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Introduction

Clustering is a popular and valuable data mining technique aimed at revealing a hidden structure within a dataset. The revealed structure is commonly expressed as a collection of homogeneous subsets called clusters. According to Mirkin and Muchnick [START_REF] Mirkin | Combinatorial optimization in clustering[END_REF], there are three major approaches to determine a cluster as based on definition, direct algorithm and optimality criterion. The present paper is mainly concerned with some definition-based clusters, namely clusters defined as being convex in the sense of an interval function. An interval function I on a dataset S is a symmetric function that maps each ordered pair (x, y) ∈ S × S to a subset I(x, y) of S, containing x and y. The subset I(x, y) is called the I-interval of extremities x and y. A subset A of S is said to be convex in the sense of the interval function I, or I-convex, if it contains each I-interval whose extremities belong to A. The collection C I of I-convex subsets of S forms a convexity called the interval convexity induced by I. It turns out that the notion of convexity as defined in the most abstract sense (e.g. [START_REF] Calder | Some elementary properties of interval convexities[END_REF][START_REF] Van De | Theory of Convex Structures[END_REF]) coincides with that of multilevel clustering, when the latter is supposed to be closed under arbitrary intersections. A multilevel clustering of S is a collection of nonempty subsets of S, containing S itself and of which at least two members are strictly nested. One of the most known multilevel clustering models is the hierarchical model. A hierarchy is a multilevel clustering for which the intersection of any two clusters is either empty or equal to one of them. In the last decades, several authors have investigated various generalizations of the hierarchical model, such as pyramids [START_REF] Diday | Orders and overlapping clusters in pyramids[END_REF][START_REF] Durand | One-to-one correspondence in pyramidal representation: a unified approach[END_REF], paired hierarchies [START_REF] Bertrand | Set systems for which each set properly intersects at most one other set -Application to cluster analysis[END_REF][START_REF] Bertrand | On lower-maximal paired-ultrametrics[END_REF] and totally balanced hypergraphs [START_REF] Brucker | Totally balanced dissimilarities[END_REF][START_REF] Brucker | Crown-free lattices and their related graphs[END_REF]. These models are submodels of the weak hierarchical clustering model. A weak hierarchy is a multilevel clustering for which the intersection of any three clusters is reduced to the intersection of two of them [START_REF] Bandelt | Four point characterization of the dissimilarity functions obtained from indexed closed weak hierarchies[END_REF][START_REF] Bandelt | Weak hierarchies associated with similarity measures: an additive clustering technique[END_REF][START_REF] Diatta | Quasi-ultrametrics and their 2-ball hypergraphs[END_REF]. It is therefore a direct extension of the hierarchical clustering, allowing for some type of overlapping clusters. The weak hierarchical clustering model, and most of its submodels, have been characterized as (types of) interval convexities whose segment functions satisfy specific properties [START_REF] Bertrand | Multilevel clustering models and interval convexities[END_REF]. By generalizing the notion of interval function to more than two arguments, Changat et al. [START_REF] Changat | Axiomatic characterization of transit functions of weak hierarchies[END_REF] have extended these characterizations to the general case of the k-weak hierarchies for k ≥ 2, where a k-weak hierarchy is a multilevel clustering for which the intersection of any (k + 1) clusters reduces to the intersection of k of them (the case k = 2 corresponds to weak-hierarchies). These characterizations, all being based solely on the notion of interval function or its extensions, lead to a unifying framework for multilevel clusterings. The contributions of this paper fall within this line of research, in this general formal framework, together with an attention to specifications allowing to capture clustering models, such as the Apresjan and the single-link hierarchies, which are handled in data mining practice. We propose:

• Flexible characterizations of hierarchies and weak hierarchies as interval convexities;

• Properties of both the Apresjan hierarchy and the Bandelt and Dress weak-hierarchy of an arbitrary dissimilarity, together with their characterization as interval convexities;

• A recursive method for computing (in linear time) each term of a sequence of path-based dissimilarities that decrease from an arbitrary dissimilarity downto its subdominant ultrametric;

• A sequence of a nested hierarchies defined as interval convexities, gradually increasing from the Apresjan hierarchy to the single-link hierarchy;

• A sequence of nested weak hierarchies defined as interval convexities, gradually increasing from a subset of persistent single-linkage clusters (which includes the Apresjan clusters) to the Bandelt and Dress weak-hierarchy.

The rest of the paper is organized as follows. Section 2 presents elementary background notions. Section 3 provides an unifying framework for the construction of interval functions that induce either a hierarchy or a weak hierarchy. Given a function g ∶ S × S ↦ 2 S and its two symmetrical versions J g = g ∪ g and M g = g ∩ g that are defined by (g ∪ g)(x, y) = g(x, y) ∪ g(x, y) 2 and (g ∩ g)(x, y) = g(x, y) ∩ g(x, y) for all x, y ∈ S, with g(x, y) = g(y, x), we consider the case where J g and M g are interval functions on S. We then introduce a condition (H) (resp. (W)) that characterizes the functions g such that J g (resp. M g ) generates a hierarchical (resp. weakly hierarchical) interval convexity. In the remaining sections, we consider an arbitrary dissimilarity on S, denoted by δ. In Section 4, we show that the two-way Ball-map g δ B ∶ (x, y) ↦ B δ (x, δ(x, y)) = {z ∈ S δ(x, z) ≤ δ(x, y)}, also denoted simply g B , satisfies both of the conditions (H) and (W). We also focus on interval convexities conv(J g B ) and conv(M g B ) which coincide respectively with the Apresjan hierarchy of δ and the Bandelt and Dress weak hierarchy of δ. In section 5, we introduce a decreasing sequence δ =1,...,n-1 of path-based dissimilarities, with n = S , δ 1 = δ and δ n-1 is the subdominant ultrametric of δ. Furthermore, we propose a recursive method to compute each dissimilarity value δ (x, y), with a complexity bound O(n). In Section 6, we focus on the sequence conv(J h ) with h = g δ B , and show that this sequence is a nested family of sub-hierarchies of the single-link hierarchy of δ, which gradually increases from the stringent Apresjan hierarchy of δ. In Section 7, we investigate the sequence conv(M h ) , and derive a nested family of sub-weak hierarchies of the Bandelt and Dress weak hierarchy of δ, which gradually increases from a subset of the singlelink hierarchy, which contains the Apresjan hierarchy. The final Section 8 discusses possible extensions, in particular by taking advantage of the gradual increase of these nested families to provide guidelines for defining an approach of multilevel clustering simplification.

Background

In this text, S denotes the ground (finite) set and n = S its size. Let us consider an arbitrary collection C of subsets of S. It will be said that C is hierarchical if the intersection of any two of its members is either empty or equal to one of the two members. The collection C is called weakly hierarchical if the intersection of any three of its members is equal to the intersection of two of them. The collection C is said to be a multilevel clustering if it contains S and at least one proper subset of S, and if none of its members, called clusters, is empty. A weak hierarchy [START_REF] Bandelt | Four point characterization of the dissimilarity functions obtained from indexed closed weak hierarchies[END_REF][START_REF] Bandelt | Weak hierarchies associated with similarity measures: an additive clustering technique[END_REF][START_REF] Diatta | Quasi-ultrametrics and their 2-ball hypergraphs[END_REF] (resp. a hierarchy) is a multilevel clustering that is weakly hierarchical (resp. hierarchical). By allowing overlapping clusters, the weak hierarchical clustering model extends the hierarchical clustering model. In what follows, multilevel clusterings are viewed through the framework of the so-called abstract convexities introduced since the 1950s [START_REF] Calder | Some elementary properties of interval convexities[END_REF][START_REF] Van De | Theory of Convex Structures[END_REF]. We will use the terminology presented in Van de Vel in [START_REF] Van De | Theory of Convex Structures[END_REF]. As S is assumed to be finite, a convexity on S can be defined as any collection C ⊆ 2 S which contains both ∅ and S, and is closed under arbitrary intersections. Clearly, any multilevel clustering closed under nonempty intersections and completed by the empty set is then an abstract convexity. Morover, as shown in [START_REF] Bertrand | Multilevel clustering models and interval convexities[END_REF], up to the completion by the empty set, the most known multilevel clustering models dealt with in the literature are convexities induced by some interval functions. An interval function I on S is a symmetric function which maps each ordered pair (x, y) ∈ S × S to a subset I(x, y) of S that contains x and y. The subset I(x, y) is called the interval of extremities x and y. A subset A of S is said to be convex according to the interval function I if it contains each interval I(x, y) whose extremities x and y are in A. It is easily checked that each interval function I induces the convexity defined as the collection of subsets of S that are convex according to I. Each convexity induced by an interval function I, is called an interval convexity and is denoted as conv(I). Conversely, each convexity C is associated with an interval function, denoted as seg(C ), and defined by seg(C )(x, y) = ⋂ A ∈ C x, y ∈ A} for all x, y ∈ S. This interval function seg(C ) is called the segment function associated with convexity C . Let us recall the axiomatic characterizations of hierarchies and weak hierarchies, as convexities. They are based on the following axioms (H) and (W k ) defined as follows. A map f ∶ S × S ↦ 2 S satisfies (H) and (W k ), respectively, if

(H) for all x 1 , x 2 , x 3 ∈ S, either f (x 1 , x 2 ) ⊆ f (x 1 , x 3 ) or f (x 1 , x 3 ) ⊆ f (x 1 , x 2 ), (W k ) if there are no x 1 , . . . , x k+1 ∈ S such that for all i, x i ∉ ⋃ xj ≠xi≠x l f (x j , x l ),
where k denotes an integer such that k ≥ 2.

The next two theorems and their respective proofs can be found in [START_REF] Bertrand | Multilevel clustering models and interval convexities[END_REF]. Theorem 1. [9, Theorem 2.5 p. 58] For all convexity C on S and all integer k ≥ 3, we have:

(i) seg(C ) satisfies condition (H) if and only if C is hierarchical. (ii) seg(C ) satisfies condition (W 2 ) if and only if C is weakly hierarchical. (iii) If seg(C ) satisfies condition (W k ) then C is k-weakly hierarchical.
It is worth noticing that C = conv(seg(C )) whenever C is a weakly hierarchical convexity (cf. [START_REF] Bertrand | Multilevel clustering models and interval convexities[END_REF], Proposition 3.10, p.61). In general, seg(C ) is not the only interval function which induces C . Indeed, given an interval convexity C , there is a great deal of freedom for choosing an interval function I that induces the convexity C , i.e. such that C = conv(I). The following result will be helpful for choosing such an interval function for clustering purposes. 

A convex framework for hierarchies and weak-hierarchies

Let g ∶ S×S → 2 S be an arbitrary map. The map g ∶ S×S → 2 S is defined by g(x, y) = g(y, x) for all x, y ∈ S. In addition, given an arbitrary map f ∶ S ×S → 2 S , the maps g∪f ∶ S ×S → 2 S and g ∩ f ∶ S × S → 2 S are defined by:

(g ∪ f )(x, y) = g(x, y) ∪ f (x, y) and (g ∩ f )(x, y) = g(x, y) ∩ f (x, y),
for all x, y ∈ S. In this section, we will consider a map g ∶ S × S ↦ 2 S satisfying the following axiom (C 0 ):

(C 0 ) For all x, y ∈ S, {x, y} ⊆ g(x, y).
We begin by symmetrizing g in two ways. Let J g ∶ S × S ↦ 2 S and M g ∶ S × S ↦ 2 S be the two maps defined by:

J g = g ∪ g and M g = g ∩ g.
It is clear that J g and M g are symmetrical and both satisfy (C 0 ), i.e. J g and M g are interval functions on S. We will investigate the induced convexities conv(J g ) and conv(M g ) from a clustering point of view. We first introduce two axioms, denoted as (W) and (W ′ ). Together with (H), these axioms will prove to be decisive in establishing the properties of conv(J g ) and conv(M g ). We will say that the map g satisfies, respectively, (W) and (W ′ ) if:

(W) for all x 1 , x 2 , x 3 ∈ S, there exists i, j, k with {i, j, k} = {1, 2, 3}, such that: g(x i , x j ) ⊆ g(x i , x k ) and g(x k , x j ) ⊆ g(x k , x i ); (W ′ ) for all x 1 , x 2 , x 3 ∈ S, there exists i, j, k with {i, j, k} = {1, 2, 3}, such that:

g(x i , x j ) ⊆ g(x i , x k ), g(x k , x j ) ⊆ g(x k , x i ) and g(x j , x i ) ⊆ g(x j , x k ).
Notation 1. We adopt a delimiter-free notation of subsets defined in extension. For instance, {a, b} will be denoted indifferently either as ab or as ba, subset {a, b, c} will be denoted as any of the expressions abc, bac, acb, cab, bca, etc. Depending on the context, the notation a may denote either the element a or the singleton {a}.

