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Abstract  

Water pollution by heavy metals is a problem of both western and developing countries. 

Heavy metal pollution can be associated to human activity, such as wastewaters from 

processing of ore mining, but also to simple contamination from metal rich soils. Whichever 

the case, chemical and physical methods are generally employed to depollute water. Since 

most chemicals are themselves polluting agents, there is an increasing interest in finding 

biobased and biodegradable alternative chemicals, both efficient in removing metals and 

benign to the environment. Biosurfactants are green chemicals produced by fermentation of 

yeasts and bacteria and with a good environmental score. Among many applications, this class 

of compounds has been used to remove heavy metals from contaminated soils. Within this 

framework, we propose a new mechanism of depolluting water using a glucolipid 

biosurfactant, G-C18:1, composed of glucose (G) and a C18:1 fatty acid (oleic acid). This 

compound is able to form a metallogel by complexing cations in water, thus trapping heavy 

metals (Cu2+, Ni2+, Cr2+ and Co2+) in the gel phase. This mechanism allows to remove up to 

95% for cobalt and 88 ± 10%, 80 ± 3% and 59 ± 6% for Cu2+, Ni2+ and Cr2+, respectively. A 

dedicated structural study shows that this is possible because positively charged species 

induce gelation of G-C18:1 through a micelle-to-wormlike phase transition, most likely 

driven by a charge neutralization process. This work shows that wise control of the nanoscale 

properties of green chemicals can strongly benefit to develop a sustainable future. 
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Introduction  

Wastewater remediation is a crucial challenge worldwide, may it occur in rich or 

developing countries. Different methods are currently employed together, mainly combining 

physical processes, like membranes filtration and decantation, associated to a chemical 

process, involving flocculation. (Lee et al., 2014) In the latter, colloids are coagulated by 

charge screening and flocculation occurs by inter-colloidal bridging in flocs, which can 

sediment or filtered out. 

In the last decades, metal salts were widely used as flocculants, however of intermediate 

efficiency, for their low cost compared to more efficient synthetic polymers (Sarika et al., 

2005) or bio-flocculants. (Othmani et al., 2020) However, metal salt flocculants have been 

limited along the years due to the large amounts of toxic metal released in the nature. 

Aluminium, a well-known flocculant, is known to affect living organisms, (Ward et al., 2006) 

especially acting as neurotoxic agent for human brain and which could contribute to the 

Alzheimer disease. (Banks et al., 2006) 

Depollution from heavy metals is itself an extensively studied problem (Fu & Wang, 

2011) and one can distinguish four methods based on: adsorption by porous materials, 

membrane filtration, electric separation and chemical flocculation. The latter is well-mastered, 

but it employs large amounts of non-biodegradable chemicals. (Qasem et al., 2021) 

Nowadays, other potential chemicals are tested for heavy metal depollution, mostly based on 

plant mixture or living plants, (Amari et al., 2019; Nedjimi, 2021) hydroxyapatite bones 

derivatives (Brazdis et al., 2021) or even fly ash, a known by-product of power production. 

(Gupta et al., 2021) In this context, low molecular weight (LMW) compounds, like 

surfactants, are well-known flocculants, employed since long time. (Jian-Xiao et al., 2006; 

Paton & Talens-Alesson, 2001; Somasundaran et al., 1988) However, the environmental 

concern of surfactants is itself an issue, and other LMW amphiphiles have been looked at as 

possible substituents for petrochemical compounds. Peptides amphiphiles (Abdellatif et al., 

2020; Bhattacharya & Krishnan-Ghosh, 2001; Suzuki et al., 2006) and, more importantly, 

microbial biosurfactants, like rhamnolipids, sophorolipids or surfactin, (Q. Chen et al., 2021; 

Hari & Upadhyay, 2021; Malkapuram et al., 2021; Mishra et al., 2021; Catherine N. 

