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Abstract: In this work, we investigate the human quiet stance regulation problem using a single-link
inverted pendulum model in the sagittal plane via the ankle joint’s passive/active torques’ actions. The
active torque consists of ankle muscle contractions that are activated by the delayed action of the Central
Nervous System (neural controller). The passive torque is related to the intrinsic mechanical properties
of the muscle-tendon-ligament component. The failure of the human quiet stance is then directly related
to the failure of one or both types of torques. We propose to model the neural controller as a delayed
Proportional-Derivative-Acceleration controller acting on the ankle joint’s angular position. By using
the multiplicity-induced-dominancy property, the critical time delay of the motor control and the critical
ankle-joint stiffness are both investigated.

Keywords: Human quiet stance regulation, Time-delay systems, stability and stabilization,
multiplicity-induced-dominancy.

1. INTRODUCTION

The study of the control mechanism in charge of the equilib-
rium of human bipedal posture has attracted the attention of
numerous researchers Winter (1995), Vette et al. (2010b), Fok
et al. (2021a). Noting that the studies about postural stabil-
ity are essential to improve the understanding of self-balance
mechanisms of the human body. For instance, abnormal move-
ments caused by neuromuscular diseases, such as Parkinson’s
disease, paroxysmal positional vertigo or sclerosis, result from
abnormal muscle tone. Furthermore, maintaining the balance
is a vital ability for humans: falls are the leading causes of
accidental death and morbidity in the elderly, a fact which
provides a strong motivation to understand the functioning of
the quiet stance stability (Stepan, 2009), (Mihelj and Munih,
2004).

The degeneration of the balance control system in the elderly
and their multiple pathologies have encouraged researchers to
enhance the comprehension of the workings of the muscu-
loskeletal system and the humans’ management and organi-
zation of their stability in vertical stance, and their ability to
maintain the human body. In this context, several analyses are
based on the assumption that standing posture can be simplified
as an inverted pendulum structure with one rotating degree
of freedom about the ankle joint’s axis in the sagittal plane
(Morasso et al., 2019), (Sieber and Krauskopf, 2005), (Gage
et al., 2004), (Winter et al., 1998). Hence, one of the main
purposes of the control system during quiet stance is to afford
the ankle joint’s torque required to resist the gravity effect of the
body and to guarantee that its center of mass remains close to
the equilibrium position. For this purpose, one needs not only to

establish a good model of the musculoskeletal system but also
to analyze the control circuit, including the structural form of
our Central Nervous System (CNS) instruction that controls the
human motricity (Winters and Stark, 1987).
Actually, in a general way, the CNS generates neural commands
to activate the muscles. The intern muscles’ force combined
with inertia and external forces, generates observable move-
ments. The position, velocity and acceleration of the muscu-
loskeletal system are measured and transmitted to CNS to close
the loop with the required information to produce appropriate
control decisions (Bortoletto et al., 2014), (El-Ati et al., 2020).
However, there is a substantial time delay caused by the finite
speed of signal propagation, and the performance of motor tasks
is affected by the presence of time-delayed sensory feedback
(Milton, 2011), (Begg and Palaniswami, 2006). Moreover, the
intrinsic CNS functioning is complex. It is inherently a genera-
tor of high-dimensional and nonlinear dynamics. A substantial
time delay of signal propagation in the nervous system should
therefore be considered in the input signals. One intuitive but
easy way to model such a CNS response is to identify it as a
system of propagation, which is justified by the necessary lag-
time for information to get through the neuronal axon. We refer
the reader to Campbell (2007) for a summary of the different
kinds of delays occurring in neural systems.

In the case of quiet stance, many approaches have been in-
vestigated for modeling the structure of the controller, as in
(Asai et al., 2009) and (Tanabe et al., 2016). The most simple
solution adopted by a number of researchers was a basic linear
continuous-time feedback controller, based on proportional and
derivative feedback (Fok et al., 2021b), (Fotuhi et al., 2020). In
(Masani et al., 2006) and (Vette et al., 2010a), the authors con-



sider that the ankle joint’s torque required to control the body
during a quiet posture can be generated in both passive and ac-
tive ways. The passive torque component results from an intrin-
sic mechanical property: the stiffness and viscosity produced
by the joint’s viscoelasticity of the muscle-tendon ligament.
On the other hand, the active torque component is generated
by muscle contraction. This additional torque is controlled by
the CNS, which stimulates contractions of the required muscles
depending on the human body’s sensory information about its
kinematical and dynamical state, which are fed back to the
CNS.

