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Stochastic Parameterization with
Dynamic Mode Decomposition

Long Li, Etienne Mémin, and Gilles Tissot

Abstract A physical stochastic parameterization is adopted in this work to account
for the effects of the unresolved small-scale on the large-scale flow dynamics. This
random model is based on a stochastic transport principle, which ensures a strong
energy conservation. The dynamic mode decomposition (DMD) is performed on
high-resolution data to learn a basis of the unresolved velocity field, on which
the stochastic transport velocity is expressed. Time-harmonic property of DMD
modes allows us to perform a clean separation between time-differentiable and time-
decorrelated components. Such random scheme is assessed on a quasi-geostrophic
(QG) model.

Keywords Stochastic parameterization · Dynamical system · Data-driven

1 Introduction

The modelling under location uncertainty (LU) setting has shown to provide
consistent physical representations of fluid dynamics [10, 12]. This representation
introduces a random component to describe the unresolved flow components.
This enables to consider less dissipative systems than the classical large-scale
counterparts. Nevertheless, the ability of such a model to represent faithfully the
uncertainties associated to the actual unresolved small scales highly depends on
the definition of the random component and on its evolution along time. Unsur-
prisingly, stationarity/time-varying and homogeneity/inhomogeneity characteristics
have strong influences on the results [1, 2]. Another important aspect concerns the
ability to include in the noise representation a stationary drift component associated
to the temporal mean of the high-resolution fluctuations. As shown in this paper such
stationary drift can be elegantly introduced in the noise through Girsanov theorem.
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Yet, large-scale persistent components associated to the high resolution fluctuations
are not strictly stationary and slowly varying quasi-periodic components might be
important to include. To that purpose we devise a noise generation scheme relying
on the dynamic mode decomposition [13]. Such a decomposition or other related
techniques aiming to provide a spectral representation of the Koopman operator [11]
will allow us to represent the noise as a superposition of random and deterministic
harmonics oscillators. The first ones are attached to the fast components whereas the
latter represent the slow fluctuations components. As demonstrated in Sect. 4, this
strategy brings us a very efficient technique for ocean double-gyres configuration.

2 Modelling Under Location Uncertainty

In this section, we briefly review the LU setting and the associated random QG
model that will be used for the numerical evaluations.

2.1 Stochastic Flow

The evolution of Lagrangian particle trajectory (Xt ) under LU is described by the
following stochastic differential equation (SDE):

dXt (x) = v
(
Xt (x), t

)
dt + σ

(
Xt (x), t

)
dB t , X0(x) = x ∈ D, (1)

where v denotes the time-smooth resolved velocity that is both spatially and tem-
porally correlated, σdB t stands for the fast oscillating unresolved flow component
(also called noise in the following) that is only correlated in space, and D ⊂ C

d

(d = 2 or 3) is a bounded spatial domain.
We now give the mathematical definitions of the noise. In the following, let

us fix a finite time T < ∞ and the Hilbert space H = (L2(D))d with the
inner product 〈f ,g〉H = ∫

D(f †g)(x) dx and the norm ‖f ‖H = 〈f ,f 〉1/2H ,
where •† stands for transpose-conjugate operation. Then, {B t }0≤t≤T is an H -valued
cylindrical Brownian motion (see definition in [4]) on a filtered probability space
(Ω,F , {Ft }0≤t≤T ,P), with the covariance operator diag(Id) (where Id is an d-
dimensional vector of identity operators). For each (ω, t) ∈ Ω×[0, T ] constraining,
σ (·, t)[•] to be a (random) Hilbert-Schmidt integral operator on H with a bounded
matrix kernel σ̆ = (σ̆ij )i,j=1,...,d such that

σ (x, t)f =
∫

D
σ̆ (x, y, t)f (y) dy, f ∈ H, x ∈ D. (2a)

Its adjoint operator σ ∗(·, t)[•] satisfying 〈σ (·, t)f ,g〉H = 〈f , σ ∗(·, t)g〉H reads:
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σ ∗(x, t)g =
∫

