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Abstract

Hierarchies of sets, and most multilevel clustering models, have been characterized as convex-
ities induced by interval functions satisfying specific properties, thus giving rise to a unifying
framework for characterizing multilevel clustering models. Here, we show that this unifying
framework can be relevant to data mining practice. First, we provide a flexible characterization
of hierarchies and weak hierarchies as interval convexities. Second, we investigate the Apresjan
hierarchy and the Bandelt and Dress weak hierarchy, and characterize them as interval convex-
ities. Third, we propose a method for computing recursively a sequence of path-based dissimi-
larities which decreases from an arbitrary dissimilarity downto its subdominant ultrametric. We
prove that these path-based dissimilarities define two sequences of nested families of interval
convexities. One sequence increases from the Apresjan hierarchy to the single-link hierarchy,
and the other from a subset of the single-link hierarchy to the Bandelt and Dress weak hierar-
chy. Applications to the simplification and validation of the single-link hierarchy of an arbitrary
dissimilarity are discussed.

Keywords: Apresjan hierarchy, Interval convexity, Single-link hierarchy, Weak hierarchy,
Path-based dissimilarities

1. Introduction

Clustering is a popular and valuable data mining technique aimed at revealing a hidden struc-
ture within a dataset. The revealed structure is commonly expressed as a collection of homo-
geneous subsets called clusters. According to Mirkin and Muchnick [23], there are three major
approaches to determine a cluster as based on definition, direct algorithm and optimality crite-
rion. The present paper is mainly concerned with some definition-based clusters, namely clusters
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defined as being convex in the sense of an interval function. An interval function I on a dataset
S is a symmetric function that maps each ordered pair (x, y) ∈ S × S to a subset I(x, y) of S,
containing x and y. The subset I(x, y) is called the I-interval of extremities x and y. A subset
A of S is said to be convex in the sense of the interval function I , or I-convex, if it contains each
I-interval whose extremities belong to A. The collection CI of I-convex subsets of S forms a
convexity called the interval convexity induced by I . It turns out that the notion of convexity
as defined in the most abstract sense (e.g. [14, 27]) coincides with that of multilevel clustering,
when the latter is supposed to be closed under arbitrary intersections. A multilevel clustering of
S is a collection of nonempty subsets of S, containing S itself and of which at least two mem-
bers are strictly nested. One of the most known multilevel clustering models is the hierarchical
model. A hierarchy is a multilevel clustering for which the intersection of any two clusters is
either empty or equal to one of them. In the last decades, several authors have investigated vari-
ous generalizations of the hierarchical model, such as pyramids [17, 19], paired hierarchies [7, 8]
and totally balanced hypergraphs [12, 11]. These models are submodels of the weak hierarchi-
cal clustering model. A weak hierarchy is a multilevel clustering for which the intersection of
any three clusters is reduced to the intersection of two of them [2, 3, 16]. It is therefore a di-
rect extension of the hierarchical clustering, allowing for some type of overlapping clusters. The
weak hierarchical clustering model, and most of its submodels, have been characterized as (types
of) interval convexities whose segment functions satisfy specific properties [9]. By generalizing
the notion of interval function to more than two arguments, Changat et al. [15] have extended
these characterizations to the general case of the k-weak hierarchies for k ≥ 2, where a k-weak
hierarchy is a multilevel clustering for which the intersection of any (k + 1) clusters reduces to
the intersection of k of them (the case k = 2 corresponds to weak-hierarchies). These charac-
terizations, all being based solely on the notion of interval function or its extensions, lead to a
unifying framework for multilevel clusterings. The contributions of this paper fall within this
line of research, in this general formal framework, together with an attention to specifications al-
lowing to capture clustering models, such as the Apresjan and the single-link hierarchies, which
are handled in data mining practice. We propose:

• Flexible characterizations of hierarchies and weak hierarchies as interval convexities;

• Properties of both the Apresjan hierarchy and the Bandelt and Dress weak-hierarchy of an
arbitrary dissimilarity, together with their characterization as interval convexities;

• A recursive method for computing (in linear time) each term of a sequence of path-based
dissimilarities that decrease from an arbitrary dissimilarity downto its subdominant ultra-
metric;

• A sequence of a nested hierarchies defined as interval convexities, gradually increasing
from the Apresjan hierarchy to the single-link hierarchy;

• A sequence of nested weak hierarchies defined as interval convexities, gradually increasing
from a subset of persistent single-linkage clusters (which includes the Apresjan clusters)
to the Bandelt and Dress weak-hierarchy.

The rest of the paper is organized as follows. Section 2 presents elementary background no-
tions. Section 3 provides an unifying framework for the construction of interval functions that
induce either a hierarchy or a weak hierarchy. Given a function g ∶ S × S ↦ 2S and its two sym-
metrical versions Jg = g ∪ g andMg = g ∩ g that are defined by (g ∪ g)(x, y) = g(x, y) ∪ g(x, y)
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and (g ∩ g)(x, y) = g(x, y) ∩ g(x, y) for all x, y ∈ S, with g(x, y) = g(y, x), we consider
the case where Jg and Mg are interval functions on S. We then introduce a condition (H)
(resp. (W)) that characterizes the functions g such that Jg (resp. Mg) generates a hierarchi-
cal (resp. weakly hierarchical) interval convexity. In the remaining sections, we consider an
arbitrary dissimilarity on S, denoted by δ. In Section 4, we show that the two-way Ball-map
gδB ∶ (x, y) ↦ Bδ(x, δ(x, y)) = {z ∈ S ∣ δ(x, z) ≤ δ(x, y)}, also denoted simply gB , satis-
fies both of the conditions (H) and (W). We also focus on interval convexities conv(JgB) and
conv(MgB) which coincide respectively with the Apresjan hierarchy of δ and the Bandelt and
Dress weak hierarchy of δ. In section 5, we introduce a decreasing sequence (δ`)`=1,...,n−1

of
path-based dissimilarities, with n = ∣S ∣, δ1 = δ and δn−1 is the subdominant ultrametric of δ.
Furthermore, we propose a recursive method to compute each dissimilarity value δ`(x, y), with
a complexity bound O(n). In Section 6, we focus on the sequence (conv(Jh`))` with h` = gδ`B ,
and show that this sequence is a nested family of sub-hierarchies of the single-link hierarchy of
δ, which gradually increases from the stringent Apresjan hierarchy of δ. In Section 7, we inves-
tigate the sequence (conv(Mh`))`, and derive a nested family of sub-weak hierarchies of the
Bandelt and Dress weak hierarchy of δ, which gradually increases from a subset of the single-
link hierarchy, which contains the Apresjan hierarchy. The final Section 8 discusses possible
extensions, in particular by taking advantage of the gradual increase of these nested families to
provide guidelines for defining an approach of multilevel clustering simplification.

2. Background

In this text, S denotes the ground (finite) set and n = ∣S ∣ its size. Let us consider an arbitrary
collection C of subsets of S. It will be said that C is hierarchical if the intersection of any two
of its members is either empty or equal to one of the two members. The collection C is called
weakly hierarchical if the intersection of any three of its members is equal to the intersection
of two of them. The collection C is said to be a multilevel clustering if it contains S and at
least one proper subset of S, and if none of its members, called clusters, is empty. A weak
hierarchy [2, 3, 16] (resp. a hierarchy) is a multilevel clustering that is weakly hierarchical (resp.
hierarchical). By allowing overlapping clusters, the weak hierarchical clustering model extends
the hierarchical clustering model. In what follows, multilevel clusterings are viewed through the
framework of the so-called abstract convexities introduced since the 1950s [14, 27]. We will use
the terminology presented in Van de Vel in [27]. As S is assumed to be finite, a convexity on
S can be defined as any collection C ⊆ 2S which contains both ∅ and S, and is closed under
arbitrary intersections. Clearly, any multilevel clustering closed under nonempty intersections
and completed by the empty set is then an abstract convexity. Morover, as shown in [9], up to
the completion by the empty set, the most known multilevel clustering models dealt with in the
literature are convexities induced by some interval functions. An interval function I on S is a
symmetric function which maps each ordered pair (x, y) ∈ S × S to a subset I(x, y) of S that
contains x and y. The subset I(x, y) is called the interval of extremities x and y. A subset A
of S is said to be convex according to the interval function I if it contains each interval I(x, y)
whose extremities x and y are in A. It is easily checked that each interval function I induces the
convexity defined as the collection of subsets of S that are convex according to I . Each convexity
induced by an interval function I , is called an interval convexity and is denoted as conv(I).
Conversely, each convexity C is associated with an interval function, denoted as seg(C ), and
defined by seg(C )(x, y) = ⋂{A ∈ C ∣ x, y ∈ A} for all x, y ∈ S. This interval function seg(C )
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is called the segment function associated with convexity C .
Let us recall the axiomatic characterizations of hierarchies and weak hierarchies, as convexities.
They are based on the following axioms (H) and (Wk) defined as follows. A map f ∶ S ×S ↦ 2S

satisfies (H) and (Wk), respectively, if

(H) for all x1, x2, x3 ∈ S, either f(x1, x2) ⊆ f(x1, x3) or f(x1, x3) ⊆ f(x1, x2),

(Wk) if there are no x1, . . . , xk+1 ∈ S such that for all i, xi ∉ ⋃
xj≠xi≠xl

f(xj , xl),

where k denotes an integer such that k ≥ 2.

The next two theorems and their respective proofs can be found in [9].

Theorem 1. [9, Theorem 2.5 p. 58] For all convexity C on S and all integer k ≥ 3, we have:

(i) seg(C ) satisfies condition (H) if and only if C is hierarchical.
(ii) seg(C ) satisfies condition (W2) if and only if C is weakly hierarchical.

(iii) If seg(C ) satisfies condition (Wk) then C is k-weakly hierarchical.

It is worth noticing that C = conv(seg(C )) whenever C is a weakly hierarchical convexity
(cf. [9], Proposition 3.10, p.61). In general, seg(C ) is not the only interval function which
induces C . Indeed, given an interval convexity C , there is a great deal of freedom for choosing
an interval function I that induces the convexity C , i.e. such that C = conv(I). The following
result will be helpful for choosing such an interval function for clustering purposes.

Theorem 2. [9, Theorem 3.5 p.60] Consider an interval function I on S and an integer k ≥ 2.
Then:

(i) If I satisfies (H) then conv(I) is hierarchical.
(ii) If I satisfies (Wk) then conv(I) is k-weakly hierarchical.

3. A convex framework for hierarchies and weak-hierarchies

Let g ∶ S×S Ð→ 2S be an arbitrary map. The map g ∶ S×S Ð→ 2S is defined by g(x, y) = g(y, x)
for all x, y ∈ S. In addition, given an arbitrary map f ∶ S×S Ð→ 2S , the maps g∪f ∶ S×S Ð→ 2S

and g ∩ f ∶ S × S Ð→ 2S are defined by:

(g ∪ f)(x, y) = g(x, y) ∪ f(x, y) and (g ∩ f)(x, y) = g(x, y) ∩ f(x, y),

for all x, y ∈ S. In this section, we will consider a map g ∶ S × S ↦ 2S satisfying the following
axiom (C0):
(C0) For all x, y ∈ S, {x, y} ⊆ g(x, y).

We begin by symmetrizing g in two ways. Let Jg ∶ S × S ↦ 2S and Mg ∶ S × S ↦ 2S be the two
maps defined by:

Jg = g ∪ g and Mg = g ∩ g.
It is clear that Jg and Mg are symmetrical and both satisfy (C0), i.e. Jg and Mg are interval
functions on S. We will investigate the induced convexities conv(Jg) and conv(Mg) from a
clustering point of view. We first introduce two axioms, denoted as (W) and (W ′). Together
with (H), these axioms will prove to be decisive in establishing the properties of conv(Jg) and
conv(Mg). We will say that the map g satisfies, respectively, (W) and (W ′) if:
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(W) for all x1, x2, x3 ∈ S, there exists i, j, k with {i, j, k} = {1,2,3}, such that:
g(xi, xj) ⊆ g(xi, xk) and g(xk, xj) ⊆ g(xk, xi);

(W ′) for all x1, x2, x3 ∈ S, there exists i, j, k with {i, j, k} = {1,2,3}, such that:
g(xi, xj) ⊆ g(xi, xk), g(xk, xj) ⊆ g(xk, xi) and g(xj , xi) ⊆ g(xj , xk).

