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Observation-Based Noise Calibration:
An Efficient Dynamics for the Ensemble
Kalman Filter

Benjamin Dufée, Etienne Mémin, and Dan Crisan

Abstract We investigate the calibration of the stochastic noise in order to guide the
realizations towards the observational data used for the assimilation. This is done
in the context of the stochastic parametrization under Location Uncertainty (LU)
and data assimilation. The new methodology is rigorously justified by the use of the
Girsanov theorem, and yields significant improvements in the experiments carried
out on the Surface Quasi Geostrophic (SQG) model, when applied to Ensemble
Kalman filters. The particular test case studied here shows improvements of the
peak MSE from 85% to 93%.

Keywords Stochastic parametrization · Modeling under location uncertainty ·
noise calibration · Ensemble Kalman filters · Square root filters

1 Introduction

Sequential data assimilation uses observational data to correct a set of realizations
given by a numerical model. In the case of both high-dimensional data and model,
the data assimilation methodology can be facilitated via a procedure allowing to
guide the realizations towards the available observations. This is particularly helpful
in high dimensions as it enables the ensemble to focus on a restricted set of
the state space. That is what we intend to put forward in this paper. This work
relies on a stochastic parametrization of the underlying dynamical system based
on the Location Uncertainty (LU) principles, which rely on a decomposition of
the Lagrangian velocity into a large-scale smooth component and a random time-
uncorrelated component. In this setting, a stochastic transport operator plays the
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role of the usual material derivative, see [1] for more details. This work aims at
adding the feature of a noise specifically calibrated to play a guiding role for the
realizations.

In a previous data assimilation study on the Surface Quasi Geostrophic (SQG)
model, the stochastic forecast was shown to provide better results than deterministic
techniques like variance inflation with perturbation on the initial condition, see [2]
for details. The current study is a continuation of [2]. The noise calibration presented
here further improves the results presented in [2], particularly when the system starts
from poor or badly estimated initial conditions (for instance resulting from initial
estimations relying on regularized inverse problems). For such initial conditions,
which are generally too smooth and inaccurate, classical ensemble methods are
likely to be put in difficulties. In this short paper, we will first briefly recall the
principles of Location Uncertainty and how it applies to the SQG model. Then we
will detail the procedure leading to the noise calibration, and finally detail and assess
the numerical experiments performed.

2 The Stochastic SQG Model Under Location Uncertainty
(LU)

The analysis in this paper is carried out on the 2D Surface Quasi-Geostrophic
(SQG) model. The SQG equations model an idealized dynamics for surface oceanic
currents. It involves many realistic non-linear features such as fronts or strong
multiscale eddies (see [3, 4] for details). The deterministic SQG model couples
a transport equation of the buoyancy field b, a kinematic condition and a 2D
divergence-free constraint:

Dt b = 0 ; b = Nstrat

f0
(−Δ)

1
2 ψ ; v = ∇⊥ψ, (1)

expressed on ψ the stream function and v the velocity, where Dt is the material
derivative. The kinematic condition depends on the stratification Nstrat and the
Coriolis frequency f0.

The corresponding stochastic dynamics is derived from the Location Uncertainty
(LU) principles described in [1]. The full description and numerical analysis of the
LU-SQG model can be found in [5, 6]. This stochastic formalism models the impact
of the small scales on the flow component that is initially smooth in time. It relies
on the decomposition of the Lagrangian velocity of a fluid particle positioned at xt

in a spatial domain Ω ⊂ R
2:

dxt = v(xt , t)dt + σ(xt , t)dBt , (2)

in terms of a resolved component v (referred to as the large-scale component in
the following) and σdBt , an unresolved highly oscillating random component, built
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from a (cylindrical) Wiener process Bt (ie a well-defined Brownian motion taking
values in a functional space) [7]. The increments of the latter component are time-
independent. Due to the lack of smoothness of the solution xt , we rigorously derive
(2) in its integral form.

The random perturbation of velocity is Gaussian and has the following distribu-
tion:

σdBt ∼ N (0,Qdt), (3)

where Q is the covariance operator. This operator admits an orthonormal eigenfunc-
tion basis {φn(·, t)}n∈N with non-negative eigenvalues (λn(t))n∈N. This generates a
convenient spectral definition of the noise as

σ(x, t)dBt =
∑

n∈N

√
λn(t)φn(x, t)dβn

t , (4)

where the βn are i.i.d standard one dimensional Brownian motions. From Eq. (4),
the noise variance tensor a is then defined by

a(x, t) =
∑

n∈N
λn(t)φn(x, t)φn(x, t)T . (5)

It can be noticed the variance tensor has the physical dimension of a viscosity
(ie m2/s). Indeed, as σdBt is a distance, then a(x, t)dt = E[σdBt(σdBt)

T ] is a
squared distance. The procedure used to generate the orthonormal basis functions
determines the spatial structure of the noise. The one used in our experiments will
be presented later in this section.