It is easily checked that (W ′ ) ⇒ (H) and (W ′ ) ⇒ (W). As shown by the following two counter-examples, no other implication exists between axioms (H), (W) and (W ′ ).

Counter-example 1. Let S = abc and consider the map g 1 ∶ S × S ↦ 2 S whose values are given in Table 1. Clearly g 1 verifies (C 0 ), and, in addition, also condition (H) since:

g 1 (a, b) = ab ⊆ abc = g 1 (a, c), g 1 (b, c) = bc ⊆ abc = g 1 (b, a), g 1 (c, a) = ac ⊆ abc = g 1 (c, b) and g 1 (x, x) = x for all x ∈ abc. g 1 a b c a a ab abc b abc b bc c ac abc c Table 1: (H) ⇏ (W) and (H) ⇏ (W ′ )
If g 1 satisfies (W), then there exists x, y, z ∈ abc pairwise distincts such that g 1 (x, z) ⊆ g 1 (x, y) and g 1 (y, z) ⊆ g 1 (y, x). Now, we have:

g 1 (a, c) = abc ⊆ ab = g 1 (a, b), g 1 (c, b) = abc ⊆ ac = g 1 (c, a) and g 1 (b, a) = abc ⊆ bc = g 1 (b, c).
Thus g 1 does not satisfy (W), which proves that (H) implies neither (W) nor (W ′ ).

Counter-example 2. Let S = abc and consider the map g 2 ∶ S × S ↦ 2 S whose values are indicated in Table 2. Clearly g 2 verifies (C 0 ), and in addition, g 2 satisfies also (W) since:

g 2 a b c a a abc ac b abc b bc c ac bc c Table 2: (W) ⇏ (H) and (W) ⇏ (W ′ ) g 2 (a, c) = ac ⊆ abc = g 2 (a, b), g 2 (b, c) = bc ⊆ abc = g 2 (b, a) and g 2 (x, x) = x, for all x ∈ S.
However g 2 does not verify (H) for g 2 (c, a) = ac and g 2 (c, b) = bc are not comparable according to set inclusion. Consequently (W) implies neither (H) nor (W ′ ).

Proposition 3, below, together with corollary 4, emphasize the interest of axioms (H) or (W) from a clustering point of view.

Proposition 3. Let g be a map from S × S into 2 S which satisfies (C 0 ). Then the following properties hold true.

(i) If g satisfies (H), then the convexity induced by J g is hierarchical. (ii) If g satisfies (W), then the convexity induced by M g is weakly hierarchical.

PROOF. (i).

Let A and B be two elements of conv(J g ). Assume that A and B intersect properly. Then, there exist x 1 , x 2 , x 3 such that:

x 1 ∈ A ∖ B, x 2 ∈ A ∩ B and x 3 ∈ B ∖ A.
By definition, for all i, j ∈ {1, 2, 3}, J g (x i , x j ) = g(x i , x j ) ∪ g(x j , x i ). Since g verifies (H), we have g(x 2 , x 1 ) ⊆ g(x 2 , x 3 ) or g(x 2 , x 3 ) ⊆ g(x 2 , x 1 ). By convexity of A and B, according to the interval function J g , we deduce:

If g(x 2 , x 1 ) ⊆ g(x 2 , x 3 ) then x 1 ∈ g(x 2 , x 3 ) ⊆ J g (x 2 , x 3 ) ⊆ B: contradiction. If g(x 2 , x 3 ) ⊆ g(x 2 , x 1 ) then x 3 ∈ g(x 2 , x 1 ) ⊆ J g (x 2 , x 1 ) ⊆ A: contradiction.
Consequently A and B do not intersect properly, and the result is proved. (ii). By theorem 2, it is sufficient to prove that M g verifies condition (W 2 ), or in other words that:

No x 1 , x 2 , x 3 ∈ S exist such that for all i ∈ {1, 2, 3}, x i ∉ ⋃ xj ≠xi≠x k M g (x j , x k ).
Within this aim, let us consider three distinct arbitrary elements of S, say x 1 , x 2 , x 3 . Even if it means renumbering the elements x i , one can assume without loss of generality that: g(x 1 , x 2 ) ⊆ g(x 1 , x 3 ) and g(x 3 , x 2 ) ⊆ g(x 3 , x 1 ), since g verifies (W). It results that x 2 ∈ g(x 1 , x 3 ) ∩ g(x 3 , x 1 ) = M g (x 1 , x 3 ), which proves that M g verifies (W 2 ). ◻

The following corollary results immediately from Proposition 3 and the fact that (W ′ ) ⇒ (H) and (W ′ ) ⇒ (W).

Corollary 4. If g verifies (C 0 ) and (W ′ ), then the convexity induced by J g (resp. M g ) is hierarchical (resp. weak hierarchical). Proposition 5. If g ∶ S × S ↦ 2 S satisfies axiom (C 0 ), then the following conditions are equivalent.

(i) g is symmetrical, (ii) J g = M g , (iii) J g = M g = g.
PROOF. (iii) ⇔ (i) and (iii) ⇒ (ii) are obvious. Moreover (ii) ⇒ (iii) is easy to check. ◻ Proposition 6. Let C be a multilevel clustering on S. Then C is hierarchical if and only if there exists a map g ∶ S × S ↦ 2 S satisfying (C 0 ) and (H), such that C = conv(J g ).

PROOF. From Proposition 3, we know that if g ∶ S × S ↦ 2 S satisfies (C 0 ) and (H), then C = conv(J g ) is hierarchical. Assume now that the collection C is hierarchical. We have C = conv(seg(C )) since C is weakly-hierarchical (cf. [START_REF] Bertrand | Multilevel clustering models and interval convexities[END_REF], Proposition 3.10, p.61). Now, seg(C ) is clearly a map from S × S to 2 S which is symmetrical and satifies (C 0 ). Then, from Proposition 5, it results that J seg(C ) = seg(C ), so that C = conv(J seg(C ) ). In addition, from Theorem 1, we deduce that the map seg(C ) satisfies (H), as required. ◻ Proposition 7. Let C be a multilevel clustering on S. Then, C is weakly hierarchical if and only if it exists a map g ∶ S × S ↦ 2 S satisfying (C 0 ) and (W), and such that C = conv(M g ).

PROOF. From Proposition 3-(i), it is clear that the existence of a map g ∶ S × S ↦ 2 S that satisfies (C 0 ) and (W), together with the relation C = conv(M g ), implies that C is weakly hierarchical. Conversely, assume that C is weakly hierarchical, and let us consider the segment function σ = seg(C ). Then σ is symmetrical, so that σ = M σ by Proposition 5. Moreover, C = conv(σ) since C is weakly-hierarchical (cf. [START_REF] Bertrand | Multilevel clustering models and interval convexities[END_REF], Proposition 3.10, p.61) and, by definition of σ = seg(C ), the map σ satisfies (C 0 ). Therefore, in order to prove the proposition, we are left to prove that σ satisfies (W). Since C is weakly hierarchical, its segment function σ satisfies (W 2 ) by Theorem 1. Consequently, given x 1 , x 2 , x 3 ∈ S, there exists i, j, k such that x j ∈ σ(x i , x k ) with {i, j, k} = {1, 2, 3}. As σ is symmetrical, we have

x j ∈ σ(x i , x k ) = σ(x k , x i ). By definition of a segment function, it results that σ(x i , x j ) ⊆ σ(x i , x k ) and σ(x k , x j ) ⊆ σ(x k , x i ),
which proves that σ satisfies (W), as required. ◻

We end this section with properties of convexities conv(J g ) and conv(M g ). Proposition 8. Let g ∶ S × S ↦ 2 S be a map that satisfies axioms (C 0 ) and (H). If C is a subset of S and x 0 is any element of C, then the following statements hold.

(i) The finite collection g(x 0 , C) = {g(x 0 , y) y ∈ C} is linearly ordered by inclusion.

Its greatest element will be denoted as max g(x 0 , C) in the sequel. (ii) If C is J g -convex, then C = g(x 0 , y 0 ), for all y 0 ∈ C such that g(x 0 , y 0 ) = max g(x 0 , C).

PROOF. Let C be a J g -convex subset and x 0 ∈ C. (i). Since g satisfies (H), we have g(x 0 , u) ⊆ g(x 0 , v) or g(x 0 , v) ⊆ g(x 0 , u) for all u, v ∈ C. Therefore, the finite collection of subsets g(x 0 , C) = {g(x 0 , y) y ∈ C} is linearly ordered by inclusion, and thus has a (unique) greatest element. (ii). Let y 0 ∈ C, such that g(x 0 , y 0 ) = max g(x 0 , C). Then, for all element u of C, u ∈ g(x 0 , y 0 ) since, on the one hand, we have u ∈ g(x 0 , u) for g satisfies (C 0 ) and, on the other hand, g(x 0 , u) ⊆ g(x 0 , y 0 ). Consequently, C ⊆ g(x 0 , y 0 ). Conversely, g(x 0 , y 0 ) ⊆ J g (x 0 , y 0 ) ⊆ C since C is J gconvexe. It results that C = g(x 0 , y 0 ). ◻ Remark 3. Let g ∶ S × S ↦ 2 S satisfy (C 0 ). Assume first that g satisfies (H). From Proposition 3, the collection conv(J g ) of J g -convex subsets of S is hierarchical, and is then closed under intersection. Let C be a J g -convex subset of S. From Proposition 8, for all x 0 ∈ C, there exists y 0 ∈ C such that C = g(x 0 , y 0 ), and thus C = J g (x 0 , y 0 ). Assume now that g satisfies (W ′ ). From Corollary 4, the collection conv(M g ) of M g -convex subsets of S is weakly hierarchical. Let C be a M g -convex subset. A result similar to Proposition 8 would imply that there exist x 0 , y 0 ∈ C such that C = M g (x 0 , y 0 ). The following counterexample shows that such elements x 0 and y 0 do not exist in the general case. Let S = abcd and g the map from S × S to 2 S defined by Table 3. It is clear that g satisfies (C 0 ). Let us prove that g satisfies also (W ′ ), i.e. that for all three distinct elements of S, say x 1 , x 2 , x 3 , there exists some permutation (x i , x j , x k ) of (x 1 , x 2 , x 3 ) such that: Consider all distinct triples of elements of S, i.e. abc, abd, acd and bcd. For each of these triples, there exists some permutation of their elements that satisfy (1). For example, for the triple abc, we have :

g(x i , x j ) ⊆ g(x i , x k ), g(x k , x j ) ⊆ g(x k , x i ) and g(x j , x i ) ⊆ g(x j , x k ). (1) 
g(c, a) = ac ⊆ g(c, b) = abc, g(b, a) = abd ⊆ g(b, c) = abcd, and g(a, c) = ac ⊆ g(a, b) = abcd,
and thus the permutation (c, a, b) satifies (1). For other triples, i.e. abd, acd, bcd, one can check similarly that the respective permutations (b, d, a), (a, c, d) and (d, b, c) satisfy [START_REF] Apresjan | An algorithm for constructing clusters from a distance matrix[END_REF]. It results that g satisfies (W ′ ). Let us then consider subset S which is obviously M g -convex. It can be observed that there is no x 0 , y 0 ∈ S such that S = M g (x 0 , y 0 ). Indeed, from Table 3, one can easily check that for all u, v ∈ S, if g(u, v) = abcd = S, then g(v, u) ⊂ abcd, which shows that S ≠ M g (u, v). Notation 2. We consider the relation defined by f ⪯ g if f (x, y) ⊆ g(x, y) for all elements x, y of S. Furthermore, define f ≺ g to mean that f ⪯ g and there exist x, y ∈ S such that f (x, y) ⊂ g(x, y), where ⊂ denotes the strict subset inclusion order. Proposition 9. Let I 1 and I 2 be interval functions on S. Then the following hold:

(i) I 1 ⪯ I 2 ⇒ conv(I 2 ) ⊆ conv(I 1 ), (ii) If for j ∈ {1, 2}, I j = seg(C j ) with C j a weak hierarchical convexity, then I 1 ⪯ I 2 ⇔ conv(I 2 ) ⊆ conv(I 1 )
PROOF. (i). The proof is elementary (cf. [START_REF] Bertrand | Multilevel clustering models and interval convexities[END_REF] p. 64).