Notation 1. We adopt a delimiter-free notation of subsets defined in extension. For instance,
{a, b} will be denoted indifferently either as ab or as ba, subset {a, b, c} will be denoted as any
of the expressions abc, bac, acb, cab, bca, etc. Depending on the context, the notation a may
denote either the element a or the singleton {a}.

It is easily checked that (W ′) ⇒ (H) and (W ′) ⇒ (W). As shown by the following two
counter-examples, no other implication exists between axioms (H), (W) and (W ′).

Counter-example 1. Let S = abc and consider the map g1 ∶ S ×S ↦ 2S whose values are given
in Table 1. Clearly g1 verifies (C0), and, in addition, also condition (H) since:
g1(a, b) = ab ⊆ abc = g1(a, c), g1(b, c) = bc ⊆ abc = g1(b, a), g1(c, a) = ac ⊆ abc = g1(c, b) and
g1(x,x) = x for all x ∈ abc.

g1 a b c
a a ab abc
b abc b bc
c ac abc c

Table 1: (H)⇏ (W) and (H)⇏ (W ′)

If g1 satisfies (W), then there exists x, y, z ∈ abc pairwise distincts such that g1(x, z) ⊆ g1(x, y)
and g1(y, z) ⊆ g1(y, x). Now, we have:

g1(a, c) = abc /⊆ ab = g1(a, b), g1(c, b) = abc /⊆ ac = g1(c, a) and g1(b, a) = abc /⊆ bc = g1(b, c).

Thus g1 does not satisfy (W), which proves that (H) implies neither (W) nor (W ′).

Counter-example 2. Let S = abc and consider the map g2 ∶ S × S ↦ 2S whose values are
indicated in Table 2. Clearly g2 verifies (C0), and in addition, g2 satisfies also (W) since:

g2 a b c
a a abc ac
b abc b bc
c ac bc c

Table 2: (W)⇏ (H) and (W)⇏ (W ′)

g2(a, c) = ac ⊆ abc = g2(a, b), g2(b, c) = bc ⊆ abc = g2(b, a) and g2(x,x) = x, for all x ∈ S.

However g2 does not verify (H) for g2(c, a) = ac and g2(c, b) = bc are not comparable according
to set inclusion. Consequently (W) implies neither (H) nor (W ′).

Proposition 3, below, together with corollary 4, emphasize the interest of axioms (H) or (W) from
a clustering point of view.
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Proposition 3. Let g be a map from S × S into 2S which satisfies (C0). Then the following
properties hold true.

(i) If g satisfies (H), then the convexity induced by Jg is hierarchical.
(ii) If g satisfies (W), then the convexity induced by Mg is weakly hierarchical.

PROOF. (i). LetA andB be two elements of conv(Jg). Assume thatA andB intersect properly.
Then, there exist x1, x2, x3 such that:

x1 ∈ A ∖B, x2 ∈ A ∩B and x3 ∈ B ∖A.

By definition, for all i, j ∈ {1,2,3}, Jg(xi, xj) = g(xi, xj) ∪ g(xj , xi). Since g verifies (H), we
have g(x2, x1) ⊆ g(x2, x3) or g(x2, x3) ⊆ g(x2, x1). By convexity of A and B, according to the
interval function Jg , we deduce:
If g(x2, x1) ⊆ g(x2, x3) then x1 ∈ g(x2, x3) ⊆ Jg(x2, x3) ⊆ B: contradiction.
If g(x2, x3) ⊆ g(x2, x1) then x3 ∈ g(x2, x1) ⊆ Jg(x2, x1) ⊆ A: contradiction.
Consequently A and B do not intersect properly, and the result is proved.
(ii). By theorem 2, it is sufficient to prove that Mg verifies condition (W2), or in other words
that:

No x1, x2, x3 ∈ S exist such that for all i ∈ {1,2,3}, xi ∉ ⋃
xj≠xi≠xk

Mg(xj , xk).

Within this aim, let us consider three distinct arbitrary elements of S, say x1, x2, x3. Even if it
means renumbering the elements xi, one can assume without loss of generality that:

g(x1, x2) ⊆ g(x1, x3) and g(x3, x2) ⊆ g(x3, x1),

since g verifies (W). It results that x2 ∈ g(x1, x3) ∩ g(x3, x1) =Mg(x1, x3), which proves that
Mg verifies (W2). ◻

The following corollary results immediately from Proposition 3 and the fact that (W ′)⇒ (H) and
(W ′)⇒ (W).

Corollary 4. If g verifies (C0) and (W ′), then the convexity induced by Jg (resp. Mg) is hierar-
chical (resp. weak hierarchical).

Proposition 5. If g ∶ S × S ↦ 2S satisfies axiom (C0), then the following conditions are equi-
valent.

(i) g is symmetrical,
(ii) Jg =Mg ,

(iii) Jg =Mg = g.

PROOF. (iii)⇔ (i) and (iii)⇒ (ii) are obvious. Moreover (ii)⇒ (iii) is easy to check. ◻

Proposition 6. Let C be a multilevel clustering on S. Then C is hierarchical if and only if there
exists a map g ∶ S × S ↦ 2S satisfying (C0) and (H), such that C = conv(Jg).
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PROOF. From Proposition 3, we know that if g ∶ S × S ↦ 2S satisfies (C0) and (H), then C =
conv(Jg) is hierarchical. Assume now that the collection C is hierarchical. We have C =
conv(seg(C )) since C is weakly-hierarchical (cf. [9], Proposition 3.10, p.61). Now, seg(C ) is
clearly a map from S × S to 2S which is symmetrical and satifies (C0). Then, from Proposition
5, it results that Jseg(C ) = seg(C ), so that C = conv(Jseg(C )). In addition, from Theorem 1, we
deduce that the map seg(C ) satisfies (H), as required. ◻

Proposition 7. Let C be a multilevel clustering on S. Then, C is weakly hierarchical if and only
if it exists a map g ∶ S × S ↦ 2S satisfying (C0) and (W), and such that C = conv(Mg).

PROOF. From Proposition 3-(i), it is clear that the existence of a map g ∶ S × S ↦ 2S that
satisfies (C0) and (W), together with the relation C = conv(Mg), implies that C is weakly
hierarchical. Conversely, assume that C is weakly hierarchical, and let us consider the segment
function σ = seg(C ). Then σ is symmetrical, so that σ = Mσ by Proposition 5. Moreover,
C = conv(σ) since C is weakly-hierarchical (cf. [9], Proposition 3.10, p.61) and, by definition
of σ = seg(C ), the map σ satisfies (C0). Therefore, in order to prove the proposition, we are left
to prove that σ satisfies (W). Since C is weakly hierarchical, its segment function σ satisfies (W2)
by Theorem 1. Consequently, given x1, x2, x3 ∈ S, there exists i, j, k such that xj ∈ σ(xi, xk)
with {i, j, k} = {1,2,3}. As σ is symmetrical, we have xj ∈ σ(xi, xk) = σ(xk, xi). By definition
of a segment function, it results that

σ(xi, xj) ⊆ σ(xi, xk) and σ(xk, xj) ⊆ σ(xk, xi),

which proves that σ satisfies (W), as required. ◻

We end this section with properties of convexities conv(Jg) and conv(Mg).

Proposition 8. Let g ∶ S × S ↦ 2S be a map that satisfies axioms (C0) and (H). If C is a subset
of S and x0 is any element of C, then the following statements hold.

(i) The finite collection g(x0,C) = {g(x0, y) ∣ y ∈ C} is linearly ordered by inclusion.
Its greatest element will be denoted as max g(x0,C) in the sequel.

(ii) If C is Jg-convex, then C = g(x0, y0), for all y0 ∈ C such that g(x0, y0) = max g(x0,C).

PROOF. Let C be a Jg-convex subset and x0 ∈ C.
(i). Since g satisfies (H), we have g(x0, u) ⊆ g(x0, v) or g(x0, v) ⊆ g(x0, u) for all u, v ∈ C.
Therefore, the finite collection of subsets g(x0,C) = {g(x0, y) ∣ y ∈ C} is linearly ordered by
inclusion, and thus has a (unique) greatest element.
(ii). Let y0 ∈ C, such that g(x0, y0) = max g(x0,C). Then, for all element u of C, u ∈ g(x0, y0)
since, on the one hand, we have u ∈ g(x0, u) for g satisfies (C0) and, on the other hand, g(x0, u) ⊆
g(x0, y0). Consequently, C ⊆ g(x0, y0). Conversely, g(x0, y0) ⊆ Jg(x0, y0) ⊆ C since C is Jg-
convexe. It results that C = g(x0, y0). ◻

Remark 3. Let g ∶ S × S ↦ 2S satisfy (C0). Assume first that g satisfies (H). From Proposition
3, the collection conv(Jg) of Jg-convex subsets of S is hierarchical, and is then closed under
intersection. Let C be a Jg-convex subset of S. From Proposition 8, for all x0 ∈ C, there exists
y0 ∈ C such that C = g(x0, y0), and thus C = Jg(x0, y0).
Assume now that g satisfies (W′). From Corollary 4, the collection conv(Mg) of Mg-convex
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subsets of S is weakly hierarchical. Let C be aMg-convex subset. A result similar to Proposition
8 would imply that there exist x0, y0 ∈ C such that C = Mg(x0, y0). The following counter-
example shows that such elements x0 and y0 do not exist in the general case. Let S = abcd and
g the map from S × S to 2S defined by Table 3. It is clear that g satisfies (C0). Let us prove that
g satisfies also (W′), i.e. that for all three distinct elements of S, say x1, x2, x3, there exists some
permutation (xi, xj , xk) of (x1, x2, x3) such that:

g(xi, xj) ⊆ g(xi, xk), g(xk, xj) ⊆ g(xk, xi) and g(xj , xi) ⊆ g(xj , xk). (1)

g a b c d
a a abcd ac acd
b abd b abcd bd
c ac abc c abcd
d abcd bd bcd d

Table 3

Consider all distinct triples of elements of S, i.e. abc, abd, acd and bcd. For each of these
triples, there exists some permutation of their elements that satisfy (1). For example, for the triple
abc, we have :

g(c, a) = ac ⊆ g(c, b) = abc, g(b, a) = abd ⊆ g(b, c) = abcd, and g(a, c) = ac ⊆ g(a, b) = abcd,

and thus the permutation (c, a, b) satifies (1). For other triples, i.e. abd, acd, bcd, one can check
similarly that the respective permutations (b, d, a), (a, c, d) and (d, b, c) satisfy (1). It results
that g satisfies (W′). Let us then consider subset S which is obviously Mg-convex. It can be
observed that there is no x0, y0 ∈ S such that S = Mg(x0, y0). Indeed, from Table 3, one can
easily check that for all u, v ∈ S, if g(u, v) = abcd = S, then g(v, u) ⊂ abcd, which shows that
S ≠Mg(u, v).

Notation 2. We consider the relation defined by f ⪯ g if f(x, y) ⊆ g(x, y) for all elements
x, y of S. Furthermore, define f ≺ g to mean that f ⪯ g and there exist x, y ∈ S such that
f(x, y) ⊂ g(x, y), where ⊂ denotes the strict subset inclusion order.

