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Modeling Under Location Uncertainty:
A Convergent Large-Scale
Representation of the Navier-Stokes
Equations

Arnaud Debussche, Berenger Hug, and Etienne Mémin

Abstract We construct martingale solutions for the stochastic Navier-Stokes equa-
tions in the framework of the modelling under location uncertainty (LU). These
solutions are pathwise and unique when the spatial dimension is 2D. We then prove
that if the noise intensity goes to zero, these solutions converge, up to a subsequence
in dimension 3, to a solution of the deterministic Navier-Stokes equation. This
warrants that the LU Navier-Stokes equations can be interpreted as a large-scale
model of the deterministic Navier-Stokes equation.

1 Introduction

For several years there has been a burst of activity to devise stochastic representa-
tions of fluid flow dynamics. These models are strongly motivated in particular by
climate and weather forecasting issues and the need to provide accurate ensemble
of large-scale flow realisations [2]. Yet, elaborating such stochastic dynamics on
ad hoc grounds can be highly detrimental to the system of interest [4]. A minimal
mathematical requirement for satisfactory large-scale flow dynamics representation
is that a weak solution of the Large Eddy Simulation (LES) scheme converges
toward a weak solution of the fine-scale deterministic Navier-Stokes equations
in 3D and toward the unique solution for the 2D Navier-Stokes equations. The
convergence of some classical LES models toward the true fine scale dynamics is
well known in the deterministic case [3, 7]. However, the question of convergence
of stochastic parametrization toward solutions of the deterministic equations at the
limit of vanishing noise is not always clear.
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In this study we show that stochastic Navier-Stokes models defined within the
modelling under location uncertainty principle (LU) [9] have martingale solutions
in 3D and a unique strong solution—in the probabilistic sense—in 2D. Moreover,
in 3D in the limit of vanishing noise there exists a subsequence converging in law
toward a weak solution of the deterministic Navier-Stokes equations and in 2D the
whole sequence converges toward the unique solution. As such these results enable
to consider the LU representation as a valid large-scale stochastic representation of
flow dynamics that is more amenable to ensemble forecasting and data assimilation
than deterministic model due to an improved variability.

2 Modelling Under Location Uncertainty

The LU formulation relies mainly on the following time-scale separation assump-
tion of the flow:

dXt = u(Xt , t) dt + σ(Xt , t) dWt, (1)

where X : R
+ × Ω → S is the Lagrangian displacement defined within the

bounded domain S ⊂ Rd (d = 2 or 3) with smooth boundary, and u : R
+ ×

S × Ω → S denotes the large-scale velocity that is both spatially and temporally
correlated, while σdW is a highly oscillating unresolved component (also called
noise term) that is only correlated in space.

More precisely, we consider a cylindrical Wiener process W on L2(S,Rd), the
space of square integrable functions on S with values in Rd ,

W =
∑

i∈N
β̂iei ,

where (ei)i∈N is a Hilbertian orthonormal basis of L2(S,Rd) and (β̂i)i∈N is
a sequence of independent standard brownian motions on a stochastic basis
(Ω,F , (Ft )t∈[0,T ],P) ([11]). The above does not converge in L2(S,Rd) but in any
larger Hilbert space U such that the embedding of L2(S,Rd) into U is Hilbert-
Schmidt, for instance U can be the L2(S) based Sobolev space H−α(S) for some
α > d/2.

The spatial structure of the noise is specified through a time dependent deter-
ministic integral covariance operator σt defined from a bounded and symmetric
kernel σ̂ :

σtf (x) :=
∫

S
σ̂ (x, y, t) f (y) dy, f ∈ L2(S,Rd).

For each (x, y, t), σ̂ (x, y, t) is a d × d symmetric tensor. Since σ̂ is bounded
in x; y and t , σ(x, t) maps L2(S,Rd) into itself and is Hilbert-Schmidt. Then, the
noise can be written as the Wiener process:
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σtWt =
∑

i∈N
β̂i

t σt ei ,

where the series converges in L2(S,Rd) almost surely and in Lp(Ω) for all
p ∈ N and Eq. (1) should be understood in the Itô sense. We may further write
the dependance of the Wiener process in terms of the other variables:

σtWt (x, ω) =
∑

i∈N
β̂i

t (ω)σtei(x),

We consider a divergence free noise:

∇x · σ̂ (x, y, t) = 0, x, y ∈ S, t ≥ 0.

