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Abstract

The aim of Machine Unlearning (MU) is to pro-
vide theoretical guarantees on the removal of the
contribution of a given data point from a training
procedure. Federated Unlearning (FU) consists
in extending MU to unlearn a given client’s con-
tribution from a federated training routine. Cur-
rent FU approaches are generally not scalable,
and do not come with sound theoretical quan-
tification of the effectiveness of unlearning. In
this work we present Informed Federated Un-
learning (IFU), a novel efficient and quantifiable
FU approach. Upon unlearning request from a
given client, IFU identifies the optimal FL it-
eration from which FL has to be reinitialized,
with unlearning guarantees obtained through a
randomized perturbation mechanism. The theory
of IFU is also extended to account for sequen-
tial unlearning requests. Experimental results on
different tasks and dataset show that IFU leads
to more efficient unlearning procedures as com-
pared to basic re-training and state-of-the-art FU
approaches.

1 Introduction

With the emergence of new data regulations, such as the
EU General Data Protection Regulation (GDPR) (Voigt and
Von dem Bussche, 2017) and the California Consumer Pri-
vacy Act (CCPA) (Harding et al., 2019), the storage and
processing of sensitive personal data is often subject of
strict constraints and restrictions. In particular, the “right
to be forgotten” states that personal data must be erased
upon request from the concerned individuals, with subse-
quent potential implications on machine learning models
trained by using this data. Machine Unlearning (MU) is
an emerging discipline that studies methods to ideally re-
move the contribution of a given data instance used to train

a machine learning model. Current MU approaches are es-
sentially based on routines that modify the model weights
in order to guarantee the “forgetting” of a given data point,
i.e. to obtain a model equivalent to an hypothetical one
trained without this data point (Cao and Yang, 2015; Bour-
toule et al., 2021).

Motivated by data governance and confidentiality concerns,
Federated learning (FL) has gained popularity in the last
years to allow data owners to collaboratively learn a model
without sharing their respective data. Among the dif-
ferent FL approaches, federated averaging (FEDAVG) has
emerged as the most popular optimization scheme (McMa-
han et al., 2017). An optimization round of FEDAVG re-
quires data owners, also called clients, to receive from the
server the current global model which they update before
sending it back to the server. The new global model is then
created as the weighted average of the client updates, ac-
cording to their data ratio. FL communication design guar-
antees to clients that their data is solely used to compute
their model update, while theoretical work guarantees FL
convergence to a stationary point of the clients’ joint opti-
mization problem (Wang et al., 2020; Li et al., 2020).

With the current deployments of FL in the real-world, it
is of crucial importance to extend MU to guarantee the
unlearning of clients wishing to opt-out from a collabo-
rative training routine. This is not straightforward, since
current MU schemes have been proposed essentially in the
centralized learning setting, and cannot be seamlessly ap-
plied to the federated one. For example, several MU meth-
ods require the estimation of the Hessian of the loss func-
tion (Guo et al., 2020; Izzo et al., 2021; Golatkar et al.,
2020a,b, 2021), an operation which is notoriously compu-
tationally heavy and intractable for high dimensional mod-
els. Moreover, sharing the Hessian would require clients
to share with the server additional information about their
data, thus exposing the federated setting to information
leakage and attacks, for example under the form of model
inversion (Fredrikson et al., 2015). Alternative MU meth-
ods draw from the concept of differential privacy Dwork
and Roth (2014) and are based on a Gaussian noise pertur-
bation of the trained model (Neel et al., 2021; Guo et al.,
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2020; Gupta et al., 2021). The magnitude of the noise per-
turbation should be estimated directly from the clients data,
which is by construction inaccessible to the server in the FL
regime. We also note that while recent federated unlearning
(FU) methods have been proposed to unlearn a client from
the global FL model (Liu et al., 2021; Wang et al., 2021;
Halimi et al., 2022; Wu et al., 2022), these approaches do
not come with theoretical guarantees on the effectiveness
of the unlearning.

The main contribution of this work consists in Informed
Federated Unlearning (IFU), a novel efficient FU approach
to unlearn a client’s contribution with quantifiable unlearn-
ing guarantees. IFU requires minimal additional compu-
tations to the server in a standard FEDAVG procedure.
Specifically, the server quantifies at every optimization
round each client’s contribution to the global model. Upon
receiving an unlearning request from a client, the server
identifies in the FL training history the optimal FL itera-
tion and associated intermediate global model from which
re-initializing the unlearning procedure. Unlearning guar-
antees are provided by introducing a novel randomized
mechanism to perturb the selected intermediate model with
client-specific noise. We also extend IFU to Sequential In-
formed Federated Unlearning (SIFU), to account for realis-
tic unlearning scenarios where the server receives sequen-
tial unlearning requests from one or more clients at differ-
ent times (Neel et al., 2021; Gupta et al., 2021).

This manuscript is structured as follows. In Section 2,
we provide formal definitions for MU, FL, and FU, and
introduce the randomized mechanism with associated un-
learning guarantees. In Section 3, we introduce sufficient
conditions for IFU to unlearn a client from the FL routine
(Theorem 2). In Section 4, we extend IFU to the sequen-
tial unlearning setting with Sequential IFU (SIFU). Finally,
in Section 5, we experimentally demonstrate on different
tasks and datasets that SIFU leads to more efficient un-
learning procedures as compared to basic re-training and
state-of-the-art FU approaches.

2 Background and Related Work

In Section 2.1, we introduce the state-of-the art behind Ma-
chine Unlearning, while in Section 2.2, we introduce FL
and FEDAVG. Finally, we introduce Federated Unlearning
(FU) in Section 2.3.

2.1 Machine Unlearning

Let us consider a dataset D composed of two disjoint
datasets: Df , the cohort of data samples on which unlearn-
ing must be applied after FL training, and Dk, the remain-
ing data samples. Hence, we have D = Df ∪ Dk. We also
consider M(D), the ML model parameters resulting from
training with optimization scheme M on dataset D. We

introduce in this section the different unlearning baselines
and methods currently used to unlearn Df from the trained
model M(D).

MU through retraining. Within this setting, a new train-
ing is performed from scratch with only Dk as training data.
As the initial model contains no information from Df , the
new trained model M(Dk) also contains no information
from Df . We note however that this procedure wastes the
contribution of Dk already available by training originally
on D. Hence, this method is considered sub-optimal, and
represents a basic baseline for unlearning approaches.

MU through fine-tuning. Fine-tuning on the remaining
data Dk has been proposed as a practical approach to un-
learn the specificities of Df . However, fine-tuning does not
provide guarantees about the effectiveness of the unlearn-
ing. We provide an example of this issue in Appendix A.