Proposition 9. Let I1 and I2 be interval functions on S. Then the following hold:

(i) I1 ⪯ I2 ⇒ conv(I2) ⊆ conv(I1),
(ii) If for j ∈ {1,2}, Ij = seg(Cj) with Cj a weak hierarchical convexity, then I1 ⪯ I2 ⇔

conv(I2) ⊆ conv(I1)

PROOF. (i). The proof is elementary (cf. [9] p. 64).
(ii). Considering (i), we are left to prove conv(I2) ⊆ conv(I1) Ô⇒ I1 ⪯ I2. Then, assume that
conv(I2) ⊆ conv(I1) and let x, y ∈ S. We aim to prove I1(x, y) ⊆ I2(x, y). By hypothesis, the
convexity Cj is weakly hierarchical, so that we have Cj = conv(seg(Cj)) = conv(Ij) for all
j ∈ {1,2}, and thus C2 ⊆ C1. We obtain

I1(x, y) = seg(C1)(x, y) = ⋂{C ∈ C1 ∣ x, y ∈ C}
⊆ ⋂{C ∈ C2 ∣ x, y ∈ C} = seg(C2)(x, y) = I2(x, y),

as required. ◻
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4. Apresjan hierarchies and Bandel and Dress weak-hierarchies as interval convexities

The notion of a cluster is often defined in some broadly and loosely sense, i.e. in a way similar
to the following: given a ground set S endowed with some measure of dissimilarity, a cluster is
any subset of S having high degrees of cohesion and isolation according to the values taken by
this dissimilarity. In this section, we are concerned with two more precise definitions of a cluster.
These definitions are based on the notion of a ball according to a dissimilarity δ defined on the
set of objects to be clustered. Let us first recall that a dissimilarity δ on S is a map from S ×S to
R+, satisfying δ(x, y) = δ(y, x) ≥ δ(x,x) = 0 for all x, y ∈ S. The diameter of a subset A of S
according to δ, denoted as diamδ(A), is defined by diamδ(A) = max{δ(x, y) ∣ x, y ∈ A}. Given
a ∈ S and ρ ≥ 0, we denote by Bδ(a, ρ) the closed ball of center a and radius ρ with respect to
δ, i.e. Bδ(a, ρ) = {x ∈ S ∣ δ(x, a) ≤ ρ}. The collection of all the closed balls with respect to
the dissimilarity δ, is called the ballean of the space (S, δ) (e.g. [18]) and is denoted hereafter as
Balls(X,δ).
We now consider two interval functions whose respective related convex subsets will turn out to
coincide with two distinct cluster types: the Apresjan clusters of δ (cf. Proposition 12) and the
Bandelt and Dress clusters of δ (cf. Proposition 17). Let us first introduce some definitions and
notations.

Definition 3. Let gBδ ∶ S × S Ð→ 2S be the map defined for all x, y ∈ S, by:

gBδ(x, y) = Bδ(x, δ(x, y)) = {s ∈ S ∣ δ(x, s) ≤ δ(x, y)}.

Let Dδ = gBδ ∪ gBδ = JgBδ and Bδ = gBδ ∩ gBδ = JgBδ . We note that for all x, y ∈ S,

Dδ(x, y) = {z ∈ S ∣ min{δ(x, z), δ(y, z)} ≤ δ(x, y)},
Bδ(x, y) = {z ∈ S ∣ max{δ(x, z), δ(y, z)} ≤ δ(x, y)}.

The subset Bδ(x, y) is called the 2-ball generated by x and y according to dissimilarity δ. If
there is no ambiguity on the choice of the dissimilarity δ, the maps gBδ ,Dδ and Bδ will be
denoted respectively as gB ,D and B.

It is clear that x, y ∈ gB(x, y) for all x, y ∈ S, so that gB satisfies axiom (C0). Therefore
its associated maps D = JgB and B = MgB are interval functions defined on S. In addition, as
shown by the next proposition, gB satisfies axiom (W ′).

Proposition 10. gB satisfies (W ′).

PROOF. Let x1, x2, x3 ∈ S. Note that there exist i, j, k such that {i, j, k} = {1,2,3} and :

δ(xi, xj) ≤ δ(xj , xk) ≤ δ(xi, xk).

By definition of gB , we deduce the following inclusions:

gB(xi, xj) ⊆ gB(xi, xk) , gB(xk, xj) ⊆ gB(xk, xi) and gB(xj , xi) ⊆ gB(xj , xk).

In other words, gB satisfies (W ′). ◻

The following result derives from Proposition 10 and Corollary 4.

Corollary 11. The interval functions D and B induce convexities that are respectively hierar-
chical and weakly hierarchical.
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4.1. Apresjan hierarchies
Given a dissimilarity δ on S, Apresjan [1] considers the subsets C of S such that for all

x, y ∈ C:
δ(x, y) < min

z∉C
(min{δ(x, z), δ(y, z)}). (2)

A nonempty subset will be said to be an Apresjan cluster of δ, if it satisfies (2). The set of
Apresjan clusters of any dissimilarity δ is a hierarchy called the Apresjan hierarchy of δ (cf.
e.g. [1, 6]). The Apresjan hierarchy is one of the most standard clustering structures, which has
provided a common starting point for several constructions of cluster systems (cf. [3, 16, 13]).
As pointed out by Bryant and Berry [13], the notion of an Apresjan cluster provides an intuitive
and compelling definition of a cluster. However for most dissimilarities, the Apresjan hierarchy
is based on a stringent clustering criterion, so that the set of Apresjan clusters of an arbitrary
dissimilarity is often a sparse hierarchy which differs from the trivial hierarchy (i.e. the collection
of the whole dataset and its singletons) only by a few small non trivial clusters (cf. [13]). It results
that in the context of an applied data analysis, the interest per se of the Apresjan hierarchy is often
limited.

By showing that the set of D-convex subsets coincide with the collection of Apresjan clusters,
the next proposition gives the semantics of D-convex subsets.

Proposition 12. For all dissimilarity δ on S and all nonempty subset C of S, the following
statements are equivalent.

(i) C is an Apresjan cluster of δ.

(ii) C is Dδ-convex.

(iii) δ(x, y) < δ(x, z) for all (x, y, z) ∈ C ×C × (S ∖C).

PROOF. (i) ⇔ (ii). Let C be a nonempty subset of S and δ a dissimilarity defined on S. First,
assume that C is an Apresjan cluster of δ, and consider two elements x, y of C. By definition of
an Apresjan cluster, if z ∈ S fulfills one of the inequalities δ(x, z) ≤ δ(x, y) or δ(y, z) ≤ δ(x, y),
then z belongs necessarily to C. Therefore C is D-convex. Conversely, assume that C is D-
convex. Consider x, y ∈ C and z /∈ C. Neither δ(x, z) ≤ δ(x, y) nor δ(y, z) ≤ δ(x, y) hold,
otherwise z would belong to C since C is D-convex. Therefore, for all x, y ∈ C and all z /∈ C,
we have min{δ(x, z), δ(y, z)} > δ(x, y), which proves that C is an Apresjan cluster of δ.
(i)⇔ (iii). Condition (iii) is simply a reformulation of (i). ◻

From proposition 12, it results that the collection of Apresjan clusters coincides with the interval
convexity conv(D) = conv(JgB), which, by Corollary 11, is a hierarchy. In the sequel, the
Apresjan hierarchy of a dissimilarity δ will be denoted byHA(δ).

Proposition 13. Let A ⊆ S and Fδ(A) be the collection of subsets of diameter equal to the
diameter of A, according to a dissimilarity δ. If A is an Apresjan cluster of δ, then A is a
maximal subset of Fδ(A) (w.r.t the set-inclusion order).

PROOF. Let A,B ⊆ S, and suppose that A ⊂ B. Let a1 and a2 be two elements of A such that
δ(a1, a2) = diamδA and b ∈ B ∖A. Since A is an Apresjan cluster of δ, we have :

δ(a1, a2) < min{δ(a1, b), δ(a2, b)},

which implies that diamδA < diamδB, as required. ◻
10
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(b) Interval function Dδ

Figure 1: (a) The weight of each edge {u, v} ⊂ S = abcd indicates the value δ(u, v) taken by a dissimilarity δ defined
on S. (b) The values of Dδ are derived from δ. It is easily checked that abc is the only non trivial Apresjan cluster of δ,
so thatHA(δ) = {a, b, c, d, abc, S}. Subset ab is a maximal subset of diameter 1, but ab ∉ HA(δ).

The converse of Proposition 13, however, is not true as shown by the example in Figure 1.

Notation 4. Recall that the distance between any two vertices x and y in a graph is defined as
the length (i.e., the number of edges) of a shortest path joining x and y. Given a vertex subset
A in a graph G, DiamG(A) will denote its diameter in the graph G, i.e. the maximal distance
between two vertices of A. Given A ⊆ S, we also denote by µδ(A), or simply µ(A) if the choice
of δ is clear, the threshold value defined by:

µ(A) = µδ(A) = min{α ≥ 0 ∣ A is connected in the graph Γδ(α)},

where Γδ(α), or simply Γ(α) if there is no ambiguity on the choice of δ, denotes the (lower)
threshold-based graph of dissimilarity δ at level α. The graph Γ(α), also called the Vietoris-
Rips graph (see e.g. [10]), is defined as the (undirected) graph whose vertex set is S, and for
which xy ⊆ S is an edge iff δ(x, y) ≤ α. For all α ≥ diamδ(S), the threshold-based graph
Γδ(α) coincides with the complete graphKS defined on S. Instead of Γδ(µδ(A)), we will write
Γδ(A), or simply Γ(A) if there is no ambiguity on the choice of δ.

The following proposition characterizes the D-convex subsets as a type of connected components
of Γ(A) = Γδ(A).

Proposition 14. Let δ be a dissimilarity on S. A nonempty subset A ⊆ S is D-convex if and
only if the following statements hold.

(i) A is a connected component of Γ(A).
(ii) If A is not a clique in Γ(A), then δ(a, b) < δ(a, x) for all triple (a, b, x) ∈ C ×C ×(S ∖C)

such that δ(a, b) > µ(A).

PROOF. Assume first that A is D-convex. Suppose that A is not a connected component of
Γ(A). By definition of µ(A), the subset A is connected in the graph Γ(A), so that A must
be not maximally connected in Γ(A), or equivalently there must exist x /∈ A and a ∈ A such
that δ(x, a) ≤ µ(A). Now, suppose that δ(a, b) < µ(A) for all b ∈ A ∖ a. Then, we deduce
that A is a connected subset of the graph Γ(α) for α = max

b∈A∖a
δ(a, b). Since α < µ(A), this

is contradictory. Therefore, there exists c ∈ A ∖ a such that δ(a, c) ≥ µ(A). Thus δ(x, a) ≤
δ(a, c), and consequently x ∈ D(a, c). We deduce that x ∈ A since A is D-convex, which is

11



contradictory. It results that A is a connected component of Γ(A), which proves property (i).
Property (ii) holds also by Proposition 12-(iii).
Conversely, assume that properties (i) and (ii) both hold. Then, let a and b be two elements of A
which, by (i), is a connected component of Γ(A).
Let us first examine the case where A is a clique. In this case, δ(a, b) ≤ µ(A). Consider an
element x of D(a, b) = B(a, δ(a, b))∪B(b, δ(b, a)) and assume, without loss of generality, that
x ∈ B(a, δ(a, b)). Then, δ(x, a) ≤ δ(a, b) ≤ µ(A). Thus x and a belong to the same connected
component of Γ(A) which must be equal to A. Consequently, x ∈ A, which proves that A is
D-convex.
Consider now the case where A is not a clique, and let (a, b, x) ∈ A ×A × (S ∖A).
Assume that δ(a, b) ≤ µ(A). If δ(a, x) ≤ δ(a, b), then δ(a, x) ≤ µ(A), which implies that x ∈ A
since, by (i), A is the connected component of Γ(A) that contains a and b. This contradicts the
fact that (a, b, x) ∈ A ×A × (S ∖A). Therefore δ(a, b) < δ(a, x).
Assume that δ(a, b) > µ(A). Applying (ii), we deduce that δ(a, b) < δ(a, x).
We conclude that if A is not a clique, then δ(a, b) < δ(a, x) for all (a, b, x) ∈ A ×A × (S ∖A).
This implies that A is D-convex by Proposition 12-(iii). Finally, it results that if (i) and (ii) are
valid, then A is D-convex. ◻

Propositions 15 and 16 below refer to the notion of an indexed multilevel clustering. An indexed
multilevel clustering is a pair (C , f) where C is a multilevel clustering, and f a map from C
into R+ such that f(X) = 0 when X is minimal in C , and f(A) < f(B) when A ⊂ B. The map
ρ ∶ S × S ↦ R+ defined, for all x, y ∈ S, by:

ρ(x, y) = min{f(A) ∣ x, y ∈ A ∈ C }, (3)

is a dissimilarity called the dissimilarity induced by (C , f), or the cophenetic dissimilarity of
(C , f). In the sequel, we denote by Φ the map that associates each indexed multilevel clustering
(C , f) with its induced dissimilarity ρ. It is known that the dissimilarity induced by an indexed
hierarchy is ultrametric. A dissimilarity δ is an ultrametric on S if

δ(x, y) ≤ max{δ(x, z), δ(z, y)}, (4)

for all x, y, z ∈ S. Inequality (4) is sometimes called the strong triangle inequality.

