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NO-REGRET ALGORITHMS IN ON-LINE LEARNING, GAMES AND
CONVEX OPTIMIZATION

SYLVAIN SORIN

ABSTRACT. The purpose of this article is to underline the links between some no-regret
algorithms used in on-line learning, games and convex optimization and to compare
the continuous and discrete time versions.
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1. INTRODUCTION

General learning algorithms associate to an observation a decision and evaluate the
result through a specific criteria. On-line procedures involve time hence a process of
observations but require that successive decisions are taken at each instant. We will
study here an example of such instance where the criteria is a "regret function".
The specificity of the current presentation lies mainly in the two following aspects:
1) We will establish properties for the general observation process and then study the
so-called closed model where the observation is a function of the actual decision. A
typical example will be the joint process of players choosing actions and observing
each their induced private payoff. Another basic application is a first order method in
convex optimization.
While these three frameworks seem very different : no hypothesis on the observation
in the first case, collection of unilateral procedures in parallel in the second, gradient
based dynamics in the third, we will see that general optimal properties are shared and
similar main concepts and tools apply.
2) We will consider both the continuous and discrete time versions and compare the
basic notions, tools, ideas of proofs and results in both cases. Here also some common
properties will emerge.

1.1. The model: no-regret condition in continuous and discrete time.

The general framework is as follows:
V is a normed vector space, finite dimensional, with dual V ∗ and duality map 〈V ∗|V 〉,
X is a non-empty convex compact subset of V (while this last hypothesis is not needed
in convex optimization - but argminf non empty is often required - it is almost necess-
sary in the analysis for games).

The aim is to study properties of algorithms that associate to a continuous time pro-
cess {ut ∈ V ∗, t ≥ 0}, a similar procedure {xt ∈ X, t ≥ 0}, where xt is function of the
past {(xs, us), 0 ≤ s < t}.
The process corresponds to the observation, the procedure to the induced trajectory of
choices.
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The adequation of {xt} to {ut} is measured by a regret function defined on X by:

(1) Rt(x) =

∫ t

0

〈us|x− xs〉ds

which compares the integral of the instantaneous score 〈us|xs〉 to the one induced by a
fixed action 〈us|x〉. (Notice that the regret can be positive or negative for some x.)
One will study procedures satisfying the no-regret condition:

(2) sup
x∈X

Rt(x) ≤ o(t)

which means that the (positive part of the) time average regret Rt(x)
t

vanishes.
Similarly in discrete time, m ∈ IN, given {um} and {xm}, with {xm} depending on
{x1, u1, ..., xm−1, um−1}, one defines:

Rn(x) =
n∑

m=1

〈um|x− xm〉

and requires:

(3) sup
x∈X

Rn(x) ≤ o(n).

1.2. The analysis.

A) We compare the performance of the algorithms in terms of evaluation of the regret
under three (increasing) assumptions:
(I) general case: the information {ut} is a bounded measurable process in V ∗,
(II) closed form: the information is determined by the choice, thus ut = g(xt) for a
continuous vector field g : X → V ∗,
(III) convex gradient: ut = −∇f(xt), where f is a C1 convex function : X → R,
(with similar properties in discrete time).

B) We consider three different procedures:
- Projected dynamics (PD),
- Mirror descent (MD),
- Dual averaging (DA)
that will satisfy the no-regret property and we will discuss their performances.

C) We analyze the relations between the continuous and discrete time processes
(in particular in terms of speed of convergence to 0 of the average regret).
Recall that in continuous time ut is not observed at time t and the information process
is only measurable; moreover ut may depend on xt.

D) In classes (II) and (III) it makes sense to consider the trajectories of {xt} or {xn}
and we will study their convergence.

1.3. No-regret in on-line learning, games and convex optimization.
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1.3.1. Framework (I) corresponds to the usual model of on-line learning where at each
time t the agent observes the process {us, s < t} and chooses the action xt.
Note that, for K a finite set with cardinal |K|, if V = R|K| and the agent selects a com-
ponent kt ∈ K at random, then X is the simplex on K, denoted ∆(K), xt stands for the
law of kt and the regret is expressed in terms of conditional expectation.
Recall that since no hypothesis is made on the process ut, no prediction on its fu-
ture values makes sense, but to satisfy the no-regret criteria expresses a desirable a-
posteriori property in the spirit of dynamic best-reply.

The litterature on this topic is very large and almost impossible to cover. Let us
mention few aspects.

The notion of regret appears in Hannan (1957) [40], Blackwell (1956) [15] in a game
theoretical set-up. Algorithms and properties are studied in this spirit in Foster and
Vohra (1993) [31], Fudenberg and Levine (1995) [36], Foster and Vohra (1999) [34], Hart
and Mas-Colell (2000) [42], Lehrer (2003) [60], Benaim, Hofbauer and Sorin (2005)[14],
Cesa-Bianchi and Lugosi (2006) [25], Viossat and Zapechelnyuk, 2013 [102], ... among
others.

Similar tools and properties occur in statistics and in the learning community: Vvok
(1990) [103], Cover ( 1991) [28], Littlestone and Warmuth (1994) [63], Freund and Shapire
(1999) [35], Auer P., Cesa-Bianchi N., Freund Y. and R.E. Shapire (2002) [7], Cesa-
Bianchi and Lugosi (2003) [24], Stoltz and Lugosi (2005) [96], Kalai and Vempala, 2005
[53], Blum and Mansour, 2007 [16], ...

This topic is analyzed in the following books:
FUDENBERG D. AND D. LEVINE (1998) [37] The Theory of Learning in Games, MIT Press,
CESA-BIANCHI N. AND G. LUGOSI (2006) [25] Prediction, Learning and Games, Cam-
bridge University Press,
HART S. AND A. MAS-COLELL (2013) [45] Simple Adaptive Strategies: From Regret-
Matching to Uncoupled Dynamics, World Scientific Publishing,
and the connection with related notions of approachability and consistency is well pre-
sented in the survey by Perchet (2014) [79], see also Abernethy, Bartlett and Hazan
(2011) [1] .

The next two paragraphs describe more specific cases where the observation ut is a
function of the action xt.

1.3.2. In particular, framework (II) closed form is relevant for game dynamics and vari-
ational inequalities as explained now.
Consider a strategic game with a finite set of players I , where X i ⊂ V i is the strategy
set of player i and X =

∏
iX

i. Assume that the equilibrium set E is obtained as the set
of solutions x = (xi) ∈ X of the following variational inequalities:

〈gi(x)|xi − yi〉 ≥ 0, ∀yi ∈ X i,∀i ∈ I.

where gi : X → V i∗ is the "evaluation" function of player i.
Examples include (mixed extension of) finite games where gi is the "vector payoff"
function of player i, games with smooth concave payoffs (the payoff function F i :
X → R of player i is concave w.r.t. xi and gi = ∇xiF

i), but also nonatomic population
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games and Wardrop equilibria (I is then the set of populations), see Sorin and Wan
(2016) [95].
Notice that an equivalent formulation of the equilibrium condition is through the sin-
gle variational inequality, with g = {gi}:

(4) 〈g(x)|x− y〉 =
∑
i

〈gi(x)|xi − yi〉 ≥ 0, ∀y ∈ X.

We will denote by Γ(g) a game for which equilibria are solution of (4).
For each player i, the reference/observation process is specific, namely uit = gi(xt)
which, as a function of xt, is determined by the behavior of all players. In particu-
lar, in a concave smooth game, the observation of player i is the gradient w.r.t. xi :
uit = ∇xiF

i(xt).
Note that the overall global dynamics of the profile of actions {xt} is generated by a
family of unilateral procedures since for each i, xit depends on (ui, xi) only. In par-
ticular for each player i, the knowledge of gj, j 6= i is not assumed. Thus for each
participant individually the situation is similar to (I) general case since the observation
is not controlled, while these private observations of the participants are linked via xt.

We will analyze the consequences on the process {xt} assuming only that each player
uses a procedure satisfying the no-regret condition (2) or (3). Obviously the (global)
algorithm associated to g = {gi} as a vector field on a product space associated to (4)
will also share the no-regret property since:∫ t

0

〈gi(xs)|xi − xis〉ds ≤ o(t), ∀xi ∈ X i

implies: ∫ t

0

〈g(xs)|x− xs〉ds ≤ o(t), ∀x ∈ X

but in addition it is "decentralized" in the sense that xi depends upon gi only.

1.3.3. Framework (III) covers the case of convex optimization where the observation,
given the choice xt, is the gradient of the (unknown) convex function, explicitly one
has ut = −∇f(xt).
The recent research in this area is very wide and links basic optimisation algorithms
Polyak (1987) [81], Nemirovski and Yudin (1983) [73], Nesterov (2004) [75], to on-line
procedures, see Zinkevich (2003) [106].
Let us mention the recent books:
BUBECK S. (2015) [22] Convex optimization: Algorithms and complexity, Fondations
and Trends in Machine Learning, 8, 231-357.
HAZAN E. (2011) [46] The convex optimization approach to regret minimization, Op-
timization for machine learning, S. Sra, S. Nowozin, S. Wright eds, MIT Press, 287-303.
HAZAN E. (2015) [47] Introduction to Online Convex Optimization, Fondations and
Trends in Optimization, 2, 157-325.
HAZAN E. (2019) [48] Optimization for Machine Learning , https://arxiv.org/pdf/1909.
03550.pdf.
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SHALEV-SHWARTZ S. (2012) [90] Online Learning and Online Convex Optimization,
Foundations and Trends in Machine Learning, 4 , 107-194.

