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NO-REGRET ALGORITHMS IN ON-LINE LEARNING, GAMES AND CONVEX OPTIMIZATION

The purpose of this article is to underline the links between some no-regret algorithms used in on-line learning, games and convex optimization and to compare the continuous and discrete time versions.

INTRODUCTION

General learning algorithms associate to an observation a decision and evaluate the result through a specific criteria. On-line procedures involve time hence a process of observations but require that successive decisions are taken at each instant. We will study here an example of such instance where the criteria is a "regret function". The specificity of the current presentation lies mainly in the two following aspects: 1) We will establish properties for the general observation process and then study the so-called closed model where the observation is a function of the actual decision. A typical example will be the joint process of players choosing actions and observing each their induced private payoff. Another basic application is a first order method in convex optimization. While these three frameworks seem very different : no hypothesis on the observation in the first case, collection of unilateral procedures in parallel in the second, gradient based dynamics in the third, we will see that general optimal properties are shared and similar main concepts and tools apply.

2) We will consider both the continuous and discrete time versions and compare the basic notions, tools, ideas of proofs and results in both cases. Here also some common properties will emerge.

The model: no-regret condition in continuous and discrete time.

The general framework is as follows: V is a normed vector space, finite dimensional, with dual V * and duality map V * |V , X is a non-empty convex compact subset of V (while this last hypothesis is not needed in convex optimization -but argminf non empty is often required -it is almost necesssary in the analysis for games).

The aim is to study properties of algorithms that associate to a continuous time process {u t ∈ V * , t ≥ 0}, a similar procedure {x t ∈ X, t ≥ 0}, where x t is function of the past {(x s , u s ), 0 ≤ s < t}. The process corresponds to the observation, the procedure to the induced trajectory of choices.

The adequation of {x t } to {u t } is measured by a regret function defined on X by:

(1) R t (x) = t 0 u s |x -x s ds which compares the integral of the instantaneous score u s |x s to the one induced by a fixed action u s |x . (Notice that the regret can be positive or negative for some x.) One will study procedures satisfying the no-regret condition:

(2)

sup x∈X R t (x) ≤ o(t)
which means that the (positive part of the) time average regret Rt 

The analysis.

A) We compare the performance of the algorithms in terms of evaluation of the regret under three (increasing) assumptions: (I) general case: the information {u t } is a bounded measurable process in V * , (II) closed form: the information is determined by the choice, thus u t = g(x t ) for a continuous vector field g : X → V * , (III) convex gradient: u t = -∇f (x t ), where f is a C 1 convex function : X → R, (with similar properties in discrete time). B) We consider three different procedures: -Projected dynamics (PD), -Mirror descent (MD), -Dual averaging (DA) that will satisfy the no-regret property and we will discuss their performances.

C) We analyze the relations between the continuous and discrete time processes (in particular in terms of speed of convergence to 0 of the average regret). Recall that in continuous time u t is not observed at time t and the information process is only measurable; moreover u t may depend on x t . D) In classes (II) and (III) it makes sense to consider the trajectories of {x t } or {x n } and we will study their convergence. 1.3. No-regret in on-line learning, games and convex optimization. 1.3.2. In particular, framework (II) closed form is relevant for game dynamics and variational inequalities as explained now. Consider a strategic game with a finite set of players I, where X i ⊂ V i is the strategy set of player i and X = i X i . Assume that the equilibrium set E is obtained as the set of solutions x = (x i ) ∈ X of the following variational inequalities:

g i (x)|x i -y i ≥ 0, ∀y i ∈ X i , ∀i ∈ I.
where g i : X → V i * is the "evaluation" function of player i.

Examples include (mixed extension of) finite games where g i is the "vector payoff" function of player i, games with smooth concave payoffs (the payoff function F i : X → R of player i is concave w.r.t. x i and g i = ∇ x i F i ), but also nonatomic population games and Wardrop equilibria (I is then the set of populations), see Sorin and Wan (2016) [START_REF] Wan | Finite composite games: equilibria and dynamics[END_REF].

Notice that an equivalent formulation of the equilibrium condition is through the single variational inequality, with g = {g i }:

(4) g(x)|x -y = i g i (x)|x i -y i ≥ 0, ∀y ∈ X.
We will denote by Γ(g) a game for which equilibria are solution of (4).

For each player i, the reference/observation process is specific, namely u i t = g i (x t ) which, as a function of x t , is determined by the behavior of all players. In particular, in a concave smooth game, the observation of player i is the gradient w.r.t. x i :

u i t = ∇ x i F i (x t
). Note that the overall global dynamics of the profile of actions {x t } is generated by a family of unilateral procedures since for each i, x i t depends on (u i , x i ) only. In particular for each player i, the knowledge of g j , j = i is not assumed. Thus for each participant individually the situation is similar to (I) general case since the observation is not controlled, while these private observations of the participants are linked via x t .

We will analyze the consequences on the process {x t } assuming only that each player uses a procedure satisfying the no-regret condition (2) or [START_REF] Attouch | Singular Riemannian barrier methods and gradient-projection dynamical systems for constrained optimization[END_REF]. Obviously the (global) algorithm associated to g = {g i } as a vector field on a product space associated to (4) will also share the no-regret property since:

t 0 g i (x s )|x i -x i s ds ≤ o(t), ∀x i ∈ X i implies: t 0 g(x s )|x -x s ds ≤ o(t), ∀x ∈ X
but in addition it is "decentralized" in the sense that x i depends upon g i only.

1.3.3. Framework (III) covers the case of convex optimization where the observation, given the choice x t , is the gradient of the (unknown) convex function, explicitly one has u t = -∇f (x t ).

The recent research in this area is very wide and links basic optimisation algorithms [START_REF] Polyak | Introduction to optimization, Optimization software[END_REF] [START_REF] Polyak | Introduction to optimization, Optimization software[END_REF], [START_REF] Yudin | Problem Complexity and Method Efficiency in Optimization[END_REF] [START_REF] Yudin | Problem Complexity and Method Efficiency in Optimization[END_REF], [START_REF] Nesterov | Introductory Lectures on Convex Optimization[END_REF] [START_REF] Nesterov | Introductory Lectures on Convex Optimization[END_REF], to on-line procedures, see [START_REF] Zinkevich | Online convex programming and generalized infinitesimal gradient ascent[END_REF] [START_REF] Harker | Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms, and applications[END_REF], Dupuis and Nagurney (1993) [START_REF] Dupuis | Dynamical systems and variational inequalities[END_REF], Nagurney and Zhang (1997) [START_REF] Zhang | Projected dynamical systems in the formulation, stability analysis, and computation of fixed demand traffic network equilibria[END_REF]. Note that each community (learning, game theory, optimization) has its own terminology and point of view. As a consequence specific properties may inherit different names and will be rediscovered at several occasions. One of the aim of the current work is to clarify the relations between these approaches and results and unify the analysis.

In particular we will show that few basic principles are in use and we will underline the analogy between continuous and discrete time.

However there are subtle differences between the different algorithms and their properties that we will discuss (see 3.6, 4.4 and 5.4).

Summary.

Section 2 is devoted to the closed form framework (II) and explores the links between no-regret, solutions of variational inequalities and convex optimization. Section 3 deals with continuous time dynamics. After introducing "level functions" and "positive correlation" we describe the three algorithms (PD, MD, DA), prove that they satisfy the no-regret property and compare their performances. Section 4 is the discrete time analog of Section 3. Section 5 considers basically framework (III) under an additional regularity hypothesis on the convex function f . Subsection 5.4 on "Mirror prox" recalls related results using similar tools. Concluding comments are in Section 6.

BASIC PROPERTIES OF THE CLOSED FORM

We describe first some relations with variational inequalities, when the observation process has a closed form : u = g(x). Then we exhibit general properties of no-regret procedures.

2.1. Definition and notations.

iS: set of internal solutions.

Notation: iS is the set of solutions x ∈ X, (internal since it involves the value of g at x ∈ X), of the variational inequality: [START_REF] Teboulle | Regularized Lotka-Volterra dynamical system as continuous proximal-like method in optimization[END_REF] g(x)|y -x ≤ 0, ∀y ∈ X.

Note that if g is associated to a game Γ(g), see 1.3.2, (4) shows that iS corresponds to the set of equilibria.

Recall also that in an Hilbertian framework property (5) is equivalent to:

(6) Π X (x + λg(x)) = x, λ > 0
where Π C denotes the (Hilbertian) projection operator on a closed convex set C, and (5) defines also the solutions x ∈ X of:

(7) Π T X(x) (g(x)) = 0
where T X(x) is the tangent cône to X at x, see e.g. [START_REF] Kinderlehrer | An Introduction to Variational Inequalities and Their Applications[END_REF] [START_REF] Kinderlehrer | An Introduction to Variational Inequalities and Their Applications[END_REF], Facchinei and Pang (2007) [START_REF] Pang | Finite-Dimensional Variational Inequalities and Complementarity Problems[END_REF].

The minimization of a C 1 convex function f on X corresponds to the variational inequality (5) with g = -∇f . This case presents two specific properties: i) g is a gradient, ii) g is dissipative. We will consider now the analogous general definitions for vector fields.