Proposition 15. If δ is an ultrametric on S, then Φ(Balls(S, δ),diamδ) = δ.

PROOF. Assume that δ is an ultrametric on S and denote by Bδ the set of its 2-balls. By Theorem
2 in [16], the indexed multilevel clustering (Bδ,diamδ) induces δ. Then, it is sufficient to prove
that Bδ = Balls(S, δ). Now, in an ultrametric space, every point of a ball is a center of this
ball (cf. for example [18]). Consequently, we deduce that B(a, δ(a, b)) = B(b, δ(a, b)), and
thus B(a, b) = B(a, δ(a, b)) = B(b, δ(a, b)). We deduce that Bδ = Balls(S, δ) and finally it
results that the indexed multilevel clustering (Balls(S, δ),diamδ) induces δ, which completes
the proof. ◻

Proposition 16. Let δ be a dissimilarity on S, and ρ the cophenetic dissimilarity of the indexed
Apresjan hierarchy (HA(δ),diamδ). If δ is an ultrametric, then ρ = δ.

PROOF. Let δ be an ultrametric. On the one hand, we have Φ(HA(δ),diamδ) = ρ by hypothesis
and, on the other hand, we have Φ(Balls(X,δ),diamδ) = δ from Proposition 15. Therefore, it

12



is sufficient to prove that HA(δ) = Balls(X,δ). We first prove that HA(δ) ⊆ Balls(X,δ). Let
x0 be an element of an arbitrary cluster of Apresjan, say C. From Proposition 8, there exists
y0 ∈ EC(x0) such that C = gB(x0, y0) since C ∈ HA(δ) = conv(JgB) and gB satisfies (W′)
and thus (H) also. Therefore C = B(x0, δ(x0, y0)), which proves that HA(δ) ⊆ Balls(X,δ).
Conversely, let us prove that Balls(X,δ) ⊆ HA(δ). Consider an arbitrary closed ball B(a, λ) =
Bδ(a, λ), with a ∈ S and λ a nonnegative real number. We are then left to prove that B(a, λ)
is an Apresjan cluster of δ. Consider x, y ∈ B(a, λ) and z ∉ B(a, λ). Since δ is an ultrametric,
elements x and y are centers of B(a, λ). Therefore δ(x, y) ≤ λ < δ(x, z) and λ < δ(y, z), since
z ∉ B(a, λ). Thus we deduce that δ(x, y) < min

u ∉C
{δ(x,u), δ(y, u)}, i.e. B(a, λ) is an Apresjan

cluster of δ, as required. ◻

4.2. Bandelt and Dress weak hierarchies

Bandelt and Dress [3] and Bandelt [2], use a criterion weaker than (2), to define the notion of
weak cluster. A weak cluster is a nonempty subset C of S such that:

For all x, y ∈ C, δ(x, y) < min
z∉C

(max{δ(x, z), δ(y, z)}). (5)

In the sequel, a nonempty subset is called a Bandelt and Dress cluster of δ, if it satisfies (5).
By showing that the B-convex subsets coincide with the clusters of Bandelt and Dress, the next
proposition 17 determines the semantics of B-convex subsets. The proof of this property is left
to the reader, for it is straightforward and very similar to the proof of Proposition 12.

Proposition 17. A nonempty subset of S is a Bandelt and Dress cluster of a dissimilarity δ if
and only if it is B-convex.

From this proposition, it results that the collection of Bandelt and Dress clusters of δ is a weak
hierarchy [3, 2, 16]. In the sequel, this weak hierarchy is called the Bandelt and Dress weak
hierarchy of δ, and denoted byWBD(δ).

Proposition 18. For all dissimilarity δ on S, we have

(i) HA(δ) ⊆ WBD(δ),

(ii) If C ∈ WBD(δ), then C = B (a, b) for all a, b ∈ C such that diamδ(C) = δ(a, b).

PROOF. (i). Since B (x, y) ⊆ D (x, y) for all x, y ∈ S, we have B ⪯ D. Then conv(D) ⊆
conv(B) by Proposition 9 (i). Thus, by Propositions 12 and 17, the Apresjan hierarchy is in-
cluded in the Bandelt and Dress weak hierarchy.
(ii). Let a, b such that diamδ(C) = δ(a, b). Therefore, max{δ(x, a), δ(x, b)} ≤ δ(a, b) for all
x ∈ C, which implies that C ⊆ B(a, b). Conversely, let x ∈ B(a, b). Since C is B-convex and
a, b ∈ C, we deduce that x ∈ C, and consequently B(a, b) ⊆ C, as required. ◻

Remark 4. From Proposition 18, it results that the number of clusters in the Bandelt and Dress
weak hierarchy of δ is bounded by n(n − 1)/2. This bound is tight in the sense that there exists
dissimilarities δ such that ∣WBD(δ) ∣ = n(n − 1)/2, as is the case for the euclidean distance on
S = {1, . . . , n}.
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(a) values of δ

b c d e
a abcd ac ad S
b − bc bd S
c − − S ce
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(b) Function Bδ

Figure 2: (a) Values of a dissimilarity δ defined on S = abcde. (b) Values of Bδ which are derived from those
of δ. It is easily checked that HA(δ) = T (S) where T (S) = {a, b, c, d, e, S} is the trivial hierarchy on S.
Moreover, WBD(δ) = conv(Bδ) = T (S) ∪ {ac, ad, bc, bd, ce, de}. Furthermore, B(a, b) = abcd is such that
diamδ(B(a, b)) = 7 = δ(a, b) but B(a, b) is not B-convex since B(c, d) contains e ∉ B(a, b).

Figure 2 shows that the inclusion of the Apresjan hierarchy into the Bandelt and Dress weak
hierarchy may be strict. This figure shows also that the converse of Proposition 18-(ii) does not
hold.

A direct consequence of the next proposition is that the Apresjan hierarchy coincides with
the Bandelt and Dress weak hierarchy, when they are constructed from the same ultrametric
dissimilarity.

Proposition 19. Let δ be a dissimilarity on S. Then the following statements are equivalent.

(i) δ is ultrametic,
(ii) Bδ(x, δ(x, y)) = Bδ(y, δ(y, x)),

(iii) Dδ = Bδ .

PROOF. (i) ⇐⇒ (ii) holds true by [16, Proposition 3]. Moreover (ii) ⇐⇒ (iii) results directly
from the equivalence A ∪B = A ∩B ⇐⇒ A = B. ◻

If δ is ultrametric then HA(δ) = WBD(δ), since in this case Dδ = Bδ by Proposition 19.
However, the converse does not hold in general, as shown by Figure 3.
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(a) values of δ
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(b) Function Dδ
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c − − c S
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(c) Function Bδ

Figure 3: (a) Values of a dissimilarity δ defined on S = abcd. (b) and (c) Values of functions Dδ and Bδ , respectively. It
is easily checked that HA(δ) andWBD(δ) both coincide with the trivial hierarchy T (S) = {a, b, c, d, S}. However,
δ is clearly not ultrametric since, for example, we have δ(c, d) = 2 > 1 = δ(a, c) = δ(a, d) = 1.
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5. A sequence of path-based dissimilarities decreasing from any dissimilarity to its sub-
dominant ultrametric

Let us consider an arbitrary dissimilarity δ on S, and its associated complete undirected
graph KS defined by weighting each edge uv (with u ≠ v) by δ(u, v). Let P be any simple (i.e.
without loops) path of graph KS , and denote by valδ(P ) the maximum δ-jump within P , that is
the maximum edge-weight of P . More precisely, if P = u0u1 . . . um, we denote

valδP = {
max
1≤i≤m

δ(ui−1, ui), if u0 ≠ um,

0, otherwise, i.e. if P is reduced to one vertex u0 = um.

Let Px−y be the set of simple paths of KS that join vertex x to vertex y. It is well known that
the map (x, y) ∈ S × S ↦ min

P ∈Px−y
valδ(P ) coincides with the subdominant ultrametric of δ: see

for example [5, 4]. In order to improve the path-based clustering method which was proposed
by Fischer et al. [21, 20], Xu et al. and Yu et al. have recently introduced a family of path-based
dissimilarities that contains the subdominant ultrametric of δ: see [28, 30, 29]. Let us now recall
the definition of these path-based dissimilarities hereafter denoted by δ` with ` ≥ 1.

Definition 5. Let ` be any integer greater than or equal to 1. We denote by P (`) the set of simple
paths of length at most ` in KS . For all elements x, y of S, let P (`)

x be the subset of P (`) whose
first vertex is x, and P (`)

x−y be the subset of all x − y paths in P (`), i.e. the set of paths of length
at most ` in graph KS , and whose first and last vertices are respectively x and y. Note that
P (n−1)
x−y = P (n)

x−y = . . . = P
(m)
x−y = Px−y for allm ≥ n. We will denote by δ ` the map that associates

each (x, y) ∈ S × S to the smallest maximum δ-jump within the paths in P (`)
x−y . Formally, for all

x, y ∈ S,
δ `(x, y) = min

P ∈P (`)x−y

valδ(P ).

Remark 5. It may be observed that δ ` is well defined on S × S, since P (`)
x−y ≠ ∅ for all x, y ∈ S

and all ` ≥ 1. Notice also that δ1 = δ and that δ` is clearly a dissimilarity on S for all ` ≥ 1.
Furthermore, Xu et al. and Yu et al. employ the intuitive term “the transitive distance with order
`" to designate δ ` (cf. [28, 30, 29]), although δ ` does not necessarily satisfy the metric inequality.

The rest of this section is devoted to the properties of the so-called transitive distances with order
` ≥ 1. In what follows, we will write simply valP instead of valδP if the choice of δ is clear
from the context.

Proposition 20. Let δ be a dissimilarity on S, and `1, `2 be strictly positive integers. The fol-
lowing assertions hold.

(i) If `1 ≤ `2, then δ`1 ⪰ δ`2 , where ⪰ designates the point-wise order defined on dissimilari-
ties.

(ii) If `1, `2 ≥ n − 1, then δ `1 = δ `2 = δn−1.

(iii) δn−1 is the subdominant ultrametric of δ
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PROOF. (i). Let `1 ≤ `2 and x, y ∈ S. Then P (l1)
x−y ⊆ P (l2)

x−y , and thus δ`1(x, y) ≥ δ`2(x, y).

(ii). When ` ≥ n−1, then P (`) is clearly the set of all simple paths inKS . Thus δ `1 = δ `2 = δn−1.