1.3.4. One should add that related algorithms have been developped in Operations
Research (transportation, networks), see e.g. Harker and Pang (1990) [39], Dupuis and
Nagurney (1993) [29], Nagurney and Zhang (1997) [71].
Note that each community (learning, game theory, optimization) has its own termi-
nology and point of view. As a consequence specific properties may inherit different
names and will be rediscovered at several occasions. One of the aim of the current
work is to clarify the relations between these approaches and results and unify the
analysis.
In particular we will show that few basic principles are in use and we will underline
the analogy between continuous and discrete time.
However there are subtle differences between the different algorithms and their prop-
erties that we will discuss (see 3.6, 4.4 and 5.4).

1.4. Summary.

Section 2 is devoted to the closed form framework (II) and explores the links between
no-regret, solutions of variational inequalities and convex optimization.
Section 3 deals with continuous time dynamics. After introducing “level functions”
and “positive correlation” we describe the three algorithms (PD, MD, DA), prove that
they satisfy the no-regret property and compare their performances.
Section 4 is the discrete time analog of Section 3.
Section 5 considers basically framework (III) under an additional regularity hypothesis
on the convex function f . Subsection 5.4 on ”Mirror prox” recalls related results using
similar tools.
Concluding comments are in Section 6.

2. BASIC PROPERTIES OF THE CLOSED FORM

We describe first some relations with variational inequalities, when the observation
process has a closed form : u = g(x). Then we exhibit general properties of no-regret
procedures.

2.1. Definition and notations.

2.1.1. iS: set of internal solutions.
Notation: iS is the set of solutions x ∈ X , (internal since it involves the value of g at

x ∈ X), of the variational inequality:

(5) 〈g(x)|y − x〉 ≤ 0, ∀y ∈ X.

Note that if g is associated to a game Γ(g), see 1.3.2, (4) shows that iS corresponds to
the set of equilibria.

Recall also that in an Hilbertian framework property (5) is equivalent to:

(6) ΠX(x+ λg(x)) = x, λ > 0
6



where ΠC denotes the (Hilbertian) projection operator on a closed convex set C, and
(5) defines also the solutions x ∈ X of:

(7) ΠTX(x)(g(x)) = 0

where TX(x) is the tangent cône to X at x, see e.g. Kinderlehrer and Stampacchia
(1980) [54], Facchinei and Pang (2007) [30].

The minimization of a C1 convex function f on X corresponds to the variational
inequality (5) with g = −∇f .
This case presents two specific properties: i) g is a gradient, ii) g is dissipative.
We will consider now the analogous general definitions for vector fields.

2.1.2. Fields with potential.
Definition: g : X → V ∗ is a vector field with potential G, if G : X ′ → R, where X ′ is

an open neighborhood of X , satisfies:

〈∇G(x)− g(x)|y − x〉 = 0,∀x, y ∈ X
or more generally if there exist a strictly positive function µ on X , such that:

(8)
〈
∇G(x)− µ(x)g(x), y − x

〉
= 0, ∀x ∈ X, ∀y ∈ X,

see Sorin and Wan (2016) [95].
Then local maxima ofG onX belong to iS and ifG is concave its maxima onX coincide
with iS.
If g is defined through a game Γ(g), see 1.3.2, the game is a potential game, Monderer
and Shapley (1996) [69], Sandholm (2001) [85].

2.1.3. Dissipative fields.
Definition: g is dissipative (−g is monotone) if it satisfies:

(9) 〈g(x)− g(y)|x− y〉 ≤ 0, ∀x, y ∈ X.
A fundamental example is the following: let F , defined on X = X1 × X2, be a
C1 concave/convex function, (like the payoff function of a two-person 0-sum game,
F = F 1 = −F 2), then g = {∇x1F,−∇x2F} is dissipative, Rockafellar (1970), [83].

If g is dissipative and defined through a game Γ(g), see 1.3.2, the game is dissipative,
as introduced by Rosen (1965) [84]. The terminology is "stable" in Hofbauer and Sand-
holm (2009) [50], "contractive" in Sandholm (2015) [87] and "dissipative" in Sorin and
Wan (2016) [95].

It will be usefull to consider the following set.

2.1.4. eS: set of external solutions.
Notation: eS is the set of solutions x ∈ X (external since it involves the values of g

at alternative points y ∈ X), of the variational inequality:

(10) 〈g(y)|y − x〉 ≤ 0, ∀y ∈ X.
Observe that eS is either convex or empty, independently on the properties of g.

If g is dissipative, eS 6= ∅ follows from the - finite version of the - minmax theorem,
Minty, 1967 [68].
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2.1.5. Internal vs external solutions.
Let us recall the relations between internal and external solutions:

If g is dissipative, the following (weak) inclusion holds :

iS ⊂ eS

and if g is continuous (or simply t 7→ g(x + t(y − x)) continuous in t,∀x, y ∈ X), the
reverse (weak) inclusion is satisfied:

eS ⊂ iS

see Kinderlehrer and Stampacchia (1980) [54], Facchinei and Pang (2007) [30].
Thus, if g defined through a game Γ(g), see 1.3.2, is dissipative and continuous then
iS = eS = E; in particular for a smooth zero-sum game this corresponds to the set of
optimal strategies.
If iS = eS we will also use the notation S for this set.

2.2. Results.

Assume in this subsection that the procedure xt or xn satisfies the no-regret property (2) or
(3).

2.2.1. iS and convergence.
A first property deals with convergent trajectories {xt}.

Proposition 1.
If g is continuous and xs converges to x, then x ∈ iS.

Proof:
Since Rt(y) =

∫ t
0
〈g(xs)|y − xs〉ds:

(11)
Rt(y)

t
→ 〈g(x)|y − x〉, ∀y ∈ X.

and Rt(y) ≤ o(t) implies x ∈ iS.

In particular, if x is a stationary point for the discrete or continuous time procedure,
i.e. xt = x if x0 = x, then x ∈ iS.

Concerning the set eS, clearly one has:

Lemma 1.
If x∗ ∈ eS, then Rt(x

∗) ≥ 0 for all t ≥ 0.

2.2.2. Time average.
Define the time average trajectories as follows:

x̄t =
1

t

∫ t

0

xsds and x̄n =
1

n

n∑
1

xm.

Proposition 2.
If g is dissipative, the accumulation points of {x̄t} or {x̄n} are in eS.
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Proof:

Rt(y)

t
=

1

t

∫ t

0

〈g(xs)|y − xs〉 ≥
1

t

∫ t

0

〈g(y)|y − xs〉 = 〈g(y)|y − x̄t〉.

Hence under (2) or (3) any accumulation point x̂ of {x̄t}will satisfy 〈g(y)|y − x̂〉 ≤ 0.

Note that this result implies the non-emptiness of eS for dissipative g.
In particular the minmax theorem (in the C1 case) follows from the existence of no-
regret procedures. This is in the spirit of the previous proofs based on dynamics: e.g.
Brown and von Neumann (1950) [20], Hofbauer and Sorin (2006) [52], Lehrer and Sorin
(2007) [61], Hofbauer (2018) [49].

2.2.3. Class (III).
Since ut = g(xt) = −∇f(xt) with f being C1 and convex, this corresponds to a specific

case of dissipative and continuous vector field g, hence eS = iS = S = argminX f .
Use the basic convexity inequality:

〈∇f(xt)|y − xt〉 ≤ f(y)− f(xt)

to deduce with ut = −∇f(xt) in (1):∫ t

0

[f(xs)− f(y)] ds ≤
∫ t

0

〈−∇f(xs)|y − xs〉ds = Rt(y)

which implies by Jensen’s inequality:

(12) f(x̄t)− f(y) ≤ 1

t

∫ t

0

[f(xs)− f(y)] ds ≤ Rt(y)

t
.

Similarly in discrete time with um = −∇f(xm):

n[f(x̄n)− f(y)] ≤
n∑

m=1

f(xm)− f(y) ≤
n∑

m=1

〈∇f(xm)|xm − y〉 = Rn(y).

In particular one obtains:

Proposition 3.
i) The accumulation points of {x̄t} or {x̄n} belong to S.
ii) If t 7→ f(xt) (resp. n 7→ f(xn)) is decreasing, the accumulation points of {xt} or {xn}
belong to S.

Note that i) is a particular instance of Proposition 2.

One can also deal with the case um = −λm∇f(xm) with λm ≥ 0, σm =
∑

k≤m λk and
σnx̂n =

∑
m≤n λmxm to obtain:

σn[f(x̂n)− f(y)] ≤
∑
m≤n

λm[f(xm)− f(y)] ≤
∑
m≤n

〈λm∇f(xm)|xm − y〉 ≤ Rn(y).