Mulligan, 2021; Singh & Cameotra, 2013) have been shown to have interesting depollution 

properties against both organic and heavy metal pollutants. However, in the latter case, the 

essential work, which has started more than thirty years ago, has been carried out on soil 

pollution, (Q. Chen et al., 2021; Kim & Vipulanandan, 2006; Malkapuram et al., 2021; Miller, 
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1995; Mishra et al., 2021; C. N. Mulligan et al., 2001; Catherine N. Mulligan, 2005, 2009, 

2021; Catherine N. Mulligan, Yong, & Gibbs, 1999; Catherine N. Mulligan, Yong, Gibbs, et 

al., 1999; Catherine N. Mulligan & Wang, 2006; Prakash et al., 2021; Sonowal et al., 2022) 

with relatively less contributions to water depollution. Despite such large engineering efforts, 

including the development of performing extraction processes like flotation (Dhar, Havskjold, 

et al., 2021; Dhar, Thornhill, et al., 2021; Malkapuram et al., 2021) or electrokinetic 

remediation, (Tang et al., 2020) little is still known about the fundamental interaction 

mechanisms of between heavy metals and biosurfactants, the latter mainly concerning 

rhamnolipids. (Dahrazma et al., 2008; Ochoa-Loza et al., 2001a)  

In this work, we present the heavy metal removal ability of a new glycolipid biosurfactant, 

G-C18:1 (Figure 1), consisting in a glucose group covalently linked to a C18:1 cis fatty acid. 

This compound, prepared by fermentation of S. bombicola ΔugtB1 in the presence of glucose 

and vegetable oils, like rapeseed oil, (Saerens et al., 2011) is much less known and studied 

than other biosurfactants, like sophorolipids or rhamnolipids. Nevertheless, recent results 

show that G-C18:1 strongly interacts with alkaline earth and transition metal ions, which 

trigger gelation through micelle-to-wormlike or micelle-to-fiber phase transitions. (Poirier, 

Bizien, et al., 2022; Poirier, Griel, Hoffmann, et al., 2022; Poirier, Griel, Perez, & Baccile, 

2022; Poirier, Griel, Perez, Hermida-Merino, et al., 2022) The structure of the micelles and 

fibers, as well as the conditions under which they are formed and elastic properties of the gels 

have been thoroughly studied for selected metal ions by mean of cryogenic transmission 

electron microscopy, rheology and in situ small angle X-ray scattering. (Poirier, Bizien, et al., 

2022; Poirier, Griel, Hoffmann, et al., 2022; Poirier, Griel, Perez, & Baccile, 2022) On the 

other hand, the interactions between G-C18:1 and metal ions have been probed by isothermal 

titration calorimetry and solid state nuclear magnetic resonance. (Baccile et al., 2022; Poirier, 

Griel, Perez, & Baccile, 2022) These data are unique in the panorama of biosurfactant 

science, where their interactions with metal ions have only been rarely studied (Dahrazma et 

al., 2008; Miller, 1995) and a number of questions are still open. 

By controlling the effect of cations on the self-assembled structure and macroscopic 

properties of G-C18:1, we explore in this work the removal of Cu2+, Ni2+, Cr2+ and Co2+, all 

well-known groundwater pollutants, (Https://Www.Epa.Gov/Ground-Water-and-Drinking-

Water/National-Primary-Drinking-Water-Regulations#Inorganic, n.d.; Vetrimurugan et al., 

2017) through metallogelation. This approach, unprecedented for biosurfactants, is controlled 

by tuning the [ion]/[G-C18:1] molar ratio and pH. (Poirier, Bizien, et al., 2022; Poirier, Griel, 

Perez, Hermida-Merino, et al., 2022) In the process proposed here, complementary to other 
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existing separation processes, like flotation (Dhar, Havskjold, et al., 2021; Dhar, Thornhill, et 

al., 2021; Malkapuram et al., 2021) or electrokinetic remediation (Prakash et al., 2021; Tang 

et al., 2020), the gel is easily concentrated by centrifugation and removed. UV-Vis and atomic 

absorption spectroscopy are used to evaluate the molar fraction of the cations in the 

supernatant.  

Compared to the use of other biosurfactants for depollution purposes, G-C18:1 is certainly 

a newcomer. However, its unexpectedly strong interactions with heavy metals make this new 

molecule an interesting competitor with respect to all other commercial biosurfactants, like 

sophorolipids, rhamnolipid and surfactin, and in this regard it is certainly interesting to 

explore its application in the field of environmental remediation. 

 

Material and methods  

Chemicals. The monounsaturated glucolipid G-C18:1 (Mw = 460 g.mol−1) contains a β-D-

glucose unit covalently linked to oleic acid. The molecule is obtained by fermentation from 

the yeast Starmerella bombicola ΔugtB1 according the protocol given before. (Baccile, 

Cuvier, et al., 2016; Saerens et al., 2011) The compound is purchased from the Bio Base 

Europe Pilot Plant, Gent, Belgium, lot N° APS F06/F07, Inv96/98/99 and used as such. 