(iii). It is easily checked that δn−1 is an ultrametric. By (i), δn−1 is lower than δ1 = δ. Indeed, it
is well-known that δn−1 is the subdominant ultrametric of δ: see e.g. [5, 4]. ◻

Definition 6. Let x and y be two arbitrary elements of S, and Q a simple path of length m and
from x to y. The edge of Q of which one extremity is y, is called the extremal edge of Q before y.
Let Q = u0u1 . . . um with u0 = x and um = y, and let z ≠ ui for all i ∈ [1,m]. Then, we define
the paths Q ∖ y, zQ and Qz as follows:

Q ∖ y = u0u1 . . . um−1, zQ = zu0u1 . . . um and Qz = u0u1 . . . umz.

Moreover, we will say that a path Q from x to y, is `-optimal if Q ∈ arg min
P ∈P (`)x−y

valP.

The following proposition is concerned with the complexity of computing the dissimilarity
δ` (with ` ∈ [2, n− 1]). By induction on `, property (i) enables to compute the values of δ`(x, y)
in a linear time w.r.t the size of S, for each x, y ∈ S and ` ∈ [2, n − 1]. Properties (ii) and (iii)
provide conditions for further reduction of this complexity.

Proposition 21. Let x, y ∈ S and an integer ` ∈ [2, n − 1]. The following properties hold.

(i) δ`(x, y) = min
z ∈S

max{δ`−1(x, z), δ(z, y)}.

(ii) If δ`−1(x, y) = δ`(x, y) for all y ∈ S, then:

for all y ∈ S, δ`−1(x, y) = δ`(x, y) = δ`+1(x, y) = . . . = δn−1(x, y).

(iii) If δ`−1 = δ`, then δ`−1 = δ` = δ`+1 = . . . = δn−1.

PROOF. Let x, y ∈ S and consider an integer ` ∈ [2, n − 1].
(i). We aim to compute δ`(x, y) from the dissimilarity δ`−1. Recall that, by definition:

δ `(x, y) = min
P ∈P (`)x−y

valP = min
P ∈P (`)x−y

max
uv ∈P

δ(u, v).

Let us first examine the case where there exists some `-optimal path from x to y, whose length
is less than or equal to ` − 1. Denote by C`(x, y) such a path. Then, C`(x, y) ∈ P (`−1)

x−y ⊆ P (`)
x−y

and, since δ` ⪯ δ`−1 by Proposition 20 (ii), it results that

δ`(x, y) = val(C`(x, y)) ≥ min
P ∈P (`−1)x−y

val(P ) = δ`−1(x, y) and δ`(x, y) ≤ δ`−1(x, y).

This implies that
δ`(x, y) = δ`−1(x, y) = max{δ`−1(x, y), δ(y, y)}. (6)

Now, suppose that there exists z0 ∈ S that satisfies the following inequality (7) defined by

max{δ`−1(x, z0), δ(z0, y)} ≨ max{δ`−1(x, y), δ(y, y)} = δ`(x, y). (7)
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Denote by C`−1(x, z0) an (` − 1)-optimal path from x to z0. If y is a vertex of C`−1(x, z0),
then let P be the sub-path of C`−1(x, z0) from x to y, and let P = C`−1(x, z0)y otherwise.
In either cases, we have P ∈ P (`)

x−y . Moreover, we deduce, from (7), that P satisfies valP <
δ`(x, y). This contradicts the definition of δ`(x, y). Therefore, no element z0 ∈ S satisfies (7),
and consequently, for all z ∈ S, we have

max{δ`−1(x, z), δ(z, y)} ≥ δ`(x, y) = max{δ`−1(x, y), δ(y, y)}.

It results that δ`(x, y) = min
z ∈S

max{δ`−1(x, z), δ(z, y)}, as required.

We are now left to examine the case where each `-optimal path from x to y is of length equal to
`. Let C`(x, y) be an arbitrary such `-optimal path, and z1 the vertex linked to y in the extremal
edge of C`(x, y) before y. Note that z1 ≠ x since ` ≥ 2. Let Q = C`(x, y) ∖ y. Clearly, we have
Q ∈ P(`−1)

x−z1 , and moreover

valC`(x, y) = max(valQ, δ(z1, y)) ≥ max{δ`−1(x, z1), δ(z1, y)}.

Suppose now that this inequality is strict, i.e.

valC`(x, y) > max{δ`−1(x, z1), δ(z1, y)}. (8)

Let C`−1(x, z1) be an (`−1)-optimal path from x to z1, and letQ′ be the path defined as follows

Q′ = { the sub-path of C`−1(x, z1) from x to y, if y is a vertex of C`−1(x, z1),
C`−1(x, z1)y, otherwise.

From (8), it results that

valQ′ ≤ max(δ`−1(x, z1), δ(z1, y)) < valC`(x, y) = δ`(x, y),

which is contradictory, for Q′ ∈ P (`)
x−y . It results:

valC`(x, y) = max{δ`−1(x, z1), δ(z1, y)}. (9)

Let z be an arbitrary element of S. First observe that δ`(x, y) ≤ max{δ`−1(x, y), δ(y, y)} and
δ`(x, y) ≤ max{δ`−1(x,x), δ(x, y)}, so that

For all z ∈ {x, y}, δ`(x, y) ≤ max{δ`−1(x, z), δ(z, y)}. (10)

Now, suppose that z /∈ {x, y} and consider an (` − 1)-optimal path from x to z, denoted as
C`−1(x, z).
If y /∈ C`−1(x, z), then R1 = C`−1(x, z)y is a (simple) path from x to y, and thus

δ`(x, y) ≤ valR1 = max{valC`−1(x, z), δ(z, y)} = max{δ`−1(x, z), δ(z, y)}. (11)

If y ∈ C`−1(x, z), then denote as R2 the sub-path of C`−1(x, z) from x to y. We have

δ`(x, y) ≤ δ`−1(x, y) ≤ valR2 ≤ valC`−1(x, z) ≤ max{δ`−1(x, z), δ(z, y)}. (12)

From inequalities (10), (11) and (12), it follows that

δ`(x, y) ≤ max{δ`−1(x, z), δ(z, y)},
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for all z ∈ S. Moreover, using (9), we conclude that δ`(x, y) = min
z ∈S

max{δ`−1(x, z), δ(z, y)}, as

required.

(ii). We assume that δ`(x, y) = δ`−1(x, y) for all y ∈ S. We aim to prove that δm−1(x, y) =
δm(x, y) for all y ∈ S and all m ∈ [`, n − 1]. We proceed by induction on m ∈ [`, n − 1]. By
hypothesis, the property is satisfied for m = `. Assume now that δm−1(x, y) = δm(x, y) for all
y ∈ S and some m ∈ [`, n − 1]. Using property (i), we have :

for all y ∈ S, δm+1(x, y) = min
z ∈S

max{δm(x, z), δ(z, y)}

= min
z ∈S

max{δm−1(x, z), δ(z, y)}, by induction hypothesis

= δm(x, y), by property (i),

which proves (ii).

(iii) is a direct consequence of (ii). ◻

Notation 7. Given an arbitrary dissimilarity δ defined on S, we will denote by r(δ) the minimum
value of ` such that δ` = δ`+1. Formally r(δ) = min{` ∈ [1, n − 1] ∣ δ` = δ`+1}.

From Proposition 20-(iv), we derive Corollary 22 which relates the ultrametricity of δ to r(δ).

Corollary 22. A dissimilarity δ is ultrametric iff r(δ) = 1.

Given any dissimilarity δ, we define the function g δ` from δ` as follows.

Definition 8. For ` ∈ {1, . . . , n − 1}, the map g δ` ∶ S × S ↦ 2S is defined by:

g δ` (x, y) = ⋃{P ∈ P (`)
x ∣ valδ(P ) ≤ δ `(x, y)}.

The map g δ` trivially satisfies axiom (C0), i.e. x, y ∈ g δ` (x, y). Thus, we can consider its two as-
sociated interval functions Jg δ

`
and Mg δ

`
according to the general convex framework introduced

in section 3. In the sequel, when the choice of the dissimilarity δ is clear from the context, we
will write simply g `, J ` and M ` instead of g δ` , Jg δ` and Mg δ

`
, respectively.

Proposition 23. Let δ be an arbitrary dissimilarity and ` ∈ {1, . . . , n − 1}. The following prop-
erties hold.

(i) For all x, y ∈ S, g `(x, y) = Bδ`(x, δ`(x, y)); in other words g ` = gBδ` .

(ii) g1 = gB , J1 =Dδ and M1 = Bδ . More generally, J` =Dδ` and M` = Bδ` .

(iii) A nonempty subset is J`-convex iff it is an Apresjan cluster of δ`.

(iv) A nonempty subset is M`-convex iff it is a Bandelt and Dress cluster of δ`.
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PROOF. (i). Let δ be an arbitrary dissimilarity defined on S, and x, y be any two elements of S.
By definition, the condition z ∈ g `(x, y) is equivalent to

z ∈ ⋃{P ∈ P (`)
x ∣ valδ(P ) ≤ δ `(x, y)}.

This condition can be rewritten as:

∃P ∈ P (`)
x−z s.t. val(P ) ≤ δ`(x, y).

Now, this formulation amounts to assert that min
P ∈P (`)x−z

[val(P )] ≤ δ`(x, y), or equivalently that we

have δ`(x, z) ≤ δ`(x, y). But this in turn is equivalent to z ∈ Bδ`(x, δ`(x, y)).
Therefore, for all x, y ∈ S, we have g `(x, y) = Bδ`(x, δ`(x, y)). By definition 3, this amounts to
assert that g ` = gBδ` .

(ii) This is a direct consequence of property (i) and previous definitions.

(iii) Derives from J` = JgBδ` =Dδ` , which holds by (ii), and from Proposition 12.

(iv) Derives from M` =MgBδ`
= Bδ` , which holds by (ii), and from Proposition 17. ◻

Note that (iii) and (iv) of Proposition 23 amount to assert that, for each ` ∈ [1, n − 1], the
interval functions J` andM` induce two convexities that are, respectively, the Apresjan hierarchy
HA(δ`) of δ` and the Bandelt and Dress weak-hierarchy of δ`. In next sections 6 and 7, we will
investigate the two sequences defined by interval convexities conv(J`) and conv(M`), when `
varies.

6. From the Apresjan hierarchy to the single-link hierarchy

In this section, we investigate the sequence (conv(J`))1≤ `≤n−1. According to Proposition
23-(iii), it is the sequence of Apresjan hierarchies of δ` when ` varies.

Proposition 24. Let ` ∈ {1, . . . , n − 1} and A ⊆ S. If A is J`-convex then A is a connected
component of the graph Γ(A). The converse is true when DiamΓ(A)(A) ≤ `.

PROOF. Let A be a J`-convex subset of S. By Proposition 23 (iii), the subset A is an Apresjan
cluster of δ`. Therefore, using Proposition 14, we deduce that A is a connected component of
Γδ`(A). Now, it is clear that, for each α ≥ 0, a subset of S is connected in Γδ`(α) if and only
if it is connected in Γδ(α). Thus, we have µδ`(A) = µδ(A) and A is a connected component of
Γδ(A) = Γ(A).

Assume now that A is a connected component of the graph Γ(A) and that DiamΓ(A)(A) ≤ `.
Let a and b be two elements ofA. SinceA is connex and its diameter in graph Γ(A) = Γ(µ(A))
is not greater than `, it results that there exists at least one path in Γ(A) that joins a and b and
whose length is not greater than `. In other words, δ`(a, b) ≤ µ(A). Now, consider an element
x of J`(a, b). By proposition 23-(ii), we have J`(a, b) = Bδ`(a, δ`(a, b)) ∪ Bδ`(b, δ`(b, a)).
Assume w.l.o.g. that x ∈ Bδ`(a, δ`(a, b)). Then, δ`(x, a) ≤ δ`(a, b) ≤ µ(A), which proves that
there exists some path between x and a in graph Γ(A) = Γ(µ(A)). Thus x and a belong to the
same connected component of Γ(A) which must be equal to A. Therefore, x ∈ A, which proves
that A contains J`(a, b), and thus is J`-convex. ◻
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In the case where 1 ≤ ` < DiamΓ(A)(A), the converse of Proposition 24 is not always true.
In other words, if 1 ≤ ` < DiamΓ(A)(A) and A is a connected component of the graph Γ(A),
then A may or may not be J`-convex, as shown by Examples 6 and 7 below.