Fields with potential.

Definition: g : X → V * is a vector field with potential G, if G : X → R, where X is an open neighborhood of X, satisfies:

∇G(x) -g(x)|y -x = 0, ∀x, y ∈ X
or more generally if there exist a strictly positive function µ on X, such that: [START_REF] Teboulle | Interior gradient and proximal methods for convex and conic optimization[END_REF] ∇G(x) -µ(x)g(x), y -x = 0, ∀x ∈ X, ∀y ∈ X, see Sorin and Wan (2016) [START_REF] Wan | Finite composite games: equilibria and dynamics[END_REF].

Then local maxima of G on X belong to iS and if G is concave its maxima on X coincide with iS.

If g is defined through a game Γ(g), see 1.3.2, the game is a potential game, Monderer and Shapley (1996) [START_REF] Shapley | Potential games[END_REF], [START_REF] Sandholm | Potential games with continuous player sets[END_REF] [START_REF] Sandholm | Potential games with continuous player sets[END_REF].

2.1.3. Dissipative fields. Definition: g is dissipative (-g is monotone) if it satisfies:

(9) g(x) -g(y)|x -y ≤ 0, ∀x, y ∈ X.

A fundamental example is the following: let F , defined on X = X 1 × X 2 , be a C 1 concave/convex function, (like the payoff function of a two-person 0-sum game, Rockafellar (1970), [START_REF] Rockafellar | Monotone operators associated with saddle-functions and minmax problems, Nonlinear Functional Analysis[END_REF].

F = F 1 = -F 2 ), then g = {∇ x 1 F, -∇ x 2 F } is dissipative,
If g is dissipative and defined through a game Γ(g), see 1.3.2, the game is dissipative, as introduced by [START_REF] Rosen | Existence and uniqueness of equilibrium points for concave N-person games[END_REF] [START_REF] Rosen | Existence and uniqueness of equilibrium points for concave N-person games[END_REF]. The terminology is "stable" in Hofbauer and Sandholm (2009) [START_REF] Hofbauer | Stable games and their dynamics[END_REF], "contractive" in Sandholm (2015) [START_REF] Sandholm | Population games and deterministic evolutionary dynamics[END_REF] and "dissipative" in Sorin and Wan (2016) [START_REF] Wan | Finite composite games: equilibria and dynamics[END_REF].

It will be usefull to consider the following set.

eS: set of external solutions.

Notation: eS is the set of solutions x ∈ X (external since it involves the values of g at alternative points y ∈ X), of the variational inequality: [START_REF] Baillon | Une remarque sur le comportement asymptotique des semigroupes non linéaires[END_REF] g(y)|y -x ≤ 0, ∀y ∈ X.

Observe that eS is either convex or empty, independently on the properties of g. If g is dissipative, eS = ∅ follows from the -finite version of the -minmax theorem, Minty, 1967 [68].

2.1.5. Internal vs external solutions.

Let us recall the relations between internal and external solutions: If g is dissipative, the following (weak) inclusion holds : iS ⊂ eS and if g is continuous (or simply t → g(x + t(y -x)) continuous in t, ∀x, y ∈ X), the reverse (weak) inclusion is satisfied: eS ⊂ iS see [START_REF] Kinderlehrer | An Introduction to Variational Inequalities and Their Applications[END_REF] [START_REF] Kinderlehrer | An Introduction to Variational Inequalities and Their Applications[END_REF], Facchinei and Pang (2007) [START_REF] Pang | Finite-Dimensional Variational Inequalities and Complementarity Problems[END_REF]. Thus, if g defined through a game Γ(g), see 1.3.2, is dissipative and continuous then iS = eS = E; in particular for a smooth zero-sum game this corresponds to the set of optimal strategies. If iS = eS we will also use the notation S for this set.

Results.

Assume in this subsection that the procedure x t or x n satisfies the no-regret property (2) or (3).

iS and convergence.

A first property deals with convergent trajectories {x t }.

Proposition 1.

If g is continuous and x s converges to x, then x ∈ iS.

Proof: Since R t (y) = t 0 g(x s )|y -x s ds: (11) R t (y) t → g(x)|y -x , ∀y ∈ X. and R t (y) ≤ o(t) implies x ∈ iS.
In particular, if x is a stationary point for the discrete or continuous time procedure, i.e.

x t = x if x 0 = x, then x ∈ iS.
Concerning the set eS, clearly one has:

Lemma 1. If x * ∈ eS, then R t (x * ) ≥ 0 for all t ≥ 0.

Time average.

Define the time average trajectories as follows:

xt = 1 t t 0 x s ds and xn = 1 n n 1 x m . Proposition 2.
If g is dissipative, the accumulation points of {x t } or {x n } are in eS.

Proof:

R t (y) t = 1 t t 0 g(x s )|y -x s ≥ 1 t t 0 g(y)|y -x s = g(y)|y -xt .
Hence under (2) or (3) any accumulation point x of {x t } will satisfy g(y)|y -x ≤ 0.

Note that this result implies the non-emptiness of eS for dissipative g. In particular the minmax theorem (in the C 1 case) follows from the existence of noregret procedures. This is in the spirit of the previous proofs based on dynamics: e.g. [START_REF] Brown | Solutions of games by differential equations[END_REF] [START_REF] Brown | Solutions of games by differential equations[END_REF], [START_REF] Hofbauer | Best response dynamics for continuous zero-sum games[END_REF] [START_REF] Hofbauer | Best response dynamics for continuous zero-sum games[END_REF], [START_REF] Sorin | Minmax via differential inclusion[END_REF] [START_REF] Sorin | Minmax via differential inclusion[END_REF], Hofbauer (2018) [START_REF] Hofbauer | Minmax via replicator dynamics[END_REF].

Class (III).

Since u t = g(x t ) = -∇f (x t ) with f being C 1 and convex, this corresponds to a specific case of dissipative and continuous vector field g, hence eS = iS = S = argmin X f .

Use the basic convexity inequality:

∇f (x t )|y -x t ≤ f (y) -f (x t )
to deduce with u t = -∇f (x t ) in (1):

t 0 [f (x s ) -f (y)] ds ≤ t 0 -∇f (x s )|y -x s ds = R t (y)
which implies by Jensen's inequality:

(12) f (x t ) -f (y) ≤ 1 t t 0 [f (x s ) -f (y)] ds ≤ R t (y) t .
Similarly in discrete time with u m = -∇f (x m ):

n[f (x n ) -f (y)] ≤ n m=1 f (x m ) -f (y) ≤ n m=1 ∇f (x m )|x m -y = R n (y).
In particular one obtains:

Proposition 3. i) The accumulation points of {x t } or {x n } belong to S. ii) If t → f (x t ) (resp. n → f (x n )) is decreasing, the accumulation points of {x t } or {x n } belong to S.
Note that i) is a particular instance of Proposition 2.

One can also deal with the case

u m = -λ m ∇f (x m ) with λ m ≥ 0, σ m = k≤m λ k and σ n xn = m≤n λ m x m to obtain: σ n [f (x n ) -f (y)] ≤ m≤n λ m [f (x m ) -f (y)] ≤ m≤n λ m ∇f (x m )|x m -y ≤ R n (y).
This allows to compare the regret for discrete and continuous time trajectories, see [START_REF] Kwon | A continuous time approach to on-line optimization[END_REF] [START_REF] Kwon | A continuous time approach to on-line optimization[END_REF], Section 6.2.

CONTINUOUS TIME

We describe in this section three procedures in continuous time that satisfy the noregret property. Their discrete time counterparts will be analyzed in the next section. As usual, discrete time dynamics are easier to describe but their mathematical properties are more difficult to establish. This explains why we choose to start with the continuous time versions. In addition a very useful tool in the form of a "level function" is available in this set-up and we start by analyzing it.

3.1. Level functions and their properties.

Definition: P : R + × X → R + is a level function (for {u t , x t }) if P (t; y) is bounded and satisfies: (13) u t , x t -y ≥ d dt P (t; y), ∀t ∈ R + , ∀y ∈ X.
Note that P is not defined on the trajectory {x t } alone, but is a function of the joint processes {u t , x t }.

Proposition 4.

If there exists a level function, R t is upper bounded; hence R t (y)/t ≤ O(1/t).

Proof:

R t (y) = t 0 u s |y -x s ds ≤ P (0; y) -P (t; y) ≤ P (0; y).
Hence the existence of a level function implies the no-regret property.

Proposition 5.

Consider class (II).

Assume y * ∈ eS, then t → P (t; y * ) is decreasing.

Proof:

d dt P (t; y * ) ≤ g(x t )|x t -y * ≤ 0.
Thus a level function evaluated at an external solution in eS is a weak Lyapounov function.

Lemma 2. Consider class (III).

If {x t } is a descent procedure (meaning that d dt f (x t ) ≤ 0), then:

E(t; y) = t(f (x t ) -f (y)) + P (t; y)
is decreasing, for all y ∈ X.

