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Primitive Equations Under Location ®)
Uncertainty: Analytical Description and Qs
Model Development

Francesco L. Tucciarone, Etienne Mémin, and Long Li

Abstract Resolving numerically all the scale interactions of ocean dynamics in a
high resolution realistic configuration is today far beyond reach, and only large scale
representations can be afforded. In this work, we study a stochastic parameterization
of the ocean primitive equations derived within the modelling under location
uncertainty framework. First numerical assessments built with the NEMO core’s
code are provided for a double-gyres configuration.

Keywords Stochastic parametrization - Ocean modelling

1 Introduction

The Ocean covers a major part of Earth’s surface and has an important stabilizing
effect on the climate. For climatic prediction, accurate likely ensemble forecasts
of future ocean states are consequently essential. However, due to an evident
computational limitation high resolution simulations are completely unfeasible and
only large-scale ocean representations can be handled. To face this difficulty, and
the need of generating different likely future scenarios, there has been a growing
interest in the geophysical sciences to set up flow models that incorporate in their
dynamics noise terms related to uncertainties or errors. In accounting for the actions
of unresolved processes in a random way, these stochastic models are in general
less diffusive than the classical large-scale deterministic models. The unresolved
processes include small-scale turbulence effects, boundary value uncertainties or
uncertainties coming either from scale coarsening or from the numerical schemes
used. Moreover, compared to classical large-scale deterministic modelling, the
additional degree of freedom brought by the stochastic component allows us to
devise new intermediate models [4, 3, 6, 7, 8]. The addition of noise in fluid
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dynamics models cannot be done in a haphazard manner. Ad-hoc choices for
model noise can fundamentally perturb the corresponding fluid dynamics models,
making them exhibit unrealistic properties [3]. Rigorously justified methodologies
for choosing the model noise have recently been introduced by Mémin [1] and Holm
[2]. These derivations lead to large classes of stochastic geophysical fluid dynamics
models that preserve either energy or circulation, respectively. Such models natu-
rally emerge from a decomposition of the flow velocity field in terms of a smooth
component and a time uncorrelated uncertainty random term. This decomposition
is reminiscent, in spirit, of the classical Reynolds decomposition, and enables the
definition of large-scale representation with a stochastic term representing small-
scale effects. The Location Uncertainty (LU) formulation has been found to be
more accurate in structuring the large-scale flow [4] and in reproducing long-terms
statistics [22] for the barotropic quasi-geostrophic model. It also provides a good
trade-off between model error representation and ensemble spread [21, 23] for the
rotating shallow water model and the surface quasi-geostrophic model. In this work
we explore more specifically a stochastic version of the primitive equations, named
primitive equations under Location Uncertainty. The derivation of this model is
detailed and first numerical experiments built from the NEMO code are assessed.

2 Location Uncertainty (LU)

In the LU formalism, the Lagrangian displacement X; associated to a fluid particle
is decomposed as:

t

t
X, 0 = X, <x>+/ VX, (x),s>ds+/ o (X, (%), ) dB;, (1)
0 0

where X: 2 xIRT — £ is the fluid flow map, that is the trajectory followed by fluid
particles starting at initial map X|,_, (X) = Xo of the bounded domain £ C R3.
Written in differential form Eq. (1) takes the usual form:

dX, (x0) = v (X, 1) dt + o (X, 1) dB,. )

The first component, v (X, t), represents the smooth, resolved velocity field of the
flow. It corresponds to the integration of the equations of motions, solved on a
grid of a given resolution, and it is supposed to be both spatially and temporally
correlated. The second term, o (X;, t) dB;, is a stochastic process that assembles
the unresolved flow component, uncertainties on the flow and turbulent effects. This
stochastic contribution, often referred to as noise in the following, is built from the
application of an Hilbert-Schmidt kernel integral operator, o, to an I3—cylindrical
Wiener process B
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(0 (X;, 1) dB,)’ =/95ik (X, y, 1) dB; (y) dy, 3)

where B is defined on a filtered probability space {$2, F, P, (F;);} and (F;); is
the filtration adapted to B. The application of the (integrable) kernel & imposes
fast/small scales spatial correlation and defines a centered Gaussian process adB; ~
N (0, Qdt), with covariance tensor defined as