MU through model scrubbing. Another unlearning ap-
proach consists in applying a “scrubbing” transformation
h to the model M(D) such that the resulting model is as
close as possible to the one that would be trained with only
Dk, i.e. h(M(D)) ≈ M(Dk) (Ginart et al., 2019). To de-
fine a scrubbing method h, existing work mostly relies on
the following Assumption 1, which considers a quadratic
approximation of the loss function.

Assumption 1. For model parameters θ and ϕ, the gradi-
ent of the loss function of a given data point Dx satisfies

∇fDx
(ϕ) = ∇fDx

(θ) +HDx
(θ)(ϕ− θ), (1)

where HDx
(θ) is positive semi-definite.

The scrubbed model is the new optimum obtained when
unlearning data samples in Df . Hence, under Assump-
tion 1, the new optimum can be obtained by setting
∇fDk

(hDk
(θ)) = 0, which gives

hDk
(θ) = θ −H−1

Dk
(θ)∇fDk

(θ). (2)

With equation (2), h reduces to performing a Newton step,
and has been derived in previous MU works (Guo et al.,
2020; Izzo et al., 2021; Golatkar et al., 2020a,b, 2021; Ma-
hadevan and Mathioudakis, 2021a) under different theoreti-
cal assumptions that can be generalized with Assumption 1.
The main drawback behind the use of the scrubbing func-
tion (2) is the computation of the Hessian, which can be
unfeasible for high dimensional model. Finally, the scrub-
bing function (2) is often coupled with Gaussian noise per-
turbation on the resulting weights (Golatkar et al., 2020a,b,
2021), to compensate the quadratic approximation of the
loss function or the approximation of the Hessian.

MU through noise perturbation. This unlearning method
consists in randomly perturbing the trained model M(D)
to unlearn specificities from data samples in Df (Neel et al.,
2021; Gupta et al., 2021; Mahadevan and Mathioudakis,
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2021b). The noise is set such that the guarantees of Defini-
tion 1 are satisfied, where (ϵ, δ) are parameters quantifying
the unlearning guarantees.

Definition 1. Let fm be a randomized mechanism taking
model parameters as an input. (ϵ, δ)-Unlearning trough
fm of a data point {xm, ym} from a model M(D) is
achieved if, for any subset S of the model parameters space
and D−m := D \ {xm, ym}, we have

P(fm(M(D)) ∈ S) ≤ eϵP(fm(M(D−m)) ∈ S)+δ (3)

and P(fm(M(D−m)) ∈ S) ≤ eϵP(fm(M(D)) ∈ S)+δ.
(4)

Guo et al. (2020) shows the relationship between Definition
1 and the definition a randomized mechanism in differential
privacy (Dwork and Roth, 2014; Chen et al., 2020).

2.2 Federated Optimization and FEDAVG

In FL, we consider a learning setup with M clients, and
define I = {1, ...,M} as the set of indices of the par-
ticipating clients. Each client owns a dataset Di com-
posed of |Di| = ni data samples. We consider a loss
f(xi,l,yi,l,θ) assessed on each data sample (xi,l,yi,l) ∈
Di, and define a client’s loss function as fi(θ) :=
1/ni

∑ni

l=1 f(xi,l,yi,l,θ). We define for the joint dataset
DI := ∪i∈IDi the federated loss function

fI(θ) :=
1

|DI |
∑
i∈I

|Di|fi(θ). (5)

FEDAVG (McMahan et al., 2017) optimizes the loss (5)
with theoretical guarantees for FL convergence to a sta-
tionary point (Wang et al., 2020; Li et al., 2020). At each
iteration step n, the server sends the current global model
parameters θn to the clients. Each client updates the model
by minimizing its local cost function fi(θ) with K SGD
steps initialized on θn. Subsequently each client returns
the updated local parameters θn+1

i to the server. The global
model parameters θn+1 at the iteration step n+ 1 are then
estimated as a weighted average, i.e.

θn+1 = θn +
1

|D|
∑
i∈I

|Di|
[
θn+1
i − θn

]
. (6)

Algorithm 1 provides the implementation of FEDAVG. For
the rest of this work, we define the joint dataset for a subset
of client Ix ⊂ I as DIx := ∪i∈IxDi.

2.3 Federated Unlearning

Existing works (Liu et al., 2021; Wang et al., 2021; Halimi
et al., 2022; Wu et al., 2022) already consider the problem
of unlearning a client from a model optimized through FE-
DAVG. However, these works do not provide theoretical
nor quantitative guarantees on the unlearning procedure.

Algorithm 1 FEDAVG(I,N)

1: for n from 0 to N − 1 do
2: The server sends θn to every client in I .
3: Clients perform K SGDs to compute θn+1

i .
4: The server creates θn+1, equation (6).
5: end for
6: return the trained global model θN

Also, we note that standard MU methods cannot seamlessly
be used in the federated setting. On one hand, federated un-
learning (FU) with model scrubbing would require clients
to perform only K = 1 SGD and share their Hessian with
the server. Hence, model scrubbing decreases significantly
FL convergence speed, while exposing the clients’ data by
sharing high order quantities with the risk of model inver-
sion (Fredrikson et al., 2015). Moreover, the computation
of the Hessian is unfeasible for highly dimensional mod-
els. On the other hand, existing MU approaches based on
model perturbation require to retrain the model after the
noise is added to the model’s parameters. As such, retrain-
ing generally requires a significant amount of SGD steps
to guarantee convergence to a new optimum, negatively af-
fecting the effectiveness of the unlearning procedure.

In this work, we introduce a novel unlearning paradigm
which avoids retraining the final model by identifying the
optimal FL iteration where unlearning should be applied.
Therefore, retraining is applied to an “early” version of the
global model with reduced perturbation, thus minimizing
the amount of required SGD steps to achieve convergence.

3 Unlearning a FL client with IFU

In this section, we develop our theory for the scenario
where a model is trained with FEDAVG on the set of clients
I , after which a client c requests unlearning of its own data.
In Section 3.1, we define the sensitivity of the global model
with respect to a client’s contribution, and provide a bound
relating this sensitivity to the FL procedure. In Section 3.2,
we provide a tighter model sensitivity for some specific FL
applications. Using Theorem 1, we introduce in Section 3.3
the perturbation procedure to unlearn a client c from the
model trained with FEDAVG (Theorem 2). Finally, using
Theorem 2, we introduce Informed Federated Unlearning
(IFU) (Algorithm 2).