This allows to compare the regret for discrete and continuous time trajectories, see
Kwon and Mertikopoulos (2017) [58], Section 6.2.
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3. CONTINUOUS TIME

We describe in this section three procedures in continuous time that satisfy the no-
regret property. Their discrete time counterparts will be analyzed in the next section.
As usual, discrete time dynamics are easier to describe but their mathematical prop-
erties are more difficult to establish. This explains why we choose to start with the
continuous time versions.
In addition a very useful tool in the form of a "level function" is available in this set-up
and we start by analyzing it.

3.1. Level functions and their properties.

Definition: P : R+×X → R+ is a level function (for {ut, xt}) if P (t; y) is bounded and
satisfies:

(13) 〈ut, xt − y〉 ≥
d

dt
P (t; y), ∀t ∈ R+,∀y ∈ X.

Note that P is not defined on the trajectory {xt} alone, but is a function of the joint
processes {ut, xt}.

Proposition 4.
If there exists a level function, Rt is upper bounded; hence Rt(y)/t ≤ O(1/t).

Proof:

Rt(y) =

∫ t

0

〈us|y − xs〉ds ≤ P (0; y)− P (t; y) ≤ P (0; y).

Hence the existence of a level function implies the no-regret property.

Proposition 5.
Consider class (II).
Assume y∗ ∈ eS, then t 7→ P (t; y∗) is decreasing.

Proof:

d

dt
P (t; y∗) ≤ 〈g(xt)|xt − y∗〉 ≤ 0.

Thus a level function evaluated at an external solution in eS is a weak Lyapounov
function.

Lemma 2.
Consider class (III).
If {xt} is a descent procedure (meaning that d

dt
f(xt) ≤ 0), then:

E(t; y) = t(f(xt)− f(y)) + P (t; y)

is decreasing, for all y ∈ X .
10



Proof:
d

dt
E(t; y) = f(xt)− f(y) + t

d

dt
f(xt) +

d

dt
P (t; y)

≤ f(xt)− f(y) + 〈∇f(xt)|y − xt〉 ≤ 0

We recover the fact that the accumulation points of {xt} are in S = argminX f and that
the speed of convergence of f(xt) to min f is O(1/t).

3.2. Positive correlation.

Given a first order dynamics of the form ẋt = A(xt), f decreases on trajectories if:
d

dt
f(xt) = 〈∇f(xt)|ẋt〉 ≤ 0.

The analogous property for a vector field g is:

(14) 〈g(xt)|ẋt〉 ≥ 0.

In the framework of games, a similar condition was described in discrete time as
Myopic Adjustment Dynamics, Swinkels (1993) [99] : if xin+1 6= xin then Gi(xin+1, x

−i
n ) >

Gi(xin, x
−i
n ), i ∈ I .

The corresponding property in continuous time corresponds to positive correlation,
(between the dynamics and the vector field), Sandholm (2010) [86]:

(15) ẋit 6= 0 =⇒ 〈gi(xt)|ẋit〉 > 0, i ∈ I.
The use of this notion for vector fields with potential is a follows:

Proposition 6.
Consider a vector field g with potential G.
If the dynamics satisfies positive correlation, then G is a strict (increasing) Lyapunov function.
All ω-limit points are rest points.

Proof:
Let Vt = G(xt) for t ≥ 0. Then:

V̇t = 〈∇G(xt)|ẋt〉 =
∑
i∈I

〈∇xiG(xt)|ẋit〉 =
∑
i∈I

µi(x)〈gi(xt)|ẋit〉 ≥ 0.

Moreover 〈gi(xt)|ẋit〉 = 0, ∀i ∈ I , holds if and only if ẋt = 0.
One concludes by using Lyapunov’s theorem (e.g. Theorem 2.6.1 in [51]).

This result is proved by Sandholm (2001) [85] for his version of potential population
game, see extensions in Benaim, Hofbauer and Sorin (2005) [14].

A similar property for fictitious play in discrete time is established in Monderer and
Shapley (1996) [69].

We will show that this property (15) holds for the three dynamics defined below.
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We now introduce and study three dynamics:
- Projected dynamics (PD),
- Mirror descent (MD),
- Dual averaging (DA).
In each case we first define the dynamics, then control the evaluation of the regret by
exhibiting a level function and finally study the trajectories for class (II) and (III).

3.3. Projected dynamics.

We assume in this subsection that V = V ∗ is an Euclidean space with scalar product
denoted by 〈, 〉.

3.3.1. Dynamics.
The continuous time analog of the generalization of the Projected Gradient Descent,

Levitin and Polyak (1966) [62], Polyak (1987) [81], see also Section 4.1, is defined by
xt ∈ X satisfying:

(16) 〈ut − ẋt, y − xt〉 ≤ 0, ∀y ∈ X.

which is:

(17) ẋt = ΠTX(xt)(ut)

since TX(xt) is a cône.

3.3.2. Values.
Let:

(18) V (t; y) =
1

2
‖xt − y‖2, y ∈ X.

Proposition 7.
V is a level function.

Proof:
One has:

d

dt
V (t; y) = 〈ẋt, xt − y〉 ≤ 〈ut, xt − y〉

by (16).
Thus the properties of section 3.1 hold.

3.3.3. Trajectories.
• Consider class (II) : ut = g(xt).
One has the following convergence result:

Proposition 8.
Assume g dissipative.
Then {x̄t} converges to a point in eS.
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Proof:
- The limit points of {x̄t} are in eS by Proposition 2.
- ‖xt − y∗‖ converges when y∗ ∈ eS by Propositions 5 and 7.
Hence using Opial’s Lemma (1967) [78], which states:

In an Hilbert space, if for any weak accumulation point x̂ of {xt} (resp. {x̄t}),
‖xt − x̂‖ has a limit as t→∞, then {xt} (resp. {x̄t}) weakly converges.(19)

it follows that x̄t converges to a point in eS.

Proposition 9.
Positive correlation holds.

Proof:
〈g(xt), ẋt〉 = ‖ẋt‖2

since ut = g(xt) and 〈ut − ẋt, ẋt〉 = 0, by Moreau’s decomposition, Moreau (1965) [70].

• Consider class (III) : ut = −∇f(xt).

Proposition 10.
i) {xt} converges to a point in S.
ii) f(xt) decreases to min f with speed O(1/t).

Proof:
i) Both Proposition 3 or Lemma 2, and Proposition 9 imply that the accumulation points
of {xt} are in S. Then using Proposition 5, Opial’s Lemma (19) applies.
ii) Follows from Lemma 2.

3.3.4. Hilbert case.

We assume in this subsection that V is an Hilbert space with scalar product 〈, 〉 and
that X ⊂ V is non-empty, convex and closed.
The results of Section 2 and 3.1 will extend, while considering weak accumulation
points and assuming eS non empty.

• Consider class (II).

Lemma 3.
Assume eS 6= ∅. Then the trajectory {xt} is bounded.

Proof:
By Proposition 5, for y∗ ∈ eS, V (t; y∗) is decreasing.

In particular this implies the following convergence result:

Proposition 11.
Assume eS 6= ∅ and g dissipative.
Then {x̄t} converges weakly to a point in eS.

13



Proof:
- {x̄t} is bounded by Lemma 3 hence has weak accumulation points.
Then follow the proof of Proposition 8.

Recall that if g is dissipative and X is bounded, eS 6= ∅ by Lemma 2.

• Consider class (III).
With a proof as above, Proposition 12 extends to:

Proposition 12.
Assume S 6= ∅.
i) {xt} weakly converges to a point in S.
ii) f(xt) decreases to min f with speed O(1/t).

•Maximal monotone operators.

The preceeding results show strong links with properties of maximal monotone op-
erators, see e.g. Brezis (1973) [19].
Recall that A is a monotone operator on V if Ax ⊂ V and

〈u− v, x− y〉 ≥ 0, ∀x ∈ V, u ∈ Ax, y ∈ V, v ∈ Ay.

A is a maximal monotone operator if in addition its graph GA = {(x, u);x ∈ V, u ∈ Ax}
is maximal for the inclusion among monotone operators.
If A is a maximal monotone operator with domain {x ∈ V ;Ax 6= ∅} = dom A, the set
of external solutions associated to X = dom A and −A, that will play the role of eS, is
the set T with:

(20) T = A−1(0) = {x ∈ V ; 0 ∈ Ax} = {x ∈ V ; 〈Ay, y − x〉 ≥ 0,∀y ∈ dom A}

where as usual 〈Ay, z〉 ≥ 0 means 〈u, z〉 ≥ 0, ∀u ∈ Ay.
Let wt ∈ dom A be an absolutely continuous trajectory that satisfies a.e. (for the

existence, see Brezis (1973) [19]) :

(21) ẇt ∈ −Awt, t ∈ R+;w0 ∈ dom A.

The following result is due to Baillon and Brezis (1976) [10] and is the exact analog
of Proposition 11 in terms of statements and proof.

Proposition 13.
Assume T 6= ∅ and A maximal monotone. Then {w̄t} converges weakly to a point in T .

