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A FOOTNOTE TO A THEOREM OF HALÁSZ

ÉRIC SAÏAS AND KRISTIAN SEIP

ABSTRACT. We study multiplicative functions f satisfying | f (n)| ≤ 1 for all n, the associated
Dirichlet series F (s) := ∑∞

n=1 f (n)n−s , and the summatory function S f (x) := ∑
n≤x f (n). Up to

a possible trivial contribution from the numbers f (2k ), F (s) may have at most one zero or one
pole on the one-line, in a sense made precise by Halász. We estimate logF (s) away from any
such point and show that if F (s) has a zero on the one-line in the sense of Halász, then |S f (x)| ≤
(x/log x)exp

(
c
√

loglog x
)

for all c > 0 when x is large enough. This bound is best possible.

Halász obtained in [3, 4] some fundamental results on the mean values of multiplicative func-
tions f subject to the restriction | f (n)| ≤ 1 for all nonnegative integers n. We denote this class of
functions by M and set

S f (x) := ∑
n≤x

f (n) and F (s) :=
∞∑

n=1

f (n)

ns
,

where the latter series converges absolutely for σ := Re s > 1. Following Montgomery [6], we
have the following.

Halász’s theorem. Suppose that f belongs to M . Then for every real t with at most one excep-
tion, we have

(1) F (σ+ i t ) = o

(
1

σ−1

)
, σ↘ 1.

If there exists an exceptional t = t0 for which (1) does not hold, then

(2) F (σ+ i t0) ³ 1

σ−1
, 1 <σ≤ 2.

Moreover, the following three assertions are equivalent:
(i) S f (x) = o(x), x →∞;

(ii) For every real t , F (σ+ i t ) = o
(
1/(σ−1)

)
when σ↘ 1;

(iii) For every real t , we have∑
p

1−Re
(

f (p)p−i t
)

p
=+∞ or f (2k ) =−2i kt for all k ≥ 1.

The three equivalent assertions (i), (ii), (iii) give a more precise statement about the case
S f (x) = o(x) than what is found in the usual “textbook version” of Halász’s theorem; see for
example [8, Sect. 4.3]. All the statements above can still be extracted from Satz 1’ of [3]. The
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2 ÉRIC SAÏAS AND KRISTIAN SEIP

second alternative in item (iii) accounts for a trivial reason for having F (σ+ i t ) = o(1/(σ−1))
when σ↘ 1, namely the existence of t such that∑

k≥0

f (2k )

2k(σ+i t )
= 2σ−2

2σ−1
.

In our first theorem, we exclude this possibility by considering the subclass M2 of M consisting
of f for which f (2k ) = 0 for every k ≥ 1.

We may think of the exceptional case t = t0 in Halász’s theorem as the assertion that F (s) has
a “simple pole” at the point s = 1+ i t0. Following [7, Thm. 2.1], we find it natural to treat such
“poles” on equal terms with possible “zeros” on the line σ= 1. This allows us to incorporate the
following consequence of the prime number theorem in the first part of the theorem: if there is
such a “zero” or a “pole”, there can be no other point of the same kind. This version of Halász’s
result also comes with a precise estimate:

Theorem 1. Suppose that f belongs to M2. Then for every real t with at most one exception,

(3) lim
σ↘1

|F (σ+ i t )|ε
σ−1

=+∞
for both ε=−1 and ε= 1. In fact, if there exists a pair (ε, t ) = (ε0, t0) in {−1,1}×R for which (3)
does not hold, then for 1 <σ≤ 3/2,

[F (σ+ i t0)]ε0 ³ (σ−1)

and

(4) ε0 logF (σ+ i t )+ logζ(σ+ i t − i t0) = o

(√
log

1

σ−1

)
,

uniformly for all real t when σ↘ 1.

As far as the mean values of f are concerned, the bound in (4) is of no interest when ε0 =−1.
What matters is then only the behavior of F (σ+ i t0) when σ↘ 1, and we will in particular have
that |S f (x)|/x tends to a positive limit; see [2] for precise information about the relation between
F (σ+ i t0) and the mean values S f (x)/x in the case ε0 =−1. However, when ε0 = 1, the estimate
in (4) yields a sharp improvement of the bound in item (i) of Halász’s theorem.