While a deterministically transported tracer Θ has zero material derivative:
DtΘ = ∂tΘ + v · ∇Θ = 0, in the LU framework, a stochastically transported
tracer cancels a related stochastic transport operator defined as:

DtΘ := dtΘ + (v∗dt + σdBt) ·∇Θ − 1

2
∇ · (a∇Θ)dt, (6)

where

dtΘ := Θ(x, t + dt) − Θ(x, t) (7)

is the infinitesimal forward time increment of the tracer. The effective advection
velocity is defined by

v∗ = v − 1

2
∇ · a, (8)
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the term σdBt · ∇Θ is a non-Gaussian multiplicative noise corresponding to the
tracer’s transport by the small-scale flow, and the last term in (6) is a diffusion
term, as the variance tensor a is definite positive. The expression of the stochastic
transport operator comes from a generalized Itô formula (Itô-Wentzell formula), see
[5] for more details.

The stochastic version of the SQG model is obtained by replacing the material
derivative Dt b in Eq. (1) with the stochastic transport operator Dt b:

Dt b = dt b + (v∗dt + σdBt) ·∇b − 1

2
∇ · (a∇b)dt = 0, (9)

and an additional compressibility constraint on the noise:

∇ · σdBt = 0. (10)

In the case of a compressible random field, the modified advection incorporates
an additional term in Eq. (8) related to the noise divergence [5]. One essential
property of LU (for a divergence-free noise component) is the conservation of
energy for the transported random tracer, under the same ideal boundary conditions
as in the deterministic case:

d
∫

Ω

Θ2(x)dx = 0, (11)

and, very importantly, this energy conservation property holds pathwise (i.e for any
realization of the Brownian noise), see [5, 8] for details. This property highlights
the strong relation between the LU-SQG version and the deterministic one.

Noise Generation The method used to generate the noise in this study relies on a
data-driven method called proper orthogonal decomposition (POD) to estimate the
empirical orthogonal functions in the spectral representation of Eq. (4). By a slight
abuse of notation in the following, this noise will be referred to as POD noise. We
give some brief details in what follows.

Considering a series of snapshots of the velocity field, this method consists in the
computation of the covariance tensor around the temporal mean of the series of
snapshots. Then its eigenvectors and eigenfunctions can be estimated in order to
reconstruct the large-scale variability (the first“modes” or eigenfunctions), and the
small-scale one (the smaller modes). In practice, this procedure is applied to coarse-
grained high-resolution snapshots of deterministic simulations. The latter modes
will be the ones on which the noise is decomposed. These modes are divergence-
free and stationary by construction, so the global structure of the noise will not vary
in time. In case of chaotic geophysical models like this one, we can also use online-
computed noises as the one used in our previous work [2] which have much better
uncertainty quantification, but are also much more expensive. An extension of this
work to this noise is currently at work. We refer to [6] for a precise description of
this procedure.
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3 Girsanov Theorem and Noise Calibration

3.1 Change of Measure

Ensemble-based sequential data assimilation filters are composed of a forecasting
step of the ensemble to provide a sampling of the forecast distribution, and an
analysis step correcting the departure from the observations. The purpose of the
proposed noise calibration is to modify the forecast distribution, taking into account
the upcoming observation, in order to guide the forecast towards it. In the context of
transport equations such as in the SQG model, this extra guiding term is an added
drift in the noise σdBt , which was initially built to have zero mean. Allowing σdBt

to have a non-zero mean entails a modification of the transport equation in order to
rewrite it in terms of a centered noise. This is called the Girsanov transform, and it
consists in a change of underlying measure so that a non-centered noise becomes
centered under a new probability measure, up to a drift term accounting for this
change of measure. For now, σdBt is defined on a probability space (�,F ,P) and
we define (Ft )t the filtration adapted to σdBt .

The Girsanov theorem (see [7] for details) states that if (Yt )0≤t≤T is a stochastic
process such that:

– (Yt )0≤t≤T is adapted with respect to the Wiener filtration (Ft )0≤t≤T .
– For the current probability measure P, we have, P-almost surely,

∫ T

0
Y 2

t dt < ∞.