Also, for each t ∈ R
+, there exists (φn(t))n a complete orthogonal system

composed by eigenfunctions of the covariance operator at each time t ∈ R and
another sequence of independent standard brownian motions, on the same stochastic
basis (Ω,F , (Ft )t∈[0,T ],P), such that we have the representation:

σtWt =
∞∑

k=0

φk(t) βk
t .

This Gaussian random field is associated to the two-times, two-points covariance
tensor given by

Q(x, y, t, t ′) = E
(
σtdWt(x) [σt ′ dWt ′ ]T (y)

) =
∫

S
σ̂ (x, z, t) σ̂ (y, z, t ′)dy δ(t−t ′) ,

with the diagonal part (i.e one time auto-correlation), referred to in the following as
the variance tensor, and denoted by

a(x, t) =
∫

S
σ̂ (x, y, t) σ̂ (x, y, t)dy =

∞∑

k=0

φk(x, t) φT

k (x, t). (2)

In a way similar to the classical derivation of Navier-Stokes equations, the LU
setting is based on a stochastic representation of the Reynolds transport theorem
(SRTT) [9], describing the rate of change of a random scalar q within a volume
V (t) transported by the stochastic flow (1). For incompressible unresolved flows,
(i.e. ∇ · σ = 0), the SRTT reads

d
( ∫

V (t)

q(x, t) dx
)

=
∫

V (t)

(
Dt q + q∇ · (u − us)dt

)
dx, (3a)

Dt q = dt q + (u − us) ·∇q dt + σdWt ·∇q − 1

2
∇ · (a∇q) dt, (3b)
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where dt q(x, t) = q(x, t + dt)− q(x, t) stands for the forward time-increment of q

at a fixed point x, Dt is introduced as the stochastic transport operator in [9, 12] and
plays the role of the material derivative. Recall that u is the large-scale velocity used
in (1) and a is defined in (2). Note also that we omit to mention the dependance of
σ on time.

This operator is derived from the Itô-Wentzell formula [8] to express the
differentiation of a stochastic process transported by the flow [9]. The drift us =
1
2∇ ·a, coined as the Itô-Stokes drift (ISD) in [1], represents through the divergence
of the variance tensor, the effects of the small-scale inhomogeneity on the large-
scale flow component. This term can be understood as a generalization of the Stokes
drift associated to the waves orbital motion. In addition to this modified advection,
the stochastic transport operator involves an inhomogeneous diffusion driven by the
variance tensor, which can be interpreted as a subgrid diffusion term attached to the
mixing operated by the small scales. It can be noticed that this term would only
be implicitly represented in Stratonovich integral form. However, the ISD would
remain [1]. The remaining term corresponds to the advection by the random term.
It can be observed by a direct application of Itô on the norm of the scalar that the
positive energy brought by this (backscattering) term is exactly compensated by the
energy loss by the diffusion [12]. Due to that, for a transported quantity, its energy
is conserved pathwise, or in other words: for any realization of the flow.

The above SRTT (3a) and Newton’s second principle (in a distributional sense)
allow us to derive the following stochastic equations of motions (see Sect. 5 of [9]
or Sect. 2.2–2.3 of [10]), which for any noise scaling ε > 0 parameter and for all
points of S reads, using σ, us, a introduced above:

dt u + (u − ε2us) ·∇u dt + εσdWt ·∇u − 1

2
ε2 ∇ · (a∇u) dt

= − 1

ρ
∇(p dt + dpσ

t ) + 1

Re

Δ(u dt + εσ dWt), (4)

with the incompressibility conditions

∇ · (u − ε2us) = 0 , ∇ · σ = 0 , (5)

and associated with Dirichlet boundary condition u(t, x) = 0 and σ̂ (x, y, t) = 0
for all x ∈ ∂S and t > 0. The initial condition is denoted by u(0, x) = u0(x) for
all x ∈ S . As usual, u(t, x) = (u1(t, x), . . . , ud(t, x)) and p(t, x) stands for the
velocity and the pressure of the fluid, respectively. The term dpσ