Proof:
Let z ∈ dom A. Then :

(22)
d

dt
‖wt − z‖2 = 〈ẇt, wt − z〉 ∈ 〈−Awt, wt − z〉

Hence if z∗ ∈ T :

(23)
d

dt
‖wt − z∗‖2 ≤ 0

14



and ‖wt−z∗‖2 is decreasing, thus {wt} is bounded hence has weak accumulation points.
From monotonicity:

(24)
d

dt
‖wt − z‖2 ∈ 〈−Awt, wt − z〉 ≤ 〈Az, z − wt〉

one deduces:

(25) 〈−Az, z − w̄t〉 =
1

t

∫ t

0

〈−Az, z − wt〉 ≤
1

t
‖w0 − z‖2

so that any weak accumulation point ŵ of {w̄t} satisfies :

〈−Az, z − ŵ〉 ≤ 0, ∀z ∈ dom A

hence belongs to T .
Thus by Opial’s Lemma (19), w̄t converges weakly to a point in T .

Similarly the following result, due to Bruck (1975) [21], and its proof, corresponds
to Proposition 12. Let f : V → R ∪ {+∞} be convex, l.s.c. and proper. A is the
subdifferential ∂f and we consider the dynamics (21).

Proposition 14.
i) f(wt) decreases to infV f with speed O(1/t).
ii) If T = argminV f 6= ∅, {wt} weakly converges to a point in T .

Proof:
The subdifferential inequality writes :

f(ws)− f(wt) ≥ 〈−ẇt, ws − wt〉
so that :

lim sup
s→t−

f(wt)− f(ws)

t− s
≤ −‖ẇt‖2

hence f(wt) is decreasing.
It follows that for any y ∈ V and s ∈ [0, t]:

f(y) ≥ f(ws) + 〈ẇs, ws − y〉 ≥ f(wt) +
1

2

d

ds
‖ws − y‖2

hence by integration :

tf(y) ≥ tf(wt) +
1

2
‖wt − y‖2 −

1

2
‖w0 − y‖2

so that :
f(wt) ≤ f(y) +

1

2t
‖w0 − y‖2, ∀y ∈ V.

This gives i).
The proof of the previous Proposition 13 and i) implies that the weak accumulation
points of {wt} are in T .
Using Opial’s Lemma 19 then gives ii).

15



To compare with Proposition 12 take fX = f + 1X with int(domf ∩ X) 6= ∅, where
1X is the indicator function of X .

3.4. Mirror descent : differential/incremental approach.

We study here the continuous version of the extension of the mirror descent algorithm
studied in convex optimization, Nemirovski and Yudin (1983) [73], Beck and Teboulle
(2003) [13], see also section 4.2.

3.4.1. Dynamics.
The assumptions are:

H is a strictly convex, C1 function from V to R ∪ {+∞}.
X ⊂ V is nonempty, compact, convex and X ⊂ domH .
The continuous time procedure satisfies xt ∈ X with:

(26) 〈ut −
d

dt
∇H(xt)|y − xt〉 ≤ 0,∀y ∈ X.

Recall that the Bregman distance associated to H is:

(27) DH(y, x) = H(y)−H(x)− 〈∇H(x)|y − x〉 (≥ 0).

3.4.2. Values.
The use of the Bregman distance is the following:

Proposition 15.
P (t; y) = DH(y, xt) is a level function.

Proof:
Note the relation:

(28)
d

dt
DH(y, xt) = −〈∇H(xt)|ẋt〉 −

d

dt
〈∇H(xt)|y − xt〉 = 〈 d

dt
∇H(xt)|xt − y〉

so that (26) implies

(29)
d

dt
DH(y, xt) ≤ 〈ut|xt − y〉.

Hence the properties of section 3.1 apply.

The previous analysis of Section 3.3 corresponds to the Euclidean case with the reg-
ularization function:

H(x) =
1

2
‖x‖2

for the dynamics and the level function.
16



3.4.3. Interior trajectory.
The use of a specfic function H adapted to X , with domH = X , H C2 on intX and
‖∇H(x)‖ → +∞ as x→ ∂X allows to produce a trajectory that remains in intX .
In this case (26) leads to an equality:

(30)
d

dt
∇H(xt) = ut

thus:

(31) ∇H(xt) =

∫ t

0

usds

or, with H∗ being the Fenchel conjugate of H :

(32) xt = ∇H∗(
∫ t

0

usds)

and then:

(33) ẋt = ∇2H(xt)
−1ut.

∇2H(x) induces a Riemannian metric, see Alvarez, Bolte and Brahic (2004) [2], Mer-
tikopoulos and Sandholm (2018) [66].

In this framework one has a monotonic algorithm for a vector field g with potential
G, since (recall 3.2.):

Proposition 16.
Positive correlation holds.

Proof:
〈g(xt)|ẋt〉 = 〈g(xt)|∇2H(xt)

−1g(xt)〉 ≥ 0.

since H is convex and ẋt = ∇2H(xt)
−1g(xt) 6= 0 implies 〈g(xt)|∇2H(xt)

−1g(xt)〉 > 0.

Consider now class (III).
By Proposition 3, the accumulation points of {xt} are in S.
To prove convergence one introduces the following :
Hypothesis [H1]: if zk → y∗ ∈ S then DH(y∗, zk)→ 0.
For example H L-smooth (see e.g. Nesterov (2004) [75] Section 1.2.2.) and then:

0 ≤ DH(x, y) ≤ L

2
‖x− y‖2.

Hypothesis [H2]: if DH(y∗, zk)→ 0, y∗ ∈ S then zk → y∗.
For example H β-strongly convex (see e.g. Nesterov (2004) [75] Section 2.1.3.) and
then:

DH(x, y) ≥ β

2
‖x− y‖2.

Proposition 17.
Consider class (III). If H is smooth and strongly convex or more generally if [H1] and [H2]
hold, {xt} converges to some x∗ ∈ S.

17



Proof:
Let x∗ be an accumulation point of {xt}. Then x∗ ∈ S by Proposition 3 and thus
DH(x∗, xt) is decreasing by Proposition 5 and Proposition 15. Since this sequence is
decreasing to 0 on a subsequence xtk → x∗ by [H1], it is decreasing to 0, hence by [H2]
xt → x∗.

3.5. Dual averaging: integral/cumulative approach.

We consider here the continuous version of the extension of dual averaging, Nesterov
(2009) [76], see also section 4.3.
We follow the analysis and results in Kwon and Mertikopoulos (2017) [58].

3.5.1. Dynamics.
The assumption is:
the regularization function h is a bounded strictly convex l.s.c. function from V to
R ∪ {+∞}with domh = X .
Let h∗(w) = supx∈V 〈w|x〉 − h(x) be the Fenchel conjugate of h. h∗ is differentiable since
h is strictly convex.
Introduce the integral:

Ut =

∫ t

0

usds

and let us define xt by:

xt = argmax{〈Ut|x〉 − h(x);x ∈ V } = argmax{〈Ut|x〉 − h(x);x ∈ X}.
The dynamics can be written as:

(34) xt = ∇h∗(Ut) ∈ X.

3.5.2. Values.
Define, for y ∈ X :

(35) W (t; y) = h∗(Ut)− 〈Ut|y〉+ h(y)

which corresponds to the Fenchel coupling between the cumulative input Ut ∈ V ∗ and
a reference point y ∈ X ⊂ V .

Proposition 18.
W is a level function.

Proof:
W (t; y) ≥ 0 by Fenchel inequality.
Use that:

(36)
d

dt
h∗(Ut) = 〈ut|∇h∗(Ut)〉 = 〈ut|xt〉

by (34), thus:
d

dt
W (t; y) = 〈ut|xt − y〉.

18



In particular one has:

(37) Rt(y) =

∫ t

0

〈us|y − xs〉ds = W (0; y)−W (t; y) ≤ [− inf
X
h+ h(y)] ≤ rX(h)

with rX(h) = supX h(x)− infX h(x).

Note that due to the integral formulation of the dynamics (34) (xt as a function of Ut)
compared to the differential formulation (26) (ẋt as a function of ut) the level function
is expressed through the dual space, however properties of section 3.1 applies as well.

3.5.3. Trajectories.

Proposition 19.
Positive correlation holds.

Proof:

d

dt
G(xt) = 〈∇G(xt)|ẋt〉 = 〈g(xt)|∇2h∗(Ut)(ut)〉

using (34) with ut = g(xt).

Hence in class (III), using Proposition 3 the accumulation points of {xt} are in S.

3.5.4. Remarks.
In the interior smooth case both dynamics and level functions of sections 3.4 and 3.5

are the same, since one has:

xt = ∇h∗(Ut), ∇h(xt) = Ut, h∗(Ut) + h(xt) = 〈Ut|xt〉
and

Dh(y, xt) = h(y)− h(xt)− 〈∇h(xt)|y − xt〉
= h(y) + h∗(Ut)− 〈Ut|xt〉 − 〈∇h(xt)|y − xt〉
= h(y) + h∗(Ut)− 〈Ut|y〉.

3.6. Comments on the continuous time dynamics framework.

1) One obtains the existence of a level function and same speed of convergence of
the no-regret values in classes (I), (II) or (III) : O(1

t
).

2) Hence by Section 2 the accumulation points of the average {x̄t} in class (II) with g
dissipative are in eS.

