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Mean field approximation of an optimal control problem for the

continuity equation arising in smart charging

Adrien Seguret ∗

Abstract

We consider the optimal control of a finite population of hybrid processes (namely agents state is composed
of a discrete and a continuous variable), modeling the optimal charging of a large population of identical plug-in
electric vehicles (PEVs). We prove the convergence of the solution and that of the value of a sequence of finite
population problems respectively to a solution and the value of a mean field optimal control problem.

Keywords: Optimal control, hybrid state space, mean-field limit.

1 Introduction

This work is motivated by the optimal charging of a very large population of plug-in electric vehicles (PEVs)
controlled by a central planner. Each PEV is characterised by two variables: a continuous one representing the
state of charge (SoC) of the battery, and a discrete one denoting the mode of charging of the PEV (e.g. idling,
charging, discharging, etc...). The central planner determines when and to which mode of charging of each PEV
switches. In addition to the charging cost, the objective function also contain a term penalizing the switches, in
order to avoid both excessive jumps per PEV and synchronization effects, i.e., simultaneous switches of a large
proportion of PEVs. An optimization problem is considered, where the distribution of the population is subject
to a congestion constraint to avoid large proportion of PEVs having the same regime. Such a control problem
typically arises in parking lots powered by solar energy that can be found in malls, airports, stadiums, hospitals
and other facilities with large parking areas [21]. Since the number n of PEVs is very large, both combinatorial
techniques and optimal control tools may fail to solve the problems, due to the curse of dimensionality [5]. To
overcome these difficulties, one can approximate the problem of n PEVs by considering a continuum of PEVs,
leading to the techniques of optimal control of PDEs and those of convex optimization. The resulting limit mean
field control problem was studied in [48] and numerically solved in [49]. Note that several articles have already
dealt with smart charging problems within a mean field limit framework [16, 44, 46]. Our paper aims to justify the
mean field approximation by proving the convergence of the finite population optimization problem to the mean
field problem, when n tends to infinity.

We point out three important features in our modelling of the PEV charging. First, only a finite number of
charging rates are allowed, because charging is mostly done at discrete rates [45]. This feature was also adopted
for example in [17, 27, 50]. However, these papers did not systematically take into account the switching cost and
congestion constraints, which are the second and third features of our modelling. Indeed, penalizing switches is
crucial because, on the one hand, multiple changes in charging regime causes more intensive battery aging and
degradation [20, 42] whereas, on the other hand, the synchronization of switches of PEVs can disrupt energy
balance on the electrical network [52] and increase instability of distribution transformers [53]. Finally, congestion
constraints enable to avoid voltage drops and overloading of transformers [33] caused by uncoordinated large fleets
of PEVs.

The main contribution of this work is the convergence, as n tends to infinity, of the value of the finite population
problem to the value of the mean field control problem (Theorem 2.1). We also prove the convergence (up to a
subsequence) of optimal solutions of the finite population problem to a solution of the mean field control problem
(Theorem 2.2).

Let us make some remarks on the method of proof. The finite population problem is first defined in a Lagrangian
point of view, namely that the evolution of the population is described by the trajectory of each process (PEV).
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Then, an Eulerian formulation of the problem, which characterizes the evolution of the population by its state
distribution, velocity field and the distribution of the switches of its discrete state, is introduced and proved to
be equivalent to the Lagrangian formulation (Corollary 3.1). This result is obtained thanks to a superposition
principle (Theorem 3.1), that is a direct adaptation of the one in [12]. The superposition principle states that any
curve of probability measure, solution of the continuity equation, can be represented as the transport of the initial
distribution along an ODE flow. This result was first introduced in [1] in the Euclidean setting and extended to
general metric spaces in [41].

The convergence of the solution and that of the value of the finite population problem in the Eulerian formulation
are achieved in two steps. First, we prove that the lower limit, as n tends to infinity, of the value of the finite
population problem is larger than the value of the mean field control problem, due to the compactness and lower
semi-continuity arguments (Theorem 4.1). Second, we show that the value of the finite population problem is
bounded above by the value of the mean field control problem up to a term of order O(n−1/3) (Theorem 4.2). To
obtain this bound, a mean field optimal control is implemented to a finite population of processes and an estimate
of the Wasserstein distance between the empirical distribution of the finite population and the optimal mean field
distribution is derived (Theorem 4.3). This estimate strongly relies on the regularity of the optimal control of the
mean field control problem. The Lipschitz continuity w.r.t. the space variable, uniformly in time, of the optimal
control has been established in a companion paper [48]. Similar results of Lipschitz regularity of the optimal controls
have been studied in the context of mean field control problem [6, 19].

The mean field limit of a system of n interacting agents is defined as the asymptotic behaviour of the system
when n tends to infinity. The empirical distribution of the system of n agents can be approximated by a distribution
that is a solution of a Vlasov type equation. In the stochastic setting, one often refers this asymptotic behavior to the
notion of propagation of chaos [51]. In the context of optimal control with deterministic dynamics, the convergence
of the solutions of the finite population problem to a solution of the mean field control problem, was first proved in
[26]. The authors applied Γ-convergence techniques [18] and restricted the result to the particular case of feedback
control functions that are locally Lipschitz continuous in space. The convergence of the value of the optimal control
of a finite population of interacting McKean-Vlasov dynamics to the value of a mean field optimal control problem
was proved in [36] in fairly general settings (the results hold for degenerate diffusion). The convergence results in
[26] were obtained without the restrictions on the control in [25]. In [12], the Eulerian, Lagrangian and Kantorovich
formulation of the finite population and the mean field problems are introduced, and the convergence of the value
functions of the finite population Lagrangian and Eulerian problems were established. More convergence properties
in various deterministic settings can be found in [7, 30] and in the references therein. In a stochastic setting, the
results of [36] were extended to the case with common noise in [23] and with interaction of the agents with joint
distribution of the state and control in [22]. More recently, in a setting with idiosyncratic and common noise in the
dynamic of the agents, a convergence rate of the value function of the finite population problem to the the value
function of the mean field limit problem was derived in [8]. In a finite state space setting, this rate was proved to
be of order 1/

√
n in [13]. Similar results on the value function were obtained in [3] in the case of mean field control

problem with regime switching in the state dynamics. The Γ-convergence of a control problem of hybrid processes
was proved in [29] in the very specific framework of multi-line traffic. Several convergence properties of the finite
population model to the mean field one are given in [43] for the discrete time setting with common noise.

Mean field control problems are strongly connected with the mean field game (MFG) problems. This class
of games, introduced by Lasry and Lions [38, 39, 40] and Huang, Malhamé and Caines [31, 32], describes the
interaction among a large population of identical and rational agents in competition. It was first proved that one
can construct ε-Nash equilibrium in the n-player game from mean field models [10, 11, 14, 31]. The convergence of
the Nash equilibrium system to the MFG system is closely related to the well-posedness of the so-called “master
equation”. Such a property was proved in general settings, with common noise, in the breakthrough of [9]. The
convergence was studied in [24, 35] in the open-loop control framework and extended in [37] for closed-loop Nash
equilibrium, expanding results obtained in [9]. Finally, convergence results in the finite state settings were obtained
in [4, 14, 28, 34]

While problems in the literature deal with either continuous or discrete state variables, this work addresses the
analysis of the mean field limit of hybrid processes. Also, a congestion constraint is considered in the optimization
problem, which is unusual among the existing literature studying mean field limit of control problems (see however
[15] for a Γ−convergence result of an n-agent system to a mean field control problem with L∞ upper bound on the
density of the population). Finally, a particularity of the model in this paper is that the nature of the dynamics in
the finite population problem is different from that in the mean field problem. While the switches are controlled
and deterministic in the finite population setting, the jumps of the discrete variable of each process are stochastic
and the control is on the transition rate in the mean field problem .
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The paper is organized as follows. In Section 2, we present our assumptions, the n-agent optimal control problem,
the mean field control problem and the main results. The equivalence between the finite population problem and
its Eulerian formulation is established in Section 3, as well as the superposition principle. Finally, the convergence
of the solution and that of the value of the finite population problem to the solution and the value of the mean field
problem are proved in Section 4.