Theorem 2. Suppose that f belongs to M . If there exists a real t0 such that

(5)
∑
p

1+Re
(

f (p)p−i t0
)

p
<∞,

then

(6) limsup
x→∞

|S f (x)| log x

x exp
(
c
√

loglog x
) = 0

for every constant c > 0. Conversely, if κ : [3,∞) → R+ satisfies κ(x) = o
(√

loglog x
)

when
x →∞, then there exists an f in M such that (5) holds for t0 = 0 and

(7) limsup
x→∞

|S f (x)| log x

x exp(κ(x))
=∞.
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We obtain (6) as an immediate consequence of (4) and a celebrated elucidation of item (i)
of Halász’s theorem, expressed in terms of the size of |F (s)| close to the 1-line.1 This result
also stems from work of Halász [3, 4]; see Montgomery’s paper [5], Tenenbaum’s book [8, Sec.
III.4.3], or the recent paper [1]. We will therefore give below only the proof of the second part
of Theorem 2.

Before proving our two theorems, we establish the following lemma.

Lemma 1. Let f (p) be a sequence of numbers satisfying | f (p)| ≤ 1. Suppose that there exist ε0

in {−1,1} and a real number t0 such that

(8)
∑
p

1+ε0 Re
(

f (p)p−i t0
)

p
<∞.

Then

ε0
∑
p

f (p)

p s
+ logζ(s − i t0) = o

(√
log

1

σ−1

)

uniformly for s =σ+ i t , σ↘ 1, and real t .

Proof of Lemma 1. Our initial assumption is that (8) holds for either ε0 =−1 or ε0 = 1. Writing
ε0 f (p)p−i t0 =: −| f (p)|e iθp with −π< θp ≤π, we see that

1+ε0 Re
(

f (p)p−i t0
)= 1−| f (p)|+ | f (p)|(1−cosθp ) ≥ | f (p)|(1−cosθp ) ≥ | f (p)|

2π
θ2

p ,

so that (8) implies that

(9)
∑
p

| f (p)|θ2
p

p
<∞.

We may now write

ε0
∑
p

f (p)

p s
=∑

p

Re
(
ε0 f (p)p−i t0

)
p s−i t0

+ i
∑
p

Im
(
ε0 f (p)p−i t0

)
p s−i t0

=−∑
p

1

p s−i t0
− i

∑
p

| f (p)|sinθp

p s−i t0
+O(1)

=− logζ(s − i t0)− i
∑
p

| f (p)|sinθp

p s−i t0
+O(1),(10)

1To this end, we use the classical fact that 1/ζ(σ+ i t ) ¿ log(|t |+2) holds uniformly for σ≥ 1 and real t .
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which holds uniformly for σ > 1. By Mertens’s theorem for the sum
∑

p≤x 1/p, the Cauchy–
Schwarz inequality, and (9),∑

p

| f (p)sinθp |
pσ

≤ loglog
1

σ−1
+O(1)+ ∑

p≥1/(σ−1)

| f (p)sinθp |
pσ

≤ loglog
1

σ−1
+O(1)+

(∑
p

p1−2σ

)1/2 ( ∑
p≥1/(σ−1)

| f (p)|θ2
p

p

)1/2

= o

(√
log

1

σ−1

)
when σ↘ 1. Plugging this estimate into (10), we obtain the desired bound. �

Proof of Theorem 1. Since ζ(s) has a simple pole at s = 1, is otherwise analytic, and has no zero
on σ= 1, the first part of Theorem 1 is an immediate consequence of the second part. To prove
the latter assertion, we assume that

|F (σ+ i t0)|ε0

σ−1
does not tend to +∞ when σ↘ 1 for some pair (ε0, t0) in {−1,1}×R. By assumption, f is in M2,
whence

F (s) := ∏
p>2

∞∑
k=0

f (pk )

pks
.