0ij (x.y.1,5) = E[ (0 (x, ) dB)' (@ (7. 5) dB,)/
=68 —y9) dt/ Gik (X,Z,1) 0kj (z,y, s) dz.
2

The strength of the noise is measured by the diagonal components of the covariance
tensor per unit of time, i.e. the variance tensor, a, defined as a(x, 1)§(t — ¢)dr =
Q(x, x, £, 1'). The variance tensor is symmetric and positive definite at any point x
of the domain. Notably, it has the dimension of a viscosity in m?s~!. The covariance
operator is self-adjoint, positive definite and compact and admits a convenient
spectral decomposition.

In this paper, the noise will always be assumed to be centred, but it can be proven
through Girsanov theorem that one can redefine the Lagrangian displacement (2) as

dX; (x0) = [v(X;. 1) =, (X)]dt + 0dB, (X)), “)

where the Wiener process B, is a centred process under a new probability measure
Q drifted by w,. Indeed a non centred Wiener process shifted by a random process
(Y;); can be defined as:

t
B, =B, + f Y, ds. 5)
0

Under good properties of (Y), ( F;-measurability, almost sure L?—integrability and
Novikov condition) there exists a measure Q such that (B;), is a Q— Wiener process
With the non centred random process B, we can rewrite the equations with respect
to B, as

O'dB[ (X[) = O'dﬁt (X;) — 0 (X[, t) Y[ dr. (6)

Denoting o (X;,7) Y; as p; one can write the Lagrangian displacement (2) as (4)
and under Q the Wiener process dB; is centred thus the writing of dX; has the
same form as (2) but under a new measure. All the arguments provided in the
following will hold for this process under Q. The use of a drifted noise odB; is
fundamental when the processes employed to operationally define the noise are not
centred, hence displaying a non-zero time average.
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3 Stochastic Transport Theorem

The derivation of Eulerian flow dynamics models within the LU formalism relies on
a stochastic version of the Reynolds transport theorem (SRTT), introduced in [1],
which describes the rate of change of a random scalar ¢ transported by the stochastic
flow (2) within a flow volume V;:

d/ g (x,1) dx = / {Dig +qV-[v*dr + ¢dB,]} (x, 1) dx, (7
Vi v,
with the operator
1
D;q = dig + [v* dt + 0dB,] Vg — EV' (aVgq) dr, (8)

defining the stochastic transport operator. The SRTT is in perfect analogy with the
deterministic Reynolds transport theorem (compare with [13] section 5.3), and the
various terms can be interpreted physically. Proceeding in order, the first right-hand
side term of (8) is the increment in time at a fixed location of the process ¢, that
is dig = q Xy, t +dr) — g (X¢, t). This contribution plays the role of the partial
time derivative for a process that is not time differentiable. The term enclosed in the
square brackets is a stochastic advection displacement. It involves a time correlated
modified advection,

1
V*=V—§V-a+6T(V-¢r), 9)

and a fast evolving, time uncorrelated noise odB;. The advection by this term of
variable ¢ leads to a multiplicative noise, which is hence non Gaussian. This type
of noise is often denoted as transport noise in the literature. The second term of the
modified advection is coined as the Iro-Stokes drift velocity in [4], vy = %V-a.
It represents an effective transport velocity resulting from statistical effects due
to inhomogeneities of the noise term. The last term of the transport operator is a
dissipation term that depicts the mixing mechanism due to the unresolved scales.
Following [5] one can consider the transport of a characteristic function to introduce
an evolution equation for the Jacobian determinant J of the flow:

D,J —JV-[(v=V +07(V-0))dr +adB,] = 0. (10)
This equation provides a clear condition for the stochastic flow to be isochoric:

V.[v*dr +adB,] = 0. (11)
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4 Boussinesq Equations