According to the specification sheet provided by the producer, the batch (99.4% dry matter) is 

composed of 99.5% of G-C18:1, according to HPLC-ELSD chromatography data. NMR 

analysis of the same compound (different batch) was performed elsewhere. (Baccile, 

Selmane, et al., 2016) Heavy metal chlorides, CuCl2, CrCl2, and NiCl2, were purchased from 

Sigma Aldrich (Saint-Quentin-Fallavier, France), CoCl2 came from Fluka (Saint-Quentin-

Fallavier, France). For atomic absorption spectroscopy, standard solutions are purchased from 

Supelco (Saint-Quentin-Fallavier, France) and Sigma Aldrich (Saint-Quentin-Fallavier, 

France). 

 

Solutions preparation. G-C18:1 is dissolved in milli-Q water at 1 wt% by stirring and 

sonication, the pH is adjusted to 8 by adding few µL of concentrated NaOH. At pH 8, the G-

C18:1 is clear. Cu2+, Co2+ and Cr2+ solutions are prepared at concentration of 1 M, Ni2+ 

solution is prepared at 0.5 M in milli-Q water. A few µL of each cation solution are added to 

the G-C18:1 solution so to reach the targeted molar ratio [ion]/[G-C18:1] shown in Table 1. 

The metallogels form at [ion]/[G-C18:1]= 0.5 for Cu+2, 0.6 for Cr+2, and 1.0 for Co+2 and 

Ni+2, with an approximation on the ratio of ± 0.1. However, to improve metallogel formation, 

pH is adjusted for Co2+, Cr2+ and Ni2+ systems only and according to the values given in Table 
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1. To remove the metallogel phase entrapping the heavy metals from the supernatant, the 

solutions (1.5 mL) are centrifuged at 13400 rpm during 5 min using an Eppendorf Minispin 

bench centrifuge. 

 

Table 1. Molar ratio (± 0.1) and pH conditions employed to prepare G-C18:1 metallogels.  

  CuCl2 CoCl2 CrCl2 NiCl2 

Replica 1 2 3 1 2 3 1 2 3 1 2 3 

[ion]/[G-C18:1] 0.4 0.6 0.5 1.0 1.1 1.0 0.6 0.6 0.6 1 1.2 1.2 

adjusted pH - - - 8.5 8.6 8.3 7 6.3 6.3 8 8.5 8.3 

 

UV-Vis spectrometry. The spectra from 300 to 800 nm are collected on a Uvikon XL 

spectrophotometer (SECOMAM) and its associated software. A 1.5 mL cuvette in plastic 

(Brand) is used as sample holder. Before each measurement, a few µL of the cation solution 

are mixed in the surfactant solution, which is then centrifuged. The absorbance is measured 

on the supernatant. Cation solutions are added in the same supernatant and the same protocol 

occurs over and over until high molar ratio [ion]/[G-C18:1] ratio are achieved. Since the 

actual [ion]/[G-C18:1] ratio is not known with precision, due to the content removed by 

centrifugation, plots report the calculated ratio. For all metal ions except Cu2+, the pH of the 

supernatant is artificially increase to trigger gel formation. 

 

Atomic absorption spectrometry. The supernatants are analyzed via Atomic Absorption 

Spectroscopy (AAS) using a PerkinElmer PinAAcle 500 apparatus. The calibration curves are 

obtained for Cu2+, Co2+, Cr2+ and Ni2+ by diluting commercial standard solutions at 0.5, 1, 1.5, 

2.0 and 2.5 mg/L in a 1.5% HNO3 solution. The samples are prepared by diluting the 

supernatants in a HNO3 solution at 1.5%. 

 

Discussion 

In a series of previous works, it was shown how the glycolipid biosurfactant G-C18:1 

fibrillates into hydrogels by adding a source of alkaline earth and transition metal ions to its 

micellar solution at pH> 7 (Figure 1). (Poirier, Griel, Perez, Hermida-Merino, et al., 2022) 

Specific ions like Ca2+, Ag+, Mn2+, Cr2+ Fe3+ or Zn2+ tend to form gels or aggregates with a 

fibrillar morphology (Poirier, Griel, Hoffmann, et al., 2022; Poirier, Griel, Perez, & Baccile, 

2022; Poirier, Griel, Perez, Hermida-Merino, et al., 2022) while Co2+, Cu2+, Fe2+, Al3+ and 