t corresponds to
the Brownian (martingale) part of the pressure. The Ito-Stokes drift us is defined

as us := 1

2
∇ · a and ρ stands for the fluid density. The dimensioning constant

Re = UL/ν denotes the Reynolds number, sets from the ratio of the product of
characteristic length and velocity scales, UL, with the kinematics viscosity ν. As
for the noise scaling parameter, ε, it encodes a scale of the unresolved energy and
should converge to zero when all the flow components are resolved. Meaning thus
there is no noise and the system corresponds trivially to the deterministic Navier-
Stokes system.
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Although the system corresponds to the Navier-Stokes for zero noise, the
convergence toward weak (strong) solutions of the 3D (2D) deterministic Navier-
Stokes, respectively, at the limit of vanishing noise needs to be assessed. This is the
results we aim to prove in this paper.

First of all, in order to work with a pressure-free system through a divergence-
free Leray projection, we proceed to the change of variable v := u − ε2us in (4) to
rewrite the system with a classical incompressibility condition on v:

dtv + v ·∇v dt − 1

Re

Δv dt + ε2(v ·∇)us dt − ε2

2
∇ · (a∇v) dt

− ε4

2
∇ · (a∇us) dt − ε2

Re

Δus dt + ε2∂tusdt = − 1

ρ
∇(p dt + dpσ

t ) −

(εσdWt ·∇)v − (ε3σdWt ·∇)us + ε

Re

Δ(σ dWt), (6)

with the incompressibility conditions

∇ · v = 0 ∇ · σ = 0 , (7)

for all points in S together with Dirichlet boundary conditions v(t, x) = 0,
σ̂ (x, y, t) = 0 for all x ∈ ∂S and t > 0 and the initial condition v(0, x) = v0(x) :=
u0(x) − ε2us(0, x) for all x ∈ S . In the following section we specify the spaces on
which this system is defined, rewrite it in an equivalent abstract form and state our
main result.

3 Notations and Main Result

Let V be the space of infinitely differentiable d-dimensional vector fields u on S ,
with compact support strictly contained in S , and satisfying ∇ · u = 0. We denote
by H the closure of V in L2(S,Rd) and V the closure of V in the Sobolev space
H 1(S,Rd). The space H is endowed with the L2(S,Rd) inner product. This inner
product and its induced norm are noted:

(u, v)
H

:= (u, v)L2(S) and |u|
H

:= ‖u‖L2(S) .

As for space V , thanks to Poincaré inequality, it is endowed with the H 1
0 (S,Rd)

inner product and its associated norm, denoted respectively as

((u, v))
V

:= (∇u,∇v)L2(S) and ‖u‖
V

:= ‖∇u‖L2(S).
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We may define then the Gelfand triple V ⊂ H ⊂ V ′ where V ′ is the dual space of V

relative to H . We denote by 〈 · , ·〉V ′×V the duality pairing between V ′ and V . The
space of Hilbert-Schmidt operators from H to H is denoted by L2(H) and ‖ · ‖L2

is its norm.
System (4) may be rewritten in an equivalent simplified pressure-free formulation

by using the Leray projection P : L2(S,Rd) → H of L2(S,Rd) onto the space H

of divergence-free vectorial functions. Applying Leray’s projector to (6), we obtain

dtv − 1

Re

P (Δvdt) + P(v·∇v dt)

+ P

(
ε2(v·∇)us dt − ε2

2
∇ ·(a∇v)dt − ε4

2
∇ ·(a∇us)dt − ε2

Re

Δusdt + ε2∂tusdt

)

= P

(
ε

Re

Δ(σ dWt) − (εσdWt ·∇)v − (ε3σdWt ·∇)us

)
. (8)

This system can finally be rewritten in the following simplified abstract form

{
dtv(t) + Av(t) dt + Bv(t) dt + Fεv(t) dt = Gεv(t) dWt,

v(0) = v0.
(9)

The deterministic terms A, B, Fε and the stochastic term Gε are described below.
Several kinds of solutions can be defined for stochastic partial differential

equations. As for deterministic PDEs, these can be strong, weak or mild (semi-
group) solutions. When the solutions are constructed for a fixed Wiener process W

on a given stochastic basis (Ω,F , (Ft )t∈[0,T ],P), they are strong in the probabilistic
sense. As usual in 3D, due to the lack of uniqueness, we work with weaker solutions,
called martingale solutions, that consists in looking for solutions defined as a triplet
composed of a stochastic basis, a Wiener process and an adapted process.