2 Main results

Notations The space of Borel, positive and bounded measures on a space A is denoted by M+(A) and the
space of Borel probability measures on a space A is denoted by P(A). For any measure µ ∈ M([0, T ]) and

0 ≤ t1 < t2 ≤ T , we set
∫ t2
t1
µ(dt) := µ([t1, t2]). Given a set S, for any function f defined on S × I and any measure

µ ∈ M(S × S × I), we use the notations fi(x) := f(x, i) for any (x, i) ∈ S × I and µi(S) := µ(S × i) for any
(S, i) ∈ B(S)× I, where B(S) denotes the Borel algebra. Similarly, for any function g defined on S × I × I and any
measure ν ∈ M(S ×S ′ × I × I), where S ′ is a set, we use the notations gi,j(x) := g(x, i, j) for any (x, i, j) ∈ S × I2

and νi,j(S, S
′) := ν(S × S′ × {i} × {j}) for any (S, S′, i, j) ∈ B(S)× B(S ′)× I2. If S is a metric space, let Lip(S)

denote the vector space of bounded and Lipschitz continuous maps f : S → R. For any µ ∈ C0([0, T ],P([0, 1]),

let L2
µ([0, T ]× [0, 1]) := {f : [0, T ]× [0, 1] 7→ R,

∫ T

0

∫ 1

0 f(t, s)
2µ(t, ds)dt < +∞}. We denote by W the Wasserstein

distance on P([0, 1] × I), defined by W(µ, ρ) := sup {∑i∈I

∫ 1

0 ϕ(µ − ρ) |ϕ is 1 − Lipschitz from [0, 1] × I to R}.
We recall that if a function ϕ is 1-Lipschitz continuous from [0, 1] × I to R, then |ϕ(x, i) − ϕ(x, j)| ≤ 1 for any
i, j ∈ I. For any metric space (X, d), we denote by D([0, T ], X) the set of cadlag functions from [0, T ] to X and by
AC([0, T ], X) the set of absolutely continuous functions. For any x ∈ R, ⌊x⌋ denotes the integer truncation of x.
For any n ∈ N, we introduce Pn([0, 1]× I), the set of empirical probability measures on the space [0, 1]× I defined
by

Pn([0, 1]× I) := {µ =
1

n

n
∑

ℓ=1

δ(xℓ,iℓ) for some (xℓ, iℓ) ∈ [0, 1]× I},

and similarly we introduce Mn([0, 1]) defined by:

Mn([0, 1]) := {µ =
1

n

n̄
∑

ℓ=1

δxℓ for some xℓ ∈ [0, 1] and n̄ ≤ n}. (2.1)

2.1 The n PEVs control problem

We consider a population of n PEVs (n ∈ N
∗), a state space [0, 1]×I, where I is a finite set, and a time interval [0, T ].

We consider a time and space discretization depending on n, with time step ∆tn and space step ∆sn (indexed by the
superscript n), such that Nn

T := T/∆tn and Nn
s := 1/∆sn are integers. The time mesh is {0, tn1 , . . . , tnk+1, . . . , T }

with tnk := k∆tn, for any k ∈ {0, . . . , Nn
T }. The space mesh is {0, yn1 , . . . , ynp , . . . , 1} with ynp := p∆sn, for any

p ∈ {0, . . . , Nn
s }. For the sake of simplicity, we write tk and yp instead of tnk and ynp , and ∆s and ∆t instead of ∆sn

and ∆tn.
For any ℓ ∈ {1, . . . , n} and t ∈ [0, T ], the vehicle ℓ is described by its state variable xℓt := (iℓt , s

ℓ
t) ∈ I × [0, 1],

with a given initial datum xℓ0 = (iℓ0, s
ℓ
0). The discrete variable iℓ, denoting the mode of charging, can switch

deterministically and only at fixed times in {t1, · · · , tNn
T
−1}, while the continuous variable sℓ, representing the SoC,

is governed by an ODE depending on the mode of charging. Between two jumps of the variable iℓ, i.e. within each
interval [tk, tk+1), the dynamics of xℓ is deterministic and is given by:

iℓt = iℓtk ,
dsℓt
dt

= b(iℓt, s
ℓ
t) for any t ∈ [tk, tk+1) and with sℓtk = lim

τ↑tk
sℓτ , (2.2)

where the initial state (iℓ0, s
ℓ
0) is given. Note that there are no switches of iℓ at times t = 0 and t = T . We further

assume that b belongs to C1(I × R) and vanishes at the boundary of [0, 1], so that the ODE satisfied by sℓ has a
unique solution and sℓ lies in [0, 1]. By (2.2), the map t 7→ (iℓt , s

ℓ
t) is cadlag. Given m̄ ∈ Pn([0, 1]× I), we introduce

the set of processes:

Xn(m̄) :=
{

{(iℓ, sℓ)}ℓ∈{1,...,n} ∈
(

D([0, T ], I)× C0([0, T ], [0, 1])
)n | the empirical distribution

of {(iℓ0, sℓ0)}ℓ is equal to m̄ and (iℓ, sℓ) satisfies (2.2)
}

.
(2.3)
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We denote by (i,s) a generic element of Xn(m̄). The population of n processes is subject to the following congestion
constraints:

1

n

n
∑

ℓ=1

1i(i
ℓ
t) ≤ Di(t) ∀(i, t) ∈ I × [0, T ], (2.4)

where D : [0, T ] → R
∗
+ is given. The admissible set T n(m̄,D) is defined by:

T n(m̄,D) := {(i,s) ∈ Xn(m̄)| (i,s) satisfies (2.4)} . (2.5)

Let J n be the objective function, defined by:

J n(i,s) :=
1

n

n
∑

ℓ=1

∫ T

0

c(t, iℓt, s
ℓ
t)dt+ g(iℓT , s

ℓ
T ) +

∑

i,j∈I,j 6=i

Nn
T −1
∑

k=1

Nn
s −1
∑

p=0

L

(

Qk,pi,j (i,s)

∆t

)

∆tQk,pi (i,s), (2.6)

where Qk,pi,j (i,s) is the proportion of PEVs among the processes with a state in [yp, yp+1) × {i} that switch their

discrete state i to j at time tk, and Q
k,p
i (i,s) is the proportion of PEVs among the overall population of processes

that has a state in [yp, yp+1) × {i} at time t−k (just before the jumps). More precisely, Qk,pi (i,s) and Qk,pi,j (i,s) are
defined by:

Qk,pi (i,s) :=
1

n

n
∑

ℓ=1

1i(i
ℓ
t−
k

)1[yp,yp+1)(s
ℓ
tk),

Qk,pi,j (i,s) :=











0 if Qk,pi (i,s) = 0,

1

nQk,pi (i,s)

n
∑

ℓ=1

1i(i
ℓ
t−
k

)1j(i
ℓ
tk)1[yp,yp+1)(s

ℓ
tk) otherwise.

Our purpose is to study the mean field limit of the following finite population optimal control problem:

inf
(i,s)∈T n(m̄,D)

J n(i,s). (2.7)

We recall that this work is initially motivated by the optimal charging of a population of plug-in electrical
vehicles (PEVs) controlled by a central planner. The given velocity field b(i, s) denotes the power of charge or
discharge of a PEV in mode i and with battery level s. The congestion constraint (2.4) aims at avoiding high
demand of energy at each moment over the period. The value c(t, i, s) in (2.6) corresponds to the running cost of
a PEV at state (s, i) and at time t ∈ [0, T ); g(i, s) is the final cost per PEV at state (s, i). The switching cost

L

(

Qk,p
i,j

(i,s)

∆t

)

∆tQk,pi (i,s) penalizes large values of Qk,pi,j (i,s), i.e., large proportion of PEVs switching from a state

in [yp, yp+1)×{i} to a state in [yp, yp+1)×{j} at time tk. The normalization by ∆t avoids frequent jumps. Finally,

the multiplication of L(·) by ∆tQk,pi (i,s) normalizes the transition cost and avoids its explosion when n tends to
infinity. The switching costs in (2.7) showed good numerical results in [49].

Remark 2.1. The definition of J n in (2.6) does not take into account the jumps of PEVs with SoC equal to 1.
However, by Assumptions 1 and 2 (specified in Section 2.3) it is not possible for a PEV to have a SoC equal to 1,
which justifies our choice.