The mathematical models that consider the delay effects in the
CNS are delay functional differential equations of infinite di-
mension. These delay effects may exhibit a complex dynamical
behavior. It has been recently shown (see, e.g., Boussaada and
Niculescu (2016a,b); Boussaada et al. (2018, 2019); Mazanti
et al. (2020b,a)) that, for some quasipolynomials occurring in
systems with time-delays, multiple real roots are often dom-
inant, a property usually referred to as Multiplicity-Induced-
Dominancy (MID for short). If, in addition, this multiple domi-
nant root is negative, exponential stability is guaranteed. More-
over, a control-oriented MID approach was first proposed in
Boussaada et al. (2019) for second-order delay equations and
extended in Balogh et al. (2020) for general nth-order linear
time-invariant dynamical systems with a single delay. Indeed,
it has been shown that under appropriate conditions, the MID
property may assess the critical delay established in previous
works (Boussaada et al., 2015; Boussaada and Niculescu, 2018;
Boussaada et al., 2018). Inspired by recent results in Balogh
et al. (2022b), Molnar et al. (2021) and Insperger et al. (2013)
where the authors have illustrated that the feedback of accel-
eration, in addition to position and velocity feedback, allows
for better regulate the human balancing, we consider in this
paper a CNS modeled as a delayed Proportional-Derivative-
Acceleration controller (PDA-controller for short). Moreover, it
has been emphasized experimentally the beneficial effect of the
acceleration in the feedback in describing the human balance
Nataraj et al. (2012). Our main contribution relies on the use
of the MID property to first control the active torque dynamic
that stabilizes the quiet stance and then to quantify the critical
values of two physiological parameters leading to a failure of
the equilibrium: the critical time delay of the motor control
system and the critical ankle-joint stiffness.

The paper is organized as follows. Section 2 introduces the
model structure used to study the quiet stance body control.
Section 3 presents the main results, that is, the stability of
the system is analysed owing to the fulfilled MID property.
Also, two cases of human balance failure related to a defect
in the active torque and in the passive torque, respectively, are
considered. Section 4 concludes this contribution.

2. COMPUTATIONAL MODEL OF THE QUIET STANCE
CONTROL CONCEPT:

As shown in Fig. 1, the diagram of the inverted pendulum
represents an approximation of the entire human body as a
single rigid segment, excluding the feet that can rotate about the
ankle joints. Let Ta be the torque acting at ankle joints produced
by body muscles and θ be the absolute sway angle with respect
to a fixed vertical reference. Thus, (1) is the motion equation of
the inverted pendulum that models the movements of the human
body around the quiet stance equilibrium.

J θ̈ = m g L sin(θ)+Ta +ρ. (1)
In (1), m and J stand for the mass and the moment of inertia for
the human body above the ankle, respectively; L is the distance
between the human body center of mass and the ankle; g is the
acceleration due to gravity; ρ is the torque disturbance, which
is assumed sufficiently small with respect to the other torques,
as in Vette et al. (2010b).

Notice that the ankle joint’s torque can be considered as the
addition of a passive and an active component in the following
way:

