
Supplementary Information 
 
Temperature control and particle injection scheme 
The temperature of the experimental liquid helium (Tcell) is continuously controlled by 
controlling the pressure of the cell (Pcell). To do so, we take advantage of a homemade leak-
tight rotating gaseous feedthrough connected to a 300m3/h vacuum pump through a manifold 
that allows many types of regulations. The main component that we use in these experiments 
is a diaphragm pressure regulator (throughput 50m3/h) which is an absolute pressure regulator 
which automatically adapts the pumping speed of the vacuum pump depending on the amount 
of He that evaporates from the cryostat. The pressure setpoint is given by the pressure inside a 
reference chamber that we monitor at all times (Pregulator). The pressure difference (Pregulator - 
Pcell) is calibrated beforehand and presents a slow drift in time when the stationary state is 
reached during experimental sessions (maximum temperature drift of 0.7% for a 20-minute 
session). 
 
To generate the particles that we observe, we inject a gaseous mixture of 98% of He and 2% 
of H2 at room temperature directly into the experimental cell through a 1m long and 1.5mm 
inner diameter cupro-nickel capillary tube. The gas mixture is embedded on the spinning table 
and newly prepared every day in a 1L reservoir filled at 3.5 bars. To ensure full control over 
the process, hence repeatability, we have positioned a high-precision single-stage absolute 
pressure regulator (tied-diaphragm regulator) that sets Pinjection on the cupro-nickel capillary 
tube as close as possible to the entrance into the cryostat’s core. This way, we control the end-
to-end pressure difference on the injection tube regardless the pressure in the reservoirs (3.5 
bars for the first experiment but it decreases injection after injection). The pressure difference 
(Pinjection - Pcell) naturally sets the flow rate inside the injection capillary tube.  
 
Figure SI1, shows a typical measurement run. This entire sequence is done under a constant 
rotation speed. After the first cool down below Tλ (lambda point temperature), we bypass the 
pressure regulation, the temperature rises above the transition, then we inject the particles, 
trigger the image acquisition and close the bypass of the diaphragm pressure regulator to 
decrease the temperature. When the fluid transits to its He II phase, the cloud of particles 
“condenses” onto the vortex lattice. Because solid H2 is less dense (ρH2=88kg/m3) than liquid 
He (ρHe=145kg/m3), particles tend to move upwards, out of our region of interest and out of the 
channel. Therefore, we repeat the cycle described above in order to acquire more data. 
 
 



  

 
Figure SI1 
Representation of pressure and temperature during an experimental session. The temperature is dropped by reducing the 
pressure in the cell (at vapor saturation). Each run starts by injecting H2 in the cell just above Tλ and then opening the 
regulator valve to allow pumping through it. It can be seen that PRegulator is slightly lower as the valve is opened, but remains 
constant during a run. Movies are acquired for 10 to 20 minutes. The next movie has to be taken after re-injecting H2 as 
the particles float up and do not stay indefinitely in the region of interest. As seen in the temperature graph, the temperature 
is not constant during a run, however, the maximum drift is of order 0.7% of the minimum temperature during a run. 



Gabor wavelet analysis 
To get reliable and trustworthy results, we have conducted many experimental runs. Precisely, 
we have acquired 500 GB of images which corresponds to about 50000 frames. To analyze this 
amount of data, we developed an algorithm based on the 2D Gabor wavelet, using Python3 and 
the OpenCV library. The algorithm was implemented in an embarrassingly parallel manner.  
The Gabor wavelet is a 2D Gaussian modulated by a complex exponential. We used a 
simplified form represented on Figure SI2 and defined as followed: 
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This expression unveils 3 length scales ordered increasingly: σ defining the Gaussian width, λ 
defining the probed wavelength, and implicitly L the size of kernel. We have chosen the 
following relations to link them:  

) 𝜎 = 𝜆 2⁄
𝐿 = 1 + 2 × 𝑐𝑒𝑖𝑙(4𝜎) 

This definitions allows us to consider that G(x,y) has only one parameter λ. We have simplified 
the most general form of the Gabor wavelet to respect the vertical invariance and horizontal 
periodicity of the images that we probe. We use this complex function as a kernel of 
convolution with our images to compute the amplitude of this correlation at any given point of 
all our images for many wavelength λ. Then we study the sum of these amplitudes over all the 
pixels of a given image that we call intensity and we study this intensity as a function of λ.  
 

 
Figure SI2 
2D representations of the numerical real (left) and imaginary (right) parts of the Gabor kernel. The colorbar represents the 
intensity of the colored pixels. The horizontal scale bar has a length of λ, the spatial period of the sine and the cosine parts 
of the Gabor function, which is equal to 2 times σ, the standard deviation of the gaussian part of the Gabor function. The 
kernel is a square of length L = 1+2ceil(4σ). In this example, L = 41 pixels, λ = 10 pixels and σ = 5 pixels. 