Proof:

d dt E(t; y) = f (x t ) -f (y) + t d dt f (x t ) + d dt P (t; y) ≤ f (x t ) -f (y) + ∇f (x t )|y -x t ≤ 0
We recover the fact that the accumulation points of {x t } are in S = argmin X f and that the speed of convergence of f (x t ) to min f is O(1/t).

Positive correlation.

Given a first order dynamics of the form ẋt = A(x t ), f decreases on trajectories if:

d dt f (x t ) = ∇f (x t )| ẋt ≤ 0.
The analogous property for a vector field g is:

(14) g(x t )| ẋt ≥ 0.
In the framework of games, a similar condition was described in discrete time as Myopic Adjustment Dynamics, Swinkels (1993) [START_REF] Swinkels | Adjustment dynamics and rational play in games[END_REF] :

if x i n+1 = x i n then G i (x i n+1 , x -i n ) > G i (x i n , x -i n ), i ∈ I.
The corresponding property in continuous time corresponds to positive correlation, (between the dynamics and the vector field), Sandholm (2010) [START_REF] Sandholm | Population Games and Evolutionary Dynamics[END_REF]:

(15) ẋi t = 0 =⇒ g i (x t )| ẋi t > 0, i ∈ I.
The use of this notion for vector fields with potential is a follows: Proposition 6. Consider a vector field g with potential G. If the dynamics satisfies positive correlation, then G is a strict (increasing) Lyapunov function. All ω-limit points are rest points.

Proof:

Let V t = G(x t ) for t ≥ 0. Then: Vt = ∇G(x t )| ẋt = i∈I ∇ x i G(x t )| ẋi t = i∈I µ i (x) g i (x t )| ẋi t ≥ 0.
Moreover g i (x t )| ẋi t = 0, ∀i ∈ I, holds if and only if ẋt = 0. One concludes by using Lyapunov's theorem (e.g. Theorem 2.6.1 in [START_REF] Hofbauer | Evolutionary Games and Population Dynamics[END_REF]). This result is proved by [START_REF] Sandholm | Potential games with continuous player sets[END_REF] [START_REF] Sandholm | Potential games with continuous player sets[END_REF] for his version of potential population game, see extensions in Benaim, [START_REF] Benaim M | Stochastic approximations and differential inclusions[END_REF] [START_REF] Benaim M | Stochastic approximations and differential inclusions[END_REF].

A similar property for fictitious play in discrete time is established in Monderer and Shapley (1996) [START_REF] Shapley | Potential games[END_REF].

We will show that this property (15) holds for the three dynamics defined below.

We now introduce and study three dynamics: -Projected dynamics (PD), -Mirror descent (MD), -Dual averaging (DA). In each case we first define the dynamics, then control the evaluation of the regret by exhibiting a level function and finally study the trajectories for class (II) and (III).

Projected dynamics.

We assume in this subsection that V = V * is an Euclidean space with scalar product denoted by , .

Dynamics.

The continuous time analog of the generalization of the Projected Gradient Descent, [START_REF] Levitin | Constrained minimization methods[END_REF] [START_REF] Levitin | Constrained minimization methods[END_REF], [START_REF] Polyak | Introduction to optimization, Optimization software[END_REF] [START_REF] Polyak | Introduction to optimization, Optimization software[END_REF], see also Section 4.1, is defined by x t ∈ X satisfying:

(16) u t -ẋt , y -x t ≤ 0, ∀y ∈ X.
which is:

(17) ẋt = Π T X (xt) (u t ) since T X (x t ) is a cône. 3.3.2. Values. Let: (18) V (t; y) = 1 2
x t -y 2 , y ∈ X.

Proposition 7.

V is a level function.

Proof: One has:

d dt V (t; y) = ẋt , x t -y ≤ u t , x t -y
by [START_REF] Blum A | From external to internal regret[END_REF]. Thus the properties of section 3.1 hold.

Trajectories.

• Consider class (II) : u t = g(x t ).

One has the following convergence result:

Proposition 8. Assume g dissipative.
Then {x t } converges to a point in eS.

Proof: -The limit points of {x t } are in eS by Proposition 2. -x t -y * converges when y * ∈ eS by Propositions 5 and 7. Hence using Opial's Lemma (1967) [START_REF] Opial | Weak Convergence of the sequence of successive approximations for nonexpansive mappings[END_REF], which states:

In an Hilbert space, if for any weak accumulation point x of {x t } (resp. {x t }), x t -x has a limit as t → ∞, then {x t } (resp. {x t }) weakly converges. [START_REF] Brézis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF] it follows that xt converges to a point in eS.

Proposition 9.

Positive correlation holds.

Proof:

g(x t ), ẋt = ẋt

2 since u t = g(x t
) and u t -ẋt , ẋt = 0, by Moreau's decomposition, [START_REF] Moreau | Proximité et dualité dans un espace Hilbertien[END_REF] [START_REF] Moreau | Proximité et dualité dans un espace Hilbertien[END_REF].

• Consider class (III) :

u t = -∇f (x t ). Proposition 10. i) {x t } converges to a point in S. ii) f (x t ) decreases to min f with speed O(1/t).
Proof: i) Both Proposition 3 or Lemma 2, and Proposition 9 imply that the accumulation points of {x t } are in S. Then using Proposition 5, Opial's Lemma [START_REF] Brézis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF] applies. ii) Follows from Lemma 2.

Hilbert case.

We assume in this subsection that V is an Hilbert space with scalar product , and that X ⊂ V is non-empty, convex and closed. The results of Section 2 and 3.1 will extend, while considering weak accumulation points and assuming eS non empty.

• Consider class (II).

Lemma 3.

Assume eS = ∅. Then the trajectory {x t } is bounded.

Proof: By Proposition 5, for y * ∈ eS, V (t; y * ) is decreasing.

In particular this implies the following convergence result: Proposition 11. Assume eS = ∅ and g dissipative. Then {x t } converges weakly to a point in eS.

Proof:

-{x t } is bounded by Lemma 3 hence has weak accumulation points. Then follow the proof of Proposition 8.

Recall that if g is dissipative and X is bounded, eS = ∅ by Lemma 2.

• Consider class (III).

With a proof as above, Proposition 12 extends to: Proposition 12. Assume S = ∅. i) {x t } weakly converges to a point in S. ii) f (x t ) decreases to min f with speed O(1/t).

• Maximal monotone operators.

The preceeding results show strong links with properties of maximal monotone operators, see e.g. Brezis (1973) [START_REF] Brézis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF].

Recall that A is a monotone operator on V if Ax ⊂ V and u -v, x -y ≥ 0, ∀x ∈ V, u ∈ Ax, y ∈ V, v ∈ Ay.
A is a maximal monotone operator if in addition its graph G A = {(x, u); x ∈ V, u ∈ Ax} is maximal for the inclusion among monotone operators. If A is a maximal monotone operator with domain {x ∈ V ; Ax = ∅} = dom A, the set of external solutions associated to X = dom A and -A, that will play the role of eS, is the set T with:

(20) T = A -1 (0) = {x ∈ V ; 0 ∈ Ax} = {x ∈ V ; Ay, y -x ≥ 0, ∀y ∈ dom A}
where as usual Ay, z ≥ 0 means u, z ≥ 0, ∀u ∈ Ay. Let w t ∈ dom A be an absolutely continuous trajectory that satisfies a.e. (for the existence, see Brezis (1973) [START_REF] Brézis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF]) : [START_REF] Bruck | Asymptotic convergence of nonlinear contraction semigroups in Hilbert space[END_REF] ẇt ∈ -Aw t , t ∈ R + ; w 0 ∈ dom A.

The following result is due to Baillon and Brezis (1976) [START_REF] Baillon | Une remarque sur le comportement asymptotique des semigroupes non linéaires[END_REF] and is the exact analog of Proposition 11 in terms of statements and proof.

Proposition 13.

Assume T = ∅ and A maximal monotone. Then { wt } converges weakly to a point in T . 

Proof: Let z ∈ dom A. Then : (22) d dt w t -z 2 = ẇt , w t -z ∈ -Aw t , w t -z Hence if z * ∈ T : (23 
(25) -Az, z -wt = 1 t t 0 -Az, z -w t ≤ 1 t w 0 -z 2
so that any weak accumulation point ŵ of { wt } satisfies :

-Az, z -ŵ ≤ 0, ∀z ∈ dom A hence belongs to T . Thus by Opial's Lemma [START_REF] Brézis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF], wt converges weakly to a point in T .

Similarly the following result, due to [START_REF] Bruck | Asymptotic convergence of nonlinear contraction semigroups in Hilbert space[END_REF] [START_REF] Bruck | Asymptotic convergence of nonlinear contraction semigroups in Hilbert space[END_REF], and its proof, corresponds to Proposition 12. Let f : V → R ∪ {+∞} be convex, l.s.c. and proper. A is the subdifferential ∂f and we consider the dynamics [START_REF] Bruck | Asymptotic convergence of nonlinear contraction semigroups in Hilbert space[END_REF].

Proposition 14. i) f (w t ) decreases to inf V f with speed O(1/t). ii) If T = argmin V f = ∅, {w t } weakly converges to a point in T .