D
σ̆ †(x, y, t)g(y) dy, g ∈ H, x ∈ D. (2b)

The composite operator σ (·, t)σ ∗(·, t)[•] is trace class on H and admits eigenfunc-
tions ξn(·, t) with eigenvalues λn(t) satisfying

∑
n∈N λn(t) < +∞. The noise can

then be equally defined by the spectral decomposition:

σ (x, t) dB t =
∑

n∈N
λ
1/2
n (t)ξn(x, t) dβn(t), (3)

where βn are independent standard Brownian motions. In addition, we assume that
the operator-space-valued process {σ (·, t)[•]}0≤t≤T is stochastically integrable,
i.e. P

[ ∫ T

0

∑
n∈N λn(t) dt < +∞] = 1. From [4], the stochastic integral

{∫ t

0 σ (·, s) dBs}0≤t≤T is a continuous square integrable H -valued martingale,
hence a centered Gaussian process, EP[

∫ t

0 σ (·, s) dBs] = 0, of bounded variance,
EP

[‖ ∫ t

0 σ (·, s) dBs‖2H
]

< +∞. Moreover, the joint quadratic variation process of
the noise, evaluated at the same point x ∈ D, is given by

〈 ∫ ·

0
σ (x, s) dBs ,

∫ ·

0
σ (x, s) dBs

〉

t
=

∫ t

0
a(x, s) ds (4a)

a(x, t) =
∫

D
σ̆ (x, y, t)σ̆ †(y, x, t) dy =

∑

n∈N
λn(t)

(
ξnξ

†
n

)
(x, t). (4b)

We remark that real-valued noise can be achieved by adding the constraint that both
eigenfunctions, eigenvalues and the standard Brownian motions in (3) are organised
in complex-conjugated pairs. In that case, its joint quadratic variation process is
real-valued as well.

The previous formulations consist of only a zero-mean and temporally uncor-
related noise. However, this might not be enough and including a mean or
time-correlated component of the unresolved velocity field could be of crucial
importance to obtain a relevant model. For instance, the eddy parametrization
proposed by [15] is decomposed into a deterministic mean term and a stochastic
term of zero-mean. For the double-gyre circulation configuration, the considered
deterministic parametrization allows to reproduce the eastwards jet for the coarse-
resolution model, while the additional stochastic terms enhance the gyres circulation
and improves the flow variability. Similarly, the random-forcing model proposed
by [3] consists in a space-time correlated stochastic process to enhance the jet
extension. The slow modes of the sub-grid scales can be provided by adequate high-
pass filtering of high-resolution data on the coarse grid. We aim in this work at
investigating the incorporation of such slow components within the LU framework.
However, the derivation of LU models [10, 12, 1] relies on the martingale properties
of the centered noise and we need hence to properly handle non centred Brownian
terms. The Girsanov transformation [4] provides a theoretical tool that fully
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warrants such a superposition: by a change of the probability measure, the composed
noise can be centered with respect to a new probability measure while the additional
drift term appears, which pulls back time-correlated sub-grid-scale components into
the dynamical system. The associated mathematical description is given as follows.
Let Γ t be an H -valued Ft -predictable process satisfying the Novikov condition,
EP

[
exp( 12

∫
T

0 ‖Γ t‖2H dt)
]

< +∞, then the process { ˜B t := B t +
∫ t

0 Γ s ds}0≤t≤T is an
H -valued cylindrical Wiener process on (Ω,F , {Ft }0≤t≤T , P̃) with Radon-Nikodym
derivative

dP̃

dP
= exp

(
−

∫ T

0
〈Γ t , dB t 〉H − 1

2

∫ T

0
‖Γ t‖2H dt

)
. (5a)

In this case, the SDE (1) under the probability measure P̃ reads:

dXt = (
v(Xt , t) − σ (Xt , t)Γ t

)
dt + σ (Xt , t) d ˜B t . (5b)

In the present work, we shall consider rather this modified stochastic flow defined on
(Ω,F , {Ft }0≤t≤T , P̃) with EP̃[σd ˜B t ] = 0 as the physical solution. Hereafter, σΓ t is
referred to as the Girsanov drift.