(ii). Considering (i), we are left to prove conv(I 2 ) ⊆ conv(I 1 ) ⇒ I 1 ⪯ I 2 . Then, assume that conv(I 2 ) ⊆ conv(I 1 ) and let x, y ∈ S. We aim to prove I 1 (x, y) ⊆ I 2 (x, y). By hypothesis, the convexity C j is weakly hierarchical, so that we have C j = conv(seg(C j )) = conv(I j ) for all j ∈ {1, 2}, and thus C 2 ⊆ C 1 . We obtain

I 1 (x, y) = seg(C 1 )(x, y) = ⋂{C ∈ C 1 x, y ∈ C} ⊆ ⋂{C ∈ C 2 x, y ∈ C} = seg(C 2 )(x, y) = I 2 (x, y),
as required. ◻

Apresjan hierarchies and Bandel and Dress weak-hierarchies as interval convexities

The notion of a cluster is often defined in some broadly and loosely sense, i.e. in a way similar to the following: given a ground set S endowed with some measure of dissimilarity, a cluster is any subset of S having high degrees of cohesion and isolation according to the values taken by this dissimilarity. In this section, we are concerned with two more precise definitions of a cluster. These definitions are based on the notion of a ball according to a dissimilarity δ defined on the set of objects to be clustered. Let us first recall that a dissimilarity δ on S is a map from S × S to R + , satisfying δ(x, y) = δ(y, x) ≥ δ(x, x) = 0 for all x, y ∈ S. The diameter of a subset A of S according to δ, denoted as diam δ (A), is defined by diam δ (A) = max{δ(x, y) x, y ∈ A}. Given a ∈ S and ρ ≥ 0, we denote by B δ (a, ρ) the closed ball of center a and radius ρ with respect to δ, i.e. B δ (a, ρ) = {x ∈ S δ(x, a) ≤ ρ}. The collection of all the closed balls with respect to the dissimilarity δ, is called the ballean of the space (S, δ) (e.g. [START_REF] Dovgoshey | Finite ultrametric balls. p-Adic Numbers[END_REF]) and is denoted hereafter as Balls(X, δ).

We now consider two interval functions whose respective related convex subsets will turn out to coincide with two distinct cluster types: the Apresjan clusters of δ (cf. Proposition 12) and the Bandelt and Dress clusters of δ (cf. Proposition 17). Let us first introduce some definitions and notations.

Definition 3. Let g B δ ∶ S × S → 2 S be the map defined for all x, y ∈ S, by:

g B δ (x, y) = B δ (x, δ(x, y)) = {s ∈ S δ(x, s) ≤ δ(x, y)}. Let D δ = g B δ ∪ g B δ = J g B δ and B δ = g B δ ∩ g B δ = J g B δ .
We note that for all x, y ∈ S,

D δ (x, y) = {z ∈ S min{δ(x, z), δ(y, z)} ≤ δ(x, y)}, B δ (x, y) = {z ∈ S max{δ(x, z), δ(y, z)} ≤ δ(x, y)}.
The subset B δ (x, y) is called the 2-ball generated by x and y according to dissimilarity δ. If there is no ambiguity on the choice of the dissimilarity δ, the maps g B δ , D δ and B δ will be denoted respectively as g B , D and B.

It is clear that x, y ∈ g B (x, y) for all x, y ∈ S, so that g B satisfies axiom (C 0 ). Therefore its associated maps D = J g B and B = M g B are interval functions defined on S. In addition, as shown by the next proposition, g B satisfies axiom (W ′ ).

Proposition 10. g B satisfies (W ′ ).

PROOF. Let x 1 , x 2 , x 3 ∈ S. Note that there exist i, j, k such that {i, j, k} = {1, 2, 3} and :

δ(x i , x j ) ≤ δ(x j , x k ) ≤ δ(x i , x k ).
By definition of g B , we deduce the following inclusions:

g B (x i , x j ) ⊆ g B (x i , x k ) , g B (x k , x j ) ⊆ g B (x k , x i ) and g B (x j , x i ) ⊆ g B (x j , x k ).
In other words, g B satisfies (W ′ ). ◻

The following result derives from Proposition 10 and Corollary 4.

Corollary 11. The interval functions D and B induce convexities that are respectively hierarchical and weakly hierarchical.

Apresjan hierarchies

Given a dissimilarity δ on S, Apresjan [START_REF] Apresjan | An algorithm for constructing clusters from a distance matrix[END_REF] considers the subsets C of S such that for all x, y ∈ C: δ(x, y) < min

z∉C min{δ(x, z), δ(y, z)} . (2) 
A nonempty subset will be said to be an Apresjan cluster of δ, if it satisfies [START_REF] Bandelt | Four point characterization of the dissimilarity functions obtained from indexed closed weak hierarchies[END_REF]. The set of Apresjan clusters of any dissimilarity δ is a hierarchy called the Apresjan hierarchy of δ (cf. e.g. [START_REF] Apresjan | An algorithm for constructing clusters from a distance matrix[END_REF][START_REF] Benzécri | Description mathématique des classifications[END_REF]). The Apresjan hierarchy is one of the most standard clustering structures, which has provided a common starting point for several constructions of cluster systems (cf. [START_REF] Bandelt | Weak hierarchies associated with similarity measures: an additive clustering technique[END_REF][START_REF] Diatta | Quasi-ultrametrics and their 2-ball hypergraphs[END_REF][START_REF] Bryant | A family of clustering and tree construction methods[END_REF]).

As pointed out by Bryant and Berry [START_REF] Bryant | A family of clustering and tree construction methods[END_REF], the notion of an Apresjan cluster provides an intuitive and compelling definition of a cluster. However for most dissimilarities, the Apresjan hierarchy is based on a stringent clustering criterion, so that the set of Apresjan clusters of an arbitrary dissimilarity is often a sparse hierarchy which differs from the trivial hierarchy (i.e. the collection of the whole dataset and its singletons) only by a few small non trivial clusters (cf. [START_REF] Bryant | A family of clustering and tree construction methods[END_REF]). It results that in the context of an applied data analysis, the interest per se of the Apresjan hierarchy is often limited.

By showing that the set of D-convex subsets coincide with the collection of Apresjan clusters, the next proposition gives the semantics of D-convex subsets.

Proposition 12. For all dissimilarity δ on S and all nonempty subset C of S, the following statements are equivalent.

(i) C is an Apresjan cluster of δ.

(ii) C is D δ -convex. (iii) δ(x, y) < δ(x, z) for all (x, y, z) ∈ C × C × (S ∖ C).
PROOF. (i) ⇔ (ii). Let C be a nonempty subset of S and δ a dissimilarity defined on S. First, assume that C is an Apresjan cluster of δ, and consider two elements x, y of C. By definition of an Apresjan cluster, if z ∈ S fulfills one of the inequalities δ(x, z) ≤ δ(x, y) or δ(y, z) ≤ δ(x, y), then z belongs necessarily to C. Therefore C is D-convex. Conversely, assume that C is Dconvex. Consider x, y ∈ C and z ∈ C. Neither δ(x, z) ≤ δ(x, y) nor δ(y, z) ≤ δ(x, y) hold, otherwise z would belong to C since C is D-convex. Therefore, for all x, y ∈ C and all z ∈ C, we have min{δ(x, z), δ(y, z)} > δ(x, y), which proves that C is an Apresjan cluster of δ.

(i) ⇔ (iii). Condition (iii) is simply a reformulation of (i). ◻

From proposition 12, it results that the collection of Apresjan clusters coincides with the interval convexity conv(D) = conv(J g B ), which, by Corollary 11, is a hierarchy. In the sequel, the Apresjan hierarchy of a dissimilarity δ will be denoted by H A (δ).

Proposition 13. Let A ⊆ S and F δ (A) be the collection of subsets of diameter equal to the diameter of A, according to a dissimilarity δ. If A is an Apresjan cluster of δ, then A is a maximal subset of F δ (A) (w.r.t the set-inclusion order).

PROOF. Let A, B ⊆ S, and suppose that A ⊂ B. Let a 1 and a 2 be two elements of A such that δ(a 1 , a 2 ) = diam δ A and b ∈ B ∖ A. Since A is an Apresjan cluster of δ, we have : The converse of Proposition 13, however, is not true as shown by the example in Figure 1.

δ(a 1 , a 2 ) < min{δ(a 1 , b), δ(a 2 , b)}, which implies that diam δ A < diam δ B, as required. ◻
Notation 4. Recall that the distance between any two vertices x and y in a graph is defined as the length (i.e., the number of edges) of a shortest path joining x and y. Given a vertex subset A in a graph G, Diam G (A) will denote its diameter in the graph G, i.e. the maximal distance between two vertices of A. Given A ⊆ S, we also denote by µ δ (A), or simply µ(A) if the choice of δ is clear, the threshold value defined by:

µ(A) = µ δ (A) = min{α ≥ 0 A is connected in the graph Γ δ (α)},
where Γ δ (α), or simply Γ(α) if there is no ambiguity on the choice of δ, denotes the (lower) threshold-based graph of dissimilarity δ at level α. The graph Γ(α), also called the Vietoris-Rips graph (see e.g. [START_REF] Bradley | Finding ultrametricity in data using topology[END_REF]), is defined as the (undirected) graph whose vertex set is S, and for which xy ⊆ S is an edge iff δ(x, y) ≤ α. For all α ≥ diam δ (S), the threshold-based graph Γ δ (α) coincides with the complete graph K S defined on S. Instead of Γ δ µ δ (A) , we will write Γ δ (A), or simply Γ(A) if there is no ambiguity on the choice of δ.

The following proposition characterizes the D-convex subsets as a type of connected components of Γ(A) = Γ δ (A).

Proposition 14. Let δ be a dissimilarity on S. A nonempty subset A ⊆ S is D-convex if and only if the following statements hold.