Ni2+ drive the assembly towards an intertwined wormlike micellar network. (Poirier, Griel, 
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Perez, & Baccile, 2022; Poirier, Griel, Perez, Hermida-Merino, et al., 2022) According to the 

present knowledge, fibers are driven by possible metal-ligand interactions, while wormlike 

micelles rather form from a charge-screening mechanism, presumably via the interaction 

between the metal ion and the COO- of G-C18:1. (Baccile et al., 2022; Poirier, Griel, 

Hoffmann, et al., 2022) The structure of Ca2+ and Ag+ driven fibrous gels are reported in 

detail elsewhere, (Poirier, Griel, Hoffmann, et al., 2022) as well as the mechanism of 

fibrillation and micellization with Ca2+, Ag+, Al3+ and Fe2+. (Poirier, Griel, Perez, & Baccile, 

2022) 

Interaction between the carboxylate groups of other glycolipid biosurfactants (e.g., 

rhamnolipids) is generally used as an argument to explain the good heavy metal removal 

efficiency of this class of molecules in soil and water treatment. (Q. Chen et al., 2021; Ghaith 

et al., 2019; Huang & Liu, 2013; Mishra et al., 2021; Catherine N. Mulligan, 2005, 2009, 

2021; Catherine N. Mulligan & Wang, 2006) However, studies specifically addressing the 

nature of the interactions between biosurfactants and metal ions in water solutions are scarce 

(Baccile et al., 2013; M. Chen et al., 2013; Dahrazma et al., 2008; Shen et al., 2011) and 

generally show the small impact of cations on the phase behavior of biosurfactants. The effect 

of metal ions on glucolipid G-C18:1 represents, to date, the only exception to the present state 

of the art. (Poirier, Griel, Hoffmann, et al., 2022; Poirier, Griel, Perez, & Baccile, 2022; 

Poirier, Griel, Perez, Hermida-Merino, et al., 2022) 

 

 

Figure 1 – Process of metallogel formation from glycolipid G-C18:1 biosurfactant in water. (Poirier, Griel, Perez, & 

Baccile, 2022; Poirier, Griel, Perez, Hermida-Merino, et al., 2022) 

 

Some of the metals tested display renown acute toxicity 

(Https://Www.Epa.Gov/Ground-Water-and-Drinking-Water/National-Primary-Drinking-

Water-Regulations#Inorganic, n.d.; Vetrimurugan et al., 2017) and their interaction with G-

C18:1 during the fibrillation process could be an effective way to remove the complex 

through a physical method. In the following, we have opted for centrifugation, which, at a 

laboratory scale is an easy and effective way to separate the flocculate, here supposed to be a 

Glycolipid biosurfactant
Metal ions

Al3+ Ag+ Fe2+

Metallogels

Ca2+

Self-assembly

Metal ions
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network of wormlike micelles or fibers, depending on the cation. However, other methods, 

like flotation (Dhar, Havskjold, et al., 2021; Dhar, Thornhill, et al., 2021; Malkapuram et al., 

2021), electrokinetic remediation (Tang et al., 2020) or filtration could easily be employed. 

Figure 2 shows the absorbance spectra of Cu2+ and Ni2+, added to a micellar solution 

of G-C18:1 at pH 8. After each addition of the metal ion solution, the mixture containing the 

cation and G-C18:1 is systematically centrifuged, with no remarkable effect. However, at an 

appropriate molar ratio of [Cu2+]/[G-C18:1] of about 0.5, gelation occurs and syneresis can be 

easily induced by centrifugation. A colorless supernatant is then collected and further 

analyzed. Similar observations (appropriate [ion]/[G-C18:1] are given in Table 1) are 

obtained for Co2+, Cr2+ and Ni2+, after increasing the pH between pH 7.0 and 8.5. UV-Vis 

spectrometry is used to follow the above process and to evaluate the cationic content in the 

supernatant, after each cation addition and centrifugation step.  

 

Figure 2 - Absorbance spectra for a) Cu2+ and b) Ni2+ -containing G-C18:1 solutions (CG-C18:1= 1 wt%) at different 

molar ratios, indicated in the caption. The vertical red line shows the wavelength targeted to follow the absorbance 

evolution, c) 670 nm for Cu2+ and d) 395 nm for Ni2+ addition. The pH is adjusted at 8.5 before the last centrifugation. 