3.1 Theorem 1, Bounding the Model Sensitivity

As defined in Section 2.2, θn+1
i is the local update of client

i sent to the server after performing K SGD steps on its
dataset Di after initialization with global model θn. Given
the contribution θn+1

i −θn of a client i, we define the over-
all FL increment after aggregations across the set of clients
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I as

∆(I,θn) :=
1

|DI |
∑
i∈I

|Di|
[
θn+1
i − θn

]
. (7)

By comparing increments obtained by training on the set
of clients I , and on the set I−c := I \ {c} obtained after
dropping a given client c, we define the bounded sensitivity
after n server aggregations as

Ψ(n, c) :=

n−1∑
s=0

∥∆(I,θs)−∆(I−c,θ
s)∥2 , (8)

We show in Theorem 1 that the model sensitivity of FE-
DAVG can be bounded by the bounded sensitivity (8).

Theorem 1. Under Assumption 1, the model sensitivity of
FEDAVG when removing a client c after n server aggrega-
tions is defined as

α(n, c) := ∥FEDAVG(I, n)− FEDAVG(I−c, n)∥2 , (9)

where FEDAVG(I, n) is the output of Algorithm 1, and

α(n, c) ≤ Ψ(n, c). (10)

Proof. See Appendix B.

3.2 Improving the Tightness of the Sensitivity Bound

Theorem 1 shows that the bounded sensitivity provides a
bound for the model sensitivity, while the computation of
(8) only requires the clients’ updated models, which are
already shared with the server by design in FEDAVG. Nev-
ertheless, we note that the bounded sensitivity (8) does not
necessarily faithfully represent the evolution of the sensi-
tivity across FL rounds. For instance, this quantity does not
properly account for the unlearning of previous clients con-
tributions for s < n−1. Indeed, these contributions should
decrease across iterations due to the subsequent server ag-
gregations and new clients’ local work. To account for
this aspect, we provide a tighter lower bound by assuming
strongly convex and regularized local loss function, lead-
ing to a tighter bound for the model sensitivity of FEDAVG
(Corollary 1).

Corollary 1. Under Assumption 1, when considering that
clients loss functions are µ-strongly convex and regularized
with an L2 norm of weight λ, we have α(n, c) ≤ Ψ(n, c)
and

Ψ(n, c) =

n−1∑
s=0

(1− η(λ+ µ))
[(n−1)−s]K

× ∥∆(I,θs)−∆(I−c,θ
s)∥2 , (11)

where η and K are respectively the clients’ local learning
rate and amount of local work.

Proof. See Appendix B.3.

The bounded sensitivity of Corollary 1 shows the fol-
lowing aspects. (1) The importance of a client’s contri-
bution decreases through aggregation rounds. (2) Since
FL is guaranteed to converge to a stationary point (Wang
et al., 2020; Li et al., 2020), so does the bounded sensi-
tivity since λ + µ > 0. (3) The bounded sensitivity is
not necessarily inversely proportional to K. Indeed, due
to data heterogeneity, with an increase in K every local
model gets closer to its local optimum and the quantity
∥∆(I,θn)−∆(I−c,θ

n)∥2 increases with the amount of
local work K.

When clients have same data distribution, we retrieve
∆(I,θn) = ∆(I−c,θ

n), which yields null bounded sen-
sitivity for every client, i.e. Ψ(n, c) = 0. We also note
that the bound provided in Corollary 1 is tight, e.g. when
considering identical eigenvalues for the Hessian of every
local loss. More generally, the bound is tight in the limit
case where the local learning rate of the clients is small.

We can draw an analogy between the bounded sensitivity
(8) and client clustering in FL (Sattler et al., 2021; Fraboni
et al., 2021a), where clients are clustered based on their
contribution. In this work, the bounded sensitivity (8) is
used instead to bound the sensitivity of the global model
across rounds in FEDAVG.

3.3 Satisfying Definition 1

In this section, we introduce a randomized mechanism to
provide guarantees for the unlearning of a given client c,
where the magnitude of the perturbation process (Dwork
and Roth, 2014) is defined based on the sensitivity of The-
orem 1. In practice, we define a Gaussian noise mechanism
to perturb each parameter of global model θn such that we
achieve (ϵ, δ)-unlearning of client c for the resulting model,
according to Definition 1. We give in Theorem 2 sufficient
conditions for the noise perturbation to satisfy Definition 1.

Theorem 2. Defining

σ(n, c) := [2 (ln(1.25)− ln(δ))]
1/2

ϵ−1Ψ(n, c), (12)

the noise perturbation σ(n, c)Iθ applied to the global
model θn, where Iθ is the identity matrix, achieves (ϵ, δ)-
unlearnig of client c according to Definition 1.

Proof. Follows directly from Theorem 1 coupled with The-
orem A.1 of Dwork and Roth (2014).

We note that, according to Theorem 2, (ϵ, δ)-unlearning a
client from a given global model requires a standard devia-
tion for the noise that is client-specific and proportional to
its bounded sensitivity.
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Algorithm 2 Informed Federated Unlearning (IFU)
DURING LEARNING WITH FEDAVG

FEDAVG(I,N ) initialized on initial model θ0.
for n from 0 to N − 1, and i from 1 to c do

Compute Ψ(n, i), equation (8).
end for

WHEN UNLEARNING CLIENT c

Require: c, ϵ, δ, σ, and amount of retraining steps Ñ .
1: Get Ψ∗ with equation (13).
2: Get T = argmaxn (Ψ(n, c) ≤ Ψ∗) with eq. (14).
3: The new global model is θ̃ = θT +N(0, σ2Iθ).
4: Run FEDAVG(I−c, Ñ ) initialized on θ̃.

In what follows, the unlearning procedure will be defined
with respect to the sensitivity threshold Ψ∗ related to the
unlearning budget (ϵ, δ) and standard deviation σ:

Ψ∗ := [2 (ln(1.25)− ln(δ))]
−1/2

ϵσ. (13)

3.4 Informed Federated Unlearning (IFU)

Using the bounded sensitivity (8) and Theorem 2, we intro-
duce Informed Federated Unlearning (IFU) to unlearn the
contribution of client c ∈ I from a FL training procedure
based on FEDAVG. Algorithm 2 provides the implementa-
tion of IFU on top of FEDAVG. We note that during the FL
training, IFU requires the server to compute the bounded
sensitivity metric Ψ(n, i) from each client’s contribution
θn+1
i and current global model θn. These quantities are

tracked throughout FL iterations and are used to identify
the optimal unlearning strategy after request from a client
c.

