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A FOOTNOTE TO A THEOREM OF HALASZ

ERIC SATAS AND KRISTIAN SEIP

ABSTRACT. We study multiplicative functions f satisfying |f(n)| < 1 for all n, the associated
Dirichlet series F(s) := X507, f(n)n~%, and the summatory function Sr(x) = Yu<xf(m). Upto
a possible trivial contribution from the numbers f 2%, F(s) may have at most one zero or one
pole on the one-line, in a sense made precise by Haldsz. We estimate log F(s) away from any
such point and show that if F(s) has a zero on the one-line in the sense of Haldsz, then |S )l =

(x/logx) exp (cy/loglogx) for all ¢ >0 when x is large enough. This bound is best possible.

Hal4sz obtained in [3, 4] some fundamental results on the mean values of multiplicative func-
tions f subject to the restriction | f(n)| < 1 for all nonnegative integers n. We denote this class of
functions by .4 and set

Sf(x):= Z f(n) and F(s):= Z f(’sl),
n=1

n=x n

where the latter series converges absolutely for o := Res > 1. Following Montgomery [6], we
have the following.

Halasz’s theorem. Suppose that f belongs to 4. Then for every real t with at most one excep-
tion, we have

) F(0+it):0( 11), o\ 1.

If there exists an exceptional t = ty for which (1) does not hold, then

1
2) F(U+ito):—1, l<o<2.

Moreover, the following three assertions are equivalent:
(i) S¢(x)=o0(x), x—oo0;
(ii) Foreveryreal t, F(o +it)=o0(1/(c —1)) when o \\ 1;
(ii1) For every real t, we have
y1oRe (f(mp~"")
7 p
The three equivalent assertions (i), (ii), (iii) give a more precise statement about the case

S¢(x) = o(x) than what is found in the usual “textbook version” of Haldsz’s theorem; see for
example [8, Sect. 4.3]. All the statements above can still be extracted from Satz 1’ of [3]. The

=400 or f(Zk) = —pikt forall k=1.
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2 ERIC SATAS AND KRISTIAN SEIP

second alternative in item (ii1) accounts for a trivial reason for having F(o +it) = o(1/(o — 1))
when o \| 1, namely the existence of ¢ such that
fek  20-2
Z 2k(0‘+lt) 0_1'

In our first theorem, we exclude this p0s51b111ty by considering the subclass .4 of .4 consisting
of f for which f(2¥) =0 for every k> 1.

We may think of the exceptional case ¢ = ty in Haldsz’s theorem as the assertion that F(s) has
a “simple pole” at the point s = 1+ ify. Following [7, Thm. 2.1], we find it natural to treat such
“poles” on equal terms with possible “zeros” on the line o = 1. This allows us to incorporate the
following consequence of the prime number theorem in the first part of the theorem: if there is
such a “zero” or a “pole”, there can be no other point of the same kind. This version of Haldsz’s
result also comes with a precise estimate:

Theorem 1. Suppose that f belongs to M. Then for every real t with at most one exception,
F(o+1it)|¢
3) Jim L@+ IOF
o\.1 o—1
for both € = -1 and € = 1. In fact, if there exists a pair (€, t) = (€9, ty) in {—1,1} x R for which (3)
does not hold, then for 1 <o <3/2,
[Flo+ity))** = (o —-1)

and

1
4) eologF(a+it)+log((o+it—ito):o( loga_l),

uniformly for all real t when o "\ 1.

As far as the mean values of f are concerned, the bound in (4) is of no interest when g9 = —1.
What matters is then only the behavior of F(o +ity) when o \| 1, and we will in particular have
that |S¢(x)|/x tends to a positive limit; see [2] for precise information about the relation between
F(o +ity) and the mean values S¢(x)/x in the case €9 = —1. However, when &g = 1, the estimate
in (4) yields a sharp improvement of the bound in item (i) of Hal4sz’s theorem.

Theorem 2. Suppose that f belongs to M. If there exists a real ty such that
1+Re(f(p)p~'h)
Y <00

) )
D p
then
Sr(x)|logx
(6) lim sup — >/ 18

x—oo xexp(cy/loglogx)
for every constant ¢ > 0. Conversely, if x : [3,00) — R" satisfies x(x) = o(y/loglogx) when
X — oo, then there exists an f in M such that (5) holds for ty =0 and
|S f(x)llogx

) h;rlsoop xexp (k(x))
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We obtain (6) as an immediate consequence of (4) and a celebrated elucidation of item (i)
of Haldsz’s theorem, expressed in terms of the size of |F(s)| close to the 1-line.! This result
also stems from work of Haldsz [3, 4]; see Montgomery’s paper [5], Tenenbaum’s book [8, Sec.
I11.4.3], or the recent paper [1]. We will therefore give below only the proof of the second part
of Theorem 2.

Before proving our two theorems, we establish the following lemma.

Lemma 1. Let f(p) be a sequence of numbers satisfying | f(p)| < 1. Suppose that there exist €
in {—1,1} and a real number ty such that

—if
(8) Z 1+€0Re(£(p)p 0) o
p

LT ¥ s
80; pe +logl(s lto)—o( loga_l)

uniformly for s=o +it, 0 \\ 1, and real t.

Then

Proof of Lgmma 1. Our i.nitial assumption is that (8) holds for either €9 = —1 or €9 = 1. Writing
eof (p)p~i0 =: —| f(p)|e®r with -7 < 0, < m, we see that

1+eoRe(f(Pp ) =1-1f(P)l+If(P)Q-cosbp) = | f(p)|(1-cosh) =

|f(p)] 02
2n P
so that (8) implies that

|f ()16
p p

< 00.