Remark 2.2. Since the number of admissible trajectories is finite and by Assumption 3 (given in Section 2.3) non
empty, the infinimum is always attained in (2.7). Actually, Assumption 3 ensures that the n processes with no
switches for the discrete variable is admissible. We deduce that, for any n ∈ N,

inf
(i,s)∈T n(m̄,D)

J n(i,s) ≤ T ‖c‖∞ + ‖g‖∞. (2.8)

2.2 The mean field control problem

This section defines the limit model when n tends to infinity. Let (m̄,D) ∈ P([0, 1]× I)×C0([0, T ]× I,R∗
+) satisfy

supp(m̄i) ⊂ (0, 1), for any i ∈ I, and

sup
t∈[0,T ],i∈I

Di(t)− m̄i([0, 1]) ≤ ε0,

4



where the constant ε0 > 0 is defined further in Assumption 3. We consider the continuity equation on the pair
(m,E), defined on the domain (0, T )× (0, 1)× I:

∂tmi(t, s) + ∂s(mi(t, s)bi(s)) = −
∑

i,j∈I,j 6=i

(Ei,j(t, s)− Ej,i(t, s)) (i, t, s) ∈ I × (0, T )× (0, 1)

mi(0, s) = m̄i(s) (i, s) ∈ I × (0, 1).
(2.9)

We introduce the density constraint:

mi(t, [0, 1]) ≤ Di(t) ∀(i, t) ∈ I × [0, T ], (2.10)

and the admissible set

S(m̄,D) :=
{

(m,E) |m ∈ C0([0, T ],P([0, 1]× I)), E ∈ M+([0, T ]× [0, 1]× I2), Ei,j ≪ mi and

dEi,j
dmi

∈ L2
mi

(0, T )∀i, j ∈ I, (m,E) is a weak solution of (2.9) and satisfies (2.10)

}

.
(2.11)

The definition of weak solution of (2.9) is given by Definition 3.1 in Section 3. The objective function J is defined
for any (m,E) ∈ S(m̄,D) by:

J(E,m) :=
∑

i∈I

∫ T

0

∫ 1

0



ci(t, s) +
∑

j∈I,j 6=i

L
(dEi,j
dmi

(t, s)
)



mi(t, ds)dt +
∑

i∈I

∫ 1

0

gi(s)mi(T, ds). (2.12)

The mean field control problem is:
inf

(m,E)∈S(m̄,D)
J(m,E). (2.13)

This problem has been studied in [48], where optimality conditions and regularity results on the solutions are
established. The main result of the paper, giving the convergence of Problem (2.7) to Problem (2.13), is described
in the next section.

2.3 Convergence result

Throughout the paper, we assume the following:

General assumptions

1. For any i ∈ I, bi ∈ C1(R) with bi(s) = 0 for any s /∈ (0, 1).

2. For any n ∈ N and i ∈ I, we assume that m̄n ∈ Pn([0, 1]× I) and supp(m̄n
i ) ⊂ (0, 1).

3. There exists ε0 > 0 such that, for any n ∈ N, ε0 ≤ inf
(i,t)∈I×[0,T ]

Di(t)− m̄n
i ([0, 1]).

4. For any i ∈ I, ci ∈ C1([0, T ]× [0, 1]) and gi ∈ C1([0, 1]).

5. L : R → R̄ is a convex function, defined by:

L(x) :=







l(x) if x > 0
0 if x = 0
+∞ otherwise,

where l ∈ C1(R+,R+) is an increasing strongly convex function, bounded from above by a quadratic function,
i.e. there exist C > 0 such that for any x ∈ R+:

x2

C
− C ≤ l(x) ≤ C(x2 + 1),

where the first inequality is due to the strong convexity of l. By convention: L(
0

0
) · 0 := 0.

5



Remark 2.3. The main role of Assumptions 1 and 2 is to ensure that the solution of the ODE in (2.2) takes
values in [0, 1]. In addition, the superposition principle formulated in Section 3 relies on the regularity of b stated
in Assumption 1. Assumption 3 ensures that the n trajectories with no switch of discrete variable i are admissible
trajectories. Correspondingly, the feasible set T n(m̄,D) of Problem (2.7) is not empty. This assumption also enables
to build in Section 4.2 admissible trajectories based on a solution of the mean field control problem. It is possible
to replace Assumption 3 by less restrictive conditions. However, for the sake of clarity, we restrict the analysis to
the case with Assumption 3. Regularity results of the solution of the mean field control problem (2.13) are derived
from the properties of c, g and L given in Assumptions 4 and 5. Assumption 5 enables to obtain the compactness
of the solutions of the finite population problem and to apply Γ-convergence techniques in Section 4.1.

In the following theorem, we state the convergence of the value of Problem (2.7) to the value of Problem (2.13)
as n tends to infinity.

Theorem 2.1. There exist constants C̃1, C̃2 > 1 such that, if

1

C̃1n
1
3

≤ ∆t,∆s ≤ C̃1

n
1
3

, (2.14)

and

∆t <
1

C̃2|I|
, (2.15)

hold for any n ∈ N
∗, then,

1. If {m̄n}n weakly converges to m̄ ∈ P([0, 1]× I), then

inf
(m,E)∈S(m̄,D)

J(m,E) ≤ lim inf
n→∞

inf
(i,s)∈T n(m̄n,D)

J n(i,s). (2.16)

2. There exists C > 0 such that for any n ∈ N:

inf
(i,s)∈T n(m̄n,D)

J n(i,s)− C

n
1
3

≤ inf
(m,E)∈S(m̄n,D)

J(m,E), (2.17)

where C depends on the data.

The proof of Theorem 2.1 is given in Section 4.3. To obtain this result, an Eulerian formulation of Problem
2.7 is introduced and proved to be equivalent to Problem 2.7 (Corollary 3.1) thanks to a superposition principle
(Theorem 3.1). Then, the first part of Theorem 2.1 is obtained in Section 4 by applying compactness arguments
on the sequences of solutions of the Eulerian problem, while the second part directly derives from Theorem 4.2.
Inequality (2.17) relies on regularity results of the solution of Problem (2.13), that are used to build an admissible
control for the Eulerian version of Problem 2.7.

Remark 2.4. Improving the qualitative inequality (2.16) into a quantitative one, as in (2.17), seems a difficult
task. The main difficulties come from the constraint (2.4) and the lack of regularity of the objective function J n

w.r.t. to the set of trajectories (s, i).

Remark 2.5. To obtain the inequality in Theorem 2.1.1, one needs that lim
n→∞

∆t = lim
n→∞

∆s = 0. This condition is

ensured by inequality (2.14). Inequality (2.17), on the other hand, requires (2.14) and (2.15).

For any n ∈ N, let (in, sn) ∈ T n(m̄n, D) be a solution of Problem (2.7). We define the empirical distribution of
the processes mn and the empirical measure of the switches En by:

mn(t) :=
1

n

n
∑

ℓ=1

δ(in,ℓ
t ,sn,ℓ

t ), (2.18)

and

Eni,j :=
1

n

n
∑

ℓ=1

Nn
T−1
∑

k=1

1i(i
n,ℓ

t−
k

)1j(i
n,ℓ
tk

)δtk ⊗ δsn,ℓ
tk

. (2.19)

The next result states the weak convergence of {(mn, En)} to a solution of Problem (2.13).

Theorem 2.2. Under the assumptions of Theorem 2.1, if {m̄n}n weakly converges to m̄ ∈ P([0, 1]×I), there exists
a subsequence of {(mn, En)}n and a solution (m∗, E∗) of Problem (2.13) such that, {En}n weakly converges to E∗

and {mn(t)}n converges in Wasserstein distance uniformly in t ∈ [0, T ] to m∗(t).

The proof of Theorem 2.2 is given in Section 4.3.
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3 Equivalence between Eulerian and Lagrangian finite population con-

trol problems

In this section, an Eulerian formulation of Problem (2.7) is introduced. The equivalence between the Lagrangian
and the Eulerian formulation relies on a superposition principle, adapted to the problem and stated in Theorem
3.1.

Definition 3.1. We say that a pair (m,E) ∈ D([0, T ],P([0, 1]× I))×M+([0, T ]× [0, 1]× I × I) satisfies (2.9) in
the weak sense if, for any test function φ ∈ C1([0, T ]× [0, 1]× I), we have:

∑

i∈I

∫ 1

0

φi(T, s)mi(T, ds)− φi(0, s)m̄i(ds)

=

∫ T

0

∫ 1

0

∑

i∈I

(∂tφi(t, s) + bi(s)∂sφi(t, s))mi(t, ds) +
∑

j∈I,j 6=i

φi(t, s)(Ej,i − Ei,j)(dt, ds).