– The process (Zt )0≤t≤T defined by

Zt = exp

(∫ t

0
YsdBs − 1

2

∫ t

0
Y 2

s ds

)
(12)

is a Ft -martingale,

then there exists a probability measure P̃ under which:

– The process (B̃t )0≤t≤T defined by

B̃t = Bt −
∫ t

0
Ysds (13)

is a standard cylindrical Wiener process.
– The Radon-Nikodym derivative of P̃ with respect to P is ZT .

Let us denote by (Γt )0≤t≤T the drift we intend to add to the noise. With such a
change of measure, let us see how Eq. (9) is modified. According to Eq. (13), we
have

dBt = dB̃t + Γtdt, (14)
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so the stochastic transport operator rewrites

Dt b = dt b + (v∗dt + σ [dB̃t + Γtdt]) ·∇b − 1

2
∇ · (a∇b)dt (15a)

= dt b + (v∗dt + vΓ dt + σdB̃t ) ·∇b − 1

2
∇ · (a∇b)dt, (15b)

where

vΓ =
K∑

k=1

γkφk (16)

is the velocity drift entailed by the Girsanov transform and we assume that Γt =
Γ = (γ1, . . . , γK) is constant on a small time step dt , which will be the case for the
discretized numerical scheme that we use.
As a result, under the probability measure P̃, (15) presents the same form as Eq. (9)
since B̃ is indeed a centered cylindrical Wiener process under P̃, but with an added
drifted advection velocity.

3.2 Computation of the Girsanov Drift

We now describe how to compute Γ in order to guide the forecast towards the next
observation.

Let us start from a given time t1 where a complete buoyancy and velocity field is
available. The next observation bobs(·, t2) is assumed to be available at time t2 and
L numerical time steps are performed until then (t2 − t1 = Lδt , where δt is the time
discretization step).

At time t1, a rough prediction of the velocity at time t2 can be estimated with the
current velocity (which, more precisely, comes from previous stochastic iterations,
but is Ft1 -measurable), namely

bobs (x + v(x, t1)Lδt , t2) := b̃(x, t2), (17)

that stands for the backward-registered observation with respect to the current
deterministic velocity. This way the error made is

Δt b̃(x) = b̃(x, t2) − b(x, t1). (18)

So b̃(x, t2) is a value taken in a modified observation field, because bobs is advected
by the current velocity v(·, t1). For this reason we consider that the backward-
registered observation used for the calibration does not have the same nature as
the raw observation used for data assimilation. It constitutes a pseudo-observation,
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for which we can consider that the error due to the imprecision of the backward-
registration (ensuing in particular from successive bilinear interpolations) is way
bigger than the observation noise, and almost uncorrelated to the latter. In the second
case, only the raw observation is used for the Kalman filter, corresponding only to
the observation noise. The aim is now to calibrate the current velocity by adding a
Girsanov drift vΓ = ∑K

k=1 γkφk , such that the solution of the following transport
equation

b

(
x + v(x, t1)Lδt + vΓ Lδt +

K∑

k=1

(
√

δtφk)(
√

Lδtβk), t2

)
= b(x, t1). (19)

is approximated in a least square sense. In other words, we solve the following
minimization problem:

min
Γ

∫

Ω

E

[
b

(
x + v(x, t1)Lδt + vΓ Lδt

+
K∑

k=1

(
√

δtφk)(
√

Lδtβk), t2

)
− b(x, t1)

]2
dx. (20)

This can be rewritten as

min
Γ

∫

Ω

[
Δt b̃ + ∇b̃ · vΓ Lδt − 1

2
∇b̃ ·∇aLδt − 1

2
∇ · (a∇b̃)Lδt

]2
dx.

Using the identities

∇ · a =
K∑

k=1

(φk ·∇)φk ; ∇ · (a∇b) =
K∑

k=1

(φk ·∇)(φk ·∇b), (21)

we rewrite the minimization problem as

min
Γ

∫

Ω

[
Δt b̃ + ∇b̃ ·

(
K∑

k=1

γkφk

)
Lδt − 1

2

K∑

k=1

(∇b̃ ·Fk + Gk(b̃))Lδt

]2

dx

(22)
where

Fk = (φk ·∇)φk ; Gk(b̃) = (φk ·∇)(φk ·∇b̃).