Ta = Kθ +Bθ̇ + fA(θτ , θ̇τ , θ̈τ), (2)
where K and B are the passive stiffness and the passive viscosity
parameters, respectively. The first two terms in the equation
represent the passive feedback torques, with no time delay,
related to the intrinsic mechanical impedance of the ankle joint.
The active torque component, denoted by fA, is generated by
the contractile elements of the ankle muscles. This torque is
regulated by the CNS via the feedback of the kinematics’ and
dynamics’ neural information. It is determined as functions
of delay affected tilt angle θτ(t) := θ(t − τ), the angular ve-
locity θ̇τ(t) := θ̇(t − τ) and the acceleration θ̈τ(t) := θ̈(t − τ)
respectively. It is worth mentioning that there is a substantial
time delay caused by the finite speed of neural signal propa-
gation. Thus, the performances of motor tasks are affected by
the presence of delayed sensory feedback (Milton, 2011). This
time delay represents the time accrued to transmute information
from the ankle’s somatosensory system to the brain. It is esti-
mated to be about 40 ms for people without any physiological
abnormalities.
As marked in Fig. 1, we consider that the motor control time
delay can be different than the feedback time delay. It is then
placed within the neural controller, which also contains the
CNS’s action. Therefore, the neural controller is modeled as
a delayed PDA controller. The delay affecting the motor con-
trol represents the time accrued to the CNS decision-making
process and neural transmission from the CNS to the plantar
flexor muscles. It is then considered a variable. This is a suitable
way to study the effect of the CNS decision-making time delay
caused by some diseases on the system’s stability. Also, the
estimation of the motor control delay is a difficult task and the
exact value is not known (Masani et al., 2006). In the literature,
the feedback time delay was estimated to be within the range of
35 to 40 ms (Applegate et al., 1988) and some researchers have
used the same value for the motor control delay as a minimum
physiological value, as in Masani et al. (2008).
Concerning the neuro-muscular contraction dynamic, it has
been shown that the plantar flexor muscles generate the central
part of the active ankle torque as they produce a continuous
activity during a quiet stance; see (Winters and Crago, 2000)
for more details. Since the muscle length change is very small
during quiet stance, the models proposed to capture the iso-
metric activation-force relationship have been used, specifically
via a second-order low-pass system. It has been demonstrated
in Masani et al. (2008) that a critically damped second-order
model can successfully capture the ankle torque generation
process during stance. The transfer function for the muscle
contraction system is thus given by

G(s) =
Kgω2

n

(s+ωn)2 =
Kg

(T 2s2 +2T s+1)
, (3)

where Kg and ωn are the gain and natural frequency of the
second-order system respectively, and T := 1/ωn is the twitch
contraction time. Note that the twitch contraction time rep-



Fig. 1. Quiet stance control concept. The active torque is regulated by the neural controller via the body kinematics feedback and
generated by the plantar flexor muscles’ contractions, whereas the passive torque depends on the muscle-tendon mechanical
properties (stiffness and viscosity). The command time delay is placed within the neural controller with the CNS’s action. An
inverted pendulum is used to model the quiet human body stance.

resents the time duration from the contraction initiation via
a stimulus (or impulse) that reaches the muscle body to the
peak of the twitch. In Masani et al. (2008), the authors give
more details concerning the physiological interpretation and the
system parameters identification.

Fig. 2 shows a block diagram of the model used in the theo-
retical study. The model consisted of a neural controller using
a delayed PDA-controller with gains kp, kd and ka. After this
controller, we have inserted the critically damped second-order
model to account for the ankle torque generation process that
provides the active torque component. After this controller, we
inserted the critically damped second-order model to account
for the ankle torque generation process, that provides the active
torque component. Then, the passive torque component is due
to the effects of the stiffness K and the viscosity B of the
muscle-tendon-ligament joint’s viscoelasticity. Both parame-
ters are related and connected to the constitutive mechanical
impedance without any time delay. In the current study, we
propose investigating the effect of muscle weakness in keeping
standing balance by decreasing the stiffness gain K. Finally, we
introduce the transfer function of an inverted pendulum, which
is used as a model for the quiet body stance.

Fig. 2. The block diagram shows the computational model used
in the theoretical study.

3. MAIN RESULTS

We use a parametric bio-mechanical model for the ankle joint
system. The parameters are set to typical values of an adult,
as reported in the literature (Masani et al., 2008), (Vette et al.,
2010a), (Fok et al., 2021b). The corresponding numerical pa-
rameters are gathered in Table 1. The corresponding closed-

Parameters value Parameters value
T 167 ms J 55 kgm2

Kg 58 N m/V L 0.846 m
B 5 N ms/rad τ2 40 ms
m 75 kg g 9.8 m/s2

Table 1. Numerical setting for a single inverted
pendulum model and the muscle parameters

loop transfer function is given by:

T F(s,τ) =

(
s2ka + skd + kp

)
Kg e−τ1s

(s2ka + skd + kp)Kg e−sτ +∑
4
l=0 al sl

, (4)

where τ := τ1 + τ2 and

a0 = K −mgL,
a1 = 2(K −mgL)T +B

a2 = (K −mgL) T 2 +2BT + J
a3 = (BT +2J)T

a4 = T 2J.