 

Absorbance spectra for Cu2+ and Ni2+ systems are shown in Figure 2a,b. They 

represent the typical evolution of the UV-Vis absorption signal as a function of the metal ion 

content. Two typical trends are observed: increase (with Cu2+ or Cr2+) or decrease (for Ni2+ or 

Co2+) in absorbance. Spectra obtained with Cr2+ and Co2+ are presented in Figure S 1. The 
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evolution of the absorbance is plotted vs. the cation concentration at a specific wavelength, λ, 

where the cation displays the maximum of absorption (Figure 2c,d). Centrifugation between 

each injection of the metal ion solution guarantees the removal of the large aggregates, but 

neither ions nor any stable self-assembled form of G-C18:1 (e.g., micelles, individual fibers). 

It is then necessary to discriminate the UV-Vis absorbance peak attributed to the cation 

absorption and the wavelength-dependency (λ-4) background associated to the Rayleigh 

scattering produced by the self-assembled structures (wormlike micelles (Poirier, Griel, Perez, 

& Baccile, 2022; Poirier, Griel, Perez, Hermida-Merino, et al., 2022)), which are reasonably 

considered here to be at least ten times smaller than the wavelength. To do so, we perform a 

fit of the Rayleigh scattering contribution to the total absorbance using the simplified 

expression A= cλ-4+b, with A being the experimental absorbance in the UV-Vis range. 

Considering the present qualitative approach, the classical optical and size parameters, which 

are not exploited here, are integrated in the adjustable constant c, with b being the baseline. 

This is illustrated by a typical fit curve (black dash line) in Figure 2a,b. 

For Cu2+ system, the Rayleigh scattering dominates the signal up to a molar ratio of 

about 0.1, while absorption due to copper (λ= 670 nm) dominates above about a molar ratio of 

0.15. The absorption increases linearly up to a molar ratio close to 0.5, at which gelation 

occurs (Figure 2a,c and Figure 3a). The gel, constituted by entangled wormlike micelles, 

(Poirier, Griel, Perez, Hermida-Merino, et al., 2022) is easily removed by centrifugation of the 

vials. The final supernatant is transparent by the eye, confirmed by UV-Vis spectroscopy, 

which shows a flat spectrum in the visible range (Figure 2a, solid black line at [Cu2+]/[G-

C18:1]= 0.57). According to UV-Vis, removal of Cu2+ is quantitative. However, a precise 

residual content of copper will be evaluated by mean of atomic absorption, presented below. 
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Figure 3 – a) Illustration of the Cu2+ solubility in a G-C18:1 solution (CG-C18:1 = 3 wt%) at a molar ratio 0.3 and the 

Cu2+-containing G-C18:1 hydrogel obtained at [Cu2+]/[G-C18:1]= 0.5. b) Picture of G-C18:1 solution (CG-C18:1 = 3 

wt%) obtained with Ni2+, Cr2+ and Co2+ addition before and after basification. 

 

The same balance between the Rayleigh scattering and increase in absorption due to 

the ion in solution is also observed for the Ni2+ system. However, Ni2+ has an absorption 

coefficient lower than Cu2+ of about a factor five and adsorption occurs at lower wavelength 

(λ= 395 nm), two conditions, which favors the contribution of the Rayleigh scattering of 

aggregates in the measured absorption. The aggregate scattering decreases until [Cu2+]/[G-

C18:1]= 0.5, when the contribution due to the cation absorption compensates the decrease of 

intensity due to the aggregates scattering (Figure 2c), thus producing a constant intensity 

(Figure 2d). 

To improve the interactions between cations and G-C18:1, selected samples require an 

adjustment of pH towards neutrality. This is the case for the samples containing Ni2+, Cr2+ and 

Co2+, which form either gels or viscous solutions around pH 7. From a visual point of view, 

this is shown in Figure 3b, where Ni2+, Cr2+ and Co2+ induce gelation and aggregation 

between pH 6.3 and 7.7. The equivalent spectroscopic data are provided in Figure 2b,d for 

Ni2+ and Figure S 1 for Cr2+ and Co2+. For all samples, the supernatant is transparent at a 

specific molar ratio and after pH adjustment and centrifugation, as shown by the black solid 

lines close to 0 over the entire wavelength range (Figure 2d and Figure S 1c,d). It should be 

noted that the chrome-containing gel most likely contains a mixture of Cr2+ and Cr3+, the 
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former being unstable and easily oxidizing into Cr3+. (Baes & Mesmer, 1976) The presence of 

Cr3+ is indicated by the poorly defined, grey color of the gel (Figure 3b), as also reported 

before, (Poirier, Griel, Perez, Hermida-Merino, et al., 2022) but also by the absorption peaks 

at λ= 420 nm and λ= 577 nm in the corresponding UV-Vis spectra in Figure S 1a. These 

values are intermediate between the expected absorption peaks of carboxylate-complexed 

aqueous solutions of Cr2+ (λ= 410 nm, λ= 468 nm) and Cr3+ (λ= 432 nm, λ= 578 nm). 