Under location uncertainty, a stratified ocean can be modelled with a modified
version of Boussinesq equations. The derivation that is outlined here follows almost
verbatim the asymptotic derivation given in [12]. First, one applies the SRTT (7) to
the density and imposes conservation, that is d f v, P (x,t) dx = 0. Then, assuming
that the fluctuations of density are small compared to the mean,

p(x,1)=po[l+ed8px)], (12)

and using ¢ as an asymptotic ordering parameter to perform an expansion of the
conservation of mass, the first order is found to be:

V.[v*dr +adB,] =0, (13)

that can be split in two incompressibility conditions involving both the modified drift
velocity v* and the fast scale component o dB; thanks to the uniqueness of semi-
martingale decomposition [15]. Applying again the SRTT (7) to the momentum
reads

pD,v = -V (p— %V-v) dr — V (dp?) — pges dt, (14)

where the right hand side entails pressure forces, compressibility effects [14] and
gravitational forces. The compressibility term %Vo v, with w dynamical viscosity of
water, is usually neglected in the deterministic derivation of the Boussinesq model,
but in this model is maintained in view of the different incompressibility condi-
tion (12), that enforces V.v = V.v. Following classical nondimensionalization
procedure [12, 14], characteristic scales are introduced as:

. U? . U?,
X = LX, v=UYvV, t=1t, p= L0 D, g=—2, (15)
€ eL

with T = L /U advective time scale. Furthermore, the variance tensor is assumed to
scale as a = Aa so that the fast-evolving component o dB; and the kernel o can be
scaled as

AL
odB, = 7&dB, and o = VAé. (16)

In this novel framework a non-dimensional parameter T = UL/A is introduced
to compare advection and stochastic diffusion terms in the momentum equation.
This parameter is termed stochastic Peclet number, in perfect similarity with
the deterministic advection-diffusion problem [10]. Introducing these variables,
following [12], one obtains:
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1%(%)& =¥ p°A+ Vs )ar an
or @YY = Pt Rer3V %

~ ([ P° 8
-V (U2 dpy ) (1 + 68,0) e3 dr.

Expanding each variable as an asymptotic with € taken as ordering parameter,
Eq. (17) provides at lowest order, once dimensional variables are replaced to non-
dimensional variables,

Vpo = —poge;, po(z)=—pogz. (18)

Decomposing the density into a background constant density and a deviation,
corresponds on the pressure variable to a decomposition in terms of a hydrostatic
component and a pressure fluctuation. This splitting,

p(t,%) = po+p'(t,%), p(t,x)=po+p (tx), 19)

allows the recognition of the first order component of the pressure as the deviation
from the hydrostatic pressure p’, so that Eq. (17) at first order in dimensional form
becomes

1
dv+[(v = V") df +0dB;]- Vv — SV- @VV) dr =

dp? !
=V (=p'+3Vev) dr =V (%) ~ gt
0 0

The splitting (19) also introduces naturally the buoyancy b = —gesp’ (¢, X) /pp in
the equations of motions, representing the upward (or downward) force associated
with the density anomaly p’. In terms of buoyancy, the momentum equation can be
written as

dpl

D[V =V <_p/ —
P0

+ 3V vs> dr — bdr. (20)

A stochastic transport equation can be written for the buoyancy from mass
conservation. However, in this work a tracer transport equation on salinity, S, and
temperature, 7', is preferred, relating then the buoyancy and the tracers with a
buoyancy state equation b = b (T, S, z). The conservation of a given tracer 6 is
expressed as

D0 +0V-[(v —v,) dr + 0dB,] = F? dr + DY dr, 1)
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where the variation of tracer quantity is balanced by a forcing term F? and a
diffusive term D?. We note that here these terms are assumed to be regular in time,
although additional Brownian terms could be considered to encode intermittent
forcing. The resulting system, split into horizontal and vertical equations using the
convention v = (u, w), is:

Horizontal momentum:

1
Dyu+ fes x <udt + EadBf) -V, (—p’ + gv-v) dt — v, dp?  (22)

Vertical momentum:

D 8( 4y )dt 9 4p% +br 23)
w=—|\— - -V —_—

! 0z P 3 9z Pr

Temperature and salinity:

D,T = kr AT dr, 24)
D;S =«ksASdt, (25)
Incompressibility:

V-[v-v]=0, V-0dB; =0, (26)

Equation of state:

b=b(T,S, z2). 27)

Temperature and salinity are introduced as active tracers, as they modify the
buoyancy field, and their stochastic evolution is obtained again by application
of the SRTT (7), balanced with a diffusion process with diffusivity x7 and «g
respectively. The unusual coefficient 1/2 in the random Coriolis term can be
shown to appear naturally from a derivation of the non-inertial acceleration in this
stochastic framework, again following the derivation of [12]. Metric terms relative
to the rotation of the earth should also be adapted to the stochastic Frenet-Serret
formula dC = $2dr x C in the case of planetary scale simulations. In Eqgs. (22) and
(23) the stochastic pressure is introduced, and corresponds to a zero-mean turbulent
pressure related to the small scale velocity component (i.e. noise). It is a martingale
term. An operational model referred to as the primitive equations can be obtained
through the so-called hydrostatic balance, resulting from neglecting the vertical
acceleration terms through a proper scaling of the velocity. In our stochastic setting,
the vertical momentum equation reads, after neglecting the large scale acceleration
terms and for moderate noise ( 7" ~ O (1) so as the martingale terms related to the
vertical velocity component are negligible):

ap' adp?
% 4 p=0 and L

=0, 28
9z 9z (28)
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where the bounded variation terms and the martingale terms have been safely
separated. The left equation constitutes the usual hydrostatic balance. With the
scaling used, the stochastic pressure is constant along depth and is in balance
with the stochastic Coriolis component [9, 5]. These two martingale terms can be
removed then from the horizontal momentum equation. In this setting the vertical
component of the momentum equation becomes a diagnostic component that can
be recovered integrating the continuity equation given by (26). In a similar way,
the large scale pressure is obtained from the vertical integration of the hydrostatic
relation. The scaling parameter 1" can also be related to the ratio between the Mean
Kinetic Energy (TKE) when an advective time scale is used, that is

U? |IMKE
= =-"—— (29)

A/t € TKE
where € = 7,/7, is the ratio of the fast-scale to the slow-scale correlation times.
This ratio can be adapted to the different variables involved (i.e. momentum,
temperature or salinity) with a value similar to the inverse of the Schmidt number
(ratio of diffusion rates) making hence the noise scaling parameter, 7", dependant
on the variable transported. The parameter 7" appears in dimensional analysis and
asymptotic expansions, but plays also a paramount role in the quantification of the
strength of the noise.

5 Methods

The experiments are performed with the level-coordinate free-surface primitive
equation ocean model NEMO [16]. The domain configuration is a double-gyre
configuration consisting of a 45° rotated beta plane centred at ~ 30°N, 3180 km
long, 2120 km wide and 4 km deep. The domain is bounded by vertical walls and
a flat bottom. The seasonally varying wind and buoyancy forcings induce a strong
jet to appear diagonally in the domain, separating a warm sub-tropical gyre from a
cold sub-polar gyre. Three experiments were performed: two purely deterministic
simulations at different resolutions, 1/27° (R27d) and 1/3° (R3d), and one stochastic
simulation at 1/3° (R3LU). Each simulation was run for 10 years with data collected
every (and averaged over) 5 days. The focus of this paper is to assess the benefits
brought by LU to the coarse simulation, so the parameters of the simulation were
chosen following thoroughly [17, 18] (see Table 1 for an overview of their values).
In this first study, we restrict ourselves to 3D divergence-free horizontal noise (i.e.
with no vertical component). In spectral form the random field and the variance
tensor can be written as:

odB =Y 1%pi0dp, a=)Y reiXelX), (30)

ieN ieN
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Table 1 Parameters of the model experiments