To perform the stability analysis of the corresponding trivial
solution, one investigates the characteristic function’s ∆ zero
distribution;

∆(s,τ) =P0(s)+P1(s)e−sτ ,

=
4

∑
l=0

al sl +
(
s2ka + skd + kp

)
Kg e−sτ .

(5)



3.1 Nominal case: perfect running

In the first stage, we consider that both active and passive
torques are perfectly running, guaranteeing thus an ideal human
body’s quiet stance. We assume that such a configuration is due
to the fulfillment of the MID property.
Proposition 1. The following assertions hold:

i) For system parameters given in Table 1, K, ka, kd , kp ∈ R
and an arbitrary τ ≪ 1, the maximal multiplicity of roots
of ∆ is bounded by 5.

ii) A given complex number s0 is a fifth-order root of ∆ if,
and only if, s0 is real and it corresponds to a root of the
elimination-produced-polynomial P with

P(s) =
5

∑
l=0

pl sl (6)

such that
p0 =Bτ

5 +6(2BT + J)τ4 +6(9BT +10J)T τ
3

+24(4BT +9J)T 2
τ

2 +72(BT +4J)T 3
τ

+144J T 4,

p1 =2(2BT + J)τ5 +12(3BT +4J)T τ
4

+36(3BT +8J)T 2
τ

3 +48(2BT +13J)T 3
τ

2

+432J T 4
τ,

p2 =2(3BT +4J)T τ
5 +36(BT +3J)T 2

τ
4

+18(3BT +22J)T 3
τ

3 +408J T 4
τ

2,

p3 =4(BT +3J)T 2
τ

5 +12(BT +8J)T 3
τ

4

+168J T 4
τ

3,

p4 =(BT +8J)T 3
τ

5 +30J T 4
τ

4,

p5 =2J T 4
τ

5.

iii) If s0 is real and is the rightmost root of P then s0 is also
the rightmost root of ∆. Furthermore, if s0 is negative, then
it corresponds to the exponential decay rate of the closed-
loop system’s trivial state solution.

Proof 1. i)-ii) First, observe the linear dependency of the
quasipolynomial ∆ in the left-free parameters K, ka, kd ,
kp ∈ R, considered as tuning parameters. So, solving the
system of equations ∆(s) = 0 and the first four derivatives
∆(1)(s) = . . . = ∆(4)(s) = 0 for the variable s and param-
eters K, ka, kd , kp ∈ R provides a coherent system. If
additionally, one considers the fifth-order derivative then
the corresponding delay is necessarily greater than one,
which is inconsistent with delays corresponding to the
motor control time delay. One exploits again the linear
dependency of the quasipolynomial in the left-free param-
eters K, ka, kd , kp ∈ R. An elimination procedure is set
allowing to transform the problem of solving a system
of quasipolynomial functions into a polynomial system
of equations. As a matter of fact, the vanishing of ∆ for
s = s0 permits the elimination of the exponential term in
this fashion

e−s0τ =−P0(s0)

P1(s0)
.

Substituting this last equality in the system of equations
consisting of the first four derivatives ∆(1)(s0) = . . . =

∆(4)(s0) = 0 results in the expressions of K, ka, kd , kp as
well as the corresponding elimination polynomial P.

iii) One easily checks that the open-loop characteristic poly-
nomial P0 is real rooted for the parameters’ values given
in Table 1. So that, one uses the result from Balogh et al.
(2022a) to show that s0 corresponds to the exponential
decay rate of the closed-loop system solution.

The nominal numerical values of the controller’s gains are
provided in Table 2. Fig. 3 illustrates the validity of the MID

Parameters value Parameters value
k∗p −107.65 N m/rad k∗d −36.51 N ms/rad
k∗a −3.08 N ms2/rad K∗ 9882.21 N m/rad

Table 2. Numerical values of the controller’s gains

property in the case of a perfect behavior of the active and
the passive torques. This nominal configuration gives the gains
K∗, k∗p, k∗d , k∗a and τ∗ = 80 ms which will be considered in the
remaining analysis.