Let n ∈ N, (m,E) ∈ D([0, T ],Pn([0, 1]× I))×M+([0, T ]× [0, 1]× I2), we consider the following:

supp(Ei,j) ⊂ {tq}1≤q≤Nn
T
−1 × [0, 1], , ∀i, j ∈ I, (3.1)

and
∑

j∈I,j 6=i

Ei,j({tk}, B) ≤ mi(tk, B), ∀tk ∈ {tq}0≤q≤Nn
T
and ∀B ∈ B([0, 1]). (3.2)

The two constraints above are used to characterize the empirical distributionm of the set of processes {(iℓ, sℓ)}1≤ℓ≤n
and to characterize the distribution of the jumps E associated to {iℓ}1≤ℓ≤n . Constraint (3.1) implies that the
support of E is concentrated on the nodes of the time mesh. Thus, the jumps only occur at times in the set
{t1, . . . , tNn

T
−1}. Constraint (3.2) ensures that the number of switches does not exceed the number of vehicles at

each time and position.
Finally, for any n ∈ N and m̄ ∈ Pn([0, 1]× I), we define the set Qn(m̄) by:

Qn(m̄) :=
{

(m,E) ∈ D([0, T ],Pn([0, 1]× I))×M+([0, T ]× [0, 1]× I2) such that (m,E) is a weak solution of (2.9)

with initial distribution m̄, (m,E) satisfies (3.1) and (3.2), and Ei,j({tk}, ·) ∈ Mn([0, 1])∀k ∈ {0, . . . , Nn
T }} .

(3.3)
The theorem below is the main result of this section. It highlights the equivalence between the Lagrangian and
the Eulerian points of view, when describing the evolution of the system of n PEVs. It is a reminiscent of the
superposition principle [2].

Theorem 3.1 (Superposition principle).

1. For any n ∈ N, m̄ ∈ Pn([0, 1]× I) and (i,s) ∈ Xn(m̄), there exists a pair (mn, En) ∈ Qn(m̄) such that mn

is the empirical distribution of the processes (i,s) and En is that of the jumps over the period [0, T ], i.e. mn

satisfies (2.18) and En satisfies (2.19).

2. For any n ∈ N, m̄ ∈ Pn([0, 1] × I), and (m,E) ∈ Qn(m̄), there exists (i,s) ∈ Xn(m̄), such that m satisfies
(2.18) and E satisfies (2.19).

We stress that the processes (i,s) in 2 is not necessary unique. The proof of the theorem is given in section 3.2.

3.1 Eulerian problem formulation

In this subsection, we describe the Eulerian formulation of the optimal control problem and show that it is equivalent
to the Lagrangian Problem (2.7).

We define, for any m̄ ∈ Pn([0, 1]× I) and D ∈ C0([0, T ]× I,R∗
+), the set Sn(m̄,D) by:

Sn(m̄,D) := {(m,E) ∈ Qn(m̄) | (m,E) satisfies (2.10)} . (3.4)
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Remark 3.1. For all m̄ ∈ Pn([0, 1]×I) and D ∈ C0([0, T ]×I,R∗
+) satisfying Assumption 3, the sets Sn(m̄,D) and

S(m̄,D) are different. On the one hand, if (m,E) belongs to S(m̄,D), then Ei,j ≪ mi for any i, j ∈ I and we show
below that m is continuous in time. On the other hand, if (m,E) belongs to Sn(m̄,D) and E 6= 0, then by (3.1)
Ei,j is supported by a set of discrete times (and therefore Ei,j ≪ mi cannot hold); moreover m is discontinuous
w.r.t. the time variable.

For any n ∈ N, we define the cost function Jn, for any (m,E) ∈ Sn(m̄,D) by:

Jn(m,E) :=
∑

i∈I

∫ T

0

∫ 1

0

ci(t, s)mi(t, ds)dt+
∑

i,j∈I,i6=j

Nn
T−1
∑

k=1

Nn
s −1
∑

p=0

L

(

Ei,j({tk}, [yp, yp+1))

∆tmi(tk
−, [yp, yp+1))

)

∆tmi(tk
−, [yp, yp+1))

+
∑

i∈I

∫ 1

0

gi(s)mi(T, ds).

(3.5)
For any n ∈ N, we consider the optimization problem:

inf
(m,E)∈Sn(m̄,D)

Jn(m,E). (3.6)

The following corollary is a direct consequence of Theorem 3.1.

Corollary 3.1. One has:
inf

(i,s)∈T n(m̄,D)
J n(i,s) = inf

(m,E)∈Sn(m̄,D)
Jn(m,E) .

Proof. Let (i,s) ∈ T n(m̄,D), then from Theorem 3.1.1, there exists (m,E) ∈ Qn(m̄) such that m is the empirical
distribution of (i,s) satisfying (2.18) and E is the empirical distribution of the jumps satisfying (2.19). Since
(i,s) ∈ T n(m̄,D), we have for any i ∈ I and t ∈ [0, T ]

mi(t, [0, 1]) =
1

n

n
∑

ℓ=1

1i(i
ℓ
t) ≤ Di(t) ∀(i, t) ∈ I × [0, T ] ,

and thus, (m,E) ∈ Sn(m̄,D). For any j ∈ I with i 6= j, k ∈ {1, . . . , Nn
T − 1} and p ∈ {0, . . . , Nn

s − 1}, one has:

mi(t
−
k , [yp, yp+1)) =

1

n

n
∑

ℓ=1

δ(
iℓ
t
−

k

,sℓ
t
−

k

)({i} × [yp, yp+1)) = Qk,pi (i,s),

and

Ei,j({tk}, [yp, yp+1)) =
1

n

n
∑

ℓ=1

Nn
T
∑

k=1

1i

(

iℓ
t−
k

)

1j

(

iℓtk
)

δsℓtk
([yp, yp+1)) = Qk,pi,j (i,s)Q

k,p
i (i,s).

From the two previous equalities, one has for any k ∈ {1, . . . , Nn
T − 1} and p ∈ {0, . . . , Nn

s − 1}:

L

(

Ei,j({tk}, [yp, yp+1))

∆tmi(tk
−, [yp, yp+1))

)

∆tmi(tk
−, [yp, yp+1)) = L

(

Qk,pi,j (i,s)

∆t

)

∆tQk,pi (i,s).

By (2.18) and (2.19), we have:

1

n

n
∑

ℓ=1

∫ T

0

c(t, iℓt , s
ℓ
t)dt =

∑

i∈I

∫ T

0

∫ 1

0

ci(t, s)mi(t, ds)dt and
1

n

n
∑

ℓ=1

g(iℓT , s
ℓ
T ) =

∑

i∈I

∫ 1

0

gi(s)mi(T, ds) .

Therefore, it holds:
J n(i,s) = Jn(m,E), (3.7)

and
inf

(i,s)∈T n(m̄,D)
J n(i,s) ≥ inf

(m,E)∈Sn(m̄,D)
Jn(m,E) .

Using Theorem 3.1.2 and similar computations as in the first part of this proof, one can obtain the reverse inequality:

inf
(i,s)∈T n(m̄,D)

J n(i,s) ≤ inf
(m,E)∈Sn(m̄,D)

Jn(m,E) ,

and the conclusion follows.

Remark 3.2. By Remark 2.2, there exists a solution to Problem (2.7). Thus, by Theorem 3.1 and Corollary 3.1,
there exists a solution to Problem (3.6).
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3.2 Proof of the superposition principale

3.2.1 Construction of the empirical distribution and of the jump measure from n PEVs trajectories

In this section, we fix n ∈ N
∗, m̄ ∈ Pn([0, 1]× I) and (i,s) ∈ Xn(m̄), where Xn(m̄) is defined in (2.3).

Lemma 3.1. The pair (mn, En) defined in (2.18) and (2.19) from (i,s) is a weak solution of (2.9) and satisfies
(3.1) and (3.2).