R27d R3d R3LU
Horizontal resolution 1/27° (3.9 km) 1/3° (35.3km) 1/3° (35.3 km)
Horizontal grid points 540x 810 60x90 60x90
Vertical levels 30 30 30
Time step 5 min 20 min 20 min
Eddy viscosity —5x1079 m*s~! —107 12 m*s~! —10712m*s~!
Eddy diffusivity —5%x10710 m*s~! 300 m2s~! 300 m2s~!

where {@;(x), i € N} are the orthonormal eigenfunctions of the covariance operator
associated to {A;,i € N}, the (real, positive) eigenvalues ranged in decreasing
value order and {ﬂf,i € N} is a set of standard (scalar) Brownian variables.
This representation corresponds to the Karhunen-Loeve decomposition [24]. Oper-
ationally, the (finite) set of eigenfunctions {¢;(x),i € [1, N]} and of eigenvalues
{Ai,i € [1, N]} are computed through a proper orthogonal decomposition (POD)
[11] of the temporal fluctuations of the two-dimensional low resolution residual u, .
This velocity residual is obtained through Gaussian filtering of the high resolution
deterministic simulation R27d, u,, = (1 — G) u,;;, with the fluctuations computed
through Reynolds decomposition:

N
W X )=, (KD -, (%) =) ¢ D (1) 31)

i=1

The POD procedure applied to u/LR (x, t) provides a set {¢;(x),i € [1, N]} of
eigenfunctions that are stationary in time and such that

(Dm, dn) = / ¢In¢n (x) dx = Syn, amant = Amm,n- (32)
2

The eigenfunctions are used to define the random field and a stationary variance
tensor as

M(z) M(z)

odB, (x) = Y 3Ppi0VAIdB., am =) nArgiXel x)  (33)

i=1 i=1

where ¢; = ¢;/Ar and M(z) <« N chosen to provide at least 85% of the
energy of the fluid layer. Due to the constraint posed by Eq.(26) on the noise,
incompressibility on the horizontal noise is imposed by applying a Helmoltz-Hodge
decomposition [19] on the each snapshot of the horizontal velocity u, . Moreover,
the set of eigenfunctions {¢;(x),i € [1, N]} is used to construct the drift w, of
Eq. (4) in such a way that the distance between p, and U, ' is minimized, that is
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u,x0' Z«», (x) yt (34)

i=1

e = Z¢’ (x) yf with yt = arg min
i=1

Due to the orthogonality of the basis functions the coefficients can be easily
recovered as the orthogonal projection yf = (u (x,1) l, ¢; (x)).

6 Results

In this work we focus on the results of a single realisation. From a qualitative point
of view, the effect of the coarsening of the resolution can be seen in Figs. | and 2,
where the leftmost panel represents the result the R27d simulation, the central panel
shows the results of the R3d simulation and the rightmost panel shows the R3LU
simulation. The first noticeable characteristic of the R27d reference simulation is
the presence of a primary jet stream inclined at an almost —45° angle starting at
the bottom-left corner and directed towards the centre, and a secondary, smaller jet
with the same inclination roughly 80 km above the primary. The presence of both
structures is visible in the reference papers [17, 18]. In both figures the comparison
between the high resolution and the low resolution deterministic simulation shows a
degradation of the information about the jet-streams. Figure 1, depicting the relative
vorticity '™ = (dxv — dyu) /f " shows that the deterministic R3d simulation is
incapable of reproducing the primary jet characteristic and its positioning, though
showing an increased activity in place of the secondary jet stream. The stochastic
R3LU simulation presents instead a intensification of the vortical activity in the

0.02

0.0

-0.02

Fig. 1 10-years averaged relative vorticity { = (axv - Byu) /f at the surface layer of the model
for deterministic high-resolution (1/27°, left), for deterministic low resolution (1/3°, middle) and
for stochastic low resolution (1/3°, right)



Primitive Equations Under Location Uncertainty 297

R27d [m] R3d [m]