(Vargas-Vasquez et al., 2010) 

pH has a strong impact on both the cations’ chemistry and G-C18:1 and these are 

discussed separately below. As a general trend, metallogels of G-C18:1 form in the region of 

pH neutrality and above. This is most likely explained by the higher abundancy of negatively 

charged carboxylate groups, which are supposed to interact with cations. Metal-induced 

gelation is well-known for polymers (Cheng et al., 2017; Diener et al., 2020) but also many 

low-molecular weight (LMW) amphiphiles, (L. Chen et al., 2013; Greenfield et al., 2010; Shi 

et al., 2011; Westcott et al., 2009; Xie et al., 2016; Zhou et al., 2013) including anionic 

surfactants. (Qiao et al., 2011; Vasilescu et al., 2004) The difference between hydrogels 

obtained by LMW amphiphiles and surfactants is generally structural, as the former often 

assemble into fibers, while the latter into wormlike micelles. Such effects are exploited in 

chemical depollution methods, which employ surfactants as flocculants to remove heavy 

metals from wastewater. (Paton & Talens-Alesson, 2001; Somasundaran et al., 1988; Talens-

Alesson, 2007)  

Interestingly, G-C18:1 displays both characters according to the type of cation used. 

(Poirier, Griel, Perez, Hermida-Merino, et al., 2022) However, according to SAXS arguments 

presented elsewhere, (Poirier, Griel, Perez, Hermida-Merino, et al., 2022) the cations studied 

in this work drive the formation of wormlike gels. At pH above neutrality, G-C18:1 forms a 

stable micellar phase in water, where micelles have a spheroidal morphology. (Baccile, 

Cuvier, et al., 2016; Baccile, Selmane, et al., 2016) Ni2+, Cr2+ and Co2+, among others, induce 

gelation by driving a sphere-to-wormlike transition. Sphere-to-cylinder and sphere-to-

wormlike transitions induced by metal salts are well-known in surfactant science, (R. . G. 

Alargova et al., 2003; R. G. Alargova, Danov, et al., 1998; R. G. Alargova, Ivanova, et al., 

1998; Angelescu et al., 2004; Jensen et al., 2014; Vasilescu et al., 2004) and they are 

generally attributed to the charge-screening effect of ions, which reduce repulsive interactions 

between negatively-charged headgroups. According to the thermodynamic theory of 

surfactant self-assembly, (Israelachvili et al., 1976; Tanford, 1973) smaller area-per-

headgroup favors transitions from high to low curvature morphologies, like cylinders and 
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worms. Wormlike gels are also well-known, (Raghavan & Douglas, 2012) although cation-

induced viscoelasticity in anionic surfactants is less common, but possible. (Qiao et al., 2011; 

Vasilescu et al., 2004) Most of the studies reporting cation-induced morphological transitions 

in surfactants and LMW amphiphiles generally consider the ion in its free Mz+ form. Broadly 

speaking this is imprecise. 

The effect of pH on metal ions is well-known in inorganic chemistry and it is 

responsible for the precipitation of metal oxides. pH determines the form of the ion, whether 

free (Mz+), although generally hydrated by water, or complexed as hydroxo species 

(M(OH)y
(z-y)+). (Baes & Mesmer, 1976) Speciation is particularly important for transition 

metal compared to alkaline earth cations. The former generally display a large number of 

species, depending on the valence of the metal, its polarizability and electronegative 

character. If speciation of metal in water should be taken into account when discussing the 

metal-surfactant interactions, this is rarely the case. We have identified a limited number of 

works, (Jian-Xiao et al., 2006; Paton & Talens-Alesson, 2001; Somasundaran et al., 1988) 

compared to the majority, where speciation is taken into account (refer to Table S 1 in Ref. 

(Poirier, Griel, Perez, Hermida-Merino, et al., 2022) for a more extended literature survey). 

Understanding the interactions between G-C18:1 and metal ions is then very challenging on 

the basis of previous literature. The chemical nature of G-C18:1 also adds another source of 

complexity. 