(i) A is a connected component of Γ(A). (ii) If A is not a clique in Γ(A), then δ(a, b) < δ(a, x) for all triple (a, b, x) ∈ C × C × (S ∖ C) such that δ(a, b) > µ(A). PROOF. Assume first that A is D-convex. Suppose that A is not a connected component of Γ(A)
. By definition of µ(A), the subset A is connected in the graph Γ(A), so that A must be not maximally connected in Γ(A), or equivalently there must exist x ∈ A and a ∈ A such that δ(x, a) ≤ µ(A). Now, suppose that δ(a, b) < µ(A) for all b ∈ A ∖ a. Then, we deduce that A is a connected subset of the graph Γ(α) for α = max Consider now the case where A is not a clique, and let (a, b, x)

∈ A × A × (S ∖ A). Assume that δ(a, b) ≤ µ(A). If δ(a, x) ≤ δ(a, b), then δ(a, x) ≤ µ(A), which implies that x ∈ A since, by (i), A is the connected component of Γ(A) that contains a and b. This contradicts the fact that (a, b, x) ∈ A × A × (S ∖ A). Therefore δ(a, b) < δ(a, x). Assume that δ(a, b) > µ(A). Applying (ii), we deduce that δ(a, b) < δ(a, x). We conclude that if A is not a clique, then δ(a, b) < δ(a, x) for all (a, b, x) ∈ A × A × (S ∖ A).
This implies that A is D-convex by Proposition 12-(iii). Finally, it results that if (i) and (ii) are valid, then A is D-convex. ◻ Propositions 15 and 16 below refer to the notion of an indexed multilevel clustering. An indexed multilevel clustering is a pair (C , f ) where C is a multilevel clustering, and f a map from C into R + such that f (X) = 0 when X is minimal in C , and f (A) < f (B) when A ⊂ B. The map ρ ∶ S × S ↦ R + defined, for all x, y ∈ S, by:

ρ(x, y) = min{f (A) x, y ∈ A ∈ C }, (3) 
is a dissimilarity called the dissimilarity induced by (C , f ), or the cophenetic dissimilarity of (C , f ). In the sequel, we denote by Φ the map that associates each indexed multilevel clustering (C , f ) with its induced dissimilarity ρ. It is known that the dissimilarity induced by an indexed hierarchy is ultrametric. A dissimilarity δ is an ultrametric on S if

δ(x, y) ≤ max{δ(x, z), δ(z, y)}, (4) 
for all x, y, z ∈ S. Inequality (4) is sometimes called the strong triangle inequality.

Proposition 15. If δ is an ultrametric on S, then Φ(Balls(S, δ), diam δ ) = δ.

PROOF. Assume that δ is an ultrametric on S and denote by B δ the set of its 2-balls. By Theorem 2 in [START_REF] Diatta | Quasi-ultrametrics and their 2-ball hypergraphs[END_REF], the indexed multilevel clustering (B δ , diam δ ) induces δ. Then, it is sufficient to prove that B δ = Balls(S, δ). Now, in an ultrametric space, every point of a ball is a center of this ball (cf. for example [START_REF] Dovgoshey | Finite ultrametric balls. p-Adic Numbers[END_REF]). Consequently, we deduce that B PROOF. Let δ be an ultrametric. On the one hand, we have Φ(H A (δ), diam δ ) = ρ by hypothesis and, on the other hand, we have Φ(Balls(X, δ), diam δ ) = δ from Proposition 15. Therefore, it is sufficient to prove that H A (δ) = Balls(X, δ). We first prove that H A (δ) ⊆ Balls(X, δ). Let x 0 be an element of an arbitrary cluster of Apresjan, say C. From Proposition 8, there exists

y 0 ∈ E C (x 0 ) such that C = g B (x 0 , y 0 ) since C ∈ H A (δ) = conv(J g B ) and g B satisfies (W ′ )
and thus (H) also. Therefore C = B(x 0 , δ(x 0 , y 0 )), which proves that H A (δ) ⊆ Balls(X, δ).

Conversely, let us prove that Balls(X, δ) ⊆ H A (δ). Consider an arbitrary closed ball B(a, λ) = B δ (a, λ), with a ∈ S and λ a nonnegative real number. We are then left to prove that B(a, λ) is an Apresjan cluster of δ. Consider x, y ∈ B(a, λ) and z ∉ B(a, λ). Since δ is an ultrametric, elements x and y are centers of B(a, λ). Therefore δ(x, y) ≤ λ < δ(x, z) and λ < δ(y, z), since z ∉ B(a, λ). Thus we deduce that δ(x, y) < min 

In the sequel, a nonempty subset is called a Bandelt and Dress cluster of δ, if it satisfies [START_REF] Benzécri | L'Analyse des Données[END_REF].

By showing that the B-convex subsets coincide with the clusters of Bandelt and Dress, the next proposition 17 determines the semantics of B-convex subsets. The proof of this property is left to the reader, for it is straightforward and very similar to the proof of Proposition 12.

Proposition 17. A nonempty subset of S is a Bandelt and Dress cluster of a dissimilarity δ if and only if it is B-convex.

From this proposition, it results that the collection of Bandelt and Dress clusters of δ is a weak hierarchy [START_REF] Bandelt | Weak hierarchies associated with similarity measures: an additive clustering technique[END_REF][START_REF] Bandelt | Four point characterization of the dissimilarity functions obtained from indexed closed weak hierarchies[END_REF][START_REF] Diatta | Quasi-ultrametrics and their 2-ball hypergraphs[END_REF]]. In the sequel, this weak hierarchy is called the Bandelt and Dress weak hierarchy of δ, and denoted by W BD (δ).

Proposition 18. For all dissimilarity δ on S, we have Figure 2 shows that the inclusion of the Apresjan hierarchy into the Bandelt and Dress weak hierarchy may be strict. This figure shows also that the converse of Proposition 18-(ii) does not hold.

(i) H A (δ) ⊆ W BD (δ), (ii) 
A direct consequence of the next proposition is that the Apresjan hierarchy coincides with the Bandelt and Dress weak hierarchy, when they are constructed from the same ultrametric dissimilarity.

Proposition 19. Let δ be a dissimilarity on S. Then the following statements are equivalent. 

(i) δ is ultrametic, (ii) B δ (x, δ(x, y)) = B δ (y, δ(y, x)), ( 

A sequence of path-based dissimilarities decreasing from any dissimilarity to its subdominant ultrametric

Let us consider an arbitrary dissimilarity δ on S, and its associated complete undirected graph K S defined by weighting each edge uv (with u ≠ v) by δ(u, v). Let P be any simple (i.e. without loops) path of graph K S , and denote by val δ (P ) the maximum δ-jump within P , that is the maximum edge-weight of P . More precisely, if P = u 0 u 1 . . . u m , we denote

val δ P = max 1≤i≤m δ(u i-1 , u i ), if u 0 ≠ u m ,
0, otherwise, i.e. if P is reduced to one vertex u 0 = u m .

Let P x-y be the set of simple paths of K S that join vertex x to vertex y. It is well known that the map (x, y) ∈ S × S ↦ min P ∈ Px-y val δ (P ) coincides with the subdominant ultrametric of δ: see for example [START_REF] Benzécri | L'Analyse des Données[END_REF][START_REF] Bayod | Subdominant ultrametrics[END_REF]. In order to improve the path-based clustering method which was proposed by Fischer et al. [START_REF] Fischer | Path based pairwise data clustering with application to texture segmentation[END_REF][START_REF] Fischer | Path-based clustering for grouping of smooth curves and texture segmentation[END_REF] Definition 5. Let be any integer greater than or equal to 1. We denote by P ( ) the set of simple paths of length at most in K S . For all elements x, y of S, let P ( ) x be the subset of P ( ) whose first vertex is x, and P ( )

x-y be the subset of all x -y paths in P ( ) , i.e. the set of paths of length at most in graph K S , and whose first and last vertices are respectively x and y. Note that P (n-1)

x-y = P (n)

x-y = . . . = P (m)

x-y = P x-y for all m ≥ n. We will denote by δ the map that associates each (x, y) ∈ S × S to the smallest maximum δ-jump within the paths in P ( )

x-y . Formally, for all x, y ∈ S, δ (x, y) = min

P ∈ P ( )
x-y val δ (P ).

Remark 5. It may be observed that δ is well defined on S × S, since P ( )

x-y ≠ ∅ for all x, y ∈ S and all ≥ 1. Notice also that δ 1 = δ and that δ is clearly a dissimilarity on S for all ≥ 1. Furthermore, Xu et al. and Yu et al. employ the intuitive term "the transitive distance with order " to designate δ (cf. [START_REF] Xu | Clustering with transitive distance and k-means duality[END_REF][START_REF] Yu | Transitive distance clustering with k-means duality[END_REF][START_REF] Yu | On order-constrained transitive distance clustering[END_REF]), although δ does not necessarily satisfy the metric inequality.

The rest of this section is devoted to the properties of the so-called transitive distances with order ≥ 1. In what follows, we will write simply val P instead of val δ P if the choice of δ is clear from the context. Proposition 20. Let δ be a dissimilarity on S, and 1 , 2 be strictly positive integers. The following assertions hold.

(i) If 1 ≤ 2 , then δ 1 ⪰ δ 2 , where ⪰ designates the point-wise order defined on dissimilarities.

(ii

) If 1 , 2 ≥ n -1, then δ 1 = δ 2 = δ n-1 .
(iii) δ n-1 is the subdominant ultrametric of δ PROOF. (i). Let 1 ≤ 2 and x, y ∈ S. Then P (l1)

x-y ⊆ P (l2)

x-y , and thus δ 1 (x, y) ≥ δ 2 (x, y).

(ii). When ≥ n-1, then P ( ) is clearly the set of all simple paths in K S . Thus δ 1 = δ 2 = δ n-1 .

(iii). It is easily checked that δ n-1 is an ultrametric. By (i), δ n-1 is lower than δ 1 = δ. Indeed, it is well-known that δ n-1 is the subdominant ultrametric of δ: see e.g. [START_REF] Benzécri | L'Analyse des Données[END_REF][START_REF] Bayod | Subdominant ultrametrics[END_REF]. ◻ Definition 6. Let x and y be two arbitrary elements of S, and Q a simple path of length m and from x to y. The edge of Q of which one extremity is y, is called the extremal edge of Q before y.

Let Q = u 0 u 1 . . . u m with u 0 = x and u m = y, and let z ≠ u i for all i ∈ [1, m]. Then, we define the paths Q ∖ y, zQ and Qz as follows:

Q ∖ y = u 0 u 1 . . . u m-1 , zQ = zu 0 u 1 . . . u m and Qz = u 0 u 1 . . . u m z.
Moreover, we will say that a path Q from x to y, is -optimal if Q ∈ arg min

P ∈ P ( ) x-y val P.
The following proposition is concerned with the complexity of computing the dissimilarity δ (with ∈ [2, n -1]). By induction on , property (i) enables to compute the values of δ (x, y) in a linear time w.r.t the size of S, for each x, y ∈ S and ∈ [2, n -1]. Properties (ii) and (iii) provide conditions for further reduction of this complexity. Let us first examine the case where there exists some -optimal path from x to y, whose length is less than or equal to -1. Denote by C (x, y) such a path. Then, C (x, y) ∈ P

( -1) x-y ⊆ P ( ) x-y
and, since δ ⪯ δ -1 by Proposition 20 (ii), it results that δ (x, y) = val(C (x, y)) ≥ min

P ∈ P ( -1)
x-y val(P ) = δ -1 (x, y) and δ (x, y) ≤ δ -1 (x, y).

This implies that δ (x, y) = δ -1 (x, y) = max{δ -1 (x, y), δ(y, y)}.

Now, suppose that there exists z 0 ∈ S that satisfies the following inequality (7) defined by max{δ -1 (x, z 0 ), δ(z 0 , y)} ≨ max{δ -1 (x, y), δ(y, y)} = δ (x, y).

Denote by C -1 (x, z 0 ) an ( -1)-optimal path from x to z 0 . If y is a vertex of C -1 (x, z 0 ), then let P be the sub-path of C -1 (x, z 0 ) from x to y, and let P = C -1 (x, z 0 )y otherwise.

In either cases, we have P ∈ P ( )

x-y . Moreover, we deduce, from [START_REF] Bertrand | Set systems for which each set properly intersects at most one other set -Application to cluster analysis[END_REF], that P satisfies val P < δ (x, y). This contradicts the definition of δ (x, y). Therefore, no element z 0 ∈ S satisfies [START_REF] Bertrand | Set systems for which each set properly intersects at most one other set -Application to cluster analysis[END_REF], and consequently, for all z ∈ S, we have

max{δ -1 (x, z), δ(z, y)} ≥ δ (x, y) = max{δ -1 (x, y), δ(y, y)}.
It results that δ (x, y) = min z ∈ S max{δ -1 (x, z), δ(z, y)}, as required.