0.5

0.25

0.0
R R——

-0.25

-0.5

Fig. 2 5-days averaged sea surface height of the model for deterministic high-resolution (1/27°,
left), for deterministic low resolution (1/3°, middle) and for stochastic low resolution (1/3°, right)

2,2
g U(KERSrI) [m /S ] U(KERSLU) [mz/SQ] GR‘E(f)
o
S ¢, R3d
o == ¢, R3LU
8 KE, R3d
3 " Bm KE, R3LU
S
2 s e
O_ 2]
[=}
o
= &)
2 ~ <

0.005

0.00

-5m -159m GRE~

Fig. 3 Left and centre panels, standard deviation of the kinetic energy. The color scale has
been adjusted to enhance the differences in the jet region, not considering the highly energetic
boundaries where peaks present values as 0.2m?/s? for R3d and 0.17m?/s? for R3LU. Right
panel, the Gaussian relative entropy for relative vorticity, ¢, (cold palette) and kinetic energy (warm
palette). The lighter colors represent the deterministic simulation R3d, the darker colors represent
the stochastic simulation R3LU. All the statistics are computed over 10 years

regions of the primary and secondary jet. Considering sea surface height, Fig.2
shows that the best result is obtained by the stochastic simulation that, while not
being able to distinguish the primary jet stream by the smaller vortices of the
secondary jet, it is capable of reproducing the main behaviour. The left and centre
panels of Fig.3 shows the difference obtained in terms of variance of the kinetic
energy in the two coarse simulations, with greater variability obtained with the
stochastic model, especially in the area of the jet stream, where a lesser variability is
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’_’_x/;l ,—::==—l
500 — “” iy
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4000 : : I : :

T
0 5 10 15 20 0 5 10 15 20
Temperature t = 1Y Temperature t = 10Y

Fig. 4 Vertical profile of temperature after 1 year of simulation (left) and after 10 years (right)

shown in the deterministic case. From a quantitative point of view, the simulations
are compared using the Gaussian Relative Entropy described in details in [20] and
which measures with a single criterion both the mean and variance reconstructions.
In the left panel of Fig. 3, values of the GRE for two variables, the relative vorticity
¢, and the kinetic energy KE = (u2 + 02) /2 are compared. For two different depths
and in a vertical average sense (GRE"®), the relative entropy is smaller for the
stochastic simulation, indicating a smaller distance from the distribution given by
the reference R27d simulation. The proposed stochastic model thus outperforms
the standard deterministic simulation in terms of both relative entropy and intrinsic
variability for kinetic energy and vorticity. This behaviour is observed in every layer.
In the tracers equation the noise has been scaled with the aid of the Schmidt number,
the ratio between the eddy viscosity and eddy diffusivity. This consideration stems
from the fact that the correlation times for transport of momentum and of tracers
are not the same, and the difference can be expressed in terms of the Schmidt
number. Figure 4 shows the vertical profiles of horizontally-averaged temperature,
T (z,0) = [, T (x,y,z,1) dxdy, at time t = 1Y and t = 10Y for the three
simulations. The vertically averaged temperature shows an increase in mixing of
temperature of the stochastic setting with respect to its deterministic counterparts.
This process has been observed to be sensible to the noise amplitude and might
be caused by the structure of the noise and by the effects of Helmholtz-Hodge
decomposition. Further studies to investigate this process with three-dimensional
and isopycnal noise are ongoing.
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7 Conclusions

The considered stochastic model has been implemented into the NEMO dynamical
core. A 3D horizontal, incompressible noise was considered and has been proven
to successfully increase the capabilities of a coarse simulation in simulating the
dynamical quantities of interest, when corrected with a stochastic drift leading
to a change of probability measure. Both the qualitative behaviour of the jet-
stream and the quantitative intrinsic variability of the model have been increased.
Thermodynamic quantities like temperature and salinity seem to not benefit from
this implementation. In future works, more complex non stationary fully 3D noises
will be investigated within the same setting.
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