Proof:

The subdifferential inequality writes :

f (w s ) -f (w t ) ≥ -ẇt , w s -w t so that : lim sup s→t - f (w t ) -f (w s ) t -s ≤ -ẇt 2 hence f (w t ) is decreasing.
It follows that for any y ∈ V and s ∈ [0, t]:

f (y) ≥ f (w s ) + ẇs , w s -y ≥ f (w t ) + 1 2 d ds w s -y 2
hence by integration :

tf (y) ≥ tf (w t ) + 1 2 w t -y 2 - 1 2 w 0 -y 2 so that : f (w t ) ≤ f (y) + 1 2t w 0 -y 2 , ∀y ∈ V.
This gives i).

The proof of the previous Proposition 13 and i) implies that the weak accumulation points of {w t } are in T . Using Opial's Lemma 19 then gives ii).

To compare with Proposition 12 take f X = f + 1 X with int(domf ∩ X) = ∅, where 1 X is the indicator function of X.

Mirror descent : differential/incremental approach.

We study here the continuous version of the extension of the mirror descent algorithm studied in convex optimization, [START_REF] Yudin | Problem Complexity and Method Efficiency in Optimization[END_REF] [START_REF] Yudin | Problem Complexity and Method Efficiency in Optimization[END_REF], Beck and Teboulle (2003) [START_REF] Teboulle | Mirror descent and nonlinear projected subgradient methods for convex optimization[END_REF], see also section 4.2.

Dynamics.

The assumptions are:

H is a strictly convex, C 1 function from V to R ∪ {+∞}. X ⊂ V is nonempty, compact, convex and X ⊂ domH.
The continuous time procedure satisfies x t ∈ X with:

(26) u t - d dt ∇H(x t )|y -x t ≤ 0, ∀y ∈ X.
Recall that the Bregman distance associated to H is: Hence the properties of section 3.1 apply.

(27) D H (y, x) = H(y) -H(x) -∇H(x)|y -x (≥ 0). 3 
The previous analysis of Section 3.3 corresponds to the Euclidean case with the regularization function:

H(x) = 1 2 x 2
for the dynamics and the level function. and then:

(33) ẋt = ∇ 2 H(x t ) -1 u t .
∇ 2 H(x) induces a Riemannian metric, see Alvarez, Bolte and Brahic (2004) [START_REF] Alvarez F | Hessian Riemannian gradient flows in convex programming[END_REF], Mertikopoulos and Sandholm (2018) [START_REF] Mertikopoulos | Riemannian game dynamics[END_REF].

In this framework one has a monotonic algorithm for a vector field g with potential G, since (recall 3.2.):

Proposition 16. Positive correlation holds. Proof: g(x t )| ẋt = g(x t )|∇ 2 H(x t ) -1 g(x t ) ≥ 0.
since H is convex and ẋt = ∇ 2 H(x t ) -1 g(x t ) = 0 implies g(x t )|∇ 2 H(x t ) -1 g(x t ) > 0.

Consider now class (III). By Proposition 3, the accumulation points of {x t } are in S. To prove convergence one introduces the following :

Hypothesis [H1]: if z k → y * ∈ S then D H (y * , z k ) → 0.
For example H L-smooth (see e.g. [START_REF] Nesterov | Introductory Lectures on Convex Optimization[END_REF] [START_REF] Nesterov | Introductory Lectures on Convex Optimization[END_REF] Section 1.2.2.) and then:

0 ≤ D H (x, y) ≤ L 2 x -y 2 . Hypothesis [H2]: if D H (y * , z k ) → 0, y * ∈ S then z k → y * .
For example H β-strongly convex (see e.g. [START_REF] Nesterov | Introductory Lectures on Convex Optimization[END_REF] [75] Section 2.1.3.) and then:

D H (x, y) ≥ β 2 x -y 2 .
Proposition 17.

Consider class (III). If H is smooth and strongly convex or more generally if [H1] and [H2]

hold, {x t } converges to some x * ∈ S.

Proof: Let x * be an accumulation point of {x t }. Then x * ∈ S by Proposition 3 and thus D H (x * , x t ) is decreasing by Proposition 5 and Proposition 15. Since this sequence is decreasing to 0 on a subsequence x t k → x * by [H1], it is decreasing to 0, hence by [H2] x t → x * .

Dual averaging: integral/cumulative approach.

We consider here the continuous version of the extension of dual averaging, Nesterov (2009) [START_REF] Nesterov | Primal-dual subgradient methods for convex problems[END_REF], see also section 4.3. We follow the analysis and results in Kwon and Mertikopoulos (2017) [START_REF] Kwon | A continuous time approach to on-line optimization[END_REF].

Dynamics.

The assumption is: the regularization function h is a bounded strictly convex l.s.c. function from V to R ∪ {+∞} with dom h = X. Let h * (w) = sup x∈V w|x -h(x) be the Fenchel conjugate of h. h * is differentiable since h is strictly convex. Introduce the integral:

U t = t 0 u s ds
and let us define x t by:

x t = argmax{ U t |x -h(x); x ∈ V } = argmax{ U t |x -h(x); x ∈ X}.
The dynamics can be written as: [START_REF] Vohra | Regret in the on-line decision problem[END_REF] x t = ∇h * (U t ) ∈ X.

Values.

Define, for y ∈ X:

(35) W (t; y) = h * (U t ) -U t |y + h(y)
which corresponds to the Fenchel coupling between the cumulative input U t ∈ V * and a reference point y ∈ X ⊂ V .

Proposition 18.

W is a level function.

Proof: W (t; y) ≥ 0 by Fenchel inequality. Use that:

(36) d dt h * (U t ) = u t |∇h * (U t ) = u t |x t
by [START_REF] Vohra | Regret in the on-line decision problem[END_REF], thus:

d dt W (t; y) = u t |x t -y .
In particular one has:

(37) R t (y) = t 0 u s |y -x s ds = W (0; y) -W (t; y) ≤ [-inf X h + h(y)] ≤ r X (h) with r X (h) = sup X h(x) -inf X h(x).
Note that due to the integral formulation of the dynamics (34) (x t as a function of U t ) compared to the differential formulation (26) ( ẋt as a function of u t ) the level function is expressed through the dual space, however properties of section 3.1 applies as well.

3.5.3. Trajectories.

Proposition 19.

Positive correlation holds.

Proof:

d dt G(x t ) = ∇G(x t )| ẋt = g(x t )|∇ 2 h * (U t )(u t )
using ( 34) with u t = g(x t ).

Hence in class (III), using Proposition 3 the accumulation points of {x t } are in S.

Remarks.

In the interior smooth case both dynamics and level functions of sections 3.4 and 3.5 are the same, since one has:

x t = ∇h * (U t ), ∇h(x t ) = U t , h * (U t ) + h(x t ) = U t |x t and D h (y, x t ) = h(y) -h(x t ) -∇h(x t )|y -x t = h(y) + h * (U t ) -U t |x t -∇h(x t )|y -x t = h(y) + h * (U t ) -U t |y .

Comments on the continuous time dynamics framework.

1) One obtains the existence of a level function and same speed of convergence of the no-regret values in classes (I), (II) or (III) : O( 1 t ). 2) Hence by Section 2 the accumulation points of the average {x t } in class (II) with g dissipative are in eS.

3) In addition one has convergence of the average {x t } in class (II) with g dissipative, with (PD), via Opial's Lemma. The linear aspect of the derivative of the level function seems crucial to obtain this property.

Note that the Hilbertian structure is used first in the definition of the dynamics, then for the level function and in the reference to Opial's Lemma.

4) Similarly convergence of {x t } in case (III) holds for (PD), and (MD) with an adapted penalization function H.

5) Positive correlation holds for the three dynamics (under conditions on H for (MD)).

6) For vector fields g with potential G, G(x t ) is strictly decreasing in (PD) and (DA), and under conditions on H for (MD).

7) In the framework of games the entropy function:

h(x) = p∈S x p Logx p
defined on the simplex X = ∆(S) leads (via (MD) or (DA) ) to the replicator dynamics on int X , Taylor and Jonker (1978) [START_REF] Jonker | Evolutionary stable strategies and game dynamics[END_REF], Hofbauer and Sigmund (1998) [START_REF] Hofbauer | Evolutionary Games and Population Dynamics[END_REF], Sorin (2009) [START_REF] Sorin | Exponential weight algorithm in continuous time[END_REF], (2020) [START_REF] Sorin | Replicator dynamics: Old and new[END_REF].

(MD) gives the differential version:

ẋp t = x p t (u p t -x t , u t )
, p ∈ S while (DA) corresponds to the integral representation: [START_REF] Shahshahani | A new mathematical framework for the study of linkage and selection[END_REF]. Recall also that the replicator dynamics is the continuous time version of the multiplicative weight algorithm, Littlestone and Warmuth, 1994 [START_REF] Warmuth | The weighted majority algorithm[END_REF], Vovk, 1990 [103], Sorin, 2009 [92], 2020 [START_REF] Sorin | Replicator dynamics: Old and new[END_REF].

x p t = e U p t s∈S e U s t , p ∈ S. The corresponding Riemannian metric [a, b] x = s∈S 1 x s a s b s , x ∈ int X, is introduced in Shahshahani, 1979
On the other hand, h(x) = 1 2 x 2 leads to the local/direct projection dynamics, for a comparison, see Lahkar and Sandholm, 2008 [START_REF] Lahkar R | The projection dynamic and the geometry of population games[END_REF], Sandholm, Dokumaci and Lahkar, 2008 [START_REF] Sandholm | The projection dynamic and the replicator dynamic[END_REF].