 

 
Figure SI3 is here to grasp qualitatively what should we expect from such an image analysis 
process. The perfect match between the maxima of the kernel and the one of the images in the 
λgabor =  λimage case let us conclude that the correlation should be maximum in that case. On the 
contrary, when λgabor =  2λimage the first minima of the kernel falls into a maximum of the probed 
pattern, one can expect that this negative contribution will annihilate the positive one due to 
the central pic at order zero. Finally, when λgabor =  λimage/2, the secondary maxima of the kernel 
matches with local maxima of the image, therefore we should observe a secondary maximum 
in the amplitude of the correlation. We do this computation in the complex domain in order to 
get rid of any phase when computing the amplitude of the complex correlation. Moreover, the 
vertical invariance that we have chosen for the kernel is here to deal with the fact that our 
images are not as perfect as the synthetic one showed on Figure SI3. Indeed, as seen on Figure 
2, the quantum vortices are decorated by irregular point particles. Having a finite vertical 
extension let the wavelet average the image over a length scale larger than the particles size, 
which allows particles at different heights to be considered together when looking for a 
horizontally periodic pattern. 
  

 
Figure SI3 
Superposition of a synthetic image with three Gabor kernels. The lines in black represent the imaginary part of each kernel. 
λgabor is the λ discussed in the text and λimage the one of the perfect synthetic image that we intend to measure. 



 

 
When computing on an experimental image, we get SI4 (top). One needs to normalize the 
correlation by the weight of the kernel proportional to λ2, that gives the spectrum SI4 (bottom). 
 
We have run several tests on many synthetic images (introducing fake particles and noise) and 
they all clearly confirm that the second peak corresponds to the periodicity of the pattern. 
Surprisingly, the first peak after normalization turns out to have a higher normalized intensity. 
This is because we have not considered in our qualitative analysis that when λgabor/2 approaches 
the particle size, this should show up in the spectrum. After running a collection of different 
tests, we can conclude that this first peak is a mixture of λgabor = λimage/2 , λgabor/5 ≅ particle size 
and the particle number density in the image. As our goal is to measure the horizontal 
periodicity of our images in order to get access to the intervortex distance, we do not push our 
analysis of the first peak any further. If we were to measure apparent particle size, we would 
use other methods. 
  

 
Figure SI4 
Intensity and area-normalized intensity signals gathered from a Gabor pass in λ from 1 to 150 pixels large over one image. 
As seen in the top graph, intensity is asymptotically proportional to λ2, and normalizing this signal by λ2 yields a two-peak 
signal (bottom). The first peak is the result of multiple contributions, especially particle size, and the second peak holds 
the information on intervortex distance, as it is directly proportional to the periodicity of the vertical lines in the image. 



 

 
We have run this analysis on all our images. Using a bimodal fit on each normalized intensity 
recovered for each frame, we are able to measure the intervortex distance as a function of time 
with a subpixel resolution. Figure SI5, shows the result of this temporal analysis of a given 
movie in the 5RPM batch. This representation helps us define when the stationary state is 
reached and to compute the average and standard deviation of our intervortex spacing 
measurement. We used this standard deviation alongside the bimodal fit standard deviation to 
define the vertical error bars in Figure 3. 
  

 
Figure SI5 
The normalized intensity (Figure SI4 down) are colorcoded and represented as a function of time. The vertical dashed line 
corresponds to the end of the transient state due to the particle injection scheme. The purple (respectively black) dots are 
the values of the first (respectively second) peak found at a given time by the bimodal fit we used. The horizontal black 
line is the average value of the intervortex spacing that we measure, and the horizontal dashed lines represent the standard 
deviation around it, obtained over the entire stationary dataset at 5RPM. 



SI Movie 1: Stability of the vortex lattice 
This movie is acquired at a frequency of 25Hz, and is played 4X faster while the cryostat spins 
at 10RPM. The average velocity of the particles is 20µm/s upward. One can also visualize 
oscillations that have an amplitude of ~50µm due to the motion of the He II container with 
respect to the camera (both on the spinning table). This parasitic motion comes from a 
misalignment of order 1µm between the principal axis of the pumping feedthrough and the axis 
of rotation of the experiment. This tiny default (when compared to the experiment sizes) is 
amplified by the 1m lever arm between the body-fixed point of the pumping feedthrough where 
the HeII container is soldered to the cryostat and our region of interest. These oscillations are 
deterministic and periodic. This movie demonstrates the stability of the quantum vortex lattice 
that we observe. 
 
SI_Mov1.mp4 
 

 
 

  



SI Movie 2: Vortex/Vortex interaction and spinning counterflow 
This movie is acquired at a frequency of 100Hz with a high-speed camera (20µm pixel size) 
while the cryostat spins at 10RPM, and is played back 4 times slower. We switch on the surface 
heater at the bottom of the channel with 15mW, corresponding to 37.5 W/m2. Shortly after, one 
can visualize a few hundreds of vortex/vortex interaction events. It is important to stress that 
these events are triggered by the heating and that the initial condition is well defined. After 
these strong events characterized by strong accelerations, the particles appear to move mostly 
upward in a rotating counterflow. Their motion needs to be further characterized in order to 
search for signs of their interactions with the polarized quantum vortex tangle (out of scope of 
this paper). 
 
SI_Mov2.mp4 
 

 
 