2.2 Stochastic QG Model

The evolution law of a random tracer (function) Θ transported along the stochastic
flow, Θ(Xt+δt , t + δt) = Θ(Xt , t), is derived by [10, 1]. Under the probability
measure P̃, this can be described by the following stochastic partial differential
equation (SPDE), namely

DtΘ := dtΘ + (ṽ
	 dt + σd ˜B t ) ·∇Θ − 1

2
∇ · (a∇Θ) dt = 0 (6a)

ṽ
	 := v − 1

2
∇ · a + σ ∗(∇ · σ ) − σΓ , (6b)

In this SPDE, the first term dtΘ(x) := Θ(x, t + δt) − Θ(x, t) stands for the
(forward) increment of Θ at a fixed point x ∈ D; the second term describes
the tracer’s advection by an effective drift ṽ

	 and the noise σd ˜B t ; the last term
depicts the tracer’s diffusion through the noise quadratic variation a. The effective
drift (6b) ensues from (i) the noise inhomogeneity, (ii) the possible unresolved
flow divergence and (iii) the statistical correction due to the change of probability
measures, respectively.

The derivation of the stochastic geophysical models under the LU framework
follows exactly the same path as the deterministic derivation, together with a proper
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scaling of the noise and its amplitude. In particular, a continuously stratified QG
model under LU has been derived by [12, 9] using an asymptotic approach. With
horizontally moderate and vertically weak noises (see definitions in [12, 9]), the
governing equations under the probability measure P̃ read:

Evolution of potential vorticity (PV):

Dt q =
∑

i=1,2

J
(
(̃u	)i dt + (σdB̃t )

i , ui
)

−
(1
2
∇ · (

∂⊥
xi

a∇ui
) + β∂xi

ai2

)
dt, (7a)

From PV to streamfunction:

∇2ψ + ∂z

( f 2
0

N2
∂zψ

)
= q − βy, (7b)

Incompressible constraints:

u = ∇⊥ψ, ∇ · σd ˜B t = ∇ · (ũ
	 − u) = 0. (7c)

Here, ∇ = [∂x, ∂y]T , ∇⊥ = [−∂y, ∂x]T , ∇2 = ∂2xx + ∂2yy denote two-dimensional
operators and J(f, g) = ∂xf ∂yg − ∂xg∂yf stands for the Jacobian operator. The
vector fields u, σd ˜B t and the tensor field a are two-dimensional (2D) horizontal
quantities. The horizontal effective drift is defined as ũ

	 := u − ∇ · (a/2) − σΓ .
The scalar fields q and ψ represent the PV and the streamfunction. In Eq. (7b),
N2 = −(g/ρ0)∂zρ is the Brunt-Väisälä (or buoyancy) frequency with g the gravity
value, ρ0 the background density, ρ the density anomaly, and f0+βy is the Coriolis
parameter under a beta-plane approximation. As shown in [1], one important
characteristic of the random model (7) is that it conserves the total energy of the
resolved flow (under natural boundary condition) for any realization (i.e. pathwise).
This property highlights a strong relation between the classical deterministic model
and the stochastic formulation.

3 Numerical Parameterization of Unresolved Flow

Data-driven approaches are presented in this section to estimate the spatial corre-
lation functions of the unresolved flow component based on the spectral decom-
position (3). In practice, we work with a finite set of functions to represent the
small-scale Eulerian velocity fluctuations rather than with the Lagrangian particles
trajectory. We first review the empirical orthogonal functions (EOF) method for
which the noise covariance is assumed quasi-stationary. We then propose an
approach relying on the dynamic mode decomposition (DMD) to account for the
temporal behavior of the spatial correlations.
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3.1 EOF-Based Method

In the following, let {uHR(x, ti)}i=1,...,N be the set of velocity snapshots provided
by a high-resolution (HR) simulation. We first build the spatial local fluctuations
uf (x, ti) of each snapshot on the coarse-grid points. In particular, for the QG system
(7), one can first perform a high-pass filtering with a 2D Gaussian convolution
kernel G on each HR streamfunction ψHR, to obtain the streamfunction fluctuations,
ψf (x, ti ) = (