8)

There is an important literature on continuous time dynamics enjoying similar features, see e.g. : -in convex optimization: Attouch and Teboulle, 2004 [START_REF] Teboulle | Regularized Lotka-Volterra dynamical system as continuous proximal-like method in optimization[END_REF], Attouch, Bolte, Redont and Teboulle, 2004 [START_REF] Attouch | Singular Riemannian barrier methods and gradient-projection dynamical systems for constrained optimization[END_REF], Auslender and Teboulle, 2006 [START_REF] Teboulle | Interior gradient and proximal methods for convex and conic optimization[END_REF], 2009 [START_REF] Teboulle | Projected subgradient methods with non Euclidean distances for non-differentiable convex minimization and variational inequalities[END_REF], Bolte and Teboulle (2003) [START_REF] Bolte | Barrier operators and associated gradient-like dynamical systems for constrained minimization problems[END_REF], [START_REF] Teboulle | A simplified view of first order methods for optimization[END_REF] [START_REF] Teboulle | A simplified view of first order methods for optimization[END_REF] ... -in game theory: Hofbauer and Sandholm, 2009 [START_REF] Hofbauer | Stable games and their dynamics[END_REF], Coucheney, Gaujal and Mertikopoulos, 2015 [START_REF] Coucheney P | Penalty-regulated dynamics and robust learning procedures in games[END_REF], Mertikopoulos and Sandholm, 2016 [START_REF] Mertikopoulos | Learning in games via reinforcement and regularization[END_REF], [START_REF] Mertikopoulos | Riemannian game dynamics[END_REF] [START_REF] Mertikopoulos | Riemannian game dynamics[END_REF], [START_REF] Mertikopoulos | Learning in games with continuous action sets and unknown payoff functions[END_REF] [START_REF] Mertikopoulos | Learning in games with continuous action sets and unknown payoff functions[END_REF] ...

DISCRETE TIME: GENERAL CASE

We consider now discrete time algorithms. Remark that the dynamics depends on an additional parameter, the step size.

Projected dynamics.

Recall that V is Euclidean and let m(X) denote the diameter of X. Assumption: u m ≤ M, ∀m ∈ IN.

Dynamics.

The standard discrete dynamics (Gradient projection method in class (III), [START_REF] Levitin | Constrained minimization methods[END_REF] [START_REF] Levitin | Constrained minimization methods[END_REF], [START_REF] Polyak | Introduction to optimization, Optimization software[END_REF] [START_REF] Polyak | Introduction to optimization, Optimization software[END_REF]) is given by: [START_REF] Levine | Conditional universal consistency[END_REF] x

m+1 = argmax X { u m , x - 1 2η m x -x m 2 },
with η m > 0 decreasing, which corresponds to:

(39)

x m+1 = Π X [x m + η m u m ],
or with variational characterization, x m+1 ∈ X and :

(40) x m + η m u m -x m+1 , y -x m+1 ≤ 0, ∀y ∈ X,
which is :

u m - x m+1 -x m η m , y -x m+1 ≤ 0, ∀y ∈ X,
and leads to ( 16) as η m → 0.

Values.

Recall that :

R n (x) = n m=1 u m |x -x m .
Proposition 20.

R n (x) ≤ 1 2η n m(X) 2 + M 2 2 n m=1 η m .
Hence with

η n = 1/ √ n: R n (x) ≤ O( √ n). Proof: Let x m+1 = Π X (y m+1 ) with y m+1 = x m + η m u m . So that: 2η m u m , x -x m = 2 y m+1 -x m , x -x m = y m+1 -x m 2 + x -x m 2 -x -y m+1 2 .
Note that for x ∈ X, (40) implies y m+1 -x 2 ≥ x m+1 -x 2 hence:

(41) 2η m u m , x -x m ≤ η 2 m u m 2 + x -x m 2 -x -x m+1
which is the discrete analog of the level function property in Proposition 7. This gives:

R n (x) = n m=1 u m , x -x m ≤ 1 2η 1 x -x 1 2 - 1 2η n x -x n+1 2 + n m=2 [ 1 2η m - 1 2η m-1 ] x -x m 2 + M 2 2 n m=1 η m .
Thus, with m(X) being the diameter of X:

R n (x) ≤ 1 2η n m(X) 2 + M 2 2 n m=1 η m
and the choice of

η m = 1 √ m gives: .R n (x) ≤ O( √ n).

Trajectories.

Consider class (II).

Lemma 4.

For

x * ∈ eS, x m -x * converges if {η n } ∈ 2 .
Proof: If x * ∈ eS then:

x * -x m+1 2 ≤ x * -(x m + η m g(x m )) 2 ≤ η 2 m g(x m ) 2 + x * -x m 2 so that x m -x * converges if {η n } ∈ 2 .
This corresponds to Proposition 5 in this framework.

Lemma 5.

If g is dissipative and {η n } ∈ 2 , {x n } converges to a point in eS.

Proof: The limit points of {x n } are in eS by Lemma 2, hence by Lemma 4 and Opial's Lemma [START_REF] Brézis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF], {x n } converges to a point in eS.

This property is the counterpart of Proposition 8.

Mirror descent.

Assumptions

: a) H is a C 1 function from V to R ∪ {+∞}, L-strongly convex for some norm . on V = R n and X ⊂ dom H, b) u n * ≤ M, ∀n ∈ IN. 4.2.1. Dynamics.
The classical mirror descent algorithm, introduced for class (III) in [START_REF] Yudin | Problem Complexity and Method Efficiency in Optimization[END_REF] [START_REF] Yudin | Problem Complexity and Method Efficiency in Optimization[END_REF], see also [START_REF] Teboulle | Mirror descent and nonlinear projected subgradient methods for convex optimization[END_REF] [START_REF] Teboulle | Mirror descent and nonlinear projected subgradient methods for convex optimization[END_REF], is given by (recall [START_REF] Coucheney P | Penalty-regulated dynamics and robust learning procedures in games[END_REF]): [START_REF] Mas-Colell | A simple adaptive procedure leading to correlated equilibria[END_REF] x

m+1 = argmax X { u m |x - 1 η m D H (x, x m )}.
The variational expression takes the form:

(43) ∇H(x m ) + η m u m -∇H(x m+1 )|x -x m+1 ≤ 0, ∀x ∈ X.
which leads to the continuous formulation [START_REF] Dossal | On the convergence of the iterates of FISTA[END_REF].

Note that D H (x, y) plays the rôle of 1 2 x -y 2 in (38).

Values.

We will use the identity:

(44) D H (x, z) -D H (x, y) -D H (y, z) = ∇H(y) -∇H(z)|x -y .
which is a direct consequence of the definition of D H .

Proposition 21.

Let the step size

η n = 1 √ n , then: R n (x) ≤ O( √ n).
Proof:

η n u n |x -x n = η n u n |x -x n+1 + η n u n |x n+1 -x n ≤ ∇H(x n+1 ) -∇H(x n )|x -x n+1 + η n u n |x n+1 -x n = D H (x, x n ) -D H (x, x n+1 ) -D H (x n+1 , x n ) + η n u n |x n+1 -x n (45) 
by using [START_REF] Mas-Colell | Regret-based continuous time dynamics[END_REF]. Now, H is L strongly convex, hence:

(46) D H (x n+1 , x n ) ≥ L 2 x n+1 -x n 2
and moreover :

η n u n |x n+1 -x n - L 2 x n -x n+1 2 ≤ M η n x n -x n+1 - L 2 x n -x n+1 2 ≤ (η n M ) 2
2L so that one obtains the analogous of the level function property in Proposition 15:

η n u n |x -x n ≤ D H (x, x n ) -D H (x, x n+1 ) + (η n M ) 2 2L .
Summing leads to :

(47) R n (x) ≤ m [D H (x, x m )( 1 η m+1 - 1 η m ) + η m M 2 2L ].
Hence the bound like in Proposition 20.

Trajectories.

Consider class (II).

Lemma 6.

For

x * ∈ eS, D H (x * , x n ) converges if {η n } ∈ 2 .
Proof: Start with (45) for x * ∈ eS and use D H ≥ 0 to get:

D H (x * , x m+1 ) ≤ D H (x * , x m ) -η m u m |x m -x m+1 (48) 
thus it remains to control η m u m |x m -x m+1 . H being L strongly convex implies:

∇H(x m ) -∇H(x m+1 )|x m -x m+1 ≥ L x m+1 -x m 2
but one has by [START_REF] Mas-Colell | A general class of adaptive strategies[END_REF]:

∇H(x m ) -∇H(x m+1 )|x m -x m+1 ≤ -η m u m |x m -x m+1 ≤ η m u m * x m -x m+1 .
It follows that:

x m -x m+1 ≤ 1 L η m u m * hence: -η m u m |x m -x m+1 ≤ 1 L η m u m 2 *
Altogether this implies from (48

) that D H (x * , x m ) converges if {η n } ∈ 2 .
This is the counterpart of Proposition 5.