Example 6. Consider the dissimilarity δ defined in Figure 1, and let A = abc. In this case,
µ(A) = 1, A is a connected component of Γ(A), and its diameter in Γ(A) is 2. Now, since
HA(δ) = {a, b, c, d, abc, S}, A is D-convex or, equivalently, J`-convex for ` = 1. So, in this
case, the connected component A is J`-convex with ` < 2 = DiamΓ(A)(A).

Example 7. Consider the dissimilarity δ defined in Figure 4 and let A = abc. The interval
function Dδ is given in Table 4.

1

2

d

1

2
22

a

c b

Figure 4: dissimilarity δ

a b c d
a a abc abc S
b − b S S
c − − c S
d − − − d

Table 4: interval function Dδ

It is easily checked that µ(A) = 1, A is a connected component of Γ(A) and DiamΓ(A)(A) = 2.
However, for ` = 1, we have 1 = ` < DiamΓ(A)(A) = 2, but the connected component A is not
J`-convex, since J1(b, c) =Dδ(b, c) = S /⊆ A.

Proposition 25. Let δ be a dissimilarity on S and ` ∈ [1, n − 1]. The following statements hold.

(i) g ` satisfies axiom (W ′).
(ii) gn−1 is symmetrical.

PROOF. (i). Let x1, x2, x3 ∈ S and ` ∈ [1, n− 1]. Then there exist i, j, k with {i, j, k} = {1,2,3}
such that δ `(xi, xj) ≤ δ `(xj , xk) ≤ δ `(xi, xk). We deduce the following inequalities.

δ `(xi, xj) ≤ δ `(xi, xk), δ `(xk, xj) ≤ δ `(xk, xi) and δ `(xj , xi) ≤ δ `(xj , xk).

As a consequence, we obtain:

{P ∈ P(`)
xi ∣ val(P ) ≤ δ `(xi, xj)} ⊆ {P ∈ P(`)

xi ∣ val(P ) ≤ δ `(xi, xk)},
{P ∈ P(`)

xk ∣ val(P ) ≤ δ `(xk, xj)} ⊆ {P ∈ P(`)
xk ∣ val(P ) ≤ δ `(xk, xi)},

{P ∈ P(`)
xj ∣ val(P ) ≤ δ `(xj , xi)} ⊆ {P ∈ P(`)

xj ∣ val(P ) ≤ δ `(xj , xk)}.

Therefore g `(xi, xj) ⊆ g `(xi, xk), g `(xk, xj) ⊆ g `(xk, xi) and g `(xj , xi) ⊆ g `(xj , xk), which
proves (i).

(ii). As previously noticed, δn−1 is an ultrametric (more precisely, the subdominant ultrametric
of δ), thus Dδn−1 = Bδn−1 by Proposition 19. Therefore Mgn−1 = Bδn−1 = Dδn−1 = Jgn−1 by
Proposition 23 (i), so that gn−1 is symmetrical by Proposition 5. ◻
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By Proposition 9-(i), conv(J `1) ⊆ conv(J `2) whenever J `2 ⪯ J `1 . Thus, it is natural to
investigate whether `1 < `2 ⇒ J `2 ⪯ J `1 , which would provide a direct proof of Theorem 26 (ii).
Unfortunately, this implication is generally not true as shown by the counterexample in Figure 5.

2

c

d

b

a

1

e

Figure 5: A dissimilarity δ defined as follows: each full line (resp. dashed line) indicates that the value of δ is equal to
1 (resp. 2). We have: J δ1 (b, c) = bcd ⊂ J δ2 (b, c) = abcd and J δ1 (c, d) = S ⊃ J δ2 (c, d) = abcd. Therefore δ is an
example of a dissimilarity such that interval functions J δ1 and J δ2 are uncomparable according to the order ⪯.

While Theorem 26 (ii) is not a direct consequence of previous results, Theorem 26 (i) is an
almost immediate consequence of Proposition 24.

Theorem 26. For all dissimilarity δ on S, the following statements hold.

(i) The convexity induced by Jn−1 is the single-link hierarchy of δ.
(ii) For `1, `2 ∈ {1, . . . , n − 1}, if `1 ≤ `2 then conv(J `1) ⊆ conv(J `2).

PROOF. (i). Since the diameter of any vertex subset A in graph Γ(A) is less than or equal to
n−1, this property is a direct consequence of Proposition 24, and the well-known characterization
of the single-link hierarchy as the collection of all connected components of all threshold-based
graphs Γ[α] for α ≥ 0 (see e.g. [5, 4]).

(ii). Let ` ∈ {1, . . . , n−1} and A a J`-convex nonempty subset of S. To prove (ii), it is sufficient
to prove that A is J`+1-convex. According to (iii) in Proposition 12 and characterization (iii)
in Proposition 23, we are left to prove that given any (x, y, z) ∈ A × A × (S ∖ A), we have
δ`+1(x, y) < δ`+1(x, z). Then, let (x, y, z) ∈ A ×A × (S ∖A). By definition of δ`+1, we have:

δ `+1(x, z) = min
P ∈P (`+1)x−z

[val(P )].

Let Q⋆ denote an optimal path in P (`+1)
x−z , i.e. such that δ `+1(x, z) = val(Q⋆). Let w denote the

vertex of Q⋆ which is adjacent to the extremity z of Q⋆. Suppose that w = x. Then, Q⋆ = xz, so
that by Proposition 20-(ii) and the hypothesis that A is J`-convex, we deduce

δ`+1(x, z) = val(Q⋆) = δ(x, z) = δ1(x, z) ≥ δ`(x, z) > δ`(x, y) ≥ δ`+1(x, y),

as required. Thus we are left to consider the case w ≠ x in the rest of the proof.
Let us then denote Q⋆ = R⋆z where R⋆ ∈ P (`)

x−w is the (non empty) path defined as Q⋆ deprived
from the edge wz. By definition, we have val(Q⋆) = max{val(R⋆), δ(w, z)}. Moreover, since
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Q⋆ minimizes the valuation val among the paths in P (`+1)
x−z , without loss of generality we may

assume thatR⋆ minimizes the valuation val among the paths in P (`)
x−w. Thus val(R⋆) = δ`(x,w).

Case 1. Assume that δ`(x,w) = val(R⋆) ≥ δ(w, z). If w ∈ A, then (x,w, z) ∈ A ×A × (S ∖A),
and since A is J`-convex, we deduce that δ`(w, z) > δ`(w,x). By Proposition 20-(ii), we have
δ(w, z) = δ1(w, z) ≥ δ`(w, z). Therefore,

δ(w, z) ≥ δ`(w, z) > δ`(w,x) = val(R⋆) ≥ δ(w, z),

which is contradictory. Therefore w /∈ A, so that (y, x,w) ∈ A ×A × (S ∖A). Then, using again
the fact that A is J`-convex and Proposition 23-(iii), we obtain:

δ`+1(x, y) ≤ δ`(x, y) < δ`(x,w) = val(R⋆) = val(Q⋆) = δ`+1(x, z).

Case 2. Assume now that δ`(x,w) = val(R⋆) < δ(w, z). Therefore

δ`+1(x, z) = δ(w, z) = val(Q⋆). (13)

We will distinguish two subcases depending on whether w ∈ A or w /∈ A.

Subcase 1: w /∈ A. From (13), and since δ`(x,w) > δ`(x, y) for A is J`-convex, we deduce:

δ`+1(x, z) = δ(w, z) > val(R⋆) = δ`(x,w) > δ`(x, y) ≥ δ`+1(x, y).

Subcase 2: w ∈ A. Let v be the vertex of R⋆ which is adjacent to the extremity x of R⋆. Note
that v ≠ z since otherwise w = x, but v may eventually be equal to w.
Let us first prove that δ`+1(x, z) = δ`(v, z). Recall that val(Q⋆) = δ`+1(x, z) = δ(w, z). Then,
the path Q⋆ deprived from the edge xv, is a path in P (`)

v−z whose edge valuations are less than or
equal to δ(w, z). Therefore:

δ`(v, z) ≤ δ(w, z) = δ`+1(x, z).

Moreover, xv is an edge ofR⋆ and, as assumed, val(R⋆) < δ(w, z), which implies that δ(x, v) <
δ(w, z). Suppose that δ`(v, z) < δ(w, z). Then, by definition, there would exist some path
T ∈ P (`)

v−z such that val(T ) < δ(w, z). Let us distinguish two alternatives depending on whether
x is or is not a vertex in T . If x ∈ T , then denote by U the subpath of T that connects x and z,
and let m denote the length of U . Since U ⊆ T , we have m < `, and consequently

U ∈ P (m)
x−z ⊆ P (`+1)

x−z and val(U) ≤ val(T ) < δ(w, z) = δ`+1(x, z),

which is contradictory. If x /∈ T , then the path xT ∈ P (`+1)
x−z would satisfy

val(xT ) = max{δ(x, v),val(T )} < δ(w, z) = δ`+1(x, z),

which is again contradictory. Therefore,

δ`(v, z) = δ(w, z) = δ`+1(x, z).

Once more, let us distinguish two alternatives according to whether v ∈ A or not. Using the
J`-convexity of A, we deduce the following:

22



- if v ∈ A, then δ`+1(x, z) = δ(w, z) = δ`(v, z) > max{δ(x, v), δ`(v, y)} ≥ δ`+1(x, y);
- if v /∈ A, then δ`+1(x, z) = δ(w, z) > val(R⋆) ≥ δ(x, v) ≥ δ`(x, v) > δ`(x, y) ≥ δ`+1(x, y).

We conclude that δ`+1(x, z) > δ`+1(x, y), which proves that A is J`+1-convex, as required. ◻

Notation 9. In what follows, HSL(δ) denotes the single-link hierarchy of the dissimilarity δ,
and H`(δ) the Apresjan hierarchy of δ`. Therefore H`(δ) = conv(J`) by Proposition 23-(iii).
It results that HA(δ) = H1(δ) and HSL(δ) = Hn−1(δ) = conv(Jn−1). For an arbitrary cluster
C ∈ HSL(δ), we adopt the following notations:

λ(C, δ) = min{` ∣C ∈ H`(δ)} and λ(δ) = max
X ∈HSL(δ)

λ(X,δ).

Moreover, λ(C, δ) will be called the chaining-length of cluster C. If there is no ambiguity on the
choice of δ, λ(C, δ) and λ(δ) will be simply denoted respectively by λ(C) and λ.

Definition 10. Assume that C is a multilevel clustering of a type, say T, and k ≥ 2 is an integer.
Then, we will say that sequence F = (C1, . . . ,Cj , . . . ,Ck) is a filtration of C if

(i) C1 ⊆ . . . ⊆ Cj ⊆ . . . ⊆ Ck = C ,

(ii) For each 1 ≤ j ≤ k, the multilevel clustering Cj is of the given type T.

The proof of the following proposition is straightforward.

Proposition 27. The size of every cluster ofHSL(δ) is strictly greater than its chaining–length.

Next corollary results from Theorem 26 together with Notations 9.

Corollary 28. If C is a cluster of the single link hierarchy of δ, then

(i) 1 ≤ λ(C) ≤ λ ≤ r(δ) ≤ n − 1.
(ii) The family (H`(δ))1≤ `<n is a filtration of the single-link hierarchy of δ. More precisely,

HA(δ) = H1(δ) ⊆ . . . ⊆ Hλ−1(δ) ⊂ Hλ(δ) = . . . = Hn−1(δ) = HSL(δ). (14)

(iii) C ∈ H`(δ) iff λ(C) ≤ `.