(I − G) 	 ψHR

)
(x, ti ) (only for the coarse-grid points x). Then, the

geostrophic velocity fluctuations can be derived by uf = ∇⊥
LRψf . We next centre

the data set by u′
f = uf − uf

t (with •t the temporal mean) and perform the
EOF procedure [9] to get a set of orthogonal temporal modes {αm}m=1,...,N and
orthonormal spatial modes {φm}m=1,...,N satisfying

u′
f (x, ti ) =

N∑

m=1

αm(ti)φm(x), αmαn
t = λmδm,n. (8)

Truncating the modes (with M 
 N ) and rescaling by a small-scale decorrelation
time τ , the stationary noise and its quadratic variation can be build by

σ (x)d ˜B t = √
τ

M∑

m=1

√
λmφm(x) dβm(t), a(x) = τ

M∑

m=1

λmφm(x)φT

m(x). (9)

Note that this time scale τ is used to match the fact that the noise in (5b) has
the physical dimension of a length. In practice, we often consider the coarse-grid
simulation timestep ΔtLR. In addition, the Girsanov drift is set to be σ (x)Γ t =
uf

t (x). It means that the Girsanov drift here is the projection of the temporal
mean of the sub-grid scales onto the EOFs, i.e. σ (x)Γ t = ∑N

m=1 γmφm(x) with
γm = 〈uf

t ,φm〉H satisfying
∑N

m=1 γ 2
m < +∞.

3.2 DMD-Based Method

The DMD algorithm [13] seeks a spectral decomposition of the best-fit linear
operator A that relates the two snapshots:

u′
f (x, ti+1) ≈ Au′

f (x, ti ). (10a)

Applying the exact DMD procedure proposed by [14], the corresponding spectral
expansion in continuous time reads
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u′
f (x, t) =

N∑

m=1

bm exp
(
(σm + iωm)t

)
ϕm(x), (10b)

where ϕm(x) ∈ C
d are the DMDmodes (eigenvectors of A) associated to the DMD

eigenvalues μm ∈ C, σm = log(|μm|)/Δtd ∈ R are the modes growth rate (with
Δts = ti+1 − ti the sampling step of data), ωm = arg(μm)/Δts ∈ R are the modes
frequencies (with i the imaginary unit) and bm ∈ C are the modes amplitudes. In
practice, our data set of velocity fluctuations is real valued, hence the DMD modes
(also eigenvalues and amplitudes) are two-by-two complex conjugates, i.e. ϕ2p =
ϕ2p−1 (p = 1, . . . , N/2).

We next propose to split the total set of DMD modes into two subsets, Mc and
Mr , to select separately adequate fast and slow modes for the noise (fromMr ) and
the Girsanov drift (from Mc), respectively, according to the following analysis of
frequencies and amplitudes:

Mc =
{
m ∈ [1, N]

∣∣∣ |μm| ≈ 1, |ωm| ≤ π

τc

, |bm| ≥ C
}
, (11a)

Mr =
{
m ∈ [1, N]

∣∣
∣ |μm| ≈ 1, |ωm| >

π

τc

, |bm| ≥ C
}
, (11b)

where τc is a temporal-separation-scale that can be estimated by the spatial mean
of the autocorrelation functions of data and C denotes an empirical cutoff of ampli-
tudes. The DMDmodes that are neither included inMc nor inMr are discarded. An
example of spectrum and amplitudes of the selected DMDmodes is shown in Fig. 1.
In order to avoid spurious effects associated with the non-orthogonality of DMD
modes, their amplitudes are rescaled such that the reconstructed data corresponds to

Fig. 1 Illustration of the selections of DMD modes used for the noise (orange) and the Girsanov
drift (blue)
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an orthogonal projection onto the subspace spanned by the modes inMc orMr . In
particular, we propose to rescale those truncated DMD modes as follows:

(i) Construct the Gramian G = (gm,n)m,n∈Mc with gm,n = 〈
ϕm,ϕn

〉
H
;

(ii) Inverse the Gramian G−1 := (g−1
m,n)m,n∈Mc and derive the dual set of the

truncated DMD modes by ϕ∗
m = ∑

n∈Mc g−1
m,nϕn;

(iii) Project the initial state of data on the dual set of modes to update the
amplitudes: φm := 〈u′

f (·, t1),ϕ∗
m〉H ϕm.