Most literature studies involve anionic surfactants, generally derivatives of sulfates, 

which do not chelate metals. On the contrary, G-C18:1 has a carboxylate group, which is 

known to be a good ligand for metals. (Ringbom, 1963) For this reason, a competition must 

exist between carboxylates and hydroxyl groups, since pH controls both the amount of 

carboxylates in solution and the type and relative content of metal hydroxo species. 

Furthermore, one cannot exclude a charge-screening effect by M(OH)y
(z-y)+ complexes 

themselves, instead of free metal ions, as also hypothesized by others. (Jian-Xiao et al., 2006) 

It goes without saying that the overall complexity of the system goes far beyond the scope of 

this work. 

We have however attempted to propose a general rationale with some exceptions. 

(Poirier, Griel, Perez, Hermida-Merino, et al., 2022)  Those cations which exist as free ions 

(Mz+) in the pH region above 7 (e.g., Ag+, Ca2+, Mn2+) tend to form strong metal-ligand 

complexes with G-C18:1 and their mutual interaction drives the formation of fibers.(Poirier, 

Griel, Hoffmann, et al., 2022) On the other hand, those cations, which have a more complex 

speciation (M(OH)y
(z-y)+) tend to form micellar gels, probably driven by electrostatic 
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screening between coexisting forms of M(OH)y
(z-y)+ and negatively-charged G-C18:1 

micelles. This seems to be the case of Ni2+, Cr2+, Co2+ and Cu2+. However, exceptions exist, as 

shown by the gelation of the G-C18:1 at pH 5 containing Cu2+. Complexation phenomena 

between Cu2+ and carboxylic acids, or even glucose, are not excluded. 

The atomic absorption spectroscopy (AAS) allows a quantitative analysis of the cations 

concentration in the supernatants, after centrifugation of the hydrogels. Experiments are 

performed in triplicate. Preparation of each sample is given in Table 1, while the efficiency of 

cation removal is given in Figure 4. The higher efficiency is obtained with Co2+ where 95 ± 3 

% of cation is removed from water and integrated in the gel phase. Cu2+ and Ni2+ are also 

removed with a very good efficiency of about 88 ± 10 % and 80% ± 3 % for each cation. Cr2+ 

exhibit the lower efficiency with only 59 ± 6 % removed, probably due to the presence of Cr3+ 

species. 

The heavy metal ion removal efficiency found for several ions, like Co2+ or Ni2+, is 

impressively high, especially if one considers that nearly no optimization has been performed, 

as otherwise found for other systems, (De Franҫa et al., 2015; Talbot et al., 2018) and the 

mixing protocol is relatively simple. The comparison to other biosurfactants is not 

straightforward, as most work has been carried out on soil depollution, (Q. Chen et al., 2021; 

Kim & Vipulanandan, 2006; Malkapuram et al., 2021; Miller, 1995; Mishra et al., 2021; C. N. 

Mulligan et al., 2001; Catherine N. Mulligan, 2005, 2009, 2021; Catherine N. Mulligan, 

Yong, & Gibbs, 1999; Catherine N. Mulligan, Yong, Gibbs, et al., 1999; Catherine N. 

Mulligan & Wang, 2006; Ochoa-Loza et al., 2001b; Sonowal et al., 2022) rather than aqueous 

solutions. (Ghaith et al., 2019; Huang & Liu, 2013; Kim & Vipulanandan, 2006) In the latter 

case, the biosurfactants (generally rhamnolipids) are not employed alone but in association 

with biomass, like dry ground grass or bacteria, or the nature of the biosurfactant itself is not 

clarified. (Kim & Vipulanandan, 2006) The unique metallogelation mechanism of G-C18:1 in 

the presence of cations (Poirier, Griel, Perez, Hermida-Merino, et al., 2022) displays a high 

cation removal efficiency compared to other biosurfactants. In the case of water purification, 

it was reported a removal efficiency of lead in the order of 80%, although the type of 

biosurfactant used was not clear. (Kim & Vipulanandan, 2006) An interesting study by 

Ochoa-Loza provides the binding constants between monorhamnolipids and a number of 

metal ions, showing that the best affinity occurs with Al3+ and Cu2+, without however 

quantifying the removal efficiency from contaminated water solutions. In terms of soil 

washing, a recent review (Mishra et al., 2021) lists the efficiency of heavy metal removal for a 

number of biosurfactants, including rhamnolipids, sophorolipids, surfactin and other 
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unspecified molecules. Although difficult to compare in a direct manner, the water cleaning 

process using metallogelation from G-C18:1 with Co2+ and Cu2+ still ranges among the 

highest standards with respect to all metals reported in Table 3 of Ref. (Mishra et al., 2021). 