Corollary 28-(ii) shows that (H`(δ))`=1,...,λ(δ), whose first term is the Apresjan hierarchy
of δ, is an increasing sequence of Apresjan hierarchies, with respect to the set inclusion order.
The hierarchiesH`(δ) are then built according to a criterion which is less and less stringent, as `
increases. The question of whether this criterion is less and less demanding, as ` increases, from
the clustering point of view, will be discussed in section 8.
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7. From the Apresjan hierarchy to the Bandelt and Dress weak-hierarchy, through a per-
sistent set of single-linkage clusters

According to Proposition 23, each conv(M`) with ` ∈ {1, . . . , n − 1}, coincides with the
Bandelt and Dress weak-hierarchy of δ`. In particular, conv(M1) is the Bandelt and Dress
weak-hierarchy of δ1 = δ. In this section, we are mainly concerned with the study of the interval
convexities conv(M`) for an arbitrary value of ` ∈ [1, n].

Given a dissimilarity δ, we first compare the Bandelt and Dress weak hierarchy WBD(δ) =
conv(M1), the convexity conv(Mn−1) induced by the interval function Mn−1, the Apresjan
hierarchyHA(δ) and the single-link hierarchyHSL(δ).

Proposition 29. For each dissimilarity δ on S, we have:

(i) HA(δ) ⊆ HSL(δ) ∩WBD(δ),
(ii) If δ is ultrametric thenHA(δ) = HSL(δ) = WBD(δ).

(iii) conv(Mn−1) = Hn−1(δ) = HSL(δ).

PROOF. (i). From Proposition 18-(i), we have HA(δ) ⊆ WBD(δ). Moreover, from Theorem
26,HA(δ) = conv(J1) ⊆ conv(Jn−1) = HSL(δ). These two inclusions prove (i).

(ii). Let δ be an ultrametric. From Proposition 19, it results that conv(Dδ) = conv(Bδ). In
other words HA(δ) = WBD(δ), so it is sufficient to prove HA(δ) = HSL(δ). By Proposition
16, the indexed hierarchy (HA(δ),diamδ) induces the ultrametric δ. Moreover, it is well known
that if δ is an ultrametric, then we have:

Φ((HSL(δ), fδSL)) = δ,

where fδSL denotes the index function of the indexed hierarchy generated by the single-link
hierarchical clustering applied to the dissimilarity δ. Therefore, we deduce that

Φ((HA(δ),diamδ)) = Φ((HSL(δ), fδSL)).

As Φ is bijective, we getHA(δ) = HSL(δ), as required.

(iii). First recall that δn−1 is ultrametric. Then, applying (ii) with δ = δn−1, we deduce that

Hn−1(δ) = HA(δn−1) = HSL(δn−1) = WBD(δn−1) = conv(Mn−1).

Now, since δn−1 is the ultrametric subdominant of δ, it is well known thatHSL(δn−1) = HSL(δ),
as required. ◻

In the example of Figure 3, it is easily checked that HA(δ) = WBD(δ) = T (S), which shows
that the converse of Proposition 29 (ii) does not hold in general.

Remark 8. Consider the dissimilarity δ given in Figure 2 (a). It is easily checked that the
single-link hierarchical clustering applied to δ, generates only one non trivial cluster, in other
words HSL(δ) = T (S) ∪ cde. Since WBD(δ) = T (S) ∪ {ac, ad, bc, bd, ce, de}, we deduce
that HSL(δ) and WBD(δ) are not comparable according to the set-inclusion order. Now,
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HSL(δ) = conv(Mn−1) and WBD(δ) = conv(M1), therefore this example shows that the se-
quence (conv(M`))` ∈ [1,n−1] is not monotone for an arbitrary dissimilarity δ, and consequently
is not a filtration of WBD(δ) = conv(M1). Otherwise, filtrations of WBD(δ) can be easily
derived from (conv(M`))`. Two of them are the sequences (V`(δ))` and (W`(δ))` which are
defined simply by:

V`(δ) = ⋂
k ≤n−`

conv(Mk) and W`(δ) = conv(M1) ∩ ⋃
k ≤ `

conv(Mn−k),

for all ` ∈ [1, n − 1]. Note that V`(δ) ⊆ V`+1(δ) ⊆ conv(M1) = WBD(δ), which shows that
(V`(δ))` is a filtration ofWBD(δ). Similarly, it is easily checked that (W`(δ))` is a filtration
ofWBD(δ) (see also Corollary 30). Moreover:

⋂
k ≤n−`

conv(Mk) ⊆ conv(M1) ∩ conv(Mn−`) ⊆ conv(M1) ∩ ⋃
k ≤ `

conv(Mn−k),

which proves that V`(δ) ⊆ W`(δ). Note that an element of V`(δ) is necessarily Mk-convex for
each k ≤ n − `, whereas an element ofW`(δ) has only to be Mk-convex for at least one value
k ≥ n − `. Therefore, the elements of V`(δ) satisfy a clustering criterion which is significantly
more stringent than the criterion satisfied by the elements ofW`(δ). It results that, for each `,
the weak hierarchy V`(δ) is significantly more sparse than the weak hierarchyW`(δ). For this
reason, we will now focus on filtration (W`(δ))` ofWBD(δ).

Notation 11. Given any C ∈ WBD(δ) = conv(M1) = Wn−1(δ), let

µ(C, δ) = min{` ∣C ∈ W`(δ)} and µ(δ) = max
C ∈WBD(δ)

µ(C, δ).

If there is no ambiguity on the choice of δ, µ(C, δ) and µ(δ) will be simply denoted respectively
by µ(C) and µ.

Corollary 30. Let δ be an arbirtrary dissimilarity on S and k, ` ∈ {1, . . . , n − 1}.

(i) For all C ∈ WBD(δ), we have 1 ≤ µ(C) ≤ µ ≤ n − 1.
(ii) If k ≤ `, thenHk(δ) ⊆ conv(M`),

(iii) HA(δ) = H1(δ) ⊆ W`(δ),
(iv) The family FM = (W`(δ))1≤`<n is a filtration ofWBD(δ).

More precisely, for all ` ∈ {1, . . . , µ − 1}, we have:

W1(δ) ⊆ . . . ⊆ Wµ(δ) = . . . = W`(δ) = . . . ⊆ Wn−1(δ) = WBD(δ). (15)

PROOF. (i) results directly from the definitions of the compared quantities.

(ii). Let k, ` ∈ {1, . . . , n − 1} with k ≤ `. By definition of J` and M`, we have M` ⪯ J`, and thus
H` = conv(J`) ⊆ conv(M`). By Theorem 26, Hk = conv(Jk) ⊆ conv(J`) = H`. It results that
(ii) is satisfied.

(iii). is a direct consequence of (ii).

(iv). This filtration results immediately from the definition ofW`(δ) and µ. ◻
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Remark 9. We have HA(δ) ⊆ W1(δ) by Corollary 30-(iii), and from Proposition 29-(iii),
conv(Mn−1) = Hn−1(δ) = HSL(δ) so that W1(δ) ⊆ conv(Mn−1) = HSL(δ) = Hλ(δ). It
results that filtration (H`(δ))1≤`<n introduced in corollary 28, can be compared to filtration
(W`(δ))1≤`<n as follows:

HA(δ) = H1(δ) ⊆ . . . ⊆ Hλ(δ) = . . . = Hn−1(δ) = HSL(δ) (14)
⊆

⊆

W1(δ) ⊆ . . . ⊆ Wµ(δ) = . . . = Wn−1(δ) = WBD(δ) (15)

This diagram points out that W1(δ) is a hierarchy that is intermediary w.r.t. set inclusion
order, between the Apresjan hierarchy of δ and the single-link hierarchy of δ.

8. Discussion

The main contributions of this paper can be summarized as follows. In the line of research
carried out by [9, 15], we first proposed new flexible characterizations of hierarchical and weak-
hierarchical clustering models as interval convexities. In detail, we considered an arbitrary map
g ∶ S × S Ð→ 2S such that {x, y} ⊆ g(x, y) for all x, y ∈ S, and proved that Jg = g ∪ g
(resp. Mg = g ∩ g) is an interval function that induces a hierarchical (resp. weakly hierarchical)
clustering, if and only if g satisfies a specific property (Propositions 6 and 7). In particular, if g
denotes the two-way Ball-map of an arbitrary dissimilarity δ, it results that Jg (resp. Mg) induces
the Apresjan hierarchy (resp. the Bandelt and Dress weak hierarchy) of δ. Then, we focussed
on the path-based dissimilarities δ`, also known as transitive distances with order ` [28, 30, 29],
such that, for all x, y ∈ S, the value δ`(x, y) is the smallest maximum δ-jump along all x−y
paths of length at most `. First, we determined a recursive method for computing the sequence
(δ`)1≤ `≤n−1 which turns out to be strictly decreasing for 1 ≤ ` ≤ r(δ) downto to the subdominant
ultrametric of δ, and then stationary for r(δ) < ` ≤ n−1 (Proposition 21 and notation 7). Finally,
defining g` as the two-way Ball-map of δ`, we proved that the sequences whose general terms
are H`(δ) = conv(Jg`) andW`(δ) = conv(Mg1) ∩ [ ⋃

k ≤ `
conv(Mgn−k)], with 1 ≤ ` < n − 1, are

respectively a filtration of the single-link hierarchy of δ and a filtration of the Bandelt and Dress
weak-hierarchy of δ (Corollaries 28 and 30).
These theoretical results may be viewed as one step toward introducing interval convexity-based
tools for achieving and interpreting multilevel clustering based on dissimilarities. We then con-
clude the paper by pointing out some final remarks and discussing potential extensions of this
approach, in particular for data mining practice involving the single-linkage clustering.

Remark 10 (Distortion of δ` w.r.t. the subdominant ultrametric of δ). If δ is an arbitrary dis-
similarity then, by Propositions 20 and 21, we have:

δ = δ1 ≻ . . . ≻ δ` ≻ . . . ≻ δr(δ) = . . . = δn−1. (16)

As a consequence, if δ is not ultrametric, then for all ` ∈ [1, r(δ)−1], the subdominant ultrametric
of δ` is δr(δ) = δn−1, which shows incidentally that δ` is not ultrametric. Let ` ∈ [1, r(δ) − 1].
Denoting by ∥ ∥ the L1-norm, and using the fact that δ` ≻ δ`+1 ⪰ δn−1 ⪰ 0, we have

∥δ` − δ`+1∥ = ∥δ`∥ − ∥δ`+1∥ and ∥δ`∥ > 0.
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Denoting ∆(δ`) =
∥δ` − δn−1∥

∥δ`∥
, which is a measure of the relative distortion between δ` and its

subdominant ultrametric δn−1, it results that ∆(δ`) = 1 − ∥δn−1∥
∥δ`∥

. Note that ∆(δ`) is strictly

decreasing as ` increases from 1 to r(δ). Figure 6 highlights the decrease of ∆(δ`) when `
increases, in the case of the euclidean distance δ computed for the Fisher’s Iris dataset.
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Figure 6: The curve of ∆(δ`) as a function of `, with the euclidean distance δ computed on the Iris dataset.

The index ∆ ∶ δ ↦ ∆(δ) was first introduced by Rammal et al. (cf. [26]) in order to
measure the degree of ultrametricity of any dissimilarity δ. Other ultrametricity indices have been
previously proposed [22, 24, 25, 10]. However, these indices estimate the degree of ultrametricity
of a dissimilarity without measuring its distortion w.r.t. its subdominant ultrametric, for example
by measuring the proportion of approximately ultrametric triples (cf. [24, 25]).