3) In addition one has convergence of the average {x̄t} in class (II) with g dissipative,
with (PD), via Opial’s Lemma.
The linear aspect of the derivative of the level function seems crucial to obtain this
property.
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Note that the Hilbertian structure is used first in the definition of the dynamics, then
for the level function and in the reference to Opial’s Lemma.

4) Similarly convergence of {xt} in case (III) holds for (PD), and (MD) with an adapted
penalization function H .

5) Positive correlation holds for the three dynamics (under conditions on H for
(MD)).

6) For vector fields g with potential G, G(xt) is strictly decreasing in (PD) and (DA),
and under conditions on H for (MD).

7) In the framework of games the entropy function:

h(x) =
∑
p∈S

xpLogxp

defined on the simplexX = ∆(S) leads (via (MD) or (DA) ) to the replicator dynamics on
int X , Taylor and Jonker (1978) [100], Hofbauer and Sigmund (1998) [51], Sorin (2009)
[92], (2020) [94].
(MD) gives the differential version:

ẋpt = xpt (u
p
t − 〈xt, ut〉), p ∈ S

while (DA) corresponds to the integral representation:

xpt =
eU

p
t∑

s∈S e
Us
t
, p ∈ S.

The corresponding Riemannian metric [a, b]x =
∑

s∈S
1
xs
asbs, x ∈ int X , is introduced

in Shahshahani, 1979 [89].
Recall also that the replicator dynamics is the continuous time version of the multi-
plicative weight algorithm, Littlestone and Warmuth, 1994 [63], Vovk, 1990 [103], Sorin,
2009 [92], 2020 [94].

On the other hand, h(x) = 1
2
‖x‖2 leads to the local/direct projection dynamics, for a

comparison, see Lahkar and Sandholm, 2008 [59], Sandholm, Dokumaci and Lahkar,
2008 [88].

8) There is an important literature on continuous time dynamics enjoying similar
features, see e.g. :
- in convex optimization: Attouch and Teboulle, 2004 [5], Attouch, Bolte, Redont and
Teboulle, 2004 [3], Auslender and Teboulle, 2006 [8], 2009 [9], Bolte and Teboulle (2003)
[17], Teboulle (2018) [101] ...
- in game theory: Hofbauer and Sandholm, 2009 [50], Coucheney, Gaujal and Mer-
tikopoulos, 2015 [27], Mertikopoulos and Sandholm, 2016 [65], Mertikopoulos and
Sandholm (2018) [66], Mertikopoulos and Zhou (2019) [67] ...

4. DISCRETE TIME: GENERAL CASE

We consider now discrete time algorithms.
Remark that the dynamics depends on an additional parameter, the step size.
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4.1. Projected dynamics.

Recall that V is Euclidean and let m(X) denote the diameter of X .
Assumption: ‖um‖ ≤M, ∀m ∈ IN.

4.1.1. Dynamics.
The standard discrete dynamics (Gradient projection method in class (III), Levitin and

Polyak (1966) [62], Polyak (1987) [81]) is given by:

(38) xm+1 = argmaxX{〈um, x〉 −
1

2ηm
‖x− xm‖2},

with ηm > 0 decreasing, which corresponds to:

(39) xm+1 = ΠX [xm + ηmum],

or with variational characterization, xm+1 ∈ X and :

(40) 〈xm + ηmum − xm+1, y − xm+1〉 ≤ 0,∀y ∈ X,

which is :

〈um −
xm+1 − xm

ηm
, y − xm+1〉 ≤ 0,∀y ∈ X,

and leads to (16) as ηm → 0.

4.1.2. Values.
Recall that :

Rn(x) =
n∑

m=1

〈um|x− xm〉.

Proposition 20.

Rn(x) ≤ 1

2ηn
m(X)2 +

M2

2

n∑
m=1

ηm.

Hence with ηn = 1/
√
n:

Rn(x) ≤ O(
√
n).

Proof:
Let xm+1 = ΠX(ym+1) with ym+1 = xm + ηmum.
So that:

2ηm〈um, x− xm〉 = 2〈ym+1 − xm, x− xm〉 = ‖ym+1 − xm‖2 + ‖x− xm‖2 − ‖x− ym+1‖2.

Note that for x ∈ X , (40) implies ‖ym+1 − x‖2 ≥ ‖xm+1 − x‖2 hence:

(41) 2ηm〈um, x− xm〉 ≤ η2m‖um‖2 + ‖x− xm‖2 − ‖x− xm+1‖2
21



which is the discrete analog of the level function property in Proposition 7.
This gives:

Rn(x) =
n∑

m=1

〈um, x− xm〉

≤ 1

2η1
‖x− x1‖2 −

1

2ηn
‖x− xn+1‖2 +

n∑
m=2

[
1

2ηm
− 1

2ηm−1
]‖x− xm‖2 +

M2

2

n∑
m=1

ηm.

Thus, with m(X) being the diameter of X :

Rn(x) ≤ 1

2ηn
m(X)2 +

M2

2

n∑
m=1

ηm

and the choice of ηm = 1√
m

gives:

.Rn(x) ≤ O(
√
n).

4.1.3. Trajectories.
Consider class (II).

Lemma 4.
For x∗ ∈ eS, ‖xm − x∗‖ converges if {ηn} ∈ `2.

Proof:
If x∗ ∈ eS then:

‖x∗ − xm+1‖2 ≤ ‖x∗ − (xm + ηmg(xm))‖2 ≤ η2m‖g(xm)‖2 + ‖x∗ − xm‖2

so that ‖xm − x∗‖ converges if {ηn} ∈ `2.
This corresponds to Proposition 5 in this framework.

Lemma 5.
If g is dissipative and {ηn} ∈ `2, {x̄n} converges to a point in eS.

Proof:
The limit points of {x̄n} are in eS by Lemma 2, hence by Lemma 4 and Opial’s Lemma
(19), {x̄n} converges to a point in eS.

This property is the counterpart of Proposition 8.

4.2. Mirror descent.

Assumptions:
a) H is a C1 function from V to R ∪ {+∞}, L-strongly convex for some norm ‖.‖ on V = Rn

and X ⊂ dom H ,
b) ‖un‖∗ ≤M, ∀n ∈ IN.
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4.2.1. Dynamics.
The classical mirror descent algorithm, introduced for class (III) in Nemirovski and

Yudin (1983) [73], see also Beck and Teboulle (2003) [13], is given by (recall (27)):

(42) xm+1 = argmaxX{〈um|x〉 −
1

ηm
DH(x, xm)}.

The variational expression takes the form:

(43) 〈∇H(xm) + ηmum −∇H(xm+1)|x− xm+1〉 ≤ 0,∀x ∈ X.

which leads to the continuous formulation (26).
Note that DH(x, y) plays the rôle of 1

2
‖x− y‖2 in (38).

4.2.2. Values.
We will use the identity:

(44) DH(x, z)−DH(x, y)−DH(y, z) = 〈∇H(y)−∇H(z)|x− y〉.

which is a direct consequence of the definition of DH .

Proposition 21.
Let the step size ηn = 1√

n
, then:

Rn(x) ≤ O(
√
n).

Proof:

〈ηnun|x− xn〉 = 〈ηnun|x− xn+1〉+ 〈ηnun|xn+1 − xn〉
≤ 〈∇H(xn+1)−∇H(xn)|x− xn+1〉+ 〈ηnun|xn+1 − xn〉
= DH(x, xn)−DH(x, xn+1)−DH(xn+1, xn) + 〈ηnun|xn+1 − xn〉(45)

by using (44).
Now, H is L strongly convex, hence:

(46) DH(xn+1, xn) ≥ L

2
‖xn+1 − xn‖2

and moreover :

〈ηnun|xn+1 − xn〉 −
L

2
‖xn − xn+1‖2 ≤Mηn‖xn − xn+1‖ −

L

2
‖xn − xn+1‖2 ≤

(ηnM)2

2L

so that one obtains the analogous of the level function property in Proposition 15:

〈ηnun|x− xn〉 ≤ DH(x, xn)−DH(x, xn+1) +
(ηnM)2

2L
.

Summing leads to :

(47) Rn(x) ≤
∑
m

[DH(x, xm)(
1

ηm+1

− 1

ηm
) + ηm

M2

2L
].

Hence the bound like in Proposition 20.
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4.2.3. Trajectories.
Consider class (II).

Lemma 6.
For x∗ ∈ eS, DH(x∗, xn) converges if {ηn} ∈ `2.

Proof:
Start with (45) for x∗ ∈ eS and use DH ≥ 0 to get:

DH(x∗, xm+1) ≤ DH(x∗, xm)− 〈ηmum|xm − xm+1〉(48)

thus it remains to control 〈ηmum|xm − xm+1〉.
H being L strongly convex implies:

〈∇H(xm)−∇H(xm+1)|xm − xm+1〉 ≥ L‖xm+1 − xm‖2

but one has by (43):

〈∇H(xm)−∇H(xm+1)|xm − xm+1〉 ≤ 〈−ηmum|xm − xm+1〉 ≤ ‖ηmum‖∗‖xm − xm+1‖.
It follows that:

‖xm − xm+1‖ ≤
1

L
‖ηmum‖∗

hence:
〈−ηmum|xm − xm+1〉 ≤

1

L
‖ηmum‖2∗

Altogether this implies from (48) that DH(x∗, xm) converges if {ηn} ∈ `2.