Fig. 3. Spectrum distribution for the closed-loop system in
the perfect behavior case of both active and passive
torques. The corresponding spectral abscissa is given by
s0 ≈−9.85.

3.2 Nerve impulse failure: the critical delay

This section considers the effect of the reaction-time increasing
with respect to the nominal behavior on the human balance.
More clearly, we investigate the impact of an increase of the
delay τ := τ∗ +σ on the spectrum distribution of the closed-
loop system, where σ is the amount of reaction-time increasing.
Indeed, the analysis concerns the spectrum distribution of the
parametric quasipolynomial given by

∆(s,σ) =
(
s2k∗a + sk∗d + k∗p

)
Kg e−s(τ∗+σ)

+ J T 2s4 +(BT +2J)T s3

+
(
(K∗−mgL)T 2 +2BT + J

)
s2

+(2T (K∗−mgL)+B)s
+K∗−mgL,

(7)

with respect to the variation of the parameter σ . Fig. 4 illus-
trates the splitting mechanism enabling the spectrum branches
to cross the imaginary axis. This corresponds to a Hopf point
and the inception of a periodic orbit. The corresponding critical
delay is τcrit := τ∗+σcrit ≈ 0.19 s.



Fig. 4. Effect of the increase of the motor delay on the spectrum
distribution of the closed-loop system. The splitting of the
fifth-order root and crossing of the imaginary axis.

3.3 Muscular-Skeleton failure: the critical ankle joint stiffness

This section deals with the effect of the ankle joint stiffness
decreasing with respect to the nominal behavior on the human
balance. More precisely, the analysis carries on the spectrum
distribution of the parametric quasipolynomial given by

∆(s,ε) =
(
s2k∗a + sk∗d + k∗p

)
Kg e−sτ∗

+ J T 2s4 +(BT +2J)T s3

+
(
(K∗− ε −mgL)T 2 +2BT + J

)
s2

+(2(K∗− ε −mgL)T +B)s
+(K∗− ε −mgL),

(8)

with respect to the variation of the parameter ε . Unlike the
crossing of the imaginary axis caused by nerve impulse failure,
yielding periodic orbits, ankle-joint stiffness failure ensues the
crossing through the origin, exhibiting some fold-bifurcation.
Fig. 5 illustrates the splitting mechanism enabling the spectrum
branches to cross the imaginary axis. This corresponds to a
crossing at the origin of the complex plane. The corresponding
critical stiffness is Kcrit := K∗− εcrit ≈ 6872 Nm/rad.
Remark 1. At critical values of the stiffness Kcrit , the imaginary
axis crossing occurs along the real axis. It corresponds to a loss
of BIBO stability, and could be interpreted as a loss of stiffness
due to muscular actions on the ankle, leading to a collapse of
the quiet standing. On the other hand, the critical transmission
delay τcrit occurs along the imaginary axis crossing with a non
vanishing crossing frequency, resulting in a periodic motion of
the human body around the human stance equilibrium.

4. CONCLUDING REMARKS

A fourth-order model of the human quiet stance regulation
problem based on the passive/active torques action on the ankle
joint has been considered. We have assumed that the healthy
functioning of the human quiet stance regulation is enabled by
the fulfillment of the MID property. Its failure is then directly
related to the defect in one or both types of torques. The

Fig. 5. Effect of the decrease of the ankle joint stiffness on
the spectrum distribution of the closed-loop system. The
splitting of the fifth-order root and the crossing of the
imaginary axis.

critical motor control delay, ie the one inducing the limit of
the stance’s stability, as well as the critical ankle-joint stiffness
have both been investigated and estimated. At these critical
values, we have exhibited that the failure of the active torque
induces a crossing through a Hopf-point and the inception of
periodic orbit, while the failure of the passive torque results
in a crossing at the origin of the complex plane generating
a potential fold-bifurcation. The proposed modeling should
be extended in the three-dimension case and completed with
experimental validation in future works.
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