Specifically, the high efficiency values obtained with Co2+ (95 ± 3 %) and Cu2+ (88 ± 10 %) 

as well as less impressive values found for Ni2+ (80 ± 3 %) and Cr2+ (59 ± 6 %), outperform 

the effect of rhamnolipid, sophorolipid and surfactin on these same cations, which were 

shown to have efficiencies ranging between 1.68 % (surfactin/chromium) and 74% 

(rhamnolipid/copper). (Mishra et al., 2021) To the best of our knowledge, the glucolipid 

presented here seems to be one of the most performing low molecular weight bio-flocculants. 

Although never tested in depollution of soils, one does not expect sophorolipids, rhamnolipid 

or surfactin to have such high efficiencies in water treatment. In fact, previous work focusing 

on the impact of free metal ions on the self-assembly of these molecules did not demonstrate 

any major impact with noticeable macroscopic behavior in terms of ion trapping. (Baccile et 

al., 2013; M. Chen et al., 2013; Dahrazma et al., 2008; Shen et al., 2011) The present results 

are explained by the atypical, bolaform and functional, molecular structure of G-C18:1 but 

also by the control and fine tuning of its unique phase behavior. (Baccile et al., 2022; Baccile, 

Cuvier, et al., 2016; Baccile, Selmane, et al., 2016; Poirier, Bizien, et al., 2022; Poirier, Griel, 

Hoffmann, et al., 2022; Poirier, Griel, Perez, & Baccile, 2022; Poirier, Griel, Perez, Hermida-

Merino, et al., 2022)  
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Figure 4 – Residual concentration of heavy metals, measured by atomic absorption spectrometry (AAS), in the 

supernatant after metallogelation and centrifugation. Composition values are indicated Figure S 1. The molar fraction 

removed is obtained by ratio of the effective ion concentration measured by AAS experiment [ion]AAS in the 

supernatant over the ion concentration initially added to the glycolipid solution, [ion]added. 

 

 

Conclusions 

 The microbial biosurfactant, glucolipid G-C18:1, forms metallogels with a broad set of 

heavy metals. The gel phase is employed here as heavy metal adsorbent intended to clean the 

water phase. G-C18:1 is tested with four well-known heavy metal pollutants of industrial 

waste and ground waters, Cu2+, Ni2+, Cr2+ and Co2+. By increasing the cation-to-biosurfactant 

ratio up to an optimum value, generally at charge compensation, and adjusting the value of pH 

between 7 and 8 for some of them, G-C18:1 strongly interacts with all metals in the form of 

hydroxo species, which are entrapped in the gel phase. The mechanism behind 

metallogelation, reported elsewhere, involves a micelle-to-wormlike morphological transition 

driven by the interaction between the carboxylate group of G-C18:1 and the charged metal 

species. 

 Centrifugation is eventually used as a practical laboratory-scale process to separate the 

gel from water. Qualitative observations by the naked eye show nearly complete removal of 

the heavy metals. This is confirmed by UV-Vis spectrophotometry experiments, which, 

within the sensitivity of the instrument, show no trace of the heavy metals in the supernatant. 

Precise quantification has been performed with atomic absorption spectrometry, which reveals 

the high efficiency in terms of flocculant behavior of G-C18:1 towards selected heavy metals. 

We find that the efficiency removal is as high as 95 ± 3% for Co2+, 80 ± 3% for Ni2+, 88 ± 

10% for Cu2+ and 59 ± 6% for Cr2+. Due to the little work performed on the depollution of 

water by biosurfactants, these values cannot benefit direct comparison. Nevertheless, in 

comparison to the extensive work performed on the removal of heavy metals in soil, these 

values are in the top range and show promising application of G-C18:1 also in soil cleaning. 

 This study confirms the strong interest of biosurfactants as remediation green 

chemicals. Moreover, considering the very high efficiency of G-C18:1 for heavy metal 

removal, it also shows the strong interest in studying this compound further in this field. 
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Figure S 1 – Absorbance spectra for a) Cr2+ and b) Co2+ containing G-C18:1 solutions (CG-C18:1=1 wt%) at different 

[ion]/[G-C18:1] molar ratio, indicated in the caption. The vertical red line show the wavelength targeted to follow the 

absorbance evolution, c) λ= 420 nm for Cr2+ and d) λ= 520 nm for Co2+ addition. 
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