We may now write

R —ity I —ity
ey LP 5 e(eof(P)p~™") s m(gof(p)p~"")
p p

ps pS—il’o 7 ps—ito
1 |f(p)lsinf
_; pS—il'o - l; f Zs—il’(] : + O(l)
. . | f(p)lsin6
(10) :—logé(s—zto)—z%’Ttop+O(l),

ITo this end, we use the classical fact that 1/{ (o + i t) < log(|£| +2) holds uniformly for o = 1 and real .
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which holds uniformly for o > 1. By Mertens’s theorem for the sum }_,<,1/p, the Cauchy—
Schwarz inequality, and (9),

(p)sinf 1 (p)sin@
y VDI o vomy+  y PG
p P o-1 p=1/(c-1) p
1/2 2\ 1/2
1 If(pIO
<loglog +0(1) + Zpl_z") ( Y I,
o-1 P p=1/o-1) P
1
= 1
0( Oga—l)
when o \ 1. Plugging this estimate into (10), we obtain the desired bound. [

Proof of Theorem 1. Since ((s) has a simple pole at s = 1, is otherwise analytic, and has no zero
on o = 1, the first part of Theorem 1 is an immediate consequence of the second part. To prove
the latter assertion, we assume that
|F(o + ity)|
g-1
does not tend to +oo when o \ 1 for some pair (&g, fp) in {—1,1} x R. By assumption, f is in .45,
whence

k

p>2k 0 P
For p =3, we have | 157 F(pF)p*| < 1/2. We may therefore infer that

logF(s) =) f(p)p~*+0(1)
p

and hence
log|F(s)| =) Re(f(p)p~*)+0Q)
p

when o > 1. It follows from this and the fact that {(s) has a simple pole at s =1 that

1+éeoRe(f(p)p~i)
2 -
D p

|F(s)|€0

= {(a)|F(s)|* “eXp{

when 1 < 0 < 3/2. By monotone convergence,
1+¢&oRe ~ifo 1+é&gRe ~ifo
hmz 0 (f(P)P ) Z 0 (f(l?)]? )
0\1 p D p
By assumption, this limit is not +oo, and hence we may apply Lemma 1 to conclude. U

Proof of the second part of Theorem 2. We will assume that every f in .4 for which (5) holds
with g = 0, satisfies

(11) 1Sr(0)] < loxxexp (x(x)),

and show that this leads to a contradiction.
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We may clearly assume that x (x) is a continuous function. It is also plain that x (x) may be as-
sumed to be nondecreasing and that x (x)/+/loglog x may be taken to be a nonincreasing function.
Indeed, if x(x) failed to be nondecreasing, then we could use instead xo(x) := maxz<y<xk(xX);

should moreover x(x)/+/loglogx fail to be nonincreasing, then we could replace it by

. Ko(y)
K1(x):= \/loglogxr}lgm,

which would still be a nondecreasing function being o(y/loglog x) when x — oo.
By partial summation, we have for every 1 <o <3/2 and say |f| <1,

Sy tay< [ AR
|F(a+it)|sl+2f SeWly " <<f
L SrDly V<] oiogy ™
el/lo-1) d 0o —loglog y+x(y)
Sexp(K(eﬁ))f Y +f e—dy.
3 ylogy Jeuwe-v  yology

Since x(y)/+/loglogy is a nonincreasing function, the function loglogy —x(y) is eventually
increasing, whence the above computation leads to the bound

1
0"_

|Flo+it)| < exp(K(eff%l)) (log 1+1/e).

We may write this more succinctly as

. 1y 1
(12) |F(0+lt)|sexp(a(eol) loga_l),

where a : [3,00) — (0,00) is a nonincreasing function satisfying a(x) — 0 when x — oo.

... . . logx;
We now choose a sequence of positive numbers x;, growing so rapidly that X; 8 < x j+1 for
every j =1 and the sequence

o long
aj:=\la(x;"")
is in £2. We then set
aj < log x; _ iy =
Hp:: N x]_p<x]. , —Re(ip™)=1/2
0, otherwise.
We find that
16,12 a;

< Z — ) =< Z a;,
long p ]:1
=X.
]
where we in the last step used Mertens’s theorem for the sum }_,<,1/p. Hence }_, IH,,IZ/ p <oo
by our choice of the sequence a;. Setting f(p) := —e'% and using Taylor’s theorem to write

f(p)=-1-i6,+0(3),
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we infer from this that
Re) f(p)p~* = —Relog{(s)—Rei) 0,p ° +O1).
p p

It does not matter how we define f for higher prime powers, but for definiteness, let us require
that f be completely multiplicative. Setting 0 =1+ 1/(logx j)2 and ¢ =1, we then get

Relog F(1+1/(logx;)>+i) = —Reiy 0,p ' "08%)~ 4 0(1)
p

6lj 1
> — —+0(1) > aj/loglogx;.
1/loglog x; Zlogx- p ! !
glog ] ijprj J

But choosing the same 0 =1+ 1/(logx]-)2 and =1 1in (12), we reach the bound

a(xi.ong) > 1,

contradicting that a(x) \, 0 when x — oo, which, as observed above, is a consequence of our
assumption that (11) holds for all f in .# for which (5) is true. Ul
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