Denoting by J the integrand, we have
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∂J

∂γi

= 2
∫

Ω

(∇b̃ ·φi)Lδt

[
Δt b̃ + ∇b̃ ·

(
K∑

k=1

γkφk

)
Lδt

− 1

2

K∑

k=1

(∇b̃ ·Fk + Gk(b̃))Lδt

]
dx. (23)

Finally, we add a regularization term α||vΓ ||22 = α
∑K

k=1 γ 2
k λk , where λk is the

eigenvalue of the Q-eigenfunction φk in Eq. (22) to ensure the uniqueness of the
solution of the proposed minimization problem, where α needs to be tuned properly.
As a result, the minimization problem can be written as an inverse problem

AΓ = c (24)

where

Aik := 2
∫

Ω

(∇b̃ ·φi)(∇b̃ ·φk) + 2αλkδik (25a)

ci :=
∫

Ω

(∇b̃ ·φi)

[
2Δt b̃ −

K∑

k=1

(∇b̃ ·Fk + Gk(b̃))

]
dx. (25b)

The parameter α is a priori fixed in order to control the resulting euclidian norm of
vΓ , ||vΓ ||2. Large values of α lead to very small corrections (Γ tends to (0, . . . , 0)
when α goes to +∞) whereas small values yield very strong and noisy drifts, as
we get closer to an ill-posed problem. For now, we use an empirical iterative way to
tune α, we increase it until the resulting norm of vΓ is under a given threshold.

4 Experiments

This section details the numerical experiments carried out in this work. The goal is
to study the benefits brought by a noise-calibrated forecast in an up-to-date version
of a localized ensemble Kalman filter. In particular we wish to observe whether or
not the noise calibration brings by itself an efficient and practical improvement of
the assimilation step.

Ensemble Kalman filters (see e.g. [9] for details) constitute a well-known family
of data assimilation methods. They rely on an ensemble of realizations (called
ensemble members) of a dynamical system (x

f
n )n=1,...,N coming from the forecast

step, and give as an output another set of members (xa
n)n=1,...,N . Each posterior

ensemble member xa
n is obtained as a linear combination of the prior ensemble

members (x
f
n )n=1,...,N in order to minimize the distance between the ensemble and

the observation in some sense.
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One important assumption of the classical EnKF is to consider that the observa-
tion and model noise are uncorrelated. This observation-calibrated forecast could
imply that the latter assumption no longer holds. Still, the discussion following
Eq. (18) on the observation nature explains why we can consider the uncorrelation
between the forecast and observation noise. If this assumption appears to be not
valid, we refer to the work made in [10] to rigorously justify the introduction of
an observation-dependent forecast. In this work, both Kalman and particle filter
equations were rewritten in terms of the conditional expectation with respect to the
underlying sequence of current and past observations. The stochastic simulations are
run on a double-periodic simulation grid, Gs , of size 64× 64 points and of physical
size 1000 km × 1000 km, meaning that two neighbor points are approximately
15 km apart. An observation is assumed to be available every day (i.e. every 600
time steps of the dynamics) on a coarser observation grid, Go, which is a subset
of Gs of size 16 × 16. It is generated as follows: a trajectory of buoyancy (zt )t is
run from the deterministic model (PDE) at a very fine resolution grid Gf , of size
512 × 512. Then a convolution-decimation procedure D is applied in order to fit
to the targeted simulation grid Gs . It consists in the composition of a Gaussian
filter and a decimation operator subsampling one pixel out of two. It has to be
iterated three times in our case to fit the correct resolution. This is done in order
to respect Shannon’s theorem and to avoid spectrum folding. A projection operator
P is applied from Gs to Go, and we finally add an observation noise to get the
observation

bobs(·, t) = P ◦ D(zt ) + ηt ; ηt ∼ N (0, R) and R = r2IM, (26)

where R is the diagonal observation covariance matrix and M is the number of
points on the observation grid.

Numerical Setup The simulations have been performed with a pseudo-spectral
code in space (see [6] for details). The time-scheme is a fourth-order Runge-Kutta
scheme for the deterministic PDE, and an Euler-Maruyama scheme for the SPDEs.
We use a standard hyperviscosity model to dissipate the energy at the resolution
cut-off with a hyperviscosity coefficient β = (5 × 1029 m8.s−1)M−8

x , where Mx is
the grid resolution [6].

The test case considered in this study is the following: an ensemble of N =
100 ensemble members is started from the very same initial condition at day 0,
which consists in two cold vortices to the north and two warm vortices to the south.
However, the amplitude of the initial vortices is underestimated compared to the
initial condition used for the deterministic run (considered as the truth) by 20%, as
shown in Fig. 1. We refer to [2] for a mathematical expression of this field.

In this experiment, we study the differences of efficiency of the localized
Ensemble Square Root Filter (an up-to-date version of the Ensemble Kalman filter,
see for instance [11] for details of the square root filters (ESRF) and [12] for a
description of the observation covariance localization procedure) with both noise-
calibrated forecast and classical stochastic simulations. We also refer to [13] for the
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Fig. 1 Initial conditions for the truth (on the left) and for each stochastic run (on the right, common
to all ensemble members). We enforce an underestimation of the amplitude of the initial vortices
of 20%

extension of the square root filter for additive forecast noise based on covariance
transformation, where the advantages of additional model error in the forecast step
are shown.