To unlearn client c, the server identifies the unlearning in-
dex T associated to the history of bounded sensitivity met-
rics, i.e. the most recent global model index such that a
perturbation of size σ satisfies Theorem 2:

T := argmax
n

(Ψ(n, c) ≤ Ψ∗) . (14)

The new global model is obtained after perturbation θ̃ :=
θT + ν, where ν ∼ N(0, σ2Iθ). Our unlearning criterion
1 is therefore satisfied for θ̃ (Theorem 2), and the server
can perform Ñ new optimization rounds with FEDAVG ini-
tialized on θ̃. Thanks to the contribution of the remaining
clients in θ̃, we expect the retraining with IFU to be gener-
ally faster than retraining with a random initial model.

Since Ψ(n, i) is strictly increasing with n, the server can
stop from computing the bounded sensitivity (8) for client
i whenever Ψ(ni, i) > Ψ∗ is verified after ni optimization
rounds. At this point, the model θni−1 will be selected for
the unlearning request of client i, as the models at subse-
quent iterations do not comply with the desired unlearning
budget Ψ∗.

Algorithm 3 Sequential IFU (SIFU)
DURING LEARNING WITH FEDAVG

1: FEDAVG(I,N ) initialized on initial model θ0
0 .

2: Compute Ψ0(n, i), equation (15).
UNLEARNING A SERIES OF REQUESTS {Wr}
Require: {Wr}Rr=1, ϵ, δ, σ, and {Nr}Rr=1

1: O(0) = {∅}.
2: Get Ψ∗ with equation (13).
3: for r from 1 to R do
4: Ir = Ir−1 \Wr.
5: Compute (ζr, Tr) with O(r−1), eq. (17) and (18).
6: Update O(r) with ζr, Tr, and O(r − 1), eq. (19).
7: The new global model is θ0

r = θTr

ζr
+N(0, σ2Iθ).

8: Perform FEDAVG(Dr, Nr) initialized on θ0
r .

9: Compute Ψr(n, i), eq. (15).
10: end for

4 Sequential FU with SIFU

In this section, we extend IFU to the sequential unlearn-
ing setting with Sequential IFU (SIFU). With Algorithm
3, SIFU is designed to satisfy a series of R unlearning re-
quests {Wr}Rr=1, where Wr is the set of clients to unlearn
at request index r. SIFU generalizes IFU for which R = 1
and W1 = {c}. We provide an illustration of SIFU with an
example in Figure 1.

The notations introduced thus far need to be general-
ized to account for our series of unlearning requests
W1,W2, . . . ,WR. Global models are now referenced by
their coordinates (r, n), i.e. θn

r , which represent the un-
learning request index r and the amount of server aggre-
gations n performed during the retraining. Hence, θ0

r is
the initialization of the model when unlearning the clients
in Wr. Also, we consider that the retraining at request
index r requires Nr server aggregations on the remain-
ing clients. Therefore, by construction, θNr

r is the model
obtained after using SIFU to (ϵ, δ)-unlearn the sequence
of unlearning requests {Ws}rs=1. Finally, we define Ir as
the set of remaining clients after unlearning request r, i.e.
Ir := I \ ∪r

s=1Ws = Ir−1 \Wr with I0 = I .

We extend the bounded sensitivity (8) with Ψr(n, i) to
compute the metric of client i at unlearning index r with

Ψr(n, i) :=

n−1∑
s=0

∥∆(Ir,θ
s
r)−∆(Ir \ {i},θs

r)∥2 . (15)

When unlearning client c at r = 1, the metric at r = 0
is equivalent to the previous definition of Ψ. Also, when
computing the metric on a client already unlearned, i.e. i /∈
Ir, we retrieve Ψr(n, i) = 0. Finally, for a set of clients S,
we generalize the bounded sensitivity (15) to

Ψr(n, S) = max
i∈S

Ψr(n, i). (16)
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Training

Unlearning W1

Unlearning W2

Unlearning W3

Server aggregation

Noise perturbation

O(0) = {∅}
O(1) = {(0, T1)} ζ1 = 0

O(2) = {(0, T1), (1, T2)} ζ2 = 1

O(3) = {(0, T1), (1, T3)} ζ3 = 1

θ0
0 θ1

0

θT1
0 θN0

0

θ0
1

θT3
1 θT2

1

θN1
1

θ0
2

θN2
2

θ0
3 θN3

3

Figure 1: Illustration of SIFU (Algorithm 3) when the server receives R = 3 unlearning requests, through the evo-
lution of the global model parameters θn

r after server aggregation and noise perturbation. After standard federated
training via FEDAVG(I,N0), the oracle is O(0) = {∅}, and the current training history is (θ0

0, . . . ,θ
N0
0 ). At request

r = 1 the unlearning index is T1, and the training history becomes (θ0
0, . . . ,θ

T1
0 ,θ0

1, . . . ,θ
N1
1 ). The oracle is updated

to O(1) = {(0, T1)}, and ζ1 = 0. At request r = 2 the unlearning index is T2 and the training history becomes
(θ0

0, . . . ,θ
T1
0 ,θ0

1, . . . ,θ
T2
1 ,θ0

2, . . .θ
N2
2 ). The new node is added to the oracle O(2) = {(0, T1), (1, T2)}, and ζ2 = 1.

Finally, at request r = 3, the unlearning index is found at T3 < T2 in the branch of request r = 1. The updated training
history is now (θ0

0, . . . ,θ
T1
0 ,θ0

1, . . . ,θ
T3
1 ,θ0

3, . . .θ
N3
3 ), the oracle is updated as O(3) = {(0, T1), (1, T3)}, and ζ3 = 1.

With SIFU, the selection of the unlearning index T for a re-
quest r depends of the past history of unlearning requests.
To keep track of the unlearning history, we introduce the
oracle O(r) which returns at each request r the coordi-
nates of the history of global models where unlearning has
been applied. These coordinates represent the nodes of
the training history across unlearning requests (Figure 1).
With reference to Figure 1, we start with the original se-
quence of global models obtained at each FL round, i.e.
(θ0

0, . . . ,θ
N0
0 ). Similarly to IFU, the first unlearning re-

quest requires to identify the unlearning index T1 for which
the corresponding global model θT1

0 must be perturbed to
obtain θ0

1 and retrained until convergence, i.e. up to θN1
1 .

The oracle is updated with the coordinates of the branch-
ing O(1) = {(0, T1)}, and the current training history is
now (θ0

0, . . . ,θ
T1
0 ,θ0

1, . . . ,θ
N1
1 ). At the next unlearning re-

quest, the server needs to identify the coordinates (ζr, Tr)
in the new training history for which unlearning must be ap-
plied on the model θTr

ζr
to obtain θ0

r = θTr

ζr
+N (0, σ2Iθ).