This is the counterpart of Proposition 5.

4.3. Dual averaging.

Assumptions :
a) h is a l.s.c. function from V to R ∪ {+∞}, L-strongly convex for some norm ‖.‖ on
V = Rn, with dom h = X.
b) ‖um‖∗ ≤M,∀n ∈ IN.

4.3.1. Dynamics.
We extend the formulation in Nesterov (2009) [76]. The starting point is again a

maximization property:

(49) xm+1 = argmaxX{〈Um|x〉 −
1

ηm
h(x)},

with Um =
∑m

k=1 uk and where {ηm} is decreasing.
Note that there is an explicit form without using a variational formulation. Hence the
dual averaging algorithm is given by:

(50) xm+1 = ∇h∗(ηmUm).
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This cumulative representation corresponds to the integral dynamics (34) while the
incremental algorithm (43) is associated to the differential dynamics (26).

4.3.2. Values.
A direct proof, see Xiao (2010) [105] or a discrete approximation of (34), see Kwon

and Mertikopoulos (2017) [58], allows to obtain:

Proposition 22.

(51) Rn(x) =
n∑

m=1

〈um|x− xm〉 ≤
rX(h)

ηn
+

∑n
m=1 ηm−1‖um‖2∗

2L

Proof:
Fenchel inequality:

〈ηnUn|x〉 ≤ h∗(ηnUn) + h(x)

implies:

(52) 〈Un|x〉 ≤
h∗(0)

η0
+

n∑
m=1

(
h∗(ηmUm)

ηm
− h∗(ηm−1Um−1)

ηm−1
) +

maxX h

ηn
.

Now:
h∗(ηmUm)

ηm
= sup

X
[〈Um|x〉 −

h(x)

ηm
]

≤ sup
X

[〈Um|x〉 −
h(x)

ηm−1
] + sup

X
[−h(x)

ηm
+
h(x)

ηm−1
]

=
h∗(ηm−1Um)

ηm−1
+ (

1

ηm−1
− 1

ηm
) min

X
h,

so that replacing in (52) gives:

(53) 〈Un|x〉 ≤
h∗(0)

η0
+

n∑
m=1

1

ηm−1
[h∗(ηm−1Um)−h∗(ηm−1Um−1)]+min

X
h(

1

η0
− 1

ηn
)+

maxX h

ηn
.

h is L strongly convex for ‖.‖, so that h∗ is 1/L smooth for ‖.‖∗ hence:

h∗(ηm−1Um)− h∗(ηm−1Um−1)− 〈ηm−1Um − ηm−1Um−1|∇h∗(ηm−1Um−1)〉
= h∗(ηm−1Um)− h∗(ηm−1Um−1)− 〈ηm−1um|xm〉

≤
η2m−1
2L
‖um‖2∗.(54)

This leads to a property similar to the level function property in Proposition 18 since:

〈um|x− xm〉 ≤ 〈um|x〉+
1

ηm−1
[h∗(ηm−1Um−1)− h∗(ηm−1Um)] +

ηm−1
2L
‖um‖2∗

≤ 1

ηm−1
[h∗(ηm−1Um−1) + h(x)− 〈ηm−1Um−1, x〉]

− 1

ηm
[h∗(ηmUm) + h(x)− 〈ηmUm, x〉]

+
ηm−1
2L
‖um‖2∗ + (

1

ηm−1
− 1

ηm
)(min

X
h− h(x)).
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Now inserting (54) in (53) gives:

〈Un|x〉 −
n∑

m=1

〈um|xm〉 ≤
h∗(0)

η0
+

n∑
m=1

ηm−1
2L
‖um‖2∗ + (

1

η0
− 1

ηn
) min

X
h+

maxX h

ηn

and recall that h∗(0) = −minX h.

Hence the convergence rate O(
√
n) with time varying parameters ηn = 1/

√
n.

4.4. Comments on the discrete dynamics framework. .

1) The three algorithms achieve the same bound O(1/
√
n) for the speed of conver-

gence of the average regret, which is optimal already in class (III), Nesterov (2004),
using time varying step sizes ηn = 1/

√
n.

2) The no-regret property holds for the three algorithms hence the results of Section
2.2 apply for the closed form.

3) More precise properties concerning the trajectories are available only in the (PD)
set-up. The results are similar to the ones in the continuous case, Section 3.2 if ηn ∈
`2, for class (II). (Compare to the analysis in Peypouquet and Sorin [80] for dynamics
induced by maximal monotone operators in discrete and continuous time, see Section
3.3.4.).

4) There is no discrete counterpart of “positive correlation".
5) For vector fields g with potential one does not have the crucial property G(xn)

decreasing.

5. DISCRETE TIME: REGULARITY

This section deals mainly with class (III) convex gradient, where in addition f satisfies
some regularity properties.
Recall that f is β smooth if:

(55) |f(y)− f(x)− 〈∇f(x)|y − x〉| ≤ β

2
‖x− y‖2.

Alternatively∇f is β-Lipschitz.
A last part is devoted to the so-called mirror-prox procedure, class (II) with g β-

Lipschitz.

5.1. Projected dynamics.

Assumption: f is β smooth.
The algorithm is like (40) with constant step size ηm = 1/β.

(56) xm+1 = argmaxX{〈−∇f(xm), x〉 − 1

2β
‖x− xm‖2},
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which gives:

(57) xm+1 = ΠX [xm −
1

β
∇f(xm)].

The analysis in this section is standard, see e.g. Nesterov (2004) [75].

5.1.1. Preliminaries.
Define Tx = ΠX [x − 1

β
∇f(x)] and v(x) = β(x − Tx) (which plays the role of ∇f(x),

corresponding to X = V ).
The projection property gives:

(58) 〈x− 1

β
∇f(x)− Tx, y − Tx〉 ≤ 0, ∀y ∈ X

so that:

(59) 〈∇f(x), Tx− y〉 ≤ 〈v(x), Tx− y〉, ∀y ∈ X.

Now one has:

f(Tx)− f(y) = f(Tx)− f(x) + f(x)− f(y)

≤ 〈∇f(x), Tx− x〉+
β

2
‖Tx− x‖2 + 〈∇f(x), x− y〉 f β smooth, convex

= 〈∇f(x), Tx− y〉+
1

2β
‖v(x)‖2

≤ 〈v(x), Tx− y〉+
1

2β
‖v(x)‖2, ∀y ∈ X by (59)

hence:

(60) f(Tx)− f(y) ≤ 〈v(x), x− y〉 − 1

2β
‖v(x)‖2, ∀y ∈ X.

The following decreasing property is crucial and shows the difference with the gen-
eral non-smooth case.

Lemma 7. Descent lemma

(61) f(xm+1)− f(xm) ≤ − 1

2β
‖v(xm)‖2 = −β

2
‖xm+1 − xm‖2

Proof:
By the previous inequality (60) with xm = x = y.
Note that in the previous lemma the convexity of f is actually not usued.

A consequence of (61) is:

1

2β

n∑
m=1

‖v(xm)‖2 ≤ f(x1)− f(xn+1) ≤ f(x1)− f ∗

hence {‖v(xn)‖} ∈ `2.
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5.1.2. Values.

Proposition 23.

f(xn)− f ∗ ≤ O(
1

n
).

Proof:
Consider the algorithm defined by {zn} and the process {vn}with z1 = x1, vn = −v(zn)
and zn+1 = zn + ηvn with η = 1/β. Clearly zn = xn.
From section 3.1, Proposition 20 with ηm constant, one obtains:

(62) Rv
n(y) =

n∑
m=1

〈vm, y − zm〉 ≤
1

2η
‖y − z1‖2 +

η

2

n∑
m=1

‖vm‖2

which is bounded since {‖v(xn)‖} ∈ `2. This implies, using f decreasing and (60):

n[f(xn+1)− f(y)] ≤ Rv
n(y)− 1

2β
‖

n∑
m=1

‖vm‖2 =
β

2
‖y − x1‖2.

5.1.3. Trajectories.

Lemma 8.
For y∗ ∈ S, ‖xn − y∗‖ is decreasing.

Proof:
From (60) one has:

0 ≤ f(xn+1)− f(y∗) ≤ 〈v(xn), xn − y∗〉 −
1

2β
‖v(xn)‖2

hence :

〈v(xn), xn − y∗〉 ≥
1

2β
‖v(xn)‖2.

So that:

‖xn+1 − y∗‖2 = ‖xn+1 − xn‖2 + ‖xn − y∗‖2 + 2〈xn+1 − xn, xn − y∗〉
=

1

β2
‖v(xn)‖2 + ‖xn − y∗‖2 + 2〈− 1

β
v(xn), xn − y∗〉

≤ ‖xn − y∗‖2.

Proposition 24.
{xn} converges to a point in S.

Proof: Since f(xn) decreases, the accumulation points of {xn} are in S and by the
previous Lemma 8, Opial’s Lemma (19) applies.
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5.2. Mirror descent.

