≥ 0 we have

|Sn(t)− S0| ≤ 1

n+ 1
, ∀t ≥ 0. (5.5)

It follows that for all i, we have Sn
i (t) ≥ S0

i − 1
n+1 for all t ≥ 0. Consider the following system

(∂t + ∂τ ) I
n(t, τ, x) = diag(Φ(τ, x)) In(t, τ, x),

In(t, 0, x) = λn(t, x) diag(Sn(t)) p(x),

Sn(0) = Sn
0 , In(0, ·, ·) = In0 (·, ·), (Sn

0 , I
n
0 ) ∈ M,

where Φ(τ, x) = (Φi(τ, x))i with Φi(τ, x) = ω(τ, x) − αi(bi(τ, x)) − µh, p(x) = (pi(x))i, λ
n(t, x) =∑

i

∫ t

0
⟨βi(bi(τ, x)), I

n
i (t, τ, x)⟩dτ , Sn

0 = (Sn
i0)i and In0 (·, ·) = (Ini0(·, ·))i. By the comparison principle, we

have
In(t, ·, ·) ≥ Ĩ

n
(t, ·, ·), (5.6)

where Ĩ
n
(t, ·, ·) is the solution of the following auxiliary system

(∂t + ∂τ ) Ĩ
n
(t, τ, x) = diag(Φ(τ, x))̃I

n
(t, τ, x),

Ĩ
n
(t, 0, x) = λ̃n(t, x) diag

(
S0 − 1

n+ 1
I

)
p(x),

Ĩ
n
(0, ·, ·) = In0 (·, ·),

which gives for all i, 
(∂t + ∂τ ) Ĩ

n

i (t, τ, x) = Φi(τ, x)̃I
n

i (t, τ, x),

Ĩ
n

i (t, 0, x) = λ̃n(t, x)

(
S0
i −

1

n+ 1

)
pi(x),

Ĩ
n

i (0, ·, ·) = Ini0(·, ·).

(5.7)

For ease of notation, let us rewrite the system (5.7) as the following form :

dṽn
i (t)

dt
=
(
Ãn

i + L̃n
i

)
ṽn
i (t), ∀t ≥ 0, (5.8)

ṽn
i (0) ∈ D(Ãn

i ), the closure of D(Ãn
i ) =

{
0L1(R,R2)

}
×W 1,1((0,∞)×R,R2), where ṽn

i (t) = (0L1 , Ĩ
n

i (t, ·, ·))t

and the operators Ãn
i and L̃n

i are defined as

Ãn
i (0L1 , Ĩ

n

i ) =
(
− Ĩ

n

i (0, x) , −∂τ Ĩ
n

i +Φi(τ, x) Ĩ
n

i

)
and

L̃n
i (0L1 , Ĩ

n

i ) =

(
λ̃n(t, x)

(
S0
i −

1

n+ 1

)
pi(x) , 0L1((0,∞)×R,R2)

)
.
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Note that the semigroup
{
T
(Ãn

i +L̃n
i )
(t)
}
t≥0

generated by (5.8) is irreducible. Similarly to the proof of

Lemma 4.6, we can derive the set of characteristic values for system (5.7) as

Σn :=
{
ν ∈ C : 1 ∈ σp

(
Lν

[
E0 − 1

n+ 1
I

])}
. (5.9)

Since r(M̂) = r(L0[E
0]) > 1, there exists a n > 0 large enough such that

r(M̂n) = r

(
L0

[
E0 − 1

n+ 1
I

])
> 1.

Therefore, from Lemma 5.2, there exists a dominant eigenvalue ν∗n of Σn such that r
(
Lν∗n

[
E0 − 1

n+1I
])

=

1 with ν∗n > 0. ν∗n > 0 is a simple dominant eigenvalue of (Ãn
i + L̃n

i ). From Lemma (4.6), we have shown

that ω0,ess(Ã
n
i + L̃n

i ) ≤ −µh. Moreover, the semigroup
{
T
(Ãn

i +L̃n
i )
(t)
}
t≥0

is irreducible. It follows from

Corollary 4.6.8 in [35] that
{
T
(Ãn

i +L̃n
i )
(t)
}
t≥0

has asynchronous exponential growth with intrinsic growth

constant ν∗n ∈ R. Therefore, using Theorem 3.9 in [33], we have

T
(Ãn

i +L̃n
i )0

(t) Π̃ν∗n = Π̃ν∗n T(Ãn
i +L̃n

i )0
(t) = eν

∗
nt Π̃ν∗n , ∀t ≥ 0,

and there exist constants ϵ0 > 0 and η0 > 0 such that

∥T
(Ãn

i +L̃n
i )0

(t) (I − Π̃ν∗n)∥ ≤ η0e
(ν∗n−ϵ0)t ∥(I − Π̃ν∗n)∥, ∀t ≥ 0,

where Π̃ν∗n is the projector on the generalized eigenspace associated with the largest eigenvalue ν∗n > 0.
We deduce that

Π̃ν∗n ṽ
n
i (t) = eν

∗
nt Π̃ν∗n ṽ

n
i0.

Since ν∗n > 0, it follows that lim
t→∞

∥Π̃ν∗n ṽ
n
i (t)∥L1 = +∞. Therefore, lim

t→∞
∥Ĩ

n

i (t, ·, ·)∥L1 = +∞ and from

(5.6), we have lim
t→∞

∥Ini (t, ·, ·)∥L1 = +∞, which is a contradiction to the boundedness of the solution. Thus,

WS({E0}) ∩ M = ∅ and we derive from Theorem 4.2 in [25] that the semiflow {Ψ(t, ·)}t≥0 is uniform
persistent with respect to the pair (M, ∂M). Moreover, by Theorem 3.7 in [36], there exists a compact
global attractor A1 ⊂ M for the semiflow {Ψ(t, ·)}t≥0.
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