The oracle is subsequently updated with the new set of
nodes describing the new branching in the training history.
By construction, we have ζr ≤ r − 1 and Tr ≤ Nζr .

More precisely, we define the index ζr associated to the first
coordinate in O(r − 1) for which the bounded sensitivity
(15) of clients in Wr exceeds Ψ∗. Formally, we have

ζr := min
s

{s : Ψs(n,Wr) > Ψ∗ and (s, n) ∈ O(r − 1),

r − 1}. (17)

The definition of Tr follows directly from the one of ζr.
Similarly as for IFU, the unlearning index Tr quantifies the

maximum amount of server aggregations starting from the
unlearning request index ζr such that the bounded sensi-
tivity Ψζr (n,Wr) on this global model is inferior to Ψ∗,
i.e.

Tr := argmax
n

{Ψζr (n,Wr) ≤ Ψ∗}. (18)

Finally, we update the oracle O(r − 1) to O(r) with the
following recurrent equation

O(r) = {(s, n) ∈ O(r − 1) s.t. s < ζr, (ζr, Tr)}. (19)

Theorem 3 shows that for a model trained with SIFU after
a given training request r, (ϵ, δ)-unlearning is guaranteed
for every client belonging to the sets Ws, s ≤ r.

Theorem 3. The model θNr
r obtained with SIFU satisfies

(ϵ, δ)-unlearning for every client in current and previous
unlearning requests, i.e. clients in ∪r

s=1Ws.

Proof. See Appendix C.

5 Experiments

In this section, we experimentally demonstrate the effec-
tiveness of SIFU on a series of benchmarks introduced in
Section 5.1. In Section 5.2, we illustrate and discuss our
experimental results. Results and related code are publicly
available at URL.
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Figure 2: Total amount of aggregation rounds (1st row) and model accuracy of unlearned clients (2nd row) for MNIST,
FashionMNIST, CIFAR10, CIFAR100, and CelebA (the lower the better). The server runs a federated routine with M =
100 clients, and unlearns 10 of them at each unlearning request (R = 3).

5.1 Experimental Setup

Datasets. We report experiments on reduced versions
of MNIST (LeCun et al., 1998), FashionMNIST (Xiao
et al., 2017), CIFAR-10 (Krizhevsky, 2009), CIFAR-100
(Krizhevsky, 2009), and CelebA (Liu et al., 2015). For
each dataset, we consider M = 100 clients, with 100 data
points each. For MNIST and FashionMNIST, each client
has data samples from only one class, so that each class
is represented in 10 clients only. For CIFAR10 and CI-
FAR100, each client has data samples with ratio sampled
from a Dirichlet distribution with parameter 0.1 (Harry Hsu
et al., 2019). Finally, in CelebA, clients own data samples
representing the same celebrity. With these five datasets,
we consider different level of heterogeneity based on label
and feature distribution.

Models. For MNIST, we train a logistic regression model
to consider a convex classification problem, while, for the
other datasets, we train a neural network with convolutional
layers followed by fully connected ones. More details on
the networks are available in Appendix D.

Unlearning schemes. In addition to SIFU, we consider
the following unlearning schemes from the state-of-the-art:
SCRATCH, where retraining of a new initial model is per-
formed on the remaining clients; FINE-TUNING, where re-
training is performed on the current global model with the
remaining clients; LAST (Neel et al., 2021), where retrain-
ing is performed on the remaining clients via perturbation
of the final FL global model; DP (Dwork and Roth, 2014),
where training with every client is performed with differ-
ential privacy, and FEDACCUM (Liu et al., 2021), where
retraining is performed on the current global model from
which the server removes the updates of the clients to un-
learn, by re-aggregating the parameter updates of clients

that were stored by the server across FL iterations. We pro-
vide in Appendix D the pseudo-code of FEDACCUM with
the notation of our paper. We remind that FEDACCUM does
not provide quantitative guarantees of the unlearning pro-
cedure, and requires the server to store the full sequence of
models during the FL procedure.

Experimental scenario. We consider a sequential unlearn-
ing scenario in which the server performs the FL training
procedure and then receives R = 3 sequential unlearning
requests to unlearn 10 random clients per request. In the
special case of MNIST and FashionMNIST, the server must
unlearn 10 clients owning the same class. The server or-
chestrates each unlearning scheme through retraining until
the global model accuracy on the remaining clients exceeds
a fixed value specific to each dataset. We set the minimum
number of 50 aggregation rounds, and a maximum budget
of 10000 rounds when the stopping accuracy criterion is
not met. Each unlearning method is applied with the same
hyperparameters, i.e. stopping accuracy, local learning rate
η, and amount of local work K (Appendix D). We define
the set of clients requesting unlearning as:

Fr = ∪r
s=1Ws. (20)

In our experimental scenario, we have |F0| = 0 during
training and |F1| = 10, |F2| = 20, and |F3| = 30 after
each unlearning request.

Unlearning quantification. We verify the success of an
unlearning scheme with two metrics: (a) the amount of
server aggregation rounds needed for retraining, and (b)
the resulting model accuracy on the unlearned clients. we
note that, by construction, SCRATCH perfectly unlearns the
clients from a request Wr. Therefore, we consider an un-
learning scheme successful if it reaches similar accuracy of
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Figure 3: Total amount of aggregation rounds (1st row) and
model accuracy of unlearned clients (2nd row) for the un-
learning of watermarked data from CIFAR100 and CelebA.

SCRATCH with less aggregation rounds, when tested on the
data samples of Fr.

5.2 Experimental Results

Figure 2 shows that for every dataset and unlearning in-
dex, FINE-TUNING, FEDACCUM, and DP provide similar
model accuracy for the unlearned clients in Fr (Figure 2-
2nd row), albeit significantly higher than for SCRATCH, the
unlearning standard. Noteworthy, unlearning with FINE-
TUNING, FEDACCUM, and DP results in significantly less
aggregation rounds than SCRATCH (Figure 2-1st row). We
note that SIFU and SCRATCH lead to similar unlearning re-
sults, quantified by low accuracy on the unlearned clients
Fr (Figure 2-2nd row), while SIFU unlearns these clients in
roughly half the amount of aggregation rounds needed for
SCRATCH (Figure 2-1st row). However, the model accuracy
of SIFU is slightly higher than the one of SCRATCH, with
perfect overlap only for FashionMNIST. This behavior is
natural and can be explained by our privacy budget (ϵ, δ),
which trades unlearning capabilities for effectiveness of the
retraining procedure. With highest unlearning budget, i.e.
ϵ = 0 and δ = 0, SIFU would require to retrain from the
initial model θ0

0 , thus reducing to SCRATCH.