In both cases, starting from the underestimated initial condition, the stochastic
dynamics is simulated using the POD noise with K = 10 modes. An observation
is provided each day (i.e. every 600 time steps of the SPDE), with an observation
error covariance set to r = 10−5 in (26), which corresponds to a weak (but not
negligible, 1% of the maximum amplitude in the initial buoyancy field) noise on the
observation. The localization radius is set to lobs here, where lobs � 60 km denotes
the distance between two neighboring observational sites, as it provided the best
results for both cases.

The typical behaviour of the vortices, at least at the beginning of the simulation,
is to spin with no translation of the cores. In our case, the true vortices will spin
much faster than those in the biased stochastic runs. The goal of calibration is then
to speed these vortices up in order to get them closer to the truth.

The forecast is calibrated at each time step of the SPDE, using the upcoming
observation to do it. Multiple parameters were tried for the regularization parameter
α, or alternatively for the upper bound allowed for the L2-norm of the Girsanov
drift vΓ . Figure 2 compares the MSE along time for all the range of parameters
tested here, with also the same experiment without noise calibration. For this latter,
the LESRF has a difficult task, as it tries to find linear combinations of the prior
ensemble members, which all have an underestimated velocity, to get closer to the
observation. This is a general issue for ensemble methods (as well as for particle
filters), which are not able and designed to correct the bias if this correction is not
made in the forecast. By contrast, the LU calibration offers an additional degree of
freedom to guide the ensemble towards the observation. This procedure significantly
improves the results in terms of MSE. At day 13, when the MSE is maximal for
the usual case, we observe an improvement from 85% to 93% depending on the
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Fig. 2 Comparison of MSE along time between the non calibrated forecast (in black) and all the
different parameters tested here for the noise calibration. The snapshots shown in Fig. 3 are taken
at day 15 (black dashed line)

parameters tested. The case of the underestimation is an example, but we expect
this procedure to be efficient in any situation in which all ensemble members
have a similar problem of bias, bad amplitude estimation, artefacts, unsymmetrical
features, etc. With a reasonably small ensemble size, which is generally the case in
practice, this is likely to occur if the initial conditions have such features.

As explained previously, the regularization term α controls the amplitude of the
allowed correction drift. In our experiments, all parameters tested yield significant
improvements compared to the classical case, still a good trade-off seems to be
found with a control of ||vΓ ||2 between 70 and 150. Starting from 150, we observe
higher MSE in the very first days, certainly due to a lack of constraint on the
inverse problem. In addition to the MSE results, we show in Fig. 3 a more visual
example of what calibration does. At day 15, the configuration of the truth is that all
four vortices are horizontal. Without calibration (first row), the vortices are slanted
because of the initial underestimation of the velocity. The velocity field has not been
properly corrected. On the other hand, the LU calibration offers a more reliable
prediction, as we recovered the global shape of the vortices, with additional spread
around the mean.

Finally, we show in Fig. 4 an insight of how the Girsanov correction vΓ behaves
in time. As the structure of the noise is stationary, so is the structure of vΓ because
it relies on the same modes as the noise. What is interesting is the evolution of the
amplitude of this field, which decreases in time, meaning that most of the calibration



54 B. Dufée et al.

Fig. 3 Comparison between the ensemble mean (left) and the ensemble standard deviation (right)
maps, with and without calibration, at day 15 with the high-resolution truth

work is done in the very first days of simulation, and once the forecast manages
to get closer to the truth, the need for calibration is less crucial and the Girsanov
correction gets weaker.
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Fig. 4 Vorticity of the Girsanov drift vΓ computed for one ensemble member at the first time step
after the initial condition (left) and at the first time step after day 17 (right)

5 Conclusion

The findings of this paper show the ability of a data-driven noise calibration
procedure to improve significantly the assimilation by EnKF of a system initialized
with an underestimated initial condition.

As already mentioned in Sect. 2, we intend to extend this setting to non-stationary
noises, as they were shown to be associated to a better quantification of the
uncertainty (see [6] for details). Regarding computational effort, the calibration
procedure is intrinsically paralellizable ensemble-wise, and the techniques used are
close to optical flow estimation procedures, for which efficient solutions exist. The
tuning step of α is the more expensive step for now, for which more sophisticated
methods could be envisaged.
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mits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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