Proof. Using the definition of En in (2.19) and mn in (2.18), (3.1) and (3.2) hold. We now show that (mn, En)
is a weak solution of (2.9). Since, for any ℓ ∈ {1, . . . , n}, the function t 7→ (iℓ, sℓ) is cadlag, one has mn ∈
D
(

[0, T ],Pn([0, 1]× I)
)

. Let ϕ ∈ C1([0, T ]× [0, 1]× I). One deduces:

∑

i∈I

∫ T

0

∫ 1

0

(∂tϕi(t, s) + bj(s)∂sϕi(t, s))m
n
i (t, ds)dt

=
1

n

∑

i∈I

n
∑

ℓ=1

Nn
T −1
∑

k=0

∫ tk+1

tk

(∂tϕi(t, s
ℓ
t) + bi(s

ℓ
t)∂sϕi(t, s

ℓ
t))1i(i

ℓ
t)dt

=
1

n

∑

i∈I

n
∑

ℓ=1

Nn
T −1
∑

k=0

(ϕi(tk+1, s
ℓ
tk+1

)− ϕi(tk, s
ℓ
tk))1i(i

ℓ
tk)

=
1

n

∑

i∈I

n
∑

ℓ=1

ϕi(T, s
ℓ
T )1i(i

ℓ
0)− ϕi(0, s

ℓ
T )1i(i

ℓ
0) +

1

n

∑

i,j∈I,j 6=i

n
∑

ℓ=1

Nn
T−1
∑

k=1

(

ϕi(tk, s
ℓ
tk)− ϕj(tk, s

ℓ
tk)
)

1i(i
ℓ
t−
k

)1j(i
ℓ
tk)

=
∑

i∈I

∫ 1

0

(ϕi(T, s)m
n
i (T, ds)− ϕi(0, s)m̄

n
i (ds)) +

∫ T

0

∫ 1

0

∑

i,j∈I

(ϕi(t, s)− ϕj(t, s))E
n
i,j(ds, dt),

and the conclusion follows.

3.2.2 Construction of n PEVs trajectories from a couple of measure (m,E)

In this subsection, we prove the converse result of Section 3.2.1. Given n ∈ N, m̄ ∈ Pn(I × [0, 1]) and (m,E) ∈
Qn(m̄), where Qn(m̄) is defined in (3.3), we show that there exists (i,s) ∈ Xn(m̄) such that m, the empirical
distribution of (i,s), satisfies (2.18) and E, the empirical distribution of the jumps, satisfies (2.19).

First, a relation between Ei,j and mi at any time tk is stated in the following lemma.

Lemma 3.2. The measure E satisfies for any i ∈ I and any k ∈ {1, . . . , Nn
T − 1}:

∑

j∈I,j 6=i

(

Ei,j({tk}, ds)− Ej,i({tk}, ds)
)

= mi(t
−
k , ds)−mi(tk, ds). (3.8)

Proof. Let ϕ ∈ C1([0, 1]), ε > 0, k ∈ {1, . . . , Nn
T − 1} and ξk,ε ∈ Lip([0, T ]) be such that ξk,ε(t) = 0 outside

[tk − ǫ, tk + ǫ] and:

ξk,ε(t) = 1 +
t− tk
ε

∀t ∈ [tk − ε, tk) and ξ
k,ε(t) = 1− t− tk

ε
∀t ∈ [tk, tk + ε).

For any i ∈ I, even though (t, s, j) 7→ ξk,ε(t)ϕ(s)1i(j) is not in C
1([0, T ]× [0, 1]× I), it can be considered as a test

function for the equation (2.9) because (t, s) 7→ ξk,ε(t)∂sϕ(s) is in C0([0, T ] × [0, 1]) and (t, s) 7→ ∂tξ
k,ε(t)ϕ(s) in

L∞([0, T ]× [0, 1]). Thus,

∫ tk+ε

tk−ε

∫ 1

0

(

ϕ(s)∂tξ
k,ε(t) + bi(s)ξ

k,ε(t)∂sϕ(s)
)

mi(t, ds)dt =
∑

j∈I,j 6=i

∫ 1

0

ϕ(s)
(

Ei,j({tk}, ds)− Ej,i({tk}, ds)
)

. (3.9)

On the one hand, using the dominated convergence theorem one has:

lim
ε→0

∫ tk+ε

tk−ε

∫ 1

0

bi(s)ξ
k,ε(t)∂sϕ(s)mi(t, ds)dt = 0. (3.10)
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On the other hand, one gets:

∫ tk+ε

tk−ε

∫ 1

0

ϕ(s)∂tξ
k,ε(t)mi(t, ds)dt =

1

ε

(∫ tk

tk−ε

∫ 1

0

ϕ(s)mi(t, ds)dt−
∫ tk+ε

tk

∫ 1

0

ϕ(s)mi(t, ds)

)

dt.

Since m is cadlag, one obtains by considering the limit ε→ 0 in the previous equality:

lim
ε→0

∫ tk+ε

tk−ε

∫ 1

0

ϕ(s)∂tξ
k,ε(t)mi(t, ds) =

∫ 1

0

ϕ(s)mi(t
−
k , ds)−

∫ 1

0

ϕ(s)mi(tk, ds).

Therefore
∑

j∈I,j 6=i

∫ 1

0

ϕ(s)
(

Ei,j({tk}, ds)− Ej,i({tk}, ds)
)

=

∫ 1

0

ϕ(s)
(

mi(t
−
k , ds)−mi(tk, ds)

)

.

Since ϕ is arbitrary, equality (3.8) is satisfied.

We define m̂ : [0, T ] 7→ P([0, 1]) by: m̂(t) :=
∑

i

mi(t). The next lemma states a superposition principle for m̂.

Lemma 3.3. There exists {zℓ}1≤ℓ≤n such that, for any ℓ ∈ {1, . . . , n}, zℓ ∈ AC([0, T ], [0, 1]) is solution of:

dzℓt
dt

= v(t, zℓt ) for a.e. t ∈ [0, T ], (3.11)

where v : [0, T ]× [0, 1] → [0, 1] is a Borel vector field and m̂ satisfies:

m̂(t) =
1

n

n
∑

ℓ=1

δzℓ(t) ∀t ∈ [0, T ].

Proof. We first show that m̂ is in Lip([0, T ],Pn([0, 1])). Since m(t) ∈ Pn([0, 1] × I), for any t ∈ [0, T ], on has
m̂(t) ∈ Pn([0, 1]). Since (m,E) is a weak solution (2.9), taking a test function ϕ ∈ C1(0, 1) that is 1−Lipschitz
continuous, one has:

d

dt

∫ 1

0

ϕ(s)m̂(t, ds) =

∫ 1

0

(

∂sϕ(s)
)

∑

i∈I

bi(s)mi(t, ds).

Since ϕ is 1−Lipschitz continuous, one deduces:

∣

∣

∣

∣

d

dt

∫ 1

0

ϕ(s)m̂(t, ds)

∣

∣

∣

∣

≤ ‖b‖∞,

and therefore, for any t, τ ∈ [0, T ]:
W(m̂(t), m̂(τ)) ≤ |t− τ |‖b‖∞.

Thus, m̂ ∈ Lip([0, T ],Pn([0, 1])) and the conclusion follows from [12, Theorem C.1].

The following lemma gives for each time interval (tk, tk+1) a superposition principle for m.

Lemma 3.4. For any k ∈ {0, . . . , Nn
T − 1}, there exists {(ik,ℓ, sk,ℓ)}ℓ∈{1,...,n} such that for any ℓ ∈ {1, . . . , n}

(ik,ℓ, sk,ℓ) ∈ C0([tk, tk+1], I)× C1([tk, tk+1], [0, 1]) and any t ∈ (tk, tk+1):

m(t) =
1

n

n
∑

ℓ=1

δ(ik,ℓ
t ,sk,ℓ

t ). (3.12)

In addition, for any ℓ ∈ {1, . . . , n} (ik,ℓ, sk,ℓ) satisfies for any t ∈ [tk, tk+1]:

ik,ℓt = ik,ℓtk and
dsk,ℓt
dt

= b(ik,ℓt , sk,ℓt ), (3.13)

where the distribution of {(ik,ℓtk , s
k,ℓ
tk

)}ℓ∈{1,...,n} is m(tk).
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Proof. For any k ∈ {1, . . . , Nn
T −1} and test function ϕ ∈ C1

c ((tk, tk+1)× [0, 1]×I), by (2.9) and using that supp(E)
satisfies (3.1), one has:

∑

i∈I

∫ tk+1

tk

∫ 1

0

(∂tϕi(t, s) + bi(s)∂sϕi(t, s))mi(ds, t) = 0.