We first assume only that H and f are C1.
The next analysis follows Bauschke, Bolte and Teboulle (2017) [12].

The main assumption in this section is the existence of a constant L > 0 such that
(recall that DH is the Bregman distance (27)):

(A) LDH −Df ≥ 0

which is equivalent to : LH − f convex.
Note that if H is strongly convex and f is smooth (not assumed convex), there exists L
such that (A) holds. However f is not required to be smooth.
(A similar pre-oder on convex functions appears in Nguyen (2017) [77]).

Recall the procedure (43) with constant step size λ:

(63) 〈λ∇f(xn)+∇H(xn+1)−∇H(xn)|x−xn+1〉 ≥ 0,∀x ∈ X

and the identity:

(64) DH(x, z)−DH(x, y)−DH(y, z) = 〈∇H(y)−∇H(z)|x− y〉.

Let us consider a step size satisfying 2λL = 1.

5.2.1. Values.

Lemma 9.

(65) λ[f(xn+1)−f(y)] ≤ DH(y, xn)−DH(y, xn+1)−
1

2
DH(xn+1, xn)−λDf (y, xn),∀y ∈ X.

Proof :
Since:

(66) Df (x, z) = Df (y, z) + f(x)− f(y)− 〈∇f(z)|x− y〉,

one has, by (A):

f(x) ≤ f(y) + 〈∇f(z)|x− y〉+ LDH(x, z)−Df (y, z)

Let x = xn+1, z = xn

f(xn+1)− f(y) ≤ 〈∇f(xn)|xn+1 − y〉+ LDH(xn+1, xn)−Df (y, xn)

so that by (63):

λ[f(xn+1)− f(y)] ≤ 〈∇H(xn+1)−∇H(xn)|y − xn+1〉+ λLDH(xn+1, xn)− λDf (y, xn).

Uses then (64):

λ[f(xn+1)−f(y)] ≤ DH(y, xn)−DH(y, xn+1)−DH(xn+1, xn)+λLDH(xn+1, xn)−λDf (y, xn)

Hence the result since 2λL = 1.
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Proposition 25.
Assume H convex . Then:
1) f(xn) is decreasing.
2)
∑
DH(xn+1, xn) < +∞.

Assume f convex. Then :
3)

f(xn)− f(y) ≤ 2L

n
DH(y, x1), ∀y ∈ X.

Proof:
1) and 2) Take y = xn in (65).
3) Use f(xn) decreasing, Df ≥ 0 and the telescoping sum in (65).

5.2.2. Trajectories.

Proposition 26.
Assume f convex.
1) y ∈ S implies: DH(y, xn) decreases.
2) Assume:
[H1] : xk → x∗ ∈ S ⇒ DH(x∗, xk)→ 0,
[H2] : x∗ ∈ S,DH(x∗, xk)→ 0⇒ xk → x∗,
then {xn} converges to a point in S.

Proof:
1) follows from (65).
2) By the previous Proposition 25, the accumulation points of {xn} are in S. Let thus
xnk
→ x∗ ∈ S.

By H1, DH(x∗, xnk
)→ 0 then by 1) DH(x∗, xn)→ 0. Now use H2.

Compare with the proof of Proposition 17.
Note that the result is more precise than in the continuous case, Section 3.3 where

there was no decreasing property (for general H).
Let us finally mention the very recent result due to Bui and Combettes (2020) [23]

Theorem 3.9., where the use of variable metrics Hn allows to reach f(xn)−f ∗ = o(1/n).

5.3. Dual averaging.

We follow the analysis in Lu, Freund and Nesterov (2018) [64].
Recall that we consider class (III) : f convex and C1 and as in the previous Section 4.2.
the main hypothesis is the existence of L > 0 with:

(A) LDh −Df ≥ 0.

but we will simply assume here Lh− f convex,
where h : V → R ∪ {+∞} is l.s.c. with dom h = X . Let x0 = argminXh(x) and assume
h(x0) = 0.
Define :

(67) Gk(x) =
k−1∑
i=0

[〈∇f(xi), x− xi〉+ f(xi)] + Lh(x)
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and as in (49):

(68) xk = argminXGk(x) = argmaxX{〈Uk−1, x〉 − Lh(x)}

with as usual uk = −∇f(xk) and Um =
∑m

k=1 uk.

Proposition 27.

(69) f(x̄k)− f(x) ≤ L

k
h(x),

(70) min
i=0,...,k

f(xi)− f(x) ≤ L

k
h(x).

Proof:
By definition:

(71) Gk+1(xk+1) = Gk(xk+1) + 〈∇f(xk), xk+1 − xk〉+ f(xk).

Note that (A) implies that each Gk − f is convex hence:

(72) Gk(xk+1)− f(xk+1) ≥ Gk(xk)− f(xk) + 〈∂Gk(xk)−∇f(xk), xk+1 − xk〉.
Thus one has:

(73) Gk+1(xk+1) ≥ f(xk+1) +Gk(xk) + 〈∂Gk(xk), xk+1 − xk〉
but there exists uk ∈ ∂Gk(xk) with :

〈uk, x− xk〉 ≥ 0,∀x ∈ X
by the choice of xk.
Finally, with gk+1 = Gk+1(xk+1) one obtains:

(74) gk+1 ≥ f(xk+1) + gk.

Using f convex, thus Gk(x) ≤ kf(x) + Lh(x) by (67), this implies that:

(75)
k+1∑
i=0

f(xi) ≤ gk+1 ≤ (k + 1)f(x) + Lh(x)

hence the result.

5.4. Comments on the regular case.

1) In the three cases (PD), (MD) and (DA) the speed of convergence of the values is
O(1/n) and the algorithms use a constant step parameter.
2) Using (PD) with f smooth implies f(xn) decreasing and the convergence of {xn}.
3) The approach in Section 5.2 shows that similar results can be obtained using (MD)
without assuming f with Lipschitz gradient if the regularization functionH is adapted
to f : condition (A).
4) Analogous results for the values are much simpler to obtain in the (DA) framework.
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However the properties concern the value at the average f(x̄n) and no result is avail-
able on the trajectories.

5.5. Mirror prox.

We follow in this section the model introduced by Korpelevich (1976) [55], and fur-
ther studied by Nemirovski (2004) [72].
We present it for two main reasons: first it gives faster convergence than in Section 4
for a Lipschitz vector field g; second the tools used in the proofs are very similar to the
one used in the previous sections.

5.5.1. Dynamics.
The algorithm corresponds to a two-stage procedure.

The first step produces yn+1 from xn via usual (MD) (43) applied to un = g(xn) with
constant step size λ:

(76) 〈−λg(xn) +∇H(yn+1)−∇H(xn)|x− yn+1〉 ≥ 0,∀x ∈ X.
The second step produces xn+1 from xn via (MD) (43) applied to vn = g(yn+1) with
constant step size λ:

(77) 〈−λg(yn+1) +∇H(xn+1)−∇H(xn)|x− xn+1〉 ≥ 0,∀x ∈ X.
Altogether, the decision after xn uses a more refined information g(yn+1) rather than

the usual (in (MD)) g(xn).

5.5.2. Values.
The result concerns the process {yn}.

Proposition 28. Nemirovski (2004) [72]
Assume H α strongly convex and g β-Lipschitz with α ≥ λβ, then:

Rn(x) =
n∑

m=1

〈g(ym)|x− ym〉 ≤
1

λ
[DH(x, x1)−DH(x, xn)].

Proof:
Decompose:

〈g(yn+1)|x− yn+1〉 = 〈g(yn+1)|x− xn+1〉
+ 〈g(xn)|xn+1 − yn+1〉
+ 〈g(yn+1)− g(xn)|xn+1 − yn+1〉.

The first term gives via (77):

λ〈g(yn+1)|x− xn+1〉 ≤ 〈∇H(xn+1)−∇H(xn)|x− xn+1〉
= DH(x, xn)−DH(x, xn+1)−DH(xn+1, xn)

using (44).
Invoking (76), the second term leads to:

λ〈g(xn)|xn+1 − yn+1〉 ≤ 〈∇H(xn)−∇H(yn+1)|yn+1 − xn+1〉
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= DH(xn+1, xn)−DH(xn+1, yn+1)−DH(yn+1, xn)

and for the last one, using g β-Lipschitz :

〈g(yn+1)− g(xn)|xn+1 − yn+1〉 ≤ ‖g(yn+1)− g(xn)‖∗‖xn+1 − yn+1‖
≤ β‖yn+1 − xn‖‖yn+1 − xn+1‖
≤ β

2
[‖yn+1 − xn‖2 + ‖yn+1 − xn+1‖2].

So that:

λ〈g(yn+1)|x− yn+1〉 ≤ DH(x, xn)−DH(x, xn+1)−DH(xn+1, yn+1)

−DH(yn+1, xn) +
λβ

2
[‖yn+1 − xn‖2 + ‖yn+1 − xn+1‖2].(78)

Hence if H is α strongly convex and α ≥ λβ one has a telescopic majorant leading to:

λRn(x) = λ
n∑

m=1

〈g(ym)|x− ym〉 ≤ DH(x, x1)−DH(x, xn).