We are now left to examine the case where each -optimal path from x to y is of length equal to . Let C (x, y) be an arbitrary such -optimal path, and z 1 the vertex linked to y in the extremal edge of C (x, y) before y. Note that

z 1 ≠ x since ≥ 2. Let Q = C (x, y) ∖ y. Clearly, we have Q ∈ P ( -1)
x-z1 , and moreover

val C (x, y) = max(val Q, δ(z 1 , y)) ≥ max{δ -1 (x, z 1 ), δ(z 1 , y)}.
Suppose now that this inequality is strict, i.e.

val C (x, y) > max{δ -1 (x, z 1 ), δ(z 1 , y)}. (8) 
Let C -1 (x, z 1 ) be an ( -1)-optimal path from x to z 1 , and let Q ′ be the path defined as follows

Q ′ = the sub-path of C -1 (x, z 1 ) from x to y, if y is a vertex of C -1 (x, z 1 ), C -1 (x, z 1 )y, otherwise.
From [START_REF] Bertrand | On lower-maximal paired-ultrametrics[END_REF], it results that

val Q ′ ≤ max(δ -1 (x, z 1 ), δ(z 1 , y)) < val C (x, y) = δ (x, y),
which is contradictory, for Q ′ ∈ P ( )

x-y . It results:

val C (x, y) = max{δ -1 (x, z 1 ), δ(z 1 , y)}. (9) 
Let z be an arbitrary element of S. First observe that δ (x, y) ≤ max{δ -1 (x, y), δ(y, y)} and δ (x, y) ≤ max{δ -1 (x, x), δ(x, y)}, so that For all z ∈ {x, y}, δ (x, y) ≤ max{δ -1 (x, z), δ(z, y)}.

Now, suppose that z ∈ {x, y} and consider an ( -1)-optimal path from x to z, denoted as

C -1 (x, z). If y ∈ C -1 (x, z), then R 1 = C -1 (x, z
)y is a (simple) path from x to y, and thus

δ (x, y) ≤ val R 1 = max{val C -1 (x, z), δ(z, y)} = max{δ -1 (x, z), δ(z, y)}. ( 11 
)
If y ∈ C -1 (x, z), then denote as R 2 the sub-path of C -1 (x, z) from x to y. We have

δ (x, y) ≤ δ -1 (x, y) ≤ val R 2 ≤ val C -1 (x, z) ≤ max{δ -1 (x, z), δ(z, y)}. ( 12 
)
From inequalities [START_REF] Bradley | Finding ultrametricity in data using topology[END_REF], ( 11) and ( 12), it follows that δ (x, y) ≤ max{δ -1 (x, z), δ(z, y)}, for all z ∈ S. Moreover, using ( 9), we conclude that δ (x, y) = min z ∈ S max{δ -1 (x, z), δ(z, y)}, as required.

(ii). We assume that δ (x, y) = δ -1 (x, y) for all y ∈ S. We aim to prove that δ (iii) is a direct consequence of (ii). ◻ Notation 7. Given an arbitrary dissimilarity δ defined on S, we will denote by r(δ) the minimum value of such that δ = δ +1 . Formally r(δ

) = min{ ∈ [1, n -1] δ = δ +1 }.
From Proposition 20-(iv), we derive Corollary 22 which relates the ultrametricity of δ to r(δ).

Corollary 22. A dissimilarity δ is ultrametric iff r(δ) = 1.
Given any dissimilarity δ, we define the function g δ from δ as follows.

Definition 8. For ∈ {1, . . . , n -1}, the map g δ ∶ S × S ↦ 2 S is defined by:

g δ (x, y) = ⋃ {P ∈ P ( )
x val δ (P ) ≤ δ (x, y)}.

The map g δ trivially satisfies axiom (C 0 ), i.e. x, y ∈ g δ (x, y). Thus, we can consider its two associated interval functions J g δ and M g δ according to the general convex framework introduced in section 3. In the sequel, when the choice of the dissimilarity δ is clear from the context, we will write simply g , J and M instead of g δ , J g δ and M g δ , respectively.

Proposition 23. Let δ be an arbitrary dissimilarity and ∈ {1, . . . , n -1}. The following properties hold.

(i) For all x, y ∈ S, g (x, y) = B δ (x, δ (x, y)); in other words g = g B δ .

(ii)

g 1 = g B , J 1 = D δ and M 1 = B δ . More generally, J = D δ and M = B δ .
(iii) A nonempty subset is J -convex iff it is an Apresjan cluster of δ .

(iv) A nonempty subset is M -convex iff it is a Bandelt and Dress cluster of δ .

In the case where 1 ≤ < Diam Γ(A) (A), the converse of Proposition 24 is not always true. In other words, if 1 ≤ < Diam Γ(A) (A) and A is a connected component of the graph Γ(A), then A may or may not be J -convex, as shown by Examples 6 and 7 below. Example 6. Consider the dissimilarity δ defined in Figure 1, and let A = abc. In this case, µ(A) = 1, A is a connected component of Γ(A), and its diameter in Γ(A) is 2. Now, since

H A (δ) = {a, b, c, d, abc, S}, A is D-convex or, equivalently, J -convex for = 1. So, in this case, the connected component A is J -convex with < 2 = Diam Γ(A) (A).
Example 7. Consider the dissimilarity δ defined in Figure 4 and let A = abc. The interval function D δ is given in Table 4.

1 2 d 1 2 2 2 a c b Figure 4: dissimilarity δ a b c d a a abc abc S b - b S S c - - c S d - - - d Table 4: interval function D δ It is easily checked that µ(A) = 1, A is a connected component of Γ(A) and Diam Γ(A) (A) = 2.
However, for = 1, we have (i) g satisfies axiom (W ′ ). (ii) g n-1 is symmetrical. PROOF. (i). Let x 1 , x 2 , x 3 ∈ S and ∈ [1, n -1]. Then there exist i, j, k with {i, j, k} = {1, 2, 3} such that δ (x i , x j ) ≤ δ (x j , x k ) ≤ δ (x i , x k ). We deduce the following inequalities.

1 = < Diam Γ(A) (A) = 2, but the connected component A is not J -convex, since J 1 (b, c) = D δ (b, c) = S ⊆ A.
δ (x i , x j ) ≤ δ (x i , x k ), δ (x k , x j ) ≤ δ (x k , x i ) and δ (x j , x i ) ≤ δ (x j , x k ).
As a consequence, we obtain:

{P ∈ P ( ) xi val(P ) ≤ δ (x i , x j )} ⊆ {P ∈ P ( ) xi val(P ) ≤ δ (x i , x k )}, {P ∈ P ( ) x k val(P ) ≤ δ (x k , x j )} ⊆ {P ∈ P ( ) x k val(P ) ≤ δ (x k , x i )}, {P ∈ P ( ) xj val(P ) ≤ δ (x j , x i )} ⊆ {P ∈ P ( ) xj val(P ) ≤ δ (x j , x k )}.
Therefore g (x i , x j ) ⊆ g (x i , x k ), g (x k , x j ) ⊆ g (x k , x i ) and g (x j , x i ) ⊆ g (x j , x k ), which proves (i).

(ii). As previously noticed, δ n-1 is an ultrametric (more precisely, the subdominant ultrametric of δ), thus D δn-1 = B δn-1 by Proposition 19. Therefore M gn-1 = B δn-1 = D δn-1 = J gn-1 by Proposition 23 (i), so that g n-1 is symmetrical by Proposition 5. ◻ By Proposition 9-(i), conv(J 1 ) ⊆ conv(J 2 ) whenever J 2 ⪯ J 1 . Thus, it is natural to investigate whether 1 < 2 ⇒ J 2 ⪯ J 1 , which would provide a direct proof of Theorem 26 (ii). Unfortunately, this implication is generally not true as shown by the counterexample in Figure 5. Figure 5: A dissimilarity δ defined as follows: each full line (resp. dashed line) indicates that the value of δ is equal to 1 (resp. 2). We have:

J δ 1 (b, c) = bcd ⊂ J δ 2 (b, c) = abcd and J δ 1 (c, d) = S ⊃ J δ 2 (c, d) =
abcd. Therefore δ is an example of a dissimilarity such that interval functions J δ 1 and J δ 2 are uncomparable according to the order ⪯.

While Theorem 26 (ii) is not a direct consequence of previous results, Theorem 26 (i) is an almost immediate consequence of Proposition 24.

Theorem 26. For all dissimilarity δ on S, the following statements hold.

(i) The convexity induced by J n-1 is the single-link hierarchy of δ. (ii) For 1 , 2 ∈ {1, . . . , n -1}, if 1 ≤ 2 then conv(J 1 ) ⊆ conv(J 2 ).

PROOF. (i).

Since the diameter of any vertex subset A in graph Γ(A) is less than or equal to n-1, this property is a direct consequence of Proposition 24, and the well-known characterization of the single-link hierarchy as the collection of all connected components of all threshold-based graphs Γ[α] for α ≥ 0 (see e.g. [START_REF] Benzécri | L'Analyse des Données[END_REF][START_REF] Bayod | Subdominant ultrametrics[END_REF]).

(ii). Let ∈ {1, . . . , n -1} and A a J -convex nonempty subset of S. To prove (ii), it is sufficient to prove that A is J +1 -convex. According to (iii) in Proposition 12 and characterization (iii) in Proposition 23, we are left to prove that given any (x, y, z) ∈ A × A × (S ∖ A), we have δ +1 (x, y) < δ +1 (x, z). Then, let (x, y, z) ∈ A × A × (S ∖ A). By definition of δ +1 , we have:

δ +1 (x, z) = min P ∈ P ( +1) x-z [val(P )].
Let Q ⋆ denote an optimal path in P ( +1)

x-z , i.e. such that δ +1 (x, z) = val(Q ⋆ ). Let w denote the vertex of Q ⋆ which is adjacent to the extremity z of Q ⋆ . Suppose that w = x. Then, Q ⋆ = xz, so that by Proposition 20-(ii) and the hypothesis that A is J -convex, we deduce

δ +1 (x, z) = val(Q ⋆ ) = δ(x, z) = δ 1 (x, z) ≥ δ (x, z) > δ (x, y) ≥ δ +1 (x, y),
as required. Thus we are left to consider the case w ≠ x in the rest of the proof. Let us then denote

Q ⋆ = R ⋆ z where R ⋆ ∈ P ( )
x-w is the (non empty) path defined as Q ⋆ deprived from the edge wz. By definition, we have val(Q ⋆ ) = max{val(R ⋆ ), δ(w, z)}. Moreover, since Q ⋆ minimizes the valuation val among the paths in P ( +1)

x-z , without loss of generality we may assume that R ⋆ minimizes the valuation val among the paths in P ( )

x-w . Thus val(R ⋆ ) = δ (x, w). Case 1. Assume that δ (x, w) = val(R ⋆ ) ≥ δ(w, z). If w ∈ A, then (x, w, z) ∈ A × A × (S ∖ A),
and since A is J -convex, we deduce that δ (w, z) > δ (w, x). By Proposition 20-(ii), we have δ(w, z) = δ 1 (w, z) ≥ δ (w, z). Therefore,

δ(w, z) ≥ δ (w, z) > δ (w, x) = val(R ⋆ ) ≥ δ(w, z),
which is contradictory. Therefore w ∈ A, so that (y, x, w) ∈ A × A × (S ∖ A). Then, using again the fact that A is J -convex and Proposition 23-(iii), we obtain:

δ +1 (x, y) ≤ δ (x, y) < δ (x, w) = val(R ⋆ ) = val(Q ⋆ ) = δ +1 (x, z). Case 2. Assume now that δ (x, w) = val(R ⋆ ) < δ(w, z). Therefore δ +1 (x, z) = δ(w, z) = val(Q ⋆ ). (13) 
We will distinguish two subcases depending on whether w ∈ A or w ∈ A.