Finally, we observed that when unlearning with LAST,
the retrained model always converged to a local optimum
with accuracy inferior to our target after 10000 aggrega-
tion rounds. This behavior is likely due to the difficulty of
calibrating the noise perturbation due to the numerous het-
erogeneous contributions of the clients. For this reason, we
decided to exclude LAST from the plots of Figure 2.

5.3 Verifying Unlearning through Watermarking

The work of Sommer et al. (2020) proposes an adversarial
approach to verify the efficiency of an unlearning scheme
based on watermarking. We apply here this method to our
federated setting, in which watermarking is operated by
each client by randomly assigning on all its data samples
the maximum possible value to 10 given pixels. To ensure
that clients’ data heterogeneity is only due to the modifi-
cation of the pixels, we define heterogeneous data parti-
tioning across clients by randomly assigning the data ac-
cording to a Dirichlet distribution with parameter 1. Figure
3 shows our results for this experimental scenario on CI-
FAR100 and CelebA, while Appendix D provides similar
results for MNIST, FashionMNIST and CIFAR10. We re-
trieve the same conclusions drawn from Figure 2. SIFU and
SCRATCH have similar accuracies on the unlearned clients
in Fr, to demonstrate the effectiveness of the unlearning.
Moreover, SIFU unlearns these clients in significantly less
aggregation rounds than SCRATCH.

5.4 Impact of the noise perturbation on SIFU

Appendix D illustrates the impact of the perturbation am-
plitude σ on convergence speed when unlearning with
SIFU. We note that when unlearning with a small σ, SIFU
has identical behavior to SCRATCH as the unlearning is ap-
plied to the initial random model θ0

0 . With large values of
σ, SIFU performs instead identically to LAST and applies
the unlearning to the finale global model θNr

r .

6 Conclusions

In this work, we introduce informed federated unlearning
(IFU), a novel federated unlearning scheme to unlearn a
client’s contribution from a model trained with federated
learning. Upon receiving an unlearning request from a
given client, IFU identifies the optimal FL iteration from
which FL has to be reinitialised, with statistical unlearning
guarantees defined by Definition 1. We extend the theory of
IFU to account for the practical scenario of sequential un-
learning (SIFU), where the server receives a series of for-
getting request of one or more clients. We prove that SIFU
can unlearn a series of forgetting requests while satisfying
our unlearning guarantees, and demonstrate the effective-
ness of our methods on a variety of tasks and dataset.

An additional contribution of this work consists in a new
theory for bounding the clients contribution in FL. The
server can compute this bound for every client without ask-
ing for any additional computation and communication.
The theoretical justification of this approach relies on the
linear approximation of the clients’ loss function, and its
relevance is here demonstrated across several benchmarks.
Future extensions of the work will focus on generalizing
our unlearning framework to more general settings.
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A When fine tuning does not guarantee unlearning: example on linear regression

Let us consider a linear regression optimization, with feature matrix X and predictions y such that the loss function f is
defined as

f(X,y,θ) =
1

2
[y −Xθ]

T
[y −Xθ] . (21)

In this example, we assume there are more features than data samples, which makes XTX a singular matrix. While f is
convex, f has more than one global optimum. Any model with parameter θ∗ such that

XTXθ∗ = XTy (22)

is a global optimum. When XTX is non-singular, we retrieve the unique optimum in close-form θ∗ =
(
XTX

)−1
XTy.

We show with this simple example that, upon unlearning a data sample, no amount of fine-tuning on the model θ∗ can lead
to the same model obtained when retraining from a random initial model. We differentiate between (X,y) and (X−1,y−1)
our data with and without a given data point.

Optimizing f , as defined in equation (21), with N steps of gradient descent, learning rate η, and initial model θ0 gives
model parameters θN defined as

θN =
[
I − ηXTX

]N︸ ︷︷ ︸
A(X,N)

θ0 + η

N−1∑
n=0

[
I − ηXTX

]n
XTy︸ ︷︷ ︸

B(X,y,N)

. (23)

We first note that we retrieve the standard form for the global optimum of linear regression when XTX is non-singular
as limn→∞ A(X, n) = 0 and limn→∞ B(X,y, n) =

(
XTX

)−1
XTy. In the general form accounting for the singular

case, at least one eigenvalue of A(X, N) is equal to 1 independently from the amount of gradient descent steps N . Hence,
the parameters of the model obtained with gradient descent optimization always depend from the ones of the initial model
θ0. Hence, when unlearning our data sample from θN , the resulting trained model still depends of that data samples.
Indeed, if we compare the model θÑ

−1 trained on the data samples (X−1,y−1), to the model ϕÑ
−1 obtained after fine-tuning

the model θN with Ñ server aggregations, we have

ϕÑ
−1 − θÑ

−1 = A(X−1, Ñ)A(X, N)θ0 +A(X−1, Ñ)B(X,y, N). (24)

B Forgetting a Single Client with IFU, Proof of Theorem 1

We first consider the case where clients perform K = 1 SGD in Section B.1 before considering the general case K ≥ 1 in
Section B.2.

B.1 Proof of Theorem 1 for K = 1

Proof. We define by θN = FEDAVG(I,N) and ϕN = FEDAVG(I−c, N) the models trained with FEDAVG on θ0 with
respectively all the clients, i.e. I , and all the clients but client c, i.e. I−c, performing K = 1 GD step.

When clients perform K = 1 GD step, two consecutive global models can be related, when training with clients in I as a
simple GD step, i.e.

θn+1 = θn − η∇fI(θ
n). (25)

By considering the same process for I−c and with Assumption 1, we get

ϕn+1 − θn+1 = ϕn − θn − η
[
∇fI−c(ϕ

n)−∇fI(θ
n)
]

(26)

=
[
I − ηHI−c(θ

n)
]
[ϕn − θn]− η

[
∇fI−c(θ

n)−∇fI(θ
n)
]
. (27)

HI−c(θ
n) is semi-positive, Assumption 1. Let us define σmax(HI−c(θ

n)) the highest eigenvalue of HI−c(θ
n). When

consider that η ≤ 1/σmax(HI−c
(θn)), and due to the subadditivity of the norm, we get the following recurrent inequality∥∥ϕn+1 − θn+1

∥∥
2
≤ η

∥∥∇fI(θ
n)−∇fI−c

(θn)
∥∥
2
+ ∥ϕn − θn∥2 , (28)

which when developed completes the proof when clients perform K = 1 GD.
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B.2 Proof of Theorem 1 for K ≥ 1

Proof. We maintain the definitions of θn and ϕn introduced in Section B.1. To account for the amount of local work K,
we introduce θn,k

i the model of client i after k GD steps performed on global model θn. We apply a similar reasoning for
ϕn,k

i .