Comments :
If eS 6= ∅, take x ∈ eS in (78) and α > λβ to get:
-
∑

n ‖yn+1 − xn‖2 + ‖yn+1 − xn+1‖2 <∞
- DH(x, xn) decreasing.

Notice that g was not assumed dissipative.
Adding g dissipative gives:

〈g(x)|x− ȳn〉 ≤ Rn(x)

hence the accumulation points of {ȳn} are in S.

5.5.3. Trajectories.
The result involves the trajectory {xn}.

Proposition 29. Korpelevich (1976) [55]
Assume g β-Lipschitz and dissipative.
(i) (PD) case:
for λ < 1/β, xn converges to a point in S.
(ii) (MD) case:
Assume H α strongly convex with α > λβ. y ∈ S implies: DH(y, xn) decreases.
Assume:
[H1] : xk → x∗ ∈ S ⇒ DH(x∗, xk)→ 0,
[H2] : DH(zk, xk)→ 0⇒ ‖zk − xk‖ → 0,
then {xn} converges to a point in S.

Proof:
(i) The property of the projection gives:

‖z − y‖2 ≥ ‖z − ΠX(z)‖2 + ‖ΠX(z)− y‖2, ∀y ∈ X
hence with z = xn + λg(yn+1), ΠX(z) = xn+1 by (77) and one deduces:

‖xn+1 − y‖2 ≤ ‖xn + λg(yn+1)− y‖2 − ‖xn + λg(yn+1)− xn+1‖2
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= ‖xn − y‖2 − ‖xn − xn+1‖2 + 2λ〈g(yn+1), xn+1 − y〉.(79)

Taking y = x∗ ∈ eS = S and adding 2λ〈g(yn+1), x
∗ − yn+1〉 ≥ 0, we obtain:

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 − ‖xn − xn+1‖2 + 2λ〈g(yn+1), xn+1 − yn+1〉
= ‖xn − x∗‖2 − ‖xn − yn+1‖2 − ‖yn+1 − xn+1‖2
−2〈xn − yn+1, yn+1 − xn+1〉+ 2λ〈g(yn+1), xn+1 − yn+1〉.(80)

Now by (76) one has:

(81) 〈xn + λg(xn)− yn+1, xn+1 − yn+1〉 ≤ 0

replacing in (80) and using:

〈g(yn+1)− g(xn), xn+1 − yn+1〉 ≤ ‖g(yn+1)− g(xn)‖‖xn+1 − yn+1‖
≤ β‖yn+1 − xn‖‖xn+1 − yn+1‖(82)

one finally achieves:

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 − ‖xn − yn+1‖2 − ‖yn+1 − xn+1‖2
+2λβ‖yn+1 − xn‖‖xn+1 − yn+1‖

≤ ‖xn − x∗‖2 − (1− λ2β2)‖yn+1 − xn‖2.(83)

This implies :

(84) ‖yn+1 − xn‖2 → 0.

By (83) the sequence {xn} is bounded. Let x̂ be an accumulation point. Properties (76)
and (84) imply that x̂ satisfies:

〈g(x̂), x̂− y〉 ≥ 0, ∀y ∈ X
hence x̂ ∈ iS = S, since g is dissipative. Taking now x∗ = x̂ in (83) implies that ‖xn− x̂‖
is decreasing, but going to 0 on a subsequence, it converges to 0.

(II) Let us start with x∗ ∈ S and the identity:

(85) DH(x∗, xn+1) = DH(x∗, xn)−DH(xn+1, xn)− 〈∇H(xn+1)−∇H(xn)|x∗ − xn+1〉.
Denote A = −〈∇H(xn+1)−∇H(xn)|x∗− xn+1〉 and from (77) with x = x∗ one deduces:

A ≤ 〈−λg(yn+1)|x∗ − xn+1〉
But x∗ ∈ S hence:

〈−λg(yn+1)|x∗ − yn+1〉 ≤ 0

so that:
A ≤ 〈−λg(yn+1)|yn+1 − xn+1〉.

Adding (76) with x = xn+1 gives:

A ≤ 〈λ[g(xn)− g(yn+1)]−∇H(yn+1) +∇H(xn)|yn+1 − xn+1〉.
Use that:

〈−∇H(yn+1) +∇H(xn)|yn+1 − xn+1〉 = DH(xn+1, , xn)−DH(xn+1, yn+1)−DH(yn+1, xn)

and coming back to (85) we obtain:
(86)
DH(x∗, xn+1) = DH(x∗, xn)−DH(xn+1, yn+1)−DH(yn+1, xn)+λ〈g(xn)−g(yn+1)|yn+1−xn+1〉.
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Recall that H is α strongly convex so that:

DH(u, v) ≥ α

2
]‖u− v‖2

and use that g is β- Lipschitz to bound:

〈g(xn)− g(yn+1)|yn+1 − xn+1〉 ≤ ‖g(xn)− g(yn+1)‖∗‖yn+1 − xn+1‖
≤ β‖xn − yn+1‖‖yn+1 − xn+1‖
≤ β

2
[ρ‖xn − yn+1‖2 +

1

ρ
‖yn+1 − xn+1‖2].

Replacing in (86) with ρ = λβ
α

gives:

DH(x∗, xn+1) ≤ DH(x∗, xn)− (1− (
λβ

α
)2)DH(yn+1, xn).

Taking λ < α
β

implies DH(yn+1, xn)→ 0 and DH(x∗, xn) decreasing.
Finally let x̃ be an accumulation point of {xn} and xnk

→ x̃. By [H2], ynk
→ x̃ as well.

Using (76) this implies x̃ ∈ iS = S since g is dissipatif. But then DH(x̃, xn) decreases
hence goes to 0, since it is the case on {xnk

} by [H1].
Using again [H2] xn → x̃ hence the result.

The result has the same flavour than Proposition 26.
Notice that the algorithm is well defined for any vector field g but the interpretation

in the decentralized framework of games is difficult. The main point is that xin+1 is
determined via gi(yn+1) where all the components of yn+1 appear, hence some coordi-
nation is required.

‘

6. CONCLUDING REMARKS

For the three dynamics PG, MD and DA 1), 2) and 3) holds:
1) In continuous time the speed of convergence of the average regret to 0, of the order

O(1/t), is not better in the general gradient convex case than in the on-line learning
case. This means that the specificity of the observation process cannot be exploited.

2) Similarly in discrete time the speed of convergence of the average regret to 0, of
the order O(1/

√
n) is not better in the general gradient convex case than in the on-line

learning case.
3) Adding a smoothness hypothesis on the convex function does not change the

speed in the continuous time framework but allow a better convergence rate in dis-
crete time from O(1/

√
n) to O(1/n), and with a simpler algorithm : constant step size.

Basically an additional property is required to get a descent lemma.
4) A similar phenomena appears with the so-called acceleration procedures follow-

ing Nesterov (1983) [74].
In the continuous time case a second order ODE leads to a speed of convergence
f(xt)− f(x∗) ≤ O( 1

t2
) with no further hypothesis on f , see Su, Boyd and Candes (2014)

[97] (2016) [98], Krichene, Bayen and Bartlett (2015) [56], (2016) [57], Attouch, Chbani,
Peypouquet and Redont (2018) [4].
To obtain a similar property in discrete time, namely f(xn)− f(x∗) ≤ O( 1

n2 ) one has to
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assume f smooth.
The same remark apply to the (weak) convergence of the trajectory, where f smooth is
needed in discrete time and not in continuous time, Chambolle and Dossal (2015) [26],
Attouch, Chbani, Peypouquet, Redont (2018) [4].

5) Concerning the link between discrete and continuous time dynamics, there are
no direct results of the form: no-regret in continuous time imply no-regret in discrete
time but analogy of the tools used and ad-hoc choice of the step parameter, see Sorin
(2009) [92], Kwon and Mertikopoulos (2017) [58]. Similar properties hold in the closed
form for Lyapounov functions in Krichene, Bayen and Bartlett (2015) [56], (2016) [57],
Wibisono, Wilson and Jordan (2016) [104], see also Bansal and Gupta (2019) [11].

6) The Hilbert framework for (PD) allows to obtain convergence results on the tra-
jectories. The two other algorithms ((MD and (DA)) are more flexible and can achieve
better explicit speed of convergence of the values by choosing an adequate norm, see
the discussion in Bauschke, Bolte and Teboulle (2017), [12]. For (MD) specific regu-
larization functions H can also lead to convergence of the trajectories. (DA) is much
simpler to implement due to its integral formulation. However no convergence prop-
erties of the trajectories are available.

7) In the framework of games, general positive results are obtained in the class of
dissipative games. Accumulation points of the average trajectory are equilibria.

8) For potential games or more generally vector fields with potential the three con-
tinuous time algorithms imply the inclusion of the set of accumulation point in the set
of rest points.
A further study in the framework of tame functions and invoving quasi-gradients, in
the spirit of Bégout, Bolte and Jendoubi (2015) [18], would be very interesting.

9) Obviously potential games with a concave potential P will share the properties of
class (III) since basically one can replace for each i, 〈gi(x), yi − xi〉 by 〈∇iP (x), yi − xi〉.
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