Subcase 1: w ∈ A. From ( 13), and since δ (x, w) > δ (x, y) for A is J -convex, we deduce:

δ +1 (x, z) = δ(w, z) > val(R ⋆ ) = δ (x, w) > δ (x, y) ≥ δ +1 (x, y).
Subcase 2: w ∈ A. Let v be the vertex of R ⋆ which is adjacent to the extremity x of R ⋆ . Note that v ≠ z since otherwise w = x, but v may eventually be equal to w.

Let us first prove that δ +1 (x, z) = δ (v, z). Recall that val(Q ⋆ ) = δ +1 (x, z) = δ(w, z). Then, the path Q ⋆ deprived from the edge xv, is a path in P ( ) v-z whose edge valuations are less than or equal to δ(w, z). Therefore:

δ (v, z) ≤ δ(w, z) = δ +1 (x, z).
Moreover, xv is an edge of R ⋆ and, as assumed, val(R ⋆ ) < δ(w, z), which implies that δ(x, v) < δ(w, z). Suppose that δ (v, z) < δ(w, z). Then, by definition, there would exist some path T ∈ P ( ) v-z such that val(T ) < δ(w, z). Let us distinguish two alternatives depending on whether x is or is not a vertex in T . If x ∈ T , then denote by U the subpath of T that connects x and z, and let m denote the length of U . Since U ⊆ T , we have m < , and consequently

U ∈ P (m) x-z ⊆ P ( +1) x-z and val(U ) ≤ val(T ) < δ(w, z) = δ +1 (x, z), which is contradictory. If x ∈ T , then the path xT ∈ P ( +1) x-z would satisfy val(xT ) = max{δ(x, v), val(T )} < δ(w, z) = δ +1 (x, z),
which is again contradictory. Therefore,

δ (v, z) = δ(w, z) = δ +1 (x, z).
Once more, let us distinguish two alternatives according to whether v ∈ A or not. Using the J -convexity of A, we deduce the following:

-if v ∈ A, then δ +1 (x, z) = δ(w, z) = δ (v, z) > max{δ(x, v), δ (v, y)} ≥ δ +1 (x, y); -if v ∈ A, then δ +1 (x, z) = δ(w, z) > val(R ⋆ ) ≥ δ(x, v) ≥ δ (x, v) > δ (x, y) ≥ δ +1 (x, y).
We conclude that δ +1 (x, z) > δ +1 (x, y), which proves that A is J +1 -convex, as required. ◻ Notation 9. In what follows, H SL (δ) denotes the single-link hierarchy of the dissimilarity δ, and H (δ) the Apresjan hierarchy of δ . Therefore H (δ) = conv(J ) by .

It results that H

A (δ) = H 1 (δ) and H SL (δ) = H n-1 (δ) = conv(J n-1 )
. For an arbitrary cluster C ∈ H SL (δ), we adopt the following notations:

λ(C, δ) = min{ C ∈ H (δ)} and λ(δ) = max X ∈ H SL (δ) λ(X, δ).
Moreover, λ(C, δ) will be called the chaining-length of cluster C. If there is no ambiguity on the choice of δ, λ(C, δ) and λ(δ) will be simply denoted respectively by λ(C) and λ.

Definition 10. Assume that C is a multilevel clustering of a type, say T, and k ≥ 2 is an integer. Then, we will say that sequence

F = C 1 , . . . , C j , . . . , C k is a filtration of C if (i) C 1 ⊆ . . . ⊆ C j ⊆ . . . ⊆ C k = C , (ii) For each 1 ≤ j ≤ k, the multilevel clustering C j is of the given type T.
The proof of the following proposition is straightforward.

Proposition 27. The size of every cluster of H SL (δ) is strictly greater than its chaining-length.

Next corollary results from Theorem 26 together with Notations 9.

Corollary 28. If C is a cluster of the single link hierarchy of δ, then

(i) 1 ≤ λ(C) ≤ λ ≤ r(δ) ≤ n -1.
(ii) The family H (δ) 1 ≤ < n is a filtration of the single-link hierarchy of δ. More precisely,

H A (δ) = H 1 (δ) ⊆ . . . ⊆ H λ-1 (δ) ⊂ H λ (δ) = . . . = H n-1 (δ) = H SL (δ). ( 14 
) (iii) C ∈ H (δ) iff λ(C) ≤ .
Corollary 28-(ii) shows that H (δ) =1,...,λ(δ) , whose first term is the Apresjan hierarchy of δ, is an increasing sequence of Apresjan hierarchies, with respect to the set inclusion order. The hierarchies H (δ) are then built according to a criterion which is less and less stringent, as increases. The question of whether this criterion is less and less demanding, as increases, from the clustering point of view, will be discussed in section 8. Given a dissimilarity δ, we first compare the Bandelt and Dress weak hierarchy W BD (δ) = conv(M 1 ), the convexity conv(M n-1 ) induced by the interval function M n-1 , the Apresjan hierarchy H A (δ) and the single-link hierarchy H SL (δ).

Proposition 29. For each dissimilarity δ on S, we have:

(i) H A (δ) ⊆ H SL (δ) ∩ W BD (δ), (ii) If δ is ultrametric then H A (δ) = H SL (δ) = W BD (δ). (iii) conv(M n-1 ) = H n-1 (δ) = H SL (δ).
PROOF. (i). From Proposition 18-(i), we have H A (δ) ⊆ W BD (δ). Moreover, from Theorem 26, H A (δ) = conv(J 1 ) ⊆ conv(J n-1 ) = H SL (δ). These two inclusions prove (i).

(ii). Let δ be an ultrametric. From Proposition 19, it results that conv(D δ ) = conv(B δ ). In other words H A (δ) = W BD (δ), so it is sufficient to prove H A (δ) = H SL (δ). By Proposition 16, the indexed hierarchy (H A (δ), diam δ ) induces the ultrametric δ. Moreover, it is well known that if δ is an ultrametric, then we have:

Φ (H SL (δ), f δ SL ) = δ,
where f δ SL denotes the index function of the indexed hierarchy generated by the single-link hierarchical clustering applied to the dissimilarity δ. Therefore, we deduce that

Φ (H A (δ), diam δ ) = Φ (H SL (δ), f δ SL ) .
As Φ is bijective, we get H A (δ) = H SL (δ), as required.

(iii). First recall that δ n-1 is ultrametric. Then, applying (ii) with δ = δ n-1 , we deduce that

H n-1 (δ) = H A (δ n-1 ) = H SL (δ n-1 ) = W BD (δ n-1 ) = conv(M n-1 ).
Now, since δ n-1 is the ultrametric subdominant of δ, it is well known that H SL (δ n-1 ) = H SL (δ), as required. ◻

In the example of Figure 3, it is easily checked that H A (δ) = W BD (δ) = T (S), which shows that the converse of Proposition 29 (ii) does not hold in general.

Remark 8. Consider the dissimilarity δ given in Figure 2 (a). It is easily checked that the single-link hierarchical clustering applied to δ, generates only one non trivial cluster, in other words H SL (δ) = T (S) ∪ cde. Since W BD (δ) = T (S) ∪ {ac, ad, bc, bd, ce, de}, we deduce that H SL (δ) and W BD (δ) are not comparable according to the set-inclusion order. Now,

H SL (δ) = conv(M n-1
) and W BD (δ) = conv(M 1 ), therefore this example shows that the sequence conv(M ) ∈ [1,n-1] is not monotone for an arbitrary dissimilarity δ, and consequently is not a filtration of W BD (δ) = conv(M 1 ). Otherwise, filtrations of W BD (δ) can be easily derived from conv(M ) . Two of them are the sequences V (δ) and W (δ) which are defined simply by:

V (δ) = ⋂ k ≤ n- conv(M k ) and W (δ) = conv(M 1 ) ∩ ⋃ k ≤ conv(M n-k ), for all ∈ [1, n -1]. Note that V (δ) ⊆ V +1 (δ) ⊆ conv(M 1 ) = W BD (δ), which shows that V (δ) is a filtration of W BD (δ).
Similarly, it is easily checked that W (δ) is a filtration of W BD (δ) (see also Corollary 30). Moreover:

⋂ k ≤ n- conv(M k ) ⊆ conv(M 1 ) ∩ conv(M n-) ⊆ conv(M 1 ) ∩ ⋃ k ≤ conv(M n-k ),
which proves that V (δ) ⊆ W (δ). Note that an element of V (δ) is necessarily M k -convex for each k ≤ n -, whereas an element of W (δ) has only to be M k -convex for at least one value k ≥ n -. Therefore, the elements of V (δ) satisfy a clustering criterion which is significantly more stringent than the criterion satisfied by the elements of W (δ). It results that, for each , the weak hierarchy V (δ) is significantly more sparse than the weak hierarchy W (δ). For this reason, we will now focus on filtration W (δ) of W BD (δ).

Notation 11. Given any C ∈ W BD (δ) = conv(M 1 ) = W n-1 (δ), let µ(C, δ) = min{ C ∈ W (δ)} and µ(δ) = max C ∈ W BD (δ) µ(C, δ).
If there is no ambiguity on the choice of δ, µ(C, δ) and µ(δ) will be simply denoted respectively by µ(C) and µ.

Corollary 30. Let δ be an arbirtrary dissimilarity on S and k, ∈ {1, . . . , n -1}.

(i) For all C ∈ W BD (δ), we have 1 ≤ µ(C) ≤ µ ≤ n -1. (ii) If k ≤ , then H k (δ) ⊆ conv(M ), (iii) H A (δ) = H 1 (δ) ⊆ W (δ), (iv) The family F M = W (δ) 1≤ <n is a filtration of W BD (δ).
More precisely, for all ∈ {1, . . . , µ -1}, we have:

W 1 (δ) ⊆ . . . ⊆ W µ (δ) = . . . = W (δ) = . . . ⊆ W n-1 (δ) = W BD (δ). (15) 
PROOF. (i) results directly from the definitions of the compared quantities.

(ii). Let k, ∈ {1, . . . , n -1} with k ≤ . By definition of J and M , we have M ⪯ J , and thus H = conv(J ) ⊆ conv(M ). By Theorem 26, H k = conv(J k ) ⊆ conv(J ) = H . It results that (ii) is satisfied.

(iii). is a direct consequence of (ii).

(iv). This filtration results immediately from the definition of W (δ) and µ. ◻ Remark 9. We have H A (δ) ⊆ W 1 (δ) by Corollary 30-(iii), and from Proposition 29-(iii), conv(M n-1 ) = H n-1 (δ) = H SL (δ) so that W 1 (δ) ⊆ conv(M n-1 ) = H SL (δ) = H λ (δ). It results that filtration H (δ) 1≤ <n introduced in corollary 28, can be compared to filtration W (δ) 1≤ <n as follows:

H A (δ) = H 1 (δ) ⊆ . . . ⊆ H λ (δ) = . . . = H n-1 (δ) = H SL (δ) (14) 
⊆ ⊆

W 1 (δ) ⊆ . . . ⊆ W µ (δ) = . . . = W n-1 (δ) = W BD (δ) (15) 
This diagram points out that W 1 (δ) is a hierarchy that is intermediary w.r.t. set inclusion order, between the Apresjan hierarchy of δ and the single-link hierarchy of δ.