Dual averaging.

Assumptions : a) h is a l.s.c. function from V to R ∪ {+∞}, L-strongly convex for some norm . on

V = R n , with dom h = X. b) u m * ≤ M, ∀n ∈ IN. 4.3.1. Dynamics.
We extend the formulation in Nesterov (2009) [START_REF] Nesterov | Primal-dual subgradient methods for convex problems[END_REF]. The starting point is again a maximization property:

(49) x m+1 = argmax X { U m |x - 1 η m h(x)},
with U m = m k=1 u k and where {η m } is decreasing. Note that there is an explicit form without using a variational formulation. Hence the dual averaging algorithm is given by: (50)

x m+1 = ∇h * (η m U m ).
This cumulative representation corresponds to the integral dynamics [START_REF] Vohra | Regret in the on-line decision problem[END_REF] while the incremental algorithm ( 43) is associated to the differential dynamics (26).

Values.

A direct proof, see Xiao (2010) [START_REF]Dual averaging methods for regularized stochastic learning and online optimization[END_REF] or a discrete approximation of [START_REF] Vohra | Regret in the on-line decision problem[END_REF], see Kwon and Mertikopoulos (2017) [START_REF] Kwon | A continuous time approach to on-line optimization[END_REF], allows to obtain:

Proposition 22. (51) R n (x) = n m=1 u m |x -x m ≤ r X (h) η n + n m=1 η m-1 u m 2 *

2L

Proof: Fenchel inequality:

η n U n |x ≤ h * (η n U n ) + h(x) implies: (52) U n |x ≤ h * (0) η 0 + n m=1 ( h * (η m U m ) η m - h * (η m-1 U m-1 ) η m-1 ) + max X h η n . Now: h * (η m U m ) η m = sup X [ U m |x - h(x) η m ] ≤ sup X [ U m |x - h(x) η m-1 ] + sup X [- h(x) η m + h(x) η m-1 ] = h * (η m-1 U m ) η m-1 + ( 1 η m-1 - 1 η m ) min X h,
so that replacing in [START_REF] Hofbauer | Best response dynamics for continuous zero-sum games[END_REF] gives:

(53) U n |x ≤ h * (0) η 0 + n m=1 1 η m-1 [h * (η m-1 U m )-h * (η m-1 U m-1 )]+min X h( 1 η 0 - 1 η n )+ max X h η n .
h is L strongly convex for . , so that h * is 1/L smooth for . * hence:

h * (η m-1 U m ) -h * (η m-1 U m-1 ) -η m-1 U m -η m-1 U m-1 |∇h * (η m-1 U m-1 ) = h * (η m-1 U m ) -h * (η m-1 U m-1 ) -η m-1 u m |x m ≤ η 2 m-1 2L u m 2 * . (54) 
This leads to a property similar to the level function property in Proposition 18 since:

u m |x -x m ≤ u m |x + 1 η m-1 [h * (η m-1 U m-1 ) -h * (η m-1 U m )] + η m-1 2L u m 2 * ≤ 1 η m-1 [h * (η m-1 U m-1 ) + h(x) -η m-1 U m-1 , x ] - 1 η m [h * (η m U m ) + h(x) -η m U m , x ] + η m-1 2L u m 2 * + ( 1 η m-1 - 1 η m )(min X h -h(x)).
Now inserting [START_REF] Kinderlehrer | An Introduction to Variational Inequalities and Their Applications[END_REF] in [START_REF] Vempala | Efficient algorithms for online decision problems[END_REF] gives:

U n |x - n m=1 u m |x m ≤ h * (0) η 0 + n m=1 η m-1 2L u m 2 * + ( 1 η 0 - 1 η n ) min X h + max X h η n
and recall that h * (0) = -min X h.

Hence the convergence rate O( √ n) with time varying parameters η n = 1/ √ n.

4.4.

Comments on the discrete dynamics framework. .

1)

The three algorithms achieve the same bound O(1/ √ n) for the speed of convergence of the average regret, which is optimal already in class (III), [START_REF] Nesterov | Introductory Lectures on Convex Optimization[END_REF], using time varying step sizes η n = 1/ √ n.

2) The no-regret property holds for the three algorithms hence the results of Section 2.2 apply for the closed form.

3) More precise properties concerning the trajectories are available only in the (PD) set-up. The results are similar to the ones in the continuous case, Section 3.2 if η n ∈ 2 , for class (II). (Compare to the analysis in Peypouquet and Sorin [START_REF] Sorin | Evolution equations for maximal monotone operators: asymptotic analysis in continuous and discrete time[END_REF] for dynamics induced by maximal monotone operators in discrete and continuous time, see Section 3.3.4.). 4) There is no discrete counterpart of "positive correlation". 5) For vector fields g with potential one does not have the crucial property G(x n ) decreasing.

DISCRETE TIME: REGULARITY

This section deals mainly with class (III) convex gradient, where in addition f satisfies some regularity properties. Recall that f is β smooth if: [START_REF] Korpelevich | The extragradient method for finding saddle points and other problems[END_REF] |f

(y) -f (x) -∇f (x)|y -x | ≤ β 2 x -y 2 .
Alternatively ∇f is β-Lipschitz.

A last part is devoted to the so-called mirror-prox procedure, class (II) with g β-Lipschitz.

Projected dynamics.

Assumption: f is β smooth. The algorithm is like [START_REF] Hannan | Approximation to Bayes risk in repeated plays, Contributions to the Theory of Games[END_REF] with constant step size η m = 1/β. [START_REF] Krichene W | Accelerated mirror descent in continuous and discrete time[END_REF] x m+1 = argmax X { -∇f (x m ), x -

1 2β x -x m 2 },
which gives:

(57)

x m+1 = Π X [x m - 1 β ∇f (x m )].
The analysis in this section is standard, see e.g. [START_REF] Nesterov | Introductory Lectures on Convex Optimization[END_REF] [START_REF] Nesterov | Introductory Lectures on Convex Optimization[END_REF].

5.1.1. Preliminaries. Define T x = Π X [x -1 β ∇f (x)] and v(x) = β(x -T x) (which plays the role of ∇f (x), corresponding to X = V ). The projection property gives: [START_REF] Kwon | A continuous time approach to on-line optimization[END_REF] x -1 β ∇f (x) -T x, y -T x ≤ 0, ∀y ∈ X so that:

(59) ∇f (x), T x -y ≤ v(x), T x -y , ∀y ∈ X.

Now one has:

f (T x) -f (y) = f (T x) -f (x) + f (x) -f (y) ≤ ∇f (x), T x -x + β 2 T x -x 2 + ∇f (x), x -y f β smooth, convex = ∇f (x), T x -y + 1 2β v(x) 2 ≤ v(x), T x -y + 1 2β v(x) 2 , ∀y ∈ X by (59) hence: 
(60)

f (T x) -f (y) ≤ v(x), x -y - 1 2β v(x) 2 , ∀y ∈ X.
The following decreasing property is crucial and shows the difference with the general non-smooth case. Lemma 7. Descent lemma [START_REF] Sorin | Minmax via differential inclusion[END_REF] f

(x m+1 ) -f (x m ) ≤ - 1 2β v(x m ) 2 = - β 2 x m+1 -x m 2 
Proof: By the previous inequality [START_REF] Lehrer | A wide range no-regret theorem[END_REF] with x m = x = y. Note that in the previous lemma the convexity of f is actually not usued.

A consequence of ( 61) is:

1 2β n m=1 v(x m ) 2 ≤ f (x 1 ) -f (x n+1 ) ≤ f (x 1 ) -f * hence { v(x n ) } ∈ 2 .
and as in ( 49): [START_REF] Minty | On the generalization of a direct method of the calculus of variations[END_REF] 

x k = argmin X G k (x) = argmax X { U k-1 , x -Lh(x)} with as usual u k = -∇f (x k ) and U m = m k=1 u k . Proposition 27. (69) f (x k ) -f (x) ≤ L k h(x), (70) min 
i=0,...,k f (x i ) -f (x) ≤ L k h(x).
Proof: By definition:

(71) G k+1 (x k+1 ) = G k (x k+1 ) + ∇f (x k ), x k+1 -x k + f (x k ).
Note that (A) implies that each G k -f is convex hence:

(72) G k (x k+1 ) -f (x k+1 ) ≥ G k (x k ) -f (x k ) + ∂G k (x k ) -∇f (x k ), x k+1 -x k .
Thus one has:

(73) G k+1 (x k+1 ) ≥ f (x k+1 ) + G k (x k ) + ∂G k (x k ), x k+1 -x k but there exists u k ∈ ∂G k (x k ) with : u k , x -x k ≥ 0, ∀x ∈ X by the choice of x k .
Finally, with g k+1 = G k+1 (x k+1 ) one obtains:

(74) g k+1 ≥ f (x k+1 ) + g k .