Such procedure holds separately for the DMD modes of Mc and Mr . Finally,
the noise and the correction drift can be defined as

σ (x, t)d ˜B t = √
τ

∑

m∈Mr

exp(iωmt)φm(x) dβm(t), (12a)

σ (x, t)Γ t = uf
t (x) +

∑

m∈Mc

exp(iωmt)φm(x), (12b)

In particular, we assume that each pair of the complex Brownian motions are
conjugates (β2p = β2p−1) and their real and imaginary parts are independent. As

such, both noise σd ˜B t and correction drift σΓ t are real-valued fields. In addition,
the joint quadratic variation of such noise remains stationary:

a(x) = τ
∑

m∈Mr

φm(x)φ†
m(x). (12c)

In a similar way as in the EOF-based method, we could also construct the Girsanov
drift by the projection of the RHS of (12b) onto the DMD modes. As we have
dropped the unstable DMD modes, one can show that the predictability and the
Novikov condition (presented in Sect. 2) of Γ hold in this case.

4 Numerical Experiments

In this section, we present some numerical results of the stochastic QG system (7).
The objective consists to improve the variability of large-scale models defined on
coarse grids. To that end, a high-resolution deterministic reference model (REF) is
first simulated and compared to several coarse-resolution models: the benchmark
deterministic model (DET), two stochastic models with an EOF-based noise (STO-
EOF) and a DMD-based noise (STO-DMD).
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4.1 Configurations

In this study, we consider a vertically discretized QG dynamical core proposed in
[8] and extended in the stochastic setting [9]. This model consists in n isopycnal
layers with constant thickness Hk and density ρk in each layer k. In this case, the
prognostic variables such as ψ in (7) are assumed to be layer-averaged quantities.
Homogeneous Dirichlet boundary conditions have been imposed for the term
f0∂zψ/N2 in (7b) at the ocean surface and bottom. Moreover, external forcing
and numerical dissipation are included in the evolution of PV (7a): the Ekman
pumping ∇⊥ · τ due to the wind stress τ over ocean surface boundary, a linear
drag −(f0ηek/2)∇2ψn at ocean bottom with a very thin thickness ηek, and a
biharmonic dissipation −A4∇4(∇2ψk) in each layer with uniform coefficient A4. In
particular, we consider here a finite box ocean driven by an idealized (stationary and
symmetric) wind stress τ = [−τ0 cos(2πy)/Ly, 0]T . A mixed horizontal boundary
condition is used for the k-th layer streamfunction: ψk|∂A = fk(t) and ∂2nψk|∂A =
−(αbc/Δx)∂nψk|∂A (same for the 4-th order derivative). Here, A denotes the
2D area, fk is a time-dependent function constrained by mass conservation [7],
Δx stands for the horizontal resolution and αbc is a nondimensional coefficient
associated to the slip conditions [7]. A quiescent initial condition is used for
the REF, whereas a spin-up condition downsampled from REF (after 90-years
integration) is adopted for all the coarse-resolution models. The common parameters
for all the simulations are listed in Table 1, whereas resolution dependant parameters
are presented separately in Table 2. Both EOF and DMD modes are calibrated from
the REF data during 40 years (after the spin-up) with a 5-days sampling step. As for
the numerical discretization, a conservative flux form [9] together with a stochastic
Leapfrog scheme [5] is adopted for the evolution of PV (7a). The inversion of
the modified Helmholtz equation (7b) is carried out with a discrete sine transform
method [7].