Discussion

The main contributions of this paper can be summarized as follows. In the line of research carried out by [START_REF] Bertrand | Multilevel clustering models and interval convexities[END_REF][START_REF] Changat | Axiomatic characterization of transit functions of weak hierarchies[END_REF], we first proposed new flexible characterizations of hierarchical and weakhierarchical clustering models as interval convexities. In detail, we considered an arbitrary map g ∶ S × S → 2 S such that {x, y} ⊆ g(x, y) for all x, y ∈ S, and proved that J g = g ∪ g (resp. M g = g ∩ g) is an interval function that induces a hierarchical (resp. weakly hierarchical) clustering, if and only if g satisfies a specific property (Propositions 6 and 7). In particular, if g denotes the two-way Ball-map of an arbitrary dissimilarity δ, it results that J g (resp. M g ) induces the Apresjan hierarchy (resp. the Bandelt and Dress weak hierarchy) of δ. Then, we focussed on the path-based dissimilarities δ , also known as transitive distances with order [START_REF] Xu | Clustering with transitive distance and k-means duality[END_REF][START_REF] Yu | Transitive distance clustering with k-means duality[END_REF][START_REF] Yu | On order-constrained transitive distance clustering[END_REF], such that, for all x, y ∈ S, the value δ (x, y) is the smallest maximum δ-jump along all x -y paths of length at most . First, we determined a recursive method for computing the sequence (δ ) 1 ≤ ≤n-1 which turns out to be strictly decreasing for 1 ≤ ≤ r(δ) downto to the subdominant ultrametric of δ, and then stationary for r(δ) < ≤ n -1 (Proposition 21 and notation 7). Finally, defining g as the two-way Ball-map of δ , we proved that the sequences whose general terms are H (δ) = conv(J g ) and W (δ) = conv(M g1 ) ∩ ⋃ k ≤ conv(M g n-k ) , with 1 ≤ < n -1, are respectively a filtration of the single-link hierarchy of δ and a filtration of the Bandelt and Dress weak-hierarchy of δ (Corollaries 28 and 30). These theoretical results may be viewed as one step toward introducing interval convexity-based tools for achieving and interpreting multilevel clustering based on dissimilarities. We then conclude the paper by pointing out some final remarks and discussing potential extensions of this approach, in particular for data mining practice involving the single-linkage clustering.

Remark 10 (Distortion of δ w.r.t. the subdominant ultrametric of δ). If δ is an arbitrary dissimilarity then, by Propositions 20 and 21, we have:

δ = δ 1 ≻ . . . ≻ δ ≻ . . . ≻ δ r(δ) = . . . = δ n-1 . (16) 
As a consequence, if δ is not ultrametric, then for all ∈ [1, r(δ)-1], the subdominant ultrametric of δ is δ r(δ) = δ n-1 , which shows incidentally that δ is not ultrametric.

Let ∈ [1, r(δ) -1].
Denoting by the L 1 -norm, and using the fact that δ ≻ δ +1 ⪰ δ n-1 ⪰ 0, we have

δ -δ +1 = δ -δ +1 and δ > 0. Denoting ∆(δ ) = δ -δ n-1 δ
, which is a measure of the relative distortion between δ and its subdominant ultrametric δ n-1 , it results that ∆(δ ) = 1 -δ n-1 δ . Note that ∆(δ ) is strictly decreasing as increases from 1 to r(δ). The index ∆ ∶ δ ↦ ∆(δ) was first introduced by Rammal et al. (cf. [START_REF] Rammal | On the degree of ultrametricity[END_REF]) in order to measure the degree of ultrametricity of any dissimilarity δ. Other ultrametricity indices have been previously proposed [START_REF] Lerman | Classification et Analyse Ordinale des Données[END_REF][START_REF] Murtagh | On ultrametricity, data coding, and computation[END_REF][START_REF] Murtagh | Identifying the ultrametricity of time series[END_REF][START_REF] Bradley | Finding ultrametricity in data using topology[END_REF]. However, these indices estimate the degree of ultrametricity of a dissimilarity without measuring its distortion w.r.t. its subdominant ultrametric, for example by measuring the proportion of approximately ultrametric triples (cf. [START_REF] Murtagh | On ultrametricity, data coding, and computation[END_REF][START_REF] Murtagh | Identifying the ultrametricity of time series[END_REF]).

Remark 11 (Single link dendrogram simplification). Consider the dendrogram D SL (δ) generated by the single-linkage clustering applied to an arbitrary dissimilarity δ, and let f SL be the level function of this dendrogram. In addition, let D (δ) be the dendrogram which represents the hierarchy H (δ) indexed by the restriction of f SL to H (δ). Notice that D SL (δ) = D n-1 (δ) = D r(δ) (δ). By ( 14), we have:

H A (δ) ⊆ . . . ⊆ H (δ) ⊆ . . . ⊆ H λ-1 (δ) ⊂ H λ (δ) = . . . = H SL (δ)
. This filtration and the example of the curve of ∆(δ ) in Figure 6, suggest that D (δ) is a faithful simplified subdendrogram of D SL (δ) whenever is large enough to ensure that the discrepancy between D (δ) and D SL (δ) be small enough. Given the relation H (δ) = conv(J g ) = H A (δ ), we can associate uniquely each dissimilarity δ with the dendrogram D (δ) representing H (δ). As it is easy to show examples of dissimilarities δ and path lengths such that H A (δ ) = H (δ) = H +1 (δ) = H A (δ +1 ) and δ > δ +1 , it results that this map δ ↦ D (δ), with 1 ≤ ≤ r(δ), is clearly non injective. Consequently, the distortion ∆(δ ) between δ and δ n-1 is not appropriate to measure the discrepancy between D (δ) and D SL (δ). An alternative is to consider the bijection that maps each dendrogram to its cophenetic ultrametric. Denoting by ρ the cophenetic ultrametric induced by the dendrogram D (δ), the distortion ∆(ρ ) is then appropriate to estimate the discrepancy between dendrograms D (δ) and D SL (δ). Note that, if ∈ [1, n -2] then H (δ) ⊆ H +1 (δ), so that ∆(ρ ) decreases when increases. This leads us to propose D (δ) as a consistent simplification of the dendrogram D SL (δ), whenever ≥ 0 with ∆(ρ 0 ) ≤ α and α is a user-chosen threshold, e.g. α = 0.05. Based on filtration W (δ) of W BD (δ) and the bijection due to [START_REF] Diatta | Quasi-ultrametrics and their 2-ball hypergraphs[END_REF], a similar approach applies in order to determine a simplified sub-diagram of the Hasse diagram of W BD (δ) indexed by the diameter function. More precisely, if τ is the cophenetic quasi-ultrametric induced by the weak-hierarchy W (δ) indexed by the function diam δ , then the distortion ∆(τ ) can be used to estimate the discrepancy between the Hasse diagrams of W (δ) and of W BD (δ) both indexed by the function diam δ . Then W (δ) is a simplified Hasse sub-diagram of W BD (δ) provided that ∆(τ ) ≤ α where α is a user-chosen threshold. To shorten our notation, we write D SL (resp. D ) instead of notations D SL (δ) (resp. D (δ)). Figure 7 displays the curves of ∆(ρ ) and ∆(δ ) when varies. We observe that ∆(ρ 10 ) < 0.05, which indicates that D 10 is a faithful simplification of dendrogram D SL . In order to display clearly the differences between D SL and its simplified dendrogram D 10 , we restrict our comparison between a (non trivial) subdendrogram of D SL (cf. Figure 8 (a)) and its corresponding part in D 10 (cf. However, the Apresjan hierarchy of an ultrametric dissimilarity coincides with its single link hierarchy (cf. Proposition 29), so that it may contain clusters of arbitrary sizes. By an argument of continuity, the Apresjan hierarchy of a dissimilarity δ whose distortion ∆(δ) is small, may also contain clusters of arbitrary size. If the distortion ∆(δ) is not small, our experimentations have confirmed that Apresjan clusters of such datasets are, in general and as expected, small sized. Moreover, these experimentations indicate that the curves of functions ↦ ∆(δ ) have a similar shape to the one in Figure 7. This shows that the distortion ∆(δ ) decreases drastically when increases in a short interval whose minimal value is 2, so that the ultrametric degree of δ , when this degree is defined in an approximate sense, increases significantly as increases from value 2, which finally implies that the Apresjan hierarchy of δ may contain clusters of arbitrary size if ≥ 2. Note that, since H A (δ ) ⊆ H A (δ +1 ), Apresjan clusters of δ satisfy a clustering criterion which is less and less demanding as increases. More specifically, each Apresjan cluster of δ , say A, satisfies by definition the following property (P ) related to cluster isolation: For all x ∈ A and all y, z ∈ A, ∃ P yz ∈ P ( ) s.t. for all uv ∈ P yz , we have δ(u, v) < δ(x, y), or equivalently, P yz ∈ P ( ) exists such that val(P yz ) < δ(x, y). Moreover, it can be proved that if val(P yz ) = δ (y, z) then the path P yz is included in A. Therefore, property (P ) indicates that A is isolated insofar as the dissimilarity between two elements of cluster A can be defined as the valuation of an internal path of A whose length is at most . In addition, (P ) also indicates that cluster A is all the more compact that is small in comparison with A . To conclude, on the basis of property (P ) completed with the claim that P yz ⊆ A is true if val(P yz ) = δ (y, z), and according to the fact that the singlelinkage criterion is strengthened when is small, we can consider as plausibly valid each Apresjan cluster A of δ such that is small and A ≫ , or equivalently each cluster A ∈ H SL (δ) such that its chaining-length λ(A) is small and λ(A) ≪ A . This assertion outlines guidelines for identifying single-linkage clusters whose size is large enough, and which are both compact and isolated in the sense of a more or less strengthening of the single-linkage criterion. By way of example, there are forty-seven non trivial Apresjan clusters for the Iris flower dataset: forty-one are of size 2, five of size 3 and one of size 4, which is consistent with the assertion that Apresjan clusters of an arbitrary dissimilarity are generally small-sized. Regarding clusters of interest to data analysts, it is well known that applying a standard partitionning method to the Iris dataset leads usually to identify clearly two clusters: the cluster of Setosa iris, say A, and the cluster that gathers Virginica and Versicolor irises, say B. Computations show that A and B are single-linkage clusters such that: λ(A) = 2 with A = 50 and λ(B) = 4 with B = 100.

With respect to the guidelines roughly defined above for identifying relevant single-linkage clusters, these numerical results and the graph presented in Figure 9 are consistent with the common knowledge that clusters A and B are the most pertinent single-link clusters of the Iris dataset. However, additional theoretical and empirical insights are clearly required to make these guidelines both more precise and reliable.

Recall that δ = δ +1 if ≥ r(δ), so that this inequality is obvious for ≥ r(δ) -1, and therefore the conjecture holds true when r(δ) ∈ {1, 2}. This conjecture suggests a general property of dissimilarities, whose formulation is rather simple, but whose study is not straightforward for r(δ) ≥ 3. As a consequence, the conjecture seems beyond the scope of this paper.

While the idea of an unifying framework based on abstract convexity in order to characterize several multilevel clustering models has been discussed before (cf. [START_REF] Bertrand | Multilevel clustering models and interval convexities[END_REF][START_REF] Changat | Axiomatic characterization of transit functions of weak hierarchies[END_REF]), the main contribution of this paper lies in the finding of interval convexity-based results relevant to the practice of data mining, and more specifically concerning the single-link hierarchical clustering, Apresjan hierarchies, and Bandelt and Dress weak hierarchies. For future research, we point out the following open issues:

1 -Recall that the sequence δ 1≤ ≤n-1 satisfies the property that conv(J g 1 ) ⊆ conv(J g 2 ) if 1 ≤ 2 . Is it possible de characterize the sequences of arbitrary path-based dissimilarities which satisfy this property? 2 -Another direction for future research would be to extend our approach based on interval convexity, to hierarchical clustering schemes such as the complete-link clustering and the unweighted average linkage clustering.

Theorem 2 .

 2 [9, Theorem 3.5 p.60] Consider an interval function I on S and an integer k ≥ 2. Then: (i) If I satisfies (H) then conv(I) is hierarchical. (ii) If I satisfies (W k ) then conv(I) is k-weakly hierarchical.