Remark 11 (Single link dendrogram simplification). Consider the dendrogram DSL(δ) gen-
erated by the single-linkage clustering applied to an arbitrary dissimilarity δ, and let fSL be the
level function of this dendrogram. In addition, letD`(δ) be the dendrogram which represents the
hierarchy H`(δ) indexed by the restriction of fSL to H`(δ). Notice that DSL(δ) = Dn−1(δ) =
Dr(δ)(δ). By (14), we have: HA(δ) ⊆ . . . ⊆ H`(δ) ⊆ . . . ⊆ Hλ−1(δ) ⊂ Hλ(δ) = . . . = HSL(δ).
This filtration and the example of the curve of ∆(δ`) in Figure 6, suggest that D`(δ) is a faithful
simplified subdendrogram of DSL(δ) whenever ` is large enough to ensure that the discrepancy
between D`(δ) and DSL(δ) be small enough. Given the relationH`(δ) = conv(Jg`) = HA(δ`),
we can associate uniquely each dissimilarity δ` with the dendrogram D`(δ) representingH`(δ).
As it is easy to show examples of dissimilarities δ and path lengths ` such thatHA(δ`) = H`(δ) =
H`+1(δ) = HA(δ`+1) and δ` > δ`+1, it results that this map δ` ↦ D`(δ), with 1 ≤ ` ≤ r(δ), is
clearly non injective. Consequently, the distortion ∆(δ`) between δ` and δn−1 is not appropriate
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to measure the discrepancy between D`(δ) and DSL(δ). An alternative is to consider the bi-
jection that maps each dendrogram to its cophenetic ultrametric. Denoting by ρ` the cophenetic
ultrametric induced by the dendrogram D`(δ), the distortion ∆(ρ`) is then appropriate to esti-
mate the discrepancy between dendrograms D`(δ) and DSL(δ). Note that, if ` ∈ [1, n − 2] then
H`(δ) ⊆ H`+1(δ), so that ∆(ρ`) decreases when ` increases. This leads us to proposeD`(δ) as a
consistent simplification of the dendrogram DSL(δ), whenever ` ≥ `0 with ∆(ρ`0) ≤ α and α is
a user-chosen threshold, e.g. α = 0.05. Based on filtration (W`(δ))` ofWBD(δ) and the bijec-
tion due to [16], a similar approach applies in order to determine a simplified sub-diagram of the
Hasse diagram ofWBD(δ) indexed by the diameter function. More precisely, if τ` is the cophe-
netic quasi-ultrametric induced by the weak-hierarchy W`(δ) indexed by the function diamδ ,
then the distortion ∆(τ`) can be used to estimate the discrepancy between the Hasse diagrams of
W`(δ) and ofWBD(δ) both indexed by the function diamδ . ThenW`(δ) is a simplified Hasse
sub-diagram ofWBD(δ) provided that ∆(τ`) ≤ α where α is a user-chosen threshold.

Example 12. The Single-Link dendrogram simplification method (cf. Remark 11), was applied
to dendrogram DSL(δ) where δ is the Euclidean distance computed on the Iris dataset.
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Figure 7: Distortions ∆(ρ`) and ∆(δ`) as functions of `, for the euclidean distance δ on the Iris dataset.

To shorten our notation, we writeDSL (resp. D`) instead of notationsDSL(δ) (resp. D`(δ)).
Figure 7 displays the curves of ∆(ρ`) and ∆(δ`) when ` varies. We observe that ∆(ρ10) < 0.05,
which indicates that D10 is a faithful simplification of dendrogram DSL. In order to display
clearly the differences between DSL and its simplified dendrogram D10, we restrict our compar-
ison between a (non trivial) subdendrogram of DSL (cf. Figure 8 (a)) and its corresponding part
in D10 (cf. Figure 8 (b)). Figure 8 (a) represents the restriction of DSL to one of its cluster, say
C, which belongs also to D10. Cluster C consists of all the elements displayed on Figure 8 (a),
and is indeed a subset of size 84 containing only Virginica and Versicolor iris samples. Several
of the clusters of the subdendrogram of Figure 8 (a) do not belong to D10. For this dataset, these
missing clusters are nested, and the smallest of them, say D, is displayed in blue color in Figure
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8 (a). Figure 8 (b) represents the restriction of D10 to cluster C which appears, in this case, to be
the smallest cluster ofH10 that contains subset D.
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Figure 8: (a) Subdendrogram DSL restricted to cluster C. The cluster highlighted in blue colour has a chaining-length
greater than 10. (b) Subdendrogram D10 restricted to cluster C.

Our approach was applied on a few simulated and real datasets that are either structured into a
partition or uniformly distributed. The obtained results lead us to the following comments:

(i) In each case of our experimentations, we observed that the shape of curve ∆(ρ`) was
similar to the curve represented by Figure 7. Notice that this shape of curve implies that
clusters with the longest chaining-length are those clusters which contribute significantly
the least to the distortion reduction measured by ∆(ρ`).

(ii) For the Iris dataset, we observe that λ(C) = 10 < λ(D) = 11 whereas D ⊂ C, so that
fSL(D) < fSL(C). Therefore the order defined by λ is not compatible with the order
defined by fSL. For a cluster X ⊂ S, this implies that the information provided by the
chaining-length λ(X) is different from that provided by fSL(X) which measures the de-
gree of connectivity of X . Recall that fSL(X) is the largest weight of an edge connecting
two elements of X in a minimum spanning tree weighted with the values taken by δ.

(iii) As noticed by [13], Apresjan clusters of an arbitrary dissimilarity satisfy a stringent clus-
tering criterion and, in general, are small-sized, which is a major limiting factor to their
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usefulness. However, the Apresjan hierarchy of an ultrametric dissimilarity coincides with
its single link hierarchy (cf. Proposition 29), so that it may contain clusters of arbitrary
sizes. By an argument of continuity, the Apresjan hierarchy of a dissimilarity δ whose
distortion ∆(δ) is small, may also contain clusters of arbitrary size. If the distortion ∆(δ)
is not small, our experimentations have confirmed that Apresjan clusters of such datasets
are, in general and as expected, small sized. Moreover, these experimentations indicate
that the curves of functions ` ↦ ∆(δ`) have a similar shape to the one in Figure 7. This
shows that the distortion ∆(δ`) decreases drastically when ` increases in a short interval
whose minimal value is 2, so that the ultrametric degree of δ`, when this degree is defined
in an approximate sense, increases significantly as ` increases from value 2, which finally
implies that the Apresjan hierarchy of δ` may contain clusters of arbitrary size if ` ≥ 2.
Note that, sinceHA(δ`) ⊆ HA(δ`+1), Apresjan clusters of δ` satisfy a clustering criterion
which is less and less demanding as ` increases. More specifically, each Apresjan cluster
of δ`, say A, satisfies by definition the following property (P ) related to cluster isolation:
For all x /∈ A and all y, z ∈ A,

∃Pyz ∈ P(`) s.t. for all uv ∈ Pyz,we have δ(u, v) < δ(x, y),

or equivalently, Pyz ∈ P(`) exists such that val(Pyz) < δ(x, y). Moreover, it can be
proved that if val(Pyz) = δ`(y, z) then the path Pyz is included in A. Therefore, property
(P ) indicates that A is isolated insofar as the dissimilarity between two elements of cluster
A can be defined as the valuation of an internal path of A whose length is at most `.
In addition, (P ) also indicates that cluster A is all the more compact that ` is small in
comparison with ∣A ∣. To conclude, on the basis of property (P ) completed with the claim
that Pyz ⊆ A is true if val(Pyz) = δ`(y, z), and according to the fact that the single-
linkage criterion is strengthened when ` is small, we can consider as plausibly valid each
Apresjan cluster A of δ` such that ` is small and ∣A ∣ ≫ `, or equivalently each cluster
A ∈ HSL(δ) such that its chaining-length λ(A) is small and λ(A) ≪ ∣A ∣. This assertion
outlines guidelines for identifying single-linkage clusters whose size is large enough, and
which are both compact and isolated in the sense of a more or less strengthening of the
single-linkage criterion. By way of example, there are forty-seven non trivial Apresjan
clusters for the Iris flower dataset: forty-one are of size 2, five of size 3 and one of size
4, which is consistent with the assertion that Apresjan clusters of an arbitrary dissimilarity
are generally small-sized. Regarding clusters of interest to data analysts, it is well known
that applying a standard partitionning method to the Iris dataset leads usually to identify
clearly two clusters: the cluster of Setosa iris, say A, and the cluster that gathers Virginica
and Versicolor irises, say B. Computations show that A and B are single-linkage clusters
such that:

λ(A) = 2 with ∣A ∣ = 50 and λ(B) = 4 with ∣B ∣ = 100.

With respect to the guidelines roughly defined above for identifying relevant single-linkage
clusters, these numerical results and the graph presented in Figure 9 are consistent with the
common knowledge that clustersA andB are the most pertinent single-link clusters of the
Iris dataset. However, additional theoretical and empirical insights are clearly required to
make these guidelines both more precise and reliable.
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Figure 9: A biplot that displays the size of clusters versus their chaining-length, when the set of clusters is
the single-link hierarchy built on the Iris dataset using the euclidean distance.

Remark 13. It may be observed that, for ` ∈ [1, r(δ) − 1], we have

∆(δ`) −∆(δ`+1) = (1 − ∥δn−1∥
∥δ`∥

) − (1 − ∥δn−1∥
∥δ`+1∥

) = ∥δn−1∥
∥δ`+1∥∥δ`∥

(∥δ`∥ − ∥δ`+1∥),

so that ∆(δ`) −∆(δ`+1) > 0 for all ` ∈ [1, r(δ) − 1] since δ` ≻ δ`+1. Figure 7 suggests that the
successive differences ∆(δ`) −∆(δ`+1), are decreasing when ` increases, whereas the sequence
of successive differences of ∆(ρ`) is not decreasing. Consider now the simpler statement that the
successive differences of ∥δ`∥ are decreasing when ` increases, i.e. that (∥δ`−δ`+1∥)`=1, ... ,r(δ)−1

is a decreasing sequence. Based on experimentations on simulated dissimilarities, our intuition
leads us to view this assertion as a conjecture whose self-contained formulation is as follows.

Conjecture: Let δ be an arbitrary dissimilarity on S and, for all ` ∈ N⋆, denote by δ` the
dissimilarity on S defined recursively by:

for all (x, y) ∈ S 2, δ`(x, y) = {
δ(x, y), if ` = 1,
min
z ∈S

max{δ`−1(x, z), δ(z, y)}, otherwise.

For all ` ∈ N⋆, we have ∥δ` − δ`+1∥ ≥ ∥δ`+1 − δ`+2∥, where ∥ ∥ denotes the L1-norm.
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Recall that δ` = δ`+1 if ` ≥ r(δ), so that this inequality is obvious for ` ≥ r(δ) − 1, and therefore
the conjecture holds true when r(δ) ∈ {1,2}. Figures 10 (a) and (b) point out that the conjecture
is true for two datasets such that r(δ) ∉ {1,2}. Note that, in each of these Figures 10 (a) and (b),
the decreasing curve of ∥δ` − δ`+1∥ as a function of ` has an exponential shape.
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Figure 10: Decrease of ∥δ` − δ`+1∥ when ` increases, for two datasets: (a) the famous Iris flower dataset, and (b) a
simulated dataset S of 300 samples xi where the values δ(xi, xi′) are i.i.d. according to the uniform law on [0,1].

This conjecture suggests a general property of dissimilarities, whose formulation is rather simple,
but whose study is not straightforward for r(δ) ≥ 3. As a consequence, the conjecture seems
beyond the scope of this paper.

While the idea of an unifying framework based on abstract convexity in order to characterize
several multilevel clustering models has been discussed before (cf. [9, 15]), the main contribu-
tion of this paper lies in the finding of interval convexity-based results relevant to the practice
of data mining, and more specifically concerning the single-link hierarchical clustering, Apres-
jan hierarchies, and Bandelt and Dress weak hierarchies. For future research, we point out the
following open issues:

1 − Recall that the sequence (δ`)1≤`≤n−1
satisfies the property that conv(Jg `1 ) ⊆ conv(Jg `2 )

if `1 ≤ `2. Is it possible de characterize the sequences of arbitrary path-based dissimilarities
which satisfy this property?

2 − Another direction for future research would be to extend our approach based on interval
convexity, to hierarchical clustering schemes such as the complete-link clustering and the
unweighted average linkage clustering.
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