Using f convex, thus G k (x) ≤ kf (x) + Lh(x) by [START_REF] Mertikopoulos | Learning in games with continuous action sets and unknown payoff functions[END_REF], this implies that:

(75)

k+1 i=0 f (x i ) ≤ g k+1 ≤ (k + 1)f (x) + Lh(x)
hence the result.

Comments on the regular case.

1) In the three cases (PD), (MD) and (DA) the speed of convergence of the values is O(1/n) and the algorithms use a constant step parameter. 2) Using (PD) with f smooth implies f (x n ) decreasing and the convergence of {x n }.

3) The approach in Section 5.2 shows that similar results can be obtained using (MD) without assuming f with Lipschitz gradient if the regularization function H is adapted to f : condition (A). 4) Analogous results for the values are much simpler to obtain in the (DA) framework.

However the properties concern the value at the average f (x n ) and no result is available on the trajectories.

Mirror prox.

We follow in this section the model introduced by [START_REF] Korpelevich | The extragradient method for finding saddle points and other problems[END_REF] [START_REF] Korpelevich | The extragradient method for finding saddle points and other problems[END_REF], and further studied by [START_REF] Nemirovski | Prox-method with rate of convergence O(1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems[END_REF] [START_REF] Nemirovski | Prox-method with rate of convergence O(1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems[END_REF]. We present it for two main reasons: first it gives faster convergence than in Section 4 for a Lipschitz vector field g; second the tools used in the proofs are very similar to the one used in the previous sections.

Dynamics.

The algorithm corresponds to a two-stage procedure. The first step produces y n+1 from x n via usual (MD) [START_REF] Mas-Colell | A general class of adaptive strategies[END_REF] applied to u n = g(x n ) with constant step size λ:

(76) -λg(x n ) + ∇H(y n+1 ) -∇H(x n )|x -y n+1 ≥ 0, ∀x ∈ X.
The second step produces x n+1 from x n via (MD) (43) applied to v n = g(y n+1 ) with constant step size λ:

(77) -λg(y n+1 ) + ∇H(x n+1 ) -∇H(x n )|x -x n+1 ≥ 0, ∀x ∈ X.
Altogether, the decision after x n uses a more refined information g(y n+1 ) rather than the usual (in (MD)) g(x n ).

Values.

The result concerns the process {y n }.

Proposition 28. Nemirovski (2004) [72]

Assume H α strongly convex and g β-Lipschitz with α ≥ λβ, then:

R n (x) = n m=1 g(y m )|x -y m ≤ 1 λ [D H (x, x 1 ) -D H (x, x n )].
Proof: Decompose:

g(y n+1 )|x -y n+1 = g(y n+1 )|x -x n+1 + g(x n )|x n+1 -y n+1 + g(y n+1 ) -g(x n )|x n+1 -y n+1 .
The first term gives via (77): [START_REF] Mas-Colell | Regret-based continuous time dynamics[END_REF]. Invoking [START_REF] Nesterov | Primal-dual subgradient methods for convex problems[END_REF], the second term leads to:

λ g(y n+1 )|x -x n+1 ≤ ∇H(x n+1 ) -∇H(x n )|x -x n+1 = D H (x, x n ) -D H (x, x n+1 ) -D H (x n+1 , x n ) using ( 
λ g(x n )|x n+1 -y n+1 ≤ ∇H(x n ) -∇H(y n+1 )|y n+1 -x n+1 = D H (x n+1 , x n ) -D H (x n+1 , y n+1 ) -D H (y n+1 , x n )
and for the last one, using g β-Lipschitz :

g(y n+1 ) -g(x n )|x n+1 -y n+1 ≤ g(y n+1 ) -g(x n ) * x n+1 -y n+1 ≤ β y n+1 -x n y n+1 -x n+1 ≤ β 2 [ y n+1 -x n 2 + y n+1 -x n+1 2 ].
So that:

λ g(y n+1 )|x -y n+1 ≤ D H (x, x n ) -D H (x, x n+1 ) -D H (x n+1 , y n+1 ) -D H (y n+1 , x n ) + λβ 2 [ y n+1 -x n 2 + y n+1 -x n+1 2 ]. (78) 
Hence if H is α strongly convex and α ≥ λβ one has a telescopic majorant leading to:

λR n (x) = λ n m=1 g(y m )|x -y m ≤ D H (x, x 1 ) -D H (x, x n ).
Comments : If eS = ∅, take x ∈ eS in (78) and α > λβ to get:

-n y n+1 -x n 2 + y n+1 -x n+1 2 < ∞ -D H (x, x n ) decreasing.
Notice that g was not assumed dissipative. Adding g dissipative gives:

g(x)|x -ȳn ≤ R n (x) hence the accumulation points of {ȳ n } are in S.

Trajectories.

The result involves the trajectory {x n }.

Proposition 29. [START_REF] Korpelevich | The extragradient method for finding saddle points and other problems[END_REF] [55] Assume g β-Lipschitz and dissipative. (i) (PD) case: for λ < 1/β, x n converges to a point in S.

(ii) (MD) case: Assume H α strongly convex with α > λβ. y ∈ S implies: D H (y, x n ) decreases. Assume:

[H1] :

x k → x * ∈ S ⇒ D H (x * , x k ) → 0, [H2] : D H (z k , x k ) → 0 ⇒ z k -x k → 0, then {x n } converges to a point in S.
Proof: (i) The property of the projection gives:

z -y 2 ≥ z -Π X (z) 2 + Π X (z) -y 2 ,
∀y ∈ X hence with z = x n + λg(y n+1 ), Π X (z) = x n+1 by (77) and one deduces:

x n+1 -y 2 ≤ x n + λg(y n+1 ) -y 2 -x n + λg(y n+1 ) -x n+1 2 
Recall that H is α strongly convex so that:

D H (u, v) ≥ α 2 ] u -v 2
and use that g is β-Lipschitz to bound:

g(x n ) -g(y n+1 )|y n+1 -x n+1 ≤ g(x n ) -g(y n+1 ) * y n+1 -x n+1 ≤ β x n -y n+1 y n+1 -x n+1 ≤ β 2 [ρ x n -y n+1 2 + 1 ρ y n+1 -x n+1 2 ].
Replacing in [START_REF] Sandholm | Population Games and Evolutionary Dynamics[END_REF] with ρ = λβ α gives:

D H (x * , x n+1 ) ≤ D H (x * , x n ) -(1 -( λβ α ) 2 )D H (y n+1 , x n ).
Taking λ < α β implies D H (y n+1 , x n ) → 0 and D H (x * , x n ) decreasing. Finally let x be an accumulation point of {x n } and x n k → x. By [H2], y n k → x as well. Using [START_REF] Nesterov | Primal-dual subgradient methods for convex problems[END_REF] this implies x ∈ iS = S since g is dissipatif. But then D H (x, x n ) decreases hence goes to 0, since it is the case on {x n k } by [H1]. Using again [H2] x n → x hence the result.

The result has the same flavour than Proposition 26. Notice that the algorithm is well defined for any vector field g but the interpretation in the decentralized framework of games is difficult. The main point is that x i n+1 is determined via g i (y n+1 ) where all the components of y n+1 appear, hence some coordination is required. '

CONCLUDING REMARKS

For the three dynamics PG, MD and DA 1), 2) and 3) holds: 1) In continuous time the speed of convergence of the average regret to 0, of the order O(1/t), is not better in the general gradient convex case than in the on-line learning case. This means that the specificity of the observation process cannot be exploited.

2) Similarly in discrete time the speed of convergence of the average regret to 0, of the order O(1/ √ n) is not better in the general gradient convex case than in the on-line learning case.

3) Adding a smoothness hypothesis on the convex function does not change the speed in the continuous time framework but allow a better convergence rate in discrete time from O(1/ √ n) to O(1/n), and with a simpler algorithm : constant step size. Basically an additional property is required to get a descent lemma.

4) A similar phenomena appears with the so-called acceleration procedures following [START_REF] Nesterov | A method of solving a convex programming problem with convergence rate O(1/k 2 )[END_REF] [START_REF] Nesterov | A method of solving a convex programming problem with convergence rate O(1/k 2 )[END_REF]. In the continuous time case a second order ODE leads to a speed of convergence f (x t ) -f (x * ) ≤ O( 1 t 2 ) with no further hypothesis on f , see Su, Boyd and Candes (2014) [START_REF] Su | A differential equation for modeling Nesterov's accelerated gradient method: Theory and insights[END_REF] (2016) [START_REF] Boyd | A differential equation for modeling Nesterov's accelerated gradient method: Theory and insights[END_REF], Krichene, Bayen and Bartlett (2015) [START_REF] Krichene W | Accelerated mirror descent in continuous and discrete time[END_REF], (2016) [START_REF] Krichene W | Adaptive Averaging in Accelerated Descent Dynamics[END_REF], Attouch, Chbani, Peypouquet and Redont (2018) [START_REF] Attouch | Fast convergence of inertial dynamics and algorithms with asymptotic vanishing damping[END_REF]. To obtain a similar property in discrete time, namely f (x n ) -f (x * ) ≤ O( 1 n 2 ) one has to assume f smooth.