More precisely, we say that there is a martingale solution of system (9) if there
exists a stochastic basis (Ω,F , (Ft )t∈[0,T ],P), a cylindrical Wiener process W on
L2(S;Rd) and a progressively measurable process v : [0, T ] × Ω → H , with

v ∈ L2 ( Ω × [0, T ];V ) ∩ L2
(
Ω , C0([0, T ];H)

)
,

such that P − a.e, v satisfies for all time t ∈ [0, T ]

v(t) +
∫ t

0
Av(s) ds +

∫ t

0
Bv(s) ds +

∫ t

0
Fv(s) ds = v0 +

∫ t

0
G(v(s)) dWs,

(10)

where the equality must be understood in the weak sense. We will show, for all
ε > 0, the existence in 3D of a martingale solution for the LU representation of
the Navier-Stokes equations for noises associated with a smooth enough diffusion
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tensor kernel σ̂ in space and time. In 2D, this solution is unique and strong in the
probabilistic sense. This result is summarized in the following theorem.

Theorem 1 Let d = 2 or 3 and assume that the noise is smooth enough in the sense
that its variance tensor and Ito-Stokes drift are such that

sup
t∈[0,T ]

∞∑

k=0

‖φk(t)‖2
H3(S)

< ∞, (11)

us ∈ L∞(0, T ;H 3(S,Rd)); ∂tus ∈ L∞(0, T ;H) and a∇us ∈ L∞(0, T ;V ).

(12)
Then, for all ε > 0, Eq. (10) admits a martingale solution. Moreover, for d = 2, any
solution of (10) is strong in the probabilistic sense and unique.

Morever, when ε → 0, for d = 3, there exists a subsequence of (uε)ε>0 which
converges in law to a solution of the deterministic Navier-Stokes equation. For
d = 2, the whole sequence converges to the unique solution of the Navier-Stokes
equation.

The condition of Theorem 1 simplifies when the covariance operator does not
depend on time or if the ISD is divergence free. In both cases the condition on the
temporal derivative of the ISD are not necessary. We note also, that for a spatially
homogeneous noise, the variance tensor is constant and the ISD cancels. However
this may happen only on a periodic domain or on the full space. The assumptions on
the noise are anyway non optimal but it is not the purpose of this paper to consider
non spatially smooth noise since in practice it is smooth.

Note that condition (11) is satisfied for instance if we choose σ independent on t

and equal to A−r with r large enough where A is the Stokes operator defined below.
Indeed, in this case φk = λ−r

k ek where (ek)k is an orthonormal complete system of
eigenvectors of A associated to the eigenvalues (λk)k and ‖φk(t)‖2

H3(S)
= λ3−2r

k .

The behavior of the eigenvalues: λk ∼ k2/d allows to conclude that (11) follows.
Since us = 1

2∇ · a and a is defined by (2), (12) holds also for r large enough since
‖us‖H 3(S) ≤ ∑∞

k=0 ‖φk(t)‖2
H4(S)

. Finally, since A−r is self-adjoint and Hilbert-

Schmidt for r > d/4, it is associated to a symmetric kernel σ̂ which is bounded for
r large enough.

These convergence results open new interesting possibilities for the study
of turbulence or for the proposition of new large-scale representations of fluid
dynamics. From the theoretical point of view, it might be interesting to explore
multiscale versions of the LU representation based on spatial filtering together with
nested noise models. This would generalize classical large eddy models in which
the noise would depend on the spatial filtering applied. The coarser the filtering
the larger the noise. Energy transfer between scales would then be very interesting
to study in this probabilistic setting. Stochastic Karman-Howarth-Monin equations
for energy exchanges across scales could be obtained by this way. From a practical
point of view, these convergence results justify the setting of such stochastic models
to represent large-scale solutions of the Navier-Stokes equations.
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4 Proofs of the Main Result

We introduce the Stokes operator: Av := − 1
Re

P (Δv) on the domain D(A) :=
V ∩ H 2(S,Rd). Let b be the trilinear form and B the bilinear operator defined for
all u, v and w ∈ V by

b(u, v,w) =
∫

S
w(x) [u(x) ·∇] v(x) dx = (B(u, v),w)H .