With Assumption 1, we have

∇fi(ϕ
n,k
i ) = ∇fi(θ

n,k
i ) +Hi(θ

n,k
i )

(
ϕn,k

i − θn,k
i

)
, (29)

which gives

ϕn,k+1
i − θn,k+1

i =
(
ϕn,k+1

i − ϕn,k
i

)
−
(
θn,k+1
i − θn,k

i

)
+
(
ϕn,k

i − θn,k
i

)
(30)

= −η
[
∇fi

(
ϕn,k

i

)
−∇fi

(
θn,k
i

)]
+
(
ϕn,k

i − θn,k
i

)
(31)

=
[
I − ηHi(θ

n,k
i )

] (
ϕn,k

i − θn,k
i

)
(32)

=

[
k∏

r=0

[I − ηHi(θ
n,r
i )]

]
(ϕn − θn) , (33)

where the third equality follows from equation (29), and the fourth from expanding the recurrent equation. For the rest of
this work, we define Qn

i =
∏K−1

k=0

[
I − ηHi(θ

n,k
i )

]
.

Using equation (33), we relate the difference between two global models with every client in I and in Ic. When removing
client c the clients’ importance changes. We consider importance pi when training with I . Instead, when training with
clients in Ic, we consider the regularized importance qi = pi/(1− pc) for the remaining clients and qc = 0. We have

ϕn+1 − θn+1 =

M∑
i=1

qi
(
ϕn+1

i − ϕn
)
−

M∑
i=1

pi
(
θn+1
i − θn

)
(34)

=

M∑
i=1

qi
[(
ϕn+1

i − θn+1
i

)
+
(
θn+1
i − θn

)]
−

M∑
i=1

pi
(
θn+1
i − θn

)
(35)

=

(
M∑
i=1

qiQ
n
i

)
(ϕn − θn) + ∆(I−c,θ

n)−∆(I,θn). (36)

We consider a learning rate η such that η ≤ 1/σmax(Hi(θ
n,k)). Hence, ∥Qn

i ∥2 ≤ 1. With equation (36), we get the
following inequality ∥∥ϕn+1 − θn+1

∥∥
2
≤ ∥ϕn − θn∥2 + ∥∆(I,θn)−∆(I−c,θ

n)∥2 , (37)

which expansion completes the proof.

B.3 Local Loss Functions’ Regularization and Strong Convexity, Proof of Corollary 1

Proof. Under L2 regularization, every client’s regularized loss function Fi is expressed as

Fi(θ) = fi(θ) +
λ

2
∥θ∥2 and ∇Fi(θ) = ∇fi(θ) + λθ. (38)

When clients perform K = 1 GD step, equation (36) reduces to

ϕn+1 − θn+1 = η
[
∇fI(θ

n)−∇fI−c
(θn)

]
+
[
(1− ηλ)I − ηHI−c

(θn)
]
(ϕn − θn), (39)
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which, if η ≤ 1/(λ+ σmax(Hi(θ
n)), gives∥∥ϕn+1 − θn+1
∥∥
2
≤ η

∥∥∇fI(θ
n)−∇fI−c

(θn)
∥∥
2
+ (1− ηλ− ηµ) ∥ϕn − θn∥2 . (40)

When clients perform K ≥ 1 GD steps, we have ϕn+1
i − θn+1

i = Qn
i [ϕ

n − θn] with

Qn
i =

K−1∏
r=0

[(1− ηλ)I − ηHi(θ
n,r
i )] . (41)

Hence, we retrieve equation (36). We consider the local learning rate satisfy η ≤ 1/(λ + σmax(Hi(θ
n))). Hence,

considering that Qn
i can be bounded with the µ-strong convexity of the Hessian, we get∥∥ϕn+1 − θn+1

∥∥
2
≤ η ∥∆(I,θn)−∆(I−c,θ

n)∥2 + (1− ηλ− ηµ)K ∥ϕn − θn∥2 . (42)

Developing this recurrent equation completes the proof.

B.4 Generalization

The proof of Theorem 1 can be also extended to account for FL regularization methods (Li et al., 2018, 2019; Acar et al.,
2021), other SGD solvers (Kingma and Ba, 2015; Ward et al., 2019; Li and Orabona, 2019; Yu et al., 2019a,b; Haddad-
pour et al., 2019), client sampling (Li et al., 2018, 2020; Fraboni et al., 2021b) and/or gradient compression/quantization
(Reisizadeh et al., 2020; Basu et al., 2019; Wang et al., 2018).

B.5 Calculus simplification with uniform importance

For computation purposes, we propose the following expression to estimate a client bounded sensitivity, equation (8. When
removing client c, each client has new importance qi = pi/(1− pc) for the remaining clients and qc = 0. Hence, we have

∥∆(I,θn)−∆(θn,D−c)∥2 =

∥∥∥∥∥[θn+1 − θn
]
−

[
M∑
i=1

qiθ
n+1
i − θn

]∥∥∥∥∥
2

(43)

=

∥∥∥∥θn+1 − 1

1− pc

[
θn+1 − pcθ

n+1
i

]∥∥∥∥
2

(44)

=
pc

1− pc

∥∥θn+1
i − θn+1

∥∥
2

(45)

In the special case where clients have identical importance, we have pc/(1− pc) = 1/(M − 1).

C Convergence of SIFU, Theorem 3

C.1 Intermediate results

Property 1. If there exists ν, s, u such that s < u, (ν, ts) ∈ O(s) and (ν, tu) ∈ O(u), then ts ≥ tu.

Proof. We first assume that s and u satisfy u = s + 1. Considering that (ν, ts) ∈ O(s) and (ν, tu) ∈ O(u), we have, by
definition of ζu in equation (17), ν ≤ ζu.

• ζu > ν. Considering that u = s+ 1, we have ts = tu, equation (19).

• ζu = ν. Considering that (ν, ts) ∈ O(s) and (ν, tu) ∈ O(u), then we have ν ≤ s− 1. Therefore, by definition of ζu,
we have Ψζu(ts,Wu) > Ψ∗. By construction of Tu, equation (18), we have tu = Tu < ts.