The same remark apply to the (weak) convergence of the trajectory, where f smooth is needed in discrete time and not in continuous time, Chambolle and Dossal (2015) [START_REF] Dossal | On the convergence of the iterates of FISTA[END_REF], Attouch, Chbani, Peypouquet, Redont (2018) [START_REF] Attouch | Fast convergence of inertial dynamics and algorithms with asymptotic vanishing damping[END_REF].

5) Concerning the link between discrete and continuous time dynamics, there are no direct results of the form: no-regret in continuous time imply no-regret in discrete time but analogy of the tools used and ad-hoc choice of the step parameter, see [START_REF] Sorin | Exponential weight algorithm in continuous time[END_REF] [START_REF] Sorin | Exponential weight algorithm in continuous time[END_REF], [START_REF] Kwon | A continuous time approach to on-line optimization[END_REF] [START_REF] Kwon | A continuous time approach to on-line optimization[END_REF]. Similar properties hold in the closed form for Lyapounov functions in Krichene, Bayen and Bartlett (2015) [START_REF] Krichene W | Accelerated mirror descent in continuous and discrete time[END_REF], (2016) [START_REF] Krichene W | Adaptive Averaging in Accelerated Descent Dynamics[END_REF], Wibisono, Wilson and Jordan (2016) [START_REF] Wibisono A | A variational perspective on accelerated methods in optimization[END_REF], see also [START_REF] Bansal | Potential-function proofs for gradient methods[END_REF] [START_REF] Bansal | Potential-function proofs for gradient methods[END_REF].

6) The Hilbert framework for (PD) allows to obtain convergence results on the trajectories. The two other algorithms ((MD and (DA)) are more flexible and can achieve better explicit speed of convergence of the values by choosing an adequate norm, see the discussion in Bauschke, Bolte and Teboulle (2017), [START_REF] Bauschke | A descent Lemma beyond Lipschitz gradient continuity: first-order methods revisited and applications[END_REF]. For (MD) specific regularization functions H can also lead to convergence of the trajectories. (DA) is much simpler to implement due to its integral formulation. However no convergence properties of the trajectories are available. 7) In the framework of games, general positive results are obtained in the class of dissipative games. Accumulation points of the average trajectory are equilibria. 8) For potential games or more generally vector fields with potential the three continuous time algorithms imply the inclusion of the set of accumulation point in the set of rest points. A further study in the framework of tame functions and invoving quasi-gradients, in the spirit of Bégout, Bolte and Jendoubi (2015) [START_REF] Bégout P | On damped second-order gradient systems[END_REF], would be very interesting. 9) Obviously potential games with a concave potential P will share the properties of class (III) since basically one can replace for each i, g i (x), y i -x i by ∇ i P (x), y i -x i .

  in discrete time, m ∈ IN, given {u m } and {x m }, with {x m } depending on {x 1 , u 1 , ..., x m-1 , u m-1 }, one defines: R n (x) = n m=1 u m |x -x m and requires: (3) sup x∈X R n (x) ≤ o(n).

  ) d dt w t -z * 2 ≤ 0and w t -z * 2 is decreasing, thus {w t } is bounded hence has weak accumulation points.

	From monotonicity:		
	(24)	d dt	w

t -z 2 ∈ -Aw t , w t -z ≤ Az, z -w t one deduces:

  3.4.3. Interior trajectory.The use of a specfic function H adapted to X, with domH = X, H C 2 on intX and ∇H(x) → +∞ as x → ∂X allows to produce a trajectory that remains in intX.

	In this case (26) leads to an equality:	
	(30)	d dt	∇H(x t ) = u t
	thus:		
			t
	(31)	∇H(x t ) =	u s ds
			0
	or, with H * being the Fenchel conjugate of H:
			t
	(32)	x t = ∇H * (	u s ds)
			0

Proof: Consider the algorithm defined by {z n } and the process {v n } with z 1 = x 1 , v n = -v(z n ) and z n+1 = z n + ηv n with η = 1/β. Clearly z n = x n . From section 3.1, Proposition 20 with η m constant, one obtains:

which is bounded since { v(x n ) } ∈ 2 . This implies, using f decreasing and [START_REF] Lehrer | A wide range no-regret theorem[END_REF]:

5.1.3. Trajectories.

Lemma 8.

For y * ∈ S, x n -y * is decreasing.

Proof: From (60) one has:

So that:

Proposition 24.

{x n } converges to a point in S.

Proof: Since f (x n ) decreases, the accumulation points of {x n } are in S and by the previous Lemma 8, Opial's Lemma (19) applies.

Mirror descent.

We first assume only that H and f are C 1 . The next analysis follows Bauschke, Bolte and Teboulle (2017) [START_REF] Bauschke | A descent Lemma beyond Lipschitz gradient continuity: first-order methods revisited and applications[END_REF].

The main assumption in this section is the existence of a constant L > 0 such that (recall that D H is the Bregman distance (27)):

Note that if H is strongly convex and f is smooth (not assumed convex), there exists L such that (A) holds. However f is not required to be smooth.

(A similar pre-oder on convex functions appears in Nguyen (2017) [START_REF] Nguyen | Forward-Backward splitting with Bregman distances[END_REF]).

Recall the procedure ( 43) with constant step size λ:

and the identity:

Let us consider a step size satisfying 2λL = 1.

5.2.1.

Values.

Lemma 9.

(

Proof : Since:

one has, by (A):

so that by [START_REF] Warmuth | The weighted majority algorithm[END_REF]:

Uses then [START_REF] Lu | Relatively smooth convex optimization by first-order methods, and applications[END_REF]:

Hence the result since 2λL = 1.

Proposition 25.

Assume H convex . Then:

Proof: 1) and 2) Take y = x n in [START_REF] Mertikopoulos | Learning in games via reinforcement and regularization[END_REF].

3) Use f (x n ) decreasing, D f ≥ 0 and the telescoping sum in (65).

5.2.2.

Trajectories.

Proof: 1) follows from [START_REF] Mertikopoulos | Learning in games via reinforcement and regularization[END_REF]. 2) By the previous Proposition 25, the accumulation points of {x n } are in S. Let thus

Compare with the proof of Proposition 17.

Note that the result is more precise than in the continuous case, Section 3.3 where there was no decreasing property (for general H).

Let us finally mention the very recent result due to Bui and Combettes (2020) [23] Theorem 3.9., where the use of variable metrics H n allows to reach f (x n ) -f * = o(1/n).

Dual averaging.

We follow the analysis in [START_REF] Lu | Relatively smooth convex optimization by first-order methods, and applications[END_REF] [START_REF] Lu | Relatively smooth convex optimization by first-order methods, and applications[END_REF]. Recall that we consider class (III) : f convex and C 1 and as in the previous Section 4.2. the main hypothesis is the existence of L > 0 with:

but we will simply assume here L h -f convex, where h : V → R ∪ {+∞} is l.s.c. with dom h = X. Let x 0 = argmin X h(x) and assume h(x 0 ) = 0. Define :

Taking y = x * ∈ eS = S and adding 2λ g(y n+1 ), x * -y n+1 ≥ 0, we obtain:

Now by [START_REF] Nesterov | Primal-dual subgradient methods for convex problems[END_REF] one has: [START_REF] Polyak | Introduction to optimization, Optimization software[END_REF] x n + λg(x n ) -y n+1 , x n+1 -y n+1 ≤ 0 replacing in (80) and using:

one finally achieves:

This implies : [START_REF] Rosen | Existence and uniqueness of equilibrium points for concave N-person games[END_REF] y n+1 -x n 2 → 0.

By [START_REF] Rockafellar | Monotone operators associated with saddle-functions and minmax problems, Nonlinear Functional Analysis[END_REF] the sequence {x n } is bounded. Let x be an accumulation point. Properties (76) and ( 84) imply that x satisfies: [START_REF] Rockafellar | Monotone operators associated with saddle-functions and minmax problems, Nonlinear Functional Analysis[END_REF] implies that x n -x is decreasing, but going to 0 on a subsequence, it converges to 0.

(II) Let us start with x * ∈ S and the identity:

Denote A = -∇H(x n+1 ) -∇H(x n )|x * -x n+1 and from (77) with x = x * one deduces:

A ≤ -λg(y n+1 )|x * -x n+1 But x * ∈ S hence:

-λg(y n+1 )|x * -y n+1 ≤ 0 so that:

A ≤ -λg(y n+1 )|y n+1 -x n+1 . Adding (76) with x = x n+1 gives:

Use that:

-∇H(y n+1 ) + ∇H(x n )|y n+1 -x n+1 = D H (x n+1 , , x n ) -D H (x n+1 , y n+1 ) -D H (y n+1 , x n ) and coming back to [START_REF] Sandholm | Potential games with continuous player sets[END_REF] we obtain: (86) D H (x * , x n+1 ) = D H (x * , x n )-D H (x n+1 , y n+1 )-D H (y n+1 , x n )+λ g(x n )-g(y n+1 )|y n+1 -x n+1 .