Recall that for all u, v and w ∈ V : b(u, v,w) = −b(u,w, v). As usual, we set
B(u) = B(u, u). We then define F by:

F(v) = ε2B(v, us) − ε2

2
P∇ · (a∇v) − ε4

2
P∇ · (a∇us) − ε2Aus (13)

+ ε2∂tus, v ∈ V.

It can be seen that F(v) ∈ V ′. We next write the noise term as

G(v) dWt =
∞∑

k=0

(
−ε Aφk − εB(φk, v) − ε3B(φk, us)

)
dβt,k,

where, as for σ , we omit to write dependance of φk on t . With these notations, (8)
may indeed be rewritten as (9).

Let (ei)i≥0 be the Hilbertian basis of H consisting of eigenvectors of A. We use
the finite dimensional orthogonal projector Pn, n ∈ N, onto Span(e0, . . . , en) and
the projected operators:

Bn := PnB Fn = PnF Gn = PnG .

The Galerkin approximation of (9) is given by:

{
dtvn(t) + Avn(t) dt + Bn[vn(t)] dt + Fn[vn(t)] dt = Gn[vn(t)] dWt,

vn(0) = Pn(v0).

(14)
This is a finite dimensional system of a stochastic differential equation with smooth
coefficients. It has a unique local solution, by the estimate (17) below it is global.

Apply Itô formula to F(x) = |x|p
H
for p ≥ 2:

dt |vn(t)|pH = p|vn(t)|p−2
H

(
vn(t) , Gn(vn(t))dWt

)
H

− p|vn(t)|p−2
H

(
vn(t) , Avn(t) + Bnvn(t) + Fnvn(t)

)
H
dt

+ p(p − 2)

2

(
Gnvn(t), vn(t)

)2
H

|vn(t)|p−4
H

dt + p

2
‖Gnvn(t)‖2L2(H)|vn(t)|p−2

H
dt.

(15)
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We have (vn(t) , Avn(t))H = 1

Re

‖vn(t)‖2V , (vn(t) , Bnvn(t))H = 0 and

(
vn(t) , F nvn(t)

)
H

= ε2 ([vn(t)·∇]us , vn(t))H
− ε2

2
(vn(t) , ∇ ·(a∇vn(t)))H

− ε4

2
(vn(t) , ∇ · (a∇us))H

+ ε2 (Aus , vn(t))H
+ ε2 (∂tus , vn(t))H

:= Fn
1 + Fn

2 + Fn
3 + Fn

4 + Fn
5 .

Under the assumption (12) in Theorem 1, we have the estimate:

|Fn
1 + Fn

3 + Fn
4 + Fn

5 | ≤ C (ε2 + ε4) |vn(t)|2H + C(ε2 + ε4)

with C > 0 a finite constant. And by the definition of a, we have

Fn
2 = ε2

2

∞∑

k=0

|(φk ·∇)vn(t)|2L2(S)
.

Furthermore, using (11),

1

2
‖Gnvn(t)‖2L2(l

2(H)
≤ ε2

2

∞∑

k=0

|(φk ·∇)vn(t)|2L2(S)
+ Cε2 + 2ε2 |vn(t)|2H

and the first term corresponds exactly to Fn
2 . Finally, using again (11),

(Gnvn(t), vn(t))
2
H

≤ 2C (ε2 + ε6) |vn(t)|2H .