The existence of {(ik,ℓ, sk,ℓ)}ℓ∈{1,...,n}, which satisfies the dynamics (3.13) and equality (3.12), follows from [12,
Theorem C.1].

Since m ∈ D([0, T ],P([0, 1]× I) and, for any ℓ ∈ {1, . . . , n}, (ik,ℓ, sk,ℓ) ∈ C0([tk, tk+1), I)× C1([tk, tk+1], [0, 1]),
one deduces from the previous lemma that, for any k ∈ {0, . . . , Nn

T − 1},

m(tk) =
1

n

n
∑

ℓ=1

δ(ik,ℓ
tk
,sk,ℓ

tk
). (3.14)

The next lemma shows that, for any k ∈ {1, . . . , Nn
T − 1}, the number of indices ℓ ∈ {1, . . . , n} satisfying sk,ℓ

t−
k

= s

is equal to the number of indices ℓ ∈ {1, . . . , n} satisfying sk+1,ℓ
tk = s.

Lemma 3.5. For any k ∈ {0, . . . , Nn
T − 1}, one has:

1

n

n
∑

ℓ=1

δsk,ℓ

t
−

k+1

=
1

n

n
∑

ℓ=1

δsk+1,ℓ
tk+1

,

where sk,ℓ and sk+1,ℓ are defined in Lemma 3.4.

Proof. By Lemmas 3.3 and 3.4, summing (3.12) over I one deduces that, for any t ∈ (tk, tk+1),

1

n

n
∑

ℓ=1

δsk,ℓ
t

=
∑

i∈I

mi(t) = m̂(t) =
1

n

n
∑

ℓ=1

δzℓt ,

where zℓ is defined in Lemma 3.3. Since zℓ is continuous at tk+1 and, sk,ℓ and sk+1,ℓ are respectively cadlag on
[tk, tk+1] and [tk+1, tk+2], the previous equality holds for t = tk+1 and gives the result.

Lemma 3.6. For any k ∈ {1, . . . , Nn
T−1}, there exist two collections

{

T k,+i,j (s)
}

i,j∈I, s∈[0,1]
and

{

T k,−i,j (s)
}

i,j∈I, s∈[0,1]

of subsets of {1, . . . n} satisfying:

1. card
(

T k,+i,j (s)
)

= card
(

T k,−i,j (s)
)

= nEi,j(tk, {s}), for any i, j ∈ I with i 6= j and for any s ∈ [0, 1].

2.
{

T k,+i,j (s)
}

i,j∈I, s∈[0,1]
and

{

T k,−i,j (s)
}

i,j∈I, s∈[0,1]
are partitions of {1, . . . , n}.

Remark 3.3. For some s ∈ [0, 1] and i, j ∈ I, the sets T k,+i,j (s) or T k,−i,j (s) can be empty. We maintain the
terminology of ”partition” in this case for the sake of simplicity.

Proof. Let k ∈ {1, . . . , Nn
T − 1}, i ∈ I and s ∈ [0, 1]. Let us set:

Rk,−i (s) :=
{

ℓ ∈ {1, . . . , n} | (ik−1,ℓ

t−
k

, sk−1,ℓ

t−
k

) = (i, s)
}

,

and
Rk,+i (s) :=

{

ℓ ∈ {1, . . . , n} |(ik,ℓtk , s
k,ℓ
tk ) = (i, s)

}

.

The set Rk,−i (s) represents the set of indices of processes defined in Lemma 3.4 that have a state equal to (i, s) at

time t−k , just before a possible jump, while Rk,+i (s) represents the set of indices of processes with a state equal to

(i, s) at time tk. By the definition of Rk,−i (s) and Rk,+i (s), and by Lemma 3.5, we have, for any k ∈ {1, . . . , Nn
T −1},

Rk,−i (s) ∩Rk,−j (s) = ∅ and Rk,+i (s) ∩Rk,+j (s) = ∅ for any i, j ∈ I with i 6= j, (3.15)

card(Rk,−i (s)) = nmi(t
−
k , {s}) and card(Rk,+i (s)) = nmi(tk, {s}), (3.16)

⋃

s∈[0,1]

⋃

i∈I

Rk,−i (s) =
⋃

s∈[0,1]

⋃

i∈I

Rk,+i (s) = {1, . . . , n}. (3.17)
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Hence, {Rk,−i (s)}i∈I,s∈[0,1] and {Rk,+i (s)}i∈I,s∈[0,1] are partitions of {1, . . . , n}. The rest of the proof consists in

constructing the sets
{

T k,−i,j (s)
}

j∈I
and

{

T k,+i,j (s)
}

j∈I
that are respectively a partition of Rk,−i (s) and Rk,+i (s). We

define, for any s ∈ [0, 1], i, j ∈ I with j 6= i,

cki,j(s) := nEi,j(tk, {s}). (3.18)

We define, for any i ∈ I, cki,i(s) := nmi(tk, {s})−
∑

j∈I,j 6=i

ckj,i(s). By Lemma 3.2, one has:

cki,i(s) = nmi(t
−
k , {s})−

∑

j∈I,j 6=i

cki,j(s) ≥ 0, (3.19)

where the inequality is obtained by (3.2). Sincem(tk) ∈ Pn([0, 1]×I) and Ei,j(tk, ·) ∈ Mn([0, 1]), one has cki,j(s) ∈ N

for any i, j ∈ I. By (3.16) and (3.19), one has, for any i ∈ I and s ∈ [0, 1] such that mi(t
−
k , {s}) > 0,

∑

j∈I

cki,j(s) = card
(

Rk,−i (s)
)

and
∑

j∈I

ckj,i(s) = card
(

Rk,+i (s)
)

. (3.20)

Sorting the elements of Rk,−i (s) and Rk,+i (s) in ascending order, we can now define the collections of subsets
{

T k,+i,j (s)
}

i,j∈I, s∈[0,1]
and

{

T k,−i,j (s)
}

i,j∈I, s∈[0,1]
. For any i ∈ I and s ∈ [0, 1], T k,−i,j (s) and T k,+i,j (s) are defined

iteratively for j = 1, . . . , |I|:
• if cki,j(s) = 0, then T k,−i,j (s) = T k,+i,j (s) = ∅;

• otherwise, T k,−i,j (s) is the set of the cki,j(s) with smallest indices of Rk,−i (s)\
⋃

1≤q<j

T k,−i,q (s) and T k,+i,j (s) is equal

to the set of the cki,j(s) with smallest indices of Rk,+i (s)\
⋃

1≤q<j

T k,+i,q (s),

we used the convention
⋃

1≤q<1

T k,−i,q (s) =
⋃

1≤q<1

T k,+i,q (s) = ∅. By (3.20) and their construction, the sets
{

T k,+i,j (s)
}

j∈I

and
{

T k,−i,j (s)
}

j∈I
are well defined and are respectively a partition of Rk,−i (s) and Rk,+i (s). Since {Rk,−i (s)}i∈I,s∈[0,1]

and {Rk,+i (s)}s∈[0,1] are both partitions of {1, . . . , n}, the conclusion follows.

We denote by S(n) the set of permutation in {1, . . . , n}. The next lemma enables to express Ei,j(t
k, ·) in terms

of the processes {(ik,ℓ, sk,ℓ)}ℓ∈{1,...,n}.