When considering the more general case where there exists an integer k such that u = s + k while (ν, ts) ∈ O(s) and
(ν, tu) ∈ O(u), then it is sufficient to consider iteratively an integer j ranging from 1 to k. Considering (ν, tu) ∈ O(u),
there exists ts+j such that (ν, ts+j) ∈ O(s+ j). In that case, using the same reasoning as for k = 1, we have ts ≤ ts+1 ≤
. . . ≤ ts+k−1 ≤ tu.
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C.2 Proof of Theorem 3

Proof. Proving that θNr
r (ϵ, δ)-unlearns every client in Fr, equation (20), reduces to proving that θ0

r (ϵ, δ)-unlearns every
client in Fr, equation (20). Indeed, the data of clients in Fr are not used on the noised perturbed model θ0

r = θTr

ζr
+

N (0, σ2Iθ).

We prove by induction that θ0
r (ϵ, δ)-unlearns every client in Fr, equation (20). The initialization (r = 1) directly follows

from IFU, Algorithm 2, with Theorem 2. We now assume that for every s such that s ≤ r − 1, θ0
s (ϵ, δ)-unlearns every

client in Fs and prove that θ0
r (ϵ, δ)-unlearns every client in Fr.

• s ≤ ζr. Using the induction property, θ0
ζr

(ϵ, δ)-unlearns every clients in Ws. Clients in Ws are not used for training
on θ0

ζr
. Hence, θTr

ζr
and θ0

r also (ϵ, δ)-unlearns every client in Ws.

• s = r. By definition of ζr, equation (17), the noise perturbations for every model in O(r) is such that θ0
ζr

(ϵ, δ)-
unlearns every client in Wr. Hence, by definition of Tr on the bounded sensitivity of clients in Wr at unlearning
request ζr, equation (18), the noised perturbed model θ0

r (ϵ, δ)-unlearns every client in Wr, Theorem 2.

• ζr < s ≤ r − 1. The successive update of the oracle, equation (19), from O(ζr) to O(s) gives, by construction, that
there exists ts such that the coordinates (ζr, ts) are in O(s). Hence, by definition of ζs, equation (17), we have
ζs ≥ ζr and the successive noise perturbations to obtain θ0

ζr
(ϵ, δ)-unlearns every client in Ws. Also, while we

have the coordinates (ζr, ts) in O(s), we also have the coordinates (ζr, Tr) in O(r), equation (19). Therefore, using
property 1, we have ts ≥ Tr. Hence, we have Ψζr (Tr,Ws) ≤ Ψ∗. Therefore, with the noise perturbation of SIFU,
clients in Ws are (ϵ, δ)-unlearned in θ0

r .

D Experiments

For every benchmark, we consider the number of SGD steps K, batch size B, number of clients M , the number of sampled
clients m, the standard deviation σ of the noise perturbation, and the local learning rate η given in Table 1. Also, for our
unlearning scheme SIFU, DP, and LAST, we consider an unlearning budget of ϵ = 10 and δ = 0.01. The unlearning
budget plays the important role of identifying in the training history the global model to perturb. Theorem 2 shows that ϵ
and σ are linearly related. Hence, to unlearn a client c from a global model c, a smaller σ can be considered, but at the cost
of a lower unlearning budget (ϵ, δ), Definition 1. Also, for fair comparison of DP with other FU schemes, we select the best
clipping value C, in a range from 0.001 to 1, for which the global model reaches the target accuracy in the smallest amount
of aggregation rounds. Finally, for FashionMNIST, CIFAR10, CIFAR100, and CelebA, we consider model architectures
composed of three convolutional layers followed by two fully connected layers, with implementation at URL.

Table 1: Hyperparameters used for our different unlearning benchmarks described in Section 5.1.

Dataset K B M m σ η C

MNIST 10 100 100 10 0.05 0.01 0.5
FashionMNIST 5 20 100 10 0.1 0.02 0.5
CIFAR10 5 20 100 5 0.05 0.01 0.2
CIFAR100 5 20 100 5 0.05 0.02 0.2
CelebA 10 20 100 20 0.1 0.01 0.5

The training and retraining depends on the initial model θ0
0 and the clients’ batches of data used at every aggregation to

compute their local work. Hence, we replicate each unlearning scenario on 10 different seeds and plot in Figure 2 to 6
their averaged results. For the unlearning benchmarks described in Section 5.1 and used in Figure 2, 5, and 6, the stopping
accuracies considered are 93% for MNIST, 90% for FashionMNIST, CIFAR10, and CIFAR100, and 99.9% for CelebA.
For Figure 3 and 4 with unlearning benchmark described in Section 5.3, the stopping accuracies considered are instead
99.9% for MNIST, FashionMNIST, CIFAR10, and CelebA, and 99% for CIFAR100. Reaching such accuracies is easier
with the backdoored datasets because the clients’ data heterogeneity is only due to their watermark, Section 5.3.
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Figure 4: Total amount of aggregation rounds (1st row) and model accuracy of unlearned clients (2nd row) for the unlearn-
ing of watermarked data from MNIST, FashionMNIST, CIFAR10, CIFAR100, and CelebA (the lower the better).

10 3 10 1
102

103

104

# 
Ro

un
ds

MNIST

10 3 10 1

102

103

104
FashionMNIST

10 3 10 1

102

103

104
CIFAR10

10 3 10 1

102

103

104
CIFAR100

10 3 10 1

102

6 × 101

2 × 102
3 × 102
4 × 102 CelebA

10 3 10 1
Noise std 

0

20

40

60

Ac
cu

ra
cy

 o
n 

W
1

10 3 10 1
Noise std 

0

5

10

15

10 3 10 1
Noise std 

25

50

75

10 3 10 1
Noise std 

20

40

60

80

10 3 10 1
Noise std 

85

90

95

100

Scratch SIFU Fine-Tuning FedAccum DP

Figure 5: Impact of the noise standard deviation σ when unlearning with SIFU versus SCRATCH. Total amount of aggrega-
tion rounds (1st row) and model accuracy of unlearned clients (2nd row) for MNIST, FashionMNIST, CIFAR10, CIFAR100,
and CelebA (the lower the better).
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Figure 6: Total amount of aggregation rounds (1st row) and model accuracy of unlearned clients (2nd row) for MNIST,
FashionMNIST, CIFAR10, CIFAR100, and CelebA (the lower the better). This figure displays the unlearning capabilities
of the unlearning benchmarks introduced in Section 5.1 after training on clients in I and unlearning |W1| = 10 clients. For
each integer on the x-axis, a different set of clients to unlearn is considered. Each unlearning request is composed of 10
random clients for CIFAR10, CIFAR100, and CelebA. For MNIST and FashionMNIST, each unlearning request |W1| has
10 clients of the same class such that the x-axis is the class forgotten. The integers on the x-axis corresponds to the class
of the clients to unlearn.
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