For p ≥ 3, we have |∑∞
k=1 f (pk )p−ks | ≤ 1/2. We may therefore infer that

logF (s) =∑
p

f (p)p−s +O(1)

and hence
log |F (s)| =∑

p
Re

(
f (p)p−s)+O(1)

when σ> 1. It follows from this and the fact that ζ(s) has a simple pole at s = 1 that

|F (s)|ε0

σ−1
³ ζ(σ)|F (s)|ε0 ³ exp

{∑
p

1+ε0 Re
(

f (p)p−i t0
)

pσ

}
when 1 <σ≤ 3/2. By monotone convergence,

lim
σ↘1

∑
p

1+ε0 Re
(

f (p)p−i t0
)

pσ
=∑

p

1+ε0 Re
(

f (p)p−i t0
)

p
.

By assumption, this limit is not +∞, and hence we may apply Lemma 1 to conclude. �

Proof of the second part of Theorem 2. We will assume that every f in M for which (5) holds
with t0 = 0, satisfies

(11) |S f (x)|¿ x

log x
exp

(
κ(x)

)
,

and show that this leads to a contradiction.
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We may clearly assume that κ(x) is a continuous function. It is also plain that κ(x) may be as-
sumed to be nondecreasing and that κ(x)/

√
loglog x may be taken to be a nonincreasing function.

Indeed, if κ(x) failed to be nondecreasing, then we could use instead κ0(x) := max3≤y≤x κ(x);
should moreover κ0(x)/

√
loglog x fail to be nonincreasing, then we could replace it by

κ1(x) :=
√

loglog x max
y≥x

κ0(y)√
loglog y

,

which would still be a nondecreasing function being o(
√

loglog x) when x →∞.
By partial summation, we have for every 1 <σ≤ 3/2 and say |t | ≤ 1,

|F (σ+ i t )| ≤ 1+2
∫ ∞

3

∣∣S f (y)
∣∣y−σ−1d y ¿

∫ ∞

3

eκ(y)

yσ log y
d y

≤ exp
(
κ
(
e

1
σ−1

))∫ e1/(σ−1)

3

d y

y log y
+

∫ ∞

e1/(σ−1)

e− loglog y+κ(y)

yσ log y
d y.

Since κ(y)/
√

loglog y is a nonincreasing function, the function loglog y − κ(y) is eventually
increasing, whence the above computation leads to the bound

|F (σ+ i t )|¿ exp
(
κ
(
e

1
σ−1

))(
log

1

σ−1
+1/e

)
.

We may write this more succinctly as

(12) |F (σ+ i t )| ≤ exp

(
α

(
e

1
σ−1

)√
log

1

σ−1

)
,

where α : [3,∞) → (0,∞) is a nonincreasing function satisfying α(x) → 0 when x →∞.
We now choose a sequence of positive numbers x j , growing so rapidly that x

log x j

j < x j+1 for
every j ≥ 1 and the sequence

a j :=
√
α

(
x

log x j

j

)
is in `2. We then set

θp :=


a jp
loglog p

, x j ≤ p < x
log x j

j , −Re(i p−i ) ≥ 1/2

0, otherwise.

We find that ∑
p

|θp |2
p

≤
∞∑

j=1

a2
j

loglog x j

∑
p≤x

log x j
j

1

p
¿

∞∑
j=1

a2
j ,

where we in the last step used Mertens’s theorem for the sum
∑

p≤x 1/p. Hence
∑

p |θp |2/p <∞
by our choice of the sequence a j . Setting f (p) :=−e iθp and using Taylor’s theorem to write

f (p) =−1− iθp +O(θ2
p ),
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we infer from this that

Re
∑
p

f (p)p−s =−Relogζ(s)−Re i
∑
p
θp p−s +O(1).

It does not matter how we define f for higher prime powers, but for definiteness, let us require
that f be completely multiplicative. Setting σ= 1+1/(log x j )2 and t = 1, we then get

RelogF (1+1/(log x j )2 + i ) =−Re i
∑
p
θp p−1−1/(log x j )2−i +O(1)

À a j√
loglog x j

∑
x j≤p≤x

log x j
j

1

p
+O(1) À a j

√
loglog x j .

But choosing the same σ= 1+1/(log x j )2 and t = 1 in (12), we reach the bound√
α

(
x

log x j

j

)À 1,

contradicting that α(x) ↘ 0 when x → ∞, which, as observed above, is a consequence of our
assumption that (11) holds for all f in M for which (5) is true. �
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