Lemma 3.7. For any k ∈ {1, . . . , Nn
T −1}, there exists σk ∈ S(n) such that the measure E satisfies, for any i, j ∈ I

and s ∈ [0, 1]:

Ei,j(t
k, {s}) = 1

n
card

({

ℓ ∈ {1, . . . , n} | (ik−1,ℓ

t−
k

, sk−1,ℓ

t−
k

) = (i, s) and (i
k,σk(ℓ)
tk , s

k,σk(ℓ)
tk ) = (j, s)

})

,

where the processes {(ik,ℓ, sk,ℓ)}ℓ∈{1,...,n} are defined in Lemma 3.4,

Proof. Let σk ∈ S(n) be such that, for any s ∈ [0, 1] and i, j ∈ I, if cki,j(s) > 0, the restriction of σk to T k,−i,j (s) is

a bijective map from T k,−i,j (s) to T k,+i,j (s), where T k,−i,j (s) and T k,+i,j (s) are defined in Lemma 3.6. The existence of

such a permutation is guaranteed by the properties of
{

T k,+i,j (s)
}

i,j∈I, s∈[0,1]
and

{

T k,−i,j (s)
}

i,j∈I, s∈[0,1]
established

in Lemma 3.6. By the construction of σk, one deduces that, for any non empty set T k,−i,j (s),

T k,−i,j (s) = {ℓ ∈ Rk,−i (s) |σk(ℓ) ∈ Rk,+j (s)
}

,

where Rk,+j (s) and Rk,+j (s) are defined in the proof of Lemma 3.6. Finally, one has, for any s ∈ [0, 1] and i, j ∈ I,

Ei,j(tk, {s}) =
cki,j(s)

n
=

1

n
card(T ki,j(s))

=
1

n
card

(

{

ℓ ∈ Rk,−i (s) |σk(ℓ) ∈ Rk,+j (s)
}

)

=
1

n
card

(

{

ℓ ∈ {1, . . . , n} | (ik−1,ℓ

t−
k

, sk−1,ℓ

t−
k

) = (i, s) and (i
k,σk(ℓ)
tk

, s
k,σk(ℓ)
tk

) = (j, s)
}

)

.

12



The next lemma shows the existence of n processes, such that m is the empirical measure of these processes and
E is the empirical measure of the jumps of the processes.

Lemma 3.8. There exists (i,s) ∈ Xn(m̄), such that m satisfies (2.18) and E satisfies (2.19).

Proof. For any k ∈ {1, . . . , Nn
T − 1}, we consider the permutation σ̂k ∈ S(n), defined by:

σ̂k := σk ◦ σk−1 ◦ · · · ◦ σ1, (3.21)

where σk is defined for any k ∈ {1, . . . , Nn
T − 1} in Lemma 3.7. For k = 0, we define σ̂0 by σ̂0(ℓ) = ℓ, for any

ℓ ∈ {1, . . . , n}. For any ℓ ∈ {1, . . . , n}, we consider the processes (iℓ, sℓ) defined on [0, T ] by:

iℓt := i
k,σ̂k(ℓ)
t and sℓt := s

k,σ̂k(ℓ)
t for any t ∈ [tk, tk+1), and i

ℓ
T := lim

t→T
iℓt, (3.22)

where {(ik,ℓ, sk,ℓ)}ℓ∈{1,...,n} is defined in Lemma 3.4. Thus, one has for any k ∈ {0, . . . , Nn
T − 1} and t ∈ [tk, tk+1):

dsℓt
dt

=
ds
k,σ̂k(ℓ)
t

dt
= b(i

k,σ̂k(ℓ)
t , s

k,σ̂k(ℓ)
t ) = b(iℓt , s

ℓ
t),

and
iℓt = i

k,σ̂k(ℓ)
t = i

k,σ̂k(ℓ)
tk = iℓtk .

By the definitions σ̂k and σk in Lemma 3.7, one gets for any ℓ ∈ {1, . . . , n}:

sk,ℓ
t−
k+1

= s
k+1,σk(ℓ)
tk+1

,

and therefore:
sℓtk+1

= lim
τ↑tk+1

sℓτ .

Thus, one has for any t ∈ [0, T ):

mn(t) :=
1

n

n
∑

ℓ=1

δ(iℓt,sℓt).

Since there is no jump at time t = T and since iℓ and sℓ are continuous at T , equality also holds for t = T . Finally,
by Lemma 3.7, one has:

Ei,j =
1

n

n
∑

ℓ=1

Nn
T−1
∑

k=1

1i(i
k−1,ℓ

t−
k

)1j(i
k,σk(ℓ)
tk )δtk ⊗ δsk−1,ℓ

t
−

k

=
1

n

n
∑

ℓ=1

Nn
T −1
∑

k=1

1i(i
ℓ
t−
k

)1j(i
ℓ
tk)δtk ⊗ δsℓtk

.

Taking (i,s) := {(iℓ, sℓ)}ℓ∈{1,...,n}, one has (i,s) ∈ Xn(m̄) and the conclusion follows.

We are now able to prove Theorem 3.1.

Proof of Theorem 3.1. This is a direct consequence of Lemmas 3.1 and 3.8.

4 The convergence result

This section is devoted to the proofs of Theorem 2.1.1, reformulated in Theorem 4.1 and proved in Section 4.1,
Theorem 2.1.2 reformulated in Theorem 4.2 and proved in Section 4.2, and Theorem 2.2 proved in Section 4.3. We
assume in this section that the time and space parameters ∆t and ∆s are such that (2.14) and (2.15) are satisfied.
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4.1 Γ-lower limit result

We reformulate the first result of the paper, Theorem 2.1.1 in Theorem 4.1.

Theorem 4.1. For any sequence {m̄n}n weakly converging to a measure m̄ ∈ P([0, 1]× I) and satisfying Assump-
tions 2 and 3, we have:

inf
(m,E)∈S(m̄,D)

J(m,E) ≤ lim inf
n→∞

inf
(i,s)∈T n(m̄n,D)

J n(i,s). (4.1)

The rest of this subsection is dedicated to the proof of Theorem 4.1. The proof is based on Lemmas 4.1 and 4.2,
for which we need the following preliminary results.

By Corollary 3.1 and Remark 3.2 we know that there exists a sequence {(mn, En)}n such that, for any n ∈ N,
(mn, En) ∈ Sn(m̄n, D) and

Jn(mn, En) = inf
(i,s)∈T n(m̄n,D)

J n(i,s).

The proof of Theorem 4.1 relies on the existence of a limit point (m∗, E∗) of the sequence {(mn, En)}n that belongs
to the set S(m̄,D). By inequality (2.8), we have

∑

i,j∈I

Nn
T −1
∑

k=1

Nn
s −1
∑

p=0

L

(

Ei,j({tk}, [yp, yp+1))

∆tmi(tk
−, [yp, yp+1))

)

∆tmi(tk
−, [yp, yp+1)) ≤ C0, (4.2)

where the constant C0 > 0 only depends on T , ‖c‖∞ and ‖g‖∞. Inequality (4.2) implies that {Eni,j([0, T ]× [0, 1])}n
is uniformly bounded. Indeed, let t, t̄ ∈ [0, T ], with t ≤ t̄. If there is no tq ∈ {0, . . . , k∆t, . . . , T } satisfying t ≤ tq ≤ t̄,
then by (3.1)

∑

i,j∈I E
n
i,j([t, t̄], [0, 1]) = 0. Otherwise, let k1, k2 ∈ {0, . . . , Nn

T } be such that tk1 − ∆t < t ≤ tk1 ≤
tk2 ≤ t̄ < tk2 +∆t. By (3.1) and Cauchy-Schwartz inequality, one has:




∑

i,j∈I

Eni,j([t, t̄], [0, 1])





2

=





∑

i,j∈I

k2
∑

k=k1

Nn
s −1
∑

p=0

Eni,j({tk}, [yp, yp+1))





2

≤





∑

i,j∈I

k2
∑

k=k1

Nn
s −1
∑

p=0

∆tmn
i (t

−
k , [yp, yp+1))









∑

i,j∈I

k2
∑

k=k1

Nn
s −1
∑

p=0

(

Eni,j({tk}, [yp, yp+1))
)2

∆tmn
i (t

−
k , [yp, yp+1))





≤ |I|∆t(k2 − k1 + 1)
∑

i,j∈I

k2
∑

k=k1

Nn
s −1
∑

p=0

C

(

L
(Eni,j({tk}, [yp, yp+1))

∆tmn
i (t

−
k , [yp, yp+1))

)

+ C

)

∆tmn
i (t

−
k , [yp, yp+1)

≤ C|I|(t̄− t+∆t)(C0 + C),
(4.3)

where the two last inequalities are obtained by Assumption 5 and inequality (4.2). Taking t = 0 and t̄ = T , one
obtains:

∑

i,j∈I

Eni,j([0, T ], [0, 1]) ≤
√

CT |I|, (4.4)

C > is a constant that depends on Assumption 5 and on C0. By (4.4), there exists a limit point E∗ ∈ M+([0, T ]×
[0, 1]× I2) of the sequence {En}n, w.r.t. the weak topology induced by M+([0, T ]× [0, 1]× I2).