Hence

dt |vn(t)|pH + p

Re

|vn(t)|p−2
H

‖vn(t)‖2V ≤ p|vn(t)|p−2
H

(
vn(t) , Gn(vn(t))dWt

)
H

+ C (ε2 + ε4) |vn(t)|pH + C [(ε2 + ε6)α + (ε2 + ε4)] (16)

with C > 0 depending on p (and not on ε and n). We then use classical arguments
based in particular on Burkholder-Davis-Gundy inequality to deduce:

1

2
E

[
sup

0≤t≤T

|vn(t)|pH +
∫ T

0
|vn(t)|p−2

H
‖vn(t)‖2V

]
≤ E

[ |v0|pH
] + C ε2. (17)

Arguing as in [6], we prove that the laws (L(vn))n are tight in L2([0, T ] ; H) and
in C0([0, T ] ; D(A−3/2) ).
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By the Skorohod’s embedding theorem, there exists a stochastic basis (Ω,F ,

(F t )t ,P) with L2([0, T ];H) ∩ C0([0, T ];D(A−3/2))-valued random variables vn

for n ≥ 1 and v such that vn has the same law as vn on L2([0, T ];H) ∩
C0([0, T ];D(A−3/2)) and C0([0, T ], U0) cylindrical Wiener processes W

n
for

n ≥ 1 together with W such that (by thinning the sequences)

vn → v in L2([0, T ] ; H) ∩ C0([0, T ] ; D(A−3/2)) P a.s (18)

W
n → W in C0([0, T ], U0) P a.s . (19)

For all integers n, vn verifies

vn(t) − Pn(v0) +
∫ t

0

[
Avn(r) + Bnvn(r) + Fnvn(r)

]
dr =

∫ t

0
Gn(vn(r))dW

n

r .

(20)
We may let n → ∞ in this equation and prove that v verifies for almost surely
(t, ω) ∈ [0, T ] × Ω

v(t) − v0 +
∫ t

0
(Av(r) + Bv(r) + Fv(r)) dr =

∫ t

0
G(v(r)) dWr (21)

in the weak sense. For instance, let w be a smooth test function, then:

∫ t

0
(Bn(vn(r), w)H dr =

∫ t

0
b((vn(r), (vn(r), w)dr = −

∫ t

0
b((vn(r), w, (vn(r))dr

and by the almost sure strong convergence in L2(0, T ,H) this converges to
− ∫ t

0 b((v(r), w, (v(r))dr when n → ∞.
It can be shown that (17) holds for vn and letting n → ∞ we obtain a bound on

v. In particular, v ∈ L2(Ω ; L2([0, T ], V )) ∩ L2(Ω ; L∞([0, T ],H)). We then use
the mild form of this equation to prove that v ∈ C0([0, T ] , H) almost surely.

For d = 2, we consider v1 and v2 two solutions of (9) on the same probability
space (Ω,F , (Ft )t ,P) and, using Ito formula and classical estimates, prove that

E

[
sup

0≤r≤T

e(r) |(v1 − v2)(r)|2H
]

= 0,

where e(t) := exp
(
−α

∫ t

0 ‖v2(r)‖2V dr
)
for a well chosen α. AsE

∫ T

0 ‖v2(r)‖2V dr <

∞, we deduce P a.s, v1 = v2 for all t ∈ [0, T ]. We have proved that pathwise
uniqueness holds for d = 2. Then, using an argument due to Gyongy and Krylov
(see for instance [5], Sect. 5), we conclude that the whole sequence (vn)n converges
to a unique solution of (21).

Let v0 ∈ H . For all ε > 0, we have proved that the abstract problem (8) admits
martingale solutions (vε)ε>0. We then study if (vε)ε>0 converges when [ε → 0+]
to a solution v of the following deterministic Navier-Stokes equation
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{
dtv(t) + Av(t) dt + Bv(t) dt = 0
v(0) = v0 .

(22)

When d = 2, the solution vε is strong and unique. The deterministic Eq. (22)
admits also a unique weak solution v. By classical estimate, we prove:

Eε

[
sup

0≤t≤T

e(t) |vε(t) − v(t)|2
H

]
−→
ε→0+ 0,

where e(t) := exp
(
−α

∫ t

0 ‖v(r)‖2
V
dr

)
for some α > 0.

When d = 3, inequality (17) shows that
(L(vεn)

)
n
are tight in L2([0, T ] ; H) ∩

C0([0, T ] ; D(A−3/2) ). Using Skorohod embedding theorem, we show that a
subsequence converges to the law a weak solution of (22).
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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