Figure 1 :

 1 Figure 1: (a) The weight of each edge {u, v} ⊂ S = abcd indicates the value δ(u, v) taken by a dissimilarity δ defined on S. (b) The values of D δ are derived from δ. It is easily checked that abc is the only non trivial Apresjan cluster of δ, so that H A (δ) = {a, b, c, d, abc, S}. Subset ab is a maximal subset of diameter 1, but ab ∉ H A (δ).

  b∈A∖a δ(a, b). Since α < µ(A), this is contradictory. Therefore, there exists c ∈ A ∖ a such that δ(a, c) ≥ µ(A). Thus δ(x, a) ≤ δ(a, c), and consequently x ∈ D(a, c). We deduce that x ∈ A since A is D-convex, which is contradictory. It results that A is a connected component of Γ(A), which proves property (i). Property (ii) holds also by. Conversely, assume that properties (i) and (ii) both hold. Then, let a and b be two elements of A which, by (i), is a connected component of Γ(A). Let us first examine the case where A is a clique. In this case, δ(a, b) ≤ µ(A). Consider an element x of D(a, b) = B(a, δ(a, b)) ∪ B(b, δ(b, a)) and assume, without loss of generality, that x ∈ B(a, δ(a, b)). Then, δ(x, a) ≤ δ(a, b) ≤ µ(A). Thus x and a belong to the same connected component of Γ(A) which must be equal to A. Consequently, x ∈ A, which proves that A is D-convex.

Proposition 16 .

 16 (a, δ(a, b)) = B(b, δ(a, b)), and thus B(a, b) = B(a, δ(a, b)) = B(b, δ(a, b)). We deduce that B δ = Balls(S, δ) and finally it results that the indexed multilevel clustering (Balls(S, δ), diam δ ) induces δ, which completes the proof. ◻ Let δ be a dissimilarity on S, and ρ the cophenetic dissimilarity of the indexed Apresjan hierarchy (H A (δ), diam δ ). If δ is an ultrametric, then ρ = δ.

4 . 2 .

 42 u ∉ C {δ(x, u), δ(y, u)}, i.e. B(a, λ) is an Apresjan cluster of δ, as required. ◻ Bandelt and Dress weak hierarchies Bandelt and Dress[START_REF] Bandelt | Weak hierarchies associated with similarity measures: an additive clustering technique[END_REF] and Bandelt[START_REF] Bandelt | Four point characterization of the dissimilarity functions obtained from indexed closed weak hierarchies[END_REF], use a criterion weaker than (2), to define the notion of weak cluster. A weak cluster is a nonempty subset C of S such that: For all x, y ∈ C, δ(x, y) < min z∉C max {δ(x, z), δ(y, z)} .

Remark 4 .Figure 2 :

 42 Figure 2: (a) Values of a dissimilarity δ defined on S = abcde. (b) Values of B δ which are derived from those of δ. It is easily checked that H A (δ) = T (S) where T (S) = {a, b, c, d, e, S} is the trivial hierarchy on S. Moreover, W BD (δ) = conv(B δ ) = T (S) ∪ {ac, ad, bc, bd, ce, de}. Furthermore, B(a, b) = abcd is such that diam δ (B(a, b)) = 7 = δ(a, b) but B(a, b) is not B-convex since B(c, d) contains e ∉ B(a, b).

  iii) D δ = B δ . PROOF. (i) ⇐⇒ (ii) holds true by [16, Proposition 3]. Moreover (ii) ⇐⇒ (iii) results directly from the equivalence A ∪ B = A ∩ B ⇐⇒ A = B. ◻ If δ is ultrametric then H A (δ) = W BD (δ), since in this case D δ = B δ by Proposition 19. However, the converse does not hold in general, as shown by Figure 3.

Figure 3 :

 3 Figure 3: (a) Values of a dissimilarity δ defined on S = abcd. (b) and (c) Values of functions D δ and B δ , respectively. It is easily checked that H A (δ) and W BD (δ) both coincide with the trivial hierarchy T (S) = {a, b, c, d, S}. However, δ is clearly not ultrametric since, for example, we have δ(c, d) = 2 > 1 = δ(a, c) = δ(a, d) = 1.

Proposition 21 .

 21 Let x, y ∈ S and an integer ∈ [2, n -1]. The following properties hold.

  (i) δ (x, y) = min z ∈ S max{δ -1 (x, z), δ(z, y)}.(ii) If δ -1 (x, y) = δ (x, y) for all y ∈ S, then: for all y ∈ S, δ -1 (x, y) = δ (x, y) = δ +1 (x, y) = . . . = δ n-1 (x, y).(iii) If δ -1 = δ , then δ -1 = δ = δ +1 = . . . = δ n-1 .PROOF. Let x, y ∈ S and consider an integer ∈ [2, n -1]. (i). We aim to compute δ (x, y) from the dissimilarity δ -1 . Recall that, by definition: δ (x, y) = min

  -1 (x, y) = δ m (x, y) for all y ∈ S and all m ∈ [ , n -1]. We proceed by induction on m ∈ [ , n -1]. By hypothesis, the property is satisfied for m = . Assume now that δ m-1 (x, y) = δ m (x, y) for all y ∈ S and some m ∈ [ , n -1]. Using property (i), we have : for all y ∈ S, δ m+1 (x, y) = min z ∈ S max{δ m (x, z), δ(z, y)} = min z ∈ S max{δ m-1 (x, z), δ(z, y)}, by induction hypothesis = δ m (x, y), by property (i), which proves (ii).

Proposition 25 .

 25 Let δ be a dissimilarity on S and ∈ [1, n -1]. The following statements hold.

7 .

 7 From the Apresjan hierarchy to the Bandelt and Dress weak-hierarchy, through a persistent set of single-linkage clusters According to Proposition 23, each conv(M ) with ∈ {1, . . . , n -1}, coincides with the Bandelt and Dress weak-hierarchy of δ . In particular, conv(M 1 ) is the Bandelt and Dress weak-hierarchy of δ 1 = δ. In this section, we are mainly concerned with the study of the interval convexities conv(M ) for an arbitrary value of ∈[1, n].

Figure 6 Figure 6 :

 66 Figure 6: The curve of ∆(δ ) as a function of , with the euclidean distance δ computed on the Iris dataset.

Example 12 .

 12 The Single-Link dendrogram simplification method (cf. Remark 11), was applied to dendrogram D SL (δ) where δ is the Euclidean distance computed on the Iris dataset.

Figure 7 :

 7 Figure 7: Distortions ∆(ρ ) and ∆(δ ) as functions of , for the euclidean distance δ on the Iris dataset.

Figure 8 (

 8 b)).

Figure 8 (

 8 a) represents the restriction of D SL to one of its cluster, say C, which belongs also to D 10 . Cluster C consists of all the elements displayed on Figure 8 (a), and is indeed a subset of size 84 containing only Virginica and Versicolor iris samples. Several of the clusters of the subdendrogram of Figure 8 (a) do not belong to D 10 . For this dataset, these missing clusters are nested, and the smallest of them, say D, is displayed in blue color in Figure usefulness.

Figure 10 :

 10 Figure 10: Decrease of δδ +1 when increases, for two datasets: (a) the famous Iris flower dataset, and (b) a simulated dataset S of 300 samples x i where the values δ(x i , x i ′ ) are i.i.d. according to the uniform law on [0, 1].

PROOF. (i). Let δ be an arbitrary dissimilarity defined on S, and x, y be any two elements of S. By definition, the condition z ∈ g (x, y) is equivalent to z ∈ ⋃ {P ∈ P ( ) x val δ (P ) ≤ δ (x, y)}.

This condition can be rewritten as:

x-z s.t. val(P ) ≤ δ (x, y). Now, this formulation amounts to assert that min

[val(P )] ≤ δ (x, y), or equivalently that we have δ (x, z) ≤ δ (x, y). But this in turn is equivalent to z ∈ B δ (x, δ (x, y)). Therefore, for all x, y ∈ S, we have g (x, y) = B δ (x, δ (x, y)). By definition 3, this amounts to assert that g = g B δ .

(ii) This is a direct consequence of property (i) and previous definitions.

(iii) Derives from J = J g B δ = D δ , which holds by (ii), and from Proposition 12.

(iv) Derives from M = M g B δ = B δ , which holds by (ii), and from Proposition 17. ◻ Note that (iii) and (iv) of Proposition 23 amount to assert that, for each ∈ [1, n -1], the interval functions J and M induce two convexities that are, respectively, the Apresjan hierarchy H A (δ ) of δ and the Bandelt and Dress weak-hierarchy of δ . In next sections 6 and 7, we will investigate the two sequences defined by interval convexities conv(J ) and conv(M ), when varies.

From the Apresjan hierarchy to the single-link hierarchy

In this section, we investigate the sequence (conv(J )) 1 ≤ ≤ n-1 . According to Proposition 23-(iii), it is the sequence of Apresjan hierarchies of δ when varies.

Proposition 24. Let ∈ {1, . . . , n -1} and A ⊆ S. If A is J -convex then A is a connected component of the graph Γ(A). The converse is true when Diam Γ(A) (A) ≤ . PROOF. Let A be a J -convex subset of S. By Proposition 23 (iii), the subset A is an Apresjan cluster of δ . Therefore, using Proposition 14, we deduce that A is a connected component of

Assume now that A is a connected component of the graph Γ(A) and that Diam Γ(A) (A) ≤ . Let a and b be two elements of A. Since A is connex and its diameter in graph Γ(A) = Γ(µ(A)) is not greater than , it results that there exists at least one path in Γ(A) that joins a and b and whose length is not greater than . In other words, δ (a, b) ≤ µ(A). Now, consider an element

, which proves that there exists some path between x and a in graph Γ(A) = Γ(µ(A)). Thus x and a belong to the same connected component of Γ(A) which must be equal to A. Therefore, x ∈ A, which proves that A contains J (a, b), and thus is J -convex. ◻ 8 (a). Figure 8 (b) represents the restriction of D 10 to cluster C which appears, in this case, to be the smallest cluster of H 10 that contains subset D. Our approach was applied on a few simulated and real datasets that are either structured into a partition or uniformly distributed. The obtained results lead us to the following comments:

(i) In each case of our experimentations, we observed that the shape of curve ∆(ρ ) was similar to the curve represented by Figure 7. Notice that this shape of curve implies that clusters with the longest chaining-length are those clusters which contribute significantly the least to the distortion reduction measured by ∆(ρ ). (ii) For the Iris dataset, we observe that λ(C) = 10 < λ(D) = 11 whereas D ⊂ C, so that f SL (D) < f SL (C). Therefore the order defined by λ is not compatible with the order defined by f SL . For a cluster X ⊂ S, this implies that the information provided by the chaining-length λ(X) is different from that provided by f SL (X) which measures the degree of connectivity of X. Recall that f SL (X) is the largest weight of an edge connecting two elements of X in a minimum spanning tree weighted with the values taken by δ. (iii) As noticed by [START_REF] Bryant | A family of clustering and tree construction methods[END_REF], Apresjan clusters of an arbitrary dissimilarity satisfy a stringent clustering criterion and, in general, are small-sized, which is a major limiting factor to their Figure 9: A biplot that displays the size of clusters versus their chaining-length, when the set of clusters is the single-link hierarchy built on the Iris dataset using the euclidean distance.

Remark 13. It may be observed that, for ∈ [1, r(δ) -1], we have 7 suggests that the successive differences ∆(δ ) -∆(δ +1 ), are decreasing when increases, whereas the sequence of successive differences of ∆(ρ ) is not decreasing. Consider now the simpler statement that the successive differences of δ are decreasing when increases, i.e. that δ -δ +1 =1, ... ,r(δ)-1 is a decreasing sequence. Based on experimentations on simulated dissimilarities, our intuition leads us to view this assertion as a conjecture whose self-contained formulation is as follows.

Conjecture: Let δ be an arbitrary dissimilarity on S and, for all ∈ N ⋆ , denote by δ the dissimilarity on S defined recursively by: for all (x, y) ∈ S 2 , δ (x, y) = δ(x, y), if = 1, min z ∈ S max{δ -1 (x, z), δ(z, y)}, otherwise.

For all ∈ N ⋆ , we have δ -δ +1 ≥ δ +1 -δ +2 , where denotes the L 1 -norm.