Table 1 Common parameters for all the models. The buoyancy frequency N2 in (7b) is
approximated by g′

k+0.5/(Hk + Hk+1)/2 on the interface between layers k and k + 1

Parameters Value Description

X × Y (3840 × 4800) km Domain size

Hk (350, 750, 2900)m Mean layer thickness

g′
k+0.5 (0.025, 0.0125)ms−2 Reduced gravity

ηek 2m Bottom Ekman layer thickness

τ0 2 × 10−5 m2 s−2 Wind stress magnitude

αbc 0.2 Mixed boundary condition coefficient

f0 9.375 × 10−5 s−1 Mean Coriolis parameter

β 1.754 × 10−11 (m s)−1 Coriolis parameter gradient

rm (39, 22) km Baroclinic Rossby radii
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Table 2 Values of grid varying parameters. The energy proportion captured by the truncated EOF
modes are given in the bracket. For DMD method, the first number stands for the size ofMc (11a)
whereas the latter is the one of Mr (11b)

Resolution (km) Timestep (s) Viscosity (m4 s−1) EOF modes DMD modes

5 600 2 × 109 – –

40 1200 5 × 1011 300 (83%) 14 + 46

80 1440 5 × 1012 300 (92%) 16 + 74

120 1800 1 × 1013 300 (97%) 16 + 110

Fig. 2 Snapshots of surface PV provided by different simulations after 60-years integration. The
black arrows are the interpolated geostrophic velocities

Snapshots of the surface PV provided by the different simulations are shown in
Fig. 2. The dynamics of REF (5 km) model is mainly characterized by a meandering
eastward jet with adjacent recirculations, which results from the most active
mesoscale eddies effect through baroclinic instability. However, this effect cannot be
properly resolved once the horizontal resolution exceeds the baroclinic deformation
radius maximum (39 km here). For instance, the DET (80 km) simulation generates
only a smooth symmetric field. On the other hand, both STO-EOF and STO-
DMD models are able to reproduce the eastward jet on the coarse mesh (80 km)
by including the non-linear effects carried both by the unresolved noise and the
correction drift. In particular, the STO-DMD model produces a stronger meridional
perturbation along the jet and is able to capture some of the large-wave structures
predicted by the REF model. The improvements brought by these random models
will be diagnosed and analyzed more precisely in the following.

4.2 Diagnostics

We first compare the long-term mean (over a 100-years interval) of the kinetic
energy (KE) spectrum for both coarse models at different resolutions (40, 80,
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Fig. 3 Temporal mean of vertically integrated KE spectra for the different models

120 km). As shown in Fig. 3, introducing only a dissipation mechanism like the
biharmonic viscosity in theDET coarse models leads to an excessive decrease of the
resolved KE compared to the REF model. Both STO-EOF and STO-DMDmodels at
different resolutions, recover a given amount of lost energy over all wavenumbers.
In particular, the STO-DMD models provide higher KE backscattering at large
scales and better spectrum slope in the inertial-range than the stationary unresolved
models. This seems to highlight the importance of the non-stationary characteristic
of the noise and Girsanov drift.

We then quantify the temporal variability (over the same 100-years interval)
predicted by the different coarse models. In this work, we adopt the following three
global metrics. The first one is the root-mean-square error (RMSE) between the
standard deviation of the streamfunction of a coarse model (denoted by σ [ψM]) and
the subsampled high-resolution one (denoted by σ [ψR]), ‖σ [ψM] − σ [ψR]‖L2(D),
where D = A × [−H, 0] and H stands for the total depth of the ocean basin.
The second criterion is the Gaussian relative entropy (GRE) [6] which assesses in a
single measure the mean and variance reconstruction:

GRE = 1

|D|
∫

D
1

2

((
ψM

t − ψR
t)2

σ 2[ψM] + σ 2[ψR]
σ 2[ψM] − 1 − log

( σ 2[ψR]
σ 2[ψM]

))

dx. (13)

It is clear that a coarse model of high variability will have low RMSE and GRE,
whereas a poor variability will lead to a large RMSE and GRE. The last metric
measures the eddy kinetic energy (EKE), (ρ0/2)‖u′‖2

(L2(D))2
, where u′ := (I −

Ft )[u] is the eddy velocity filtered out through a 2-years low-pass filter Ft at every
point in space. For comparison reason, we show here only the time average of this
metric (EKE) for the different models.

These three criteria are shown in Fig. 4 as bar plots. The DET models show very
high RMSE and GRE with a very low order of EKE, meaning that they produce poor
variability along time and failed to represent the eddies effect. Compared to the STO-
EOF, the STO-DMD models enable to increase significantly the internal variability
and the eddy energy. Moreover, these improvements are resolution-aware. As shown
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Fig. 4 Comparison of variability measures for different coarse models. The y-axis of the last two
figures are in log-scales

in Table 2, under a similar level of captured energy, the STO-DMD models require
much less modes than the STO-EOF, which reduces first the memory cost. Then,
in terms of computational cost at each step, the former consists in generating less
Gaussian variables than the latter, and reduces hence as well the dimension of the
matrix-vector multiplication for the spectral decomposition (3).

4.3 Discussion

In order to distinguish the contribution of the correlated Girsanov drift and the
uncorrelated noise, three additional benchmark runs (at resolution 80 km) have been
further performed and compared to the proposed STO-DMD model, they are (i)
STO-DMD without any correlation drift (i.e. σΓ t = 0); (ii) STO-DMD only with
σΓ t = uf

t ; (iii) a simplified deterministic version of the proposed STO-DMD
model, denoted as DET-DMD, which only encodes the (full) correlated drift σΓ t

into the DET model. We remark that for the two first runs the DMD modes used
for the correlated drift in the previous stochastic model are now included into the
noise component. As shown in Fig. 5, run (i) fails to reproduce the eastwards jet
on the coarse mesh, whereas the other runs succeed. However, run (ii) produces
similar results as the STO-EOF model (see Fig. 2) with a lower improvement of
variability, and run (iii) captures more waves than the others, yet leads to a reduction
of the jet magnitude compared to the proposed STO-DMD model. In particular, by
comparing the KE spectra of the different runs, Fig. 6 illustrates that the simplified
DET-DMD model allows to produce backscattering of KE from small to large
scales, and the proposed STO-DMD enhances this result with significantly higher
KE at large-scales. We observe a consistent conclusion for the EKE budget (see
Fig. 6). These comparisons demonstrate that the both correlated drift (σΓ t ) and the
uncorrelated noise (σd ˜B t ) contribute on the prediction of large-scale patterns and
on the improvement of the variability of the large-scale models.
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Fig. 5 Snapshots of surface PV provided by different simulations after 60-years integration. These
four figures (from left to right) correspond to the benchmark runs (i), (ii), (iii) and the proposed
STO-DMD model

Fig. 6 Comparison of KE spectra and layered EKE (only horizontally integrated) for different
coarse models
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5 Conclusions

The proposed stochastic parameterization has been successfully implemented in a
well established QG dynamical core. Different noises defined from high-resolution
data have been considered. An additional correction drift ensuing from a change
of probability measure has been introduced. This non-intuitive term seems quite
important in the reproduction of the eastward jet within the wind-driven double-
gyre circulation. Furthermore, the DMD procedure has been adopted to represent
the quasi-periodic dynamic of the unresolved flow. The resulting random model
enables us to improve the intrinsic variability of the large-scale resolved flow.
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Open Access This chapter is licensed under the terms of the Creative Commons Attri-
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The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


 12549 800 a 12549
800 a
 
http://creativecommons.org/licenses/by/4.0/

	Stochastic Parameterization with Dynamic Mode Decomposition
	1 Introduction
	2 Modelling Under Location Uncertainty
	2.1 Stochastic Flow
	2.2 Stochastic QG Model

	3 Numerical Parameterization of Unresolved Flow
	3.1 EOF-Based Method
	3.2 DMD-Based Method

	4 Numerical Experiments
	4.1 Configurations
	4.2 Diagnostics
	4.3 Discussion

	5 Conclusions
	References