Now we are ready to prove the two lemmas needed for the proof of Theorem 4.1. First Lemma states that
{mn}n admits a limit point m∗ ∈ C0([0, T ],P([0, 1]× I).

Lemma 4.1. There exists m∗ ∈ C0([0, T ],P([0, 1]× I) such that, up to a subsequence, {mn}n uniformly converges
in time to m∗ w.r.t. the Wasserstein distance W. In addition, (m∗, E∗) is a weak solution of (2.9) with initial data
m̄, and it satisfies (2.10).

Proof. By (4.3) and the continuity equation (2.9) satisfied by (mn, En), one has, for any t, t̄ ∈ [0, T ] and n ∈ N,

W(mn(t),mn(t̄)) ≤
√

|t− t̄|+∆t
(
√
T‖b‖∞ +

√

C|I|
)

.

By adapting the Ascoli-Arzela Theorem, one can deduce the existence of m∗ : [0, T ] → P([0, 1] × I), that is 1/2-
Hölder continuous in time w.r.t. the distance W and, such that, up to a subsquence, {mn}n uniformly converges in
time to m∗ w.r.t. to W . Finally, since (2.9) and (2.10) are linear w.r.t. the couple (m,E) and that, for any n ∈ N,
(mn, En) is a weak solution of (2.9) and satisfies (2.10), one can deduce, by the respective weak convergence of
(mn, En) and {m̄n}n to (m∗, E∗) and m̄, that (m∗, E∗) is also a weak solution of (2.9) with initial distribution m̄,
and satisfies (2.10).
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The next lemma states the absolute continuity of E∗ w.r.t. the measure m∗.

Lemma 4.2. For any i, j ∈ I, E∗
i,j is absolutely continuous w.r.t. the measure m∗

i . Denoting by α∗
i,j the Radon-

Nikodym derivative of E∗
i,j w.r.t. the measure m∗

i , we have α∗
i,j ∈ L2

m∗

i
([0, T ]× [0, 1]).

Proof. We define for any n ∈ N and i, j ∈ I, the curve of measure m̃n : [0, T ] → P([0, 1]× I) by:

m̃n
i (t, ds) :=

Nn
T −1
∑

k=0

Nn
s −1
∑

p=0

1[tk,tk+1)(t)1[yp,yp+1)(s)
mn
i (t

−
k , [yp, yp+1))

∆s
ds. (4.5)

By the uniform weak convergence of {mn}n to m∗ in Lemma 4.1 and the definition of m̃n, one can show that for
any t ∈ [0, T ], {m̃n(t)}n weakly converges to m∗(t) in P([0, 1] × I). For any n ∈ N and i, j ∈ I, we introduce
αni,j : [0, T )× [0, 1] → R+:

αni,j(t, s) :=
Eni,j({tk}, [yp, yp+1))

∆tmn
i (t

−
k , [yp, yp+1))

where t ∈ [tk, tk+1) and s ∈ [yp, yp+1), (4.6)

and we define the measure Ẽni,j on [0, T ]× [0, 1] by: Ẽni,j(dt, ds) := αni,jm̃
n
i (t, ds)dt. One can observe that:

∑

i,j∈I,i6=j

Ẽni,j([0, T ]× [0, 1]) =
∑

i,j∈I,i6=j

Nn
T −1
∑

k=0

Nn
s −1
∑

p=0

∫ tk+1

tk

∫ yp+1

yp

Eni,j({tk}, [yp, yp+1))

∆s∆t
dtds

=
∑

i,j∈I,i6=j

Eni,j([0, T ]× [0, 1]).

(4.7)

Using the previous equality and (4.4), {Ẽni,j}n is tight. Thus, there exists a measure Ẽi,j such that a subsequence of

{Ẽni,j}n weakly converges to Ẽi,j . We define the function Θ : M+([0, T ]× [0, 1]× I)×M+([0, T ]× [0, 1]× I × I) →
R ∪ {+∞} by:

Θ(m,E) :











∑

i,j∈I,i6=j

∫ T

0

∫ 1

0

L(αi,j(t, s))mi(dt, ds) if Ei,j ≪ mi and αi,j :=
dEi,j
dmi

with αi,j ≥ 0,

+∞ otherwise.

The function Θ is convex and l.s.c. w.r.t. the weak topology in M+([0, T ]× [0, 1]× I)×M+([0, T ]× [0, 1]× I2) (see

e.g. [47, Proposition 5.18]). From the definition of Ẽn, it turns out that Ẽni,j ≪ m̃n
i with

dẼni,j
dm̃n

i

= αni,j . We have:

Θ(m̃n, Ẽn) =
∑

i,j∈I

∫ T

0

∫ 1

0

L(αni,j(t, s))m̃
n
i (t, s)dtds

=
∑

i,j∈I

Nn
T−1
∑

k=0

Nn
s −1
∑

p=0

L

(

Eni,j({tk}, [yp, yp+1))

∆tmn
i (t

−
k , [yp, yp+1))

)

mn
i (t

−
k , [yp, yp+1))∆t

≤ C0.

where the constant C0 > 0 is defined in (4.2). Using that (mn
i , Ẽ

n
i,j) weakly converges to (m∗

i , Ẽi,j) and by the

previous inequality, one deduces that Θ(m∗, Ẽ) ≤ C0 and thus, for any i, j ∈ I: Ẽi,j ≪ m∗
i . We now prove that

Ẽi,j = E∗
i,j by showing that Ẽni,j−Eni,j weakly converges to 0 in M+([0, T ]× [0, 1]×I2). By the definition of Ẽn and

(4.4) one has Ẽni,j([0, T ]× [0, 1]× I2) = Eni,j([0, T ]× [0, 1]× I2) ≤
√

CT |I| for any n ∈ N. Let ϕ : [0, T ]× [0, 1] → R

be a 1−Lipschitz continuous function. Using (4.4), we have:
∫ T

0

∫ 1

0

ϕ(t, s)(αni,j(t, s)m̃
n
i (t, ds)dt − Eni,j(dt, ds))

=

Nn
T −1
∑

k=0

Nn
s −1
∑

p=0

∫ tk+1

tk

∫ yp+1

yp

ϕ(t, s)

(

Eni,j({tk}, [yp, yp+1))

∆s∆t
dsdt− Eni,j(dt, ds)

)

≤
Nn

T −1
∑

k=0

Nn
s −1
∑

p=0

∫ tk+1

tk

∫ yp+1

yp

∆s+∆t

∆s∆t
Eni,j({tk}, [yp, yp+1))dsdt

≤ (∆s+∆t)Ei,j([0, T ]× [0, T ])

≤
√

CT |I|(∆s+∆t),

(4.8)
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and therefore W(Ẽni,j , E
n
i,j) → 0. We deduce that E∗

i,j = Ẽi,j and we can define the Radon-Nikodym derivative

α∗
i,j :=

dE∗
i,j

dm∗
i

. Since Θ(m∗
i , E

∗
i,j) < ∞, we deduce for any i, j ∈ I that α∗

i,j ∈ L2
m∗

i
([0, T ]× [0, 1]) from Assumption

5.

We can now prove Theorem 4.1.

Proof of Theorem 4.1. By Lemmas 4.1 and 4.2, one has that (m∗, E∗) ∈ S(m̄,D). Since c ∈ C1([0, T ]× [0, 1]× I)
and g ∈ C1([0, 1]× I), by the w.l.s.c. of Θ defined in Lemma 4.2, we have:

inf
(m,E)∈S(m̄,D)

J(m,E) ≤ J(m∗, E∗) ≤ lim inf
n→∞

Jn(mn, En) = lim inf
n→∞

inf
(i,s)∈T n(m̄n,D)

J n(i,s),

and the conclusion follows.

4.2 Upper bound of the value of the finite population problem

We reformulate the second main result of this paper, Theorem 2.1.2, in Theorem 4.2 and gives a proof.

Theorem 4.2. There exist C > 0 such that, for any sequence {m̄n}n in Pn([0, 1] × I) satisfying Assumptions 2
and 3, one has, for any n ∈ N

∗,

inf
(i,s)∈T n(m̄n,D)

J n(i,s)− C

n
1
3

≤ inf
(m,E)∈S(m̄n,D)

J(m,E). (4.9)

Theorem 4.2 provides an upper bound on the value of Problem (2.7). Note that the constants in this theorem
depend on ε0 (defined in Assumption 3) and not on the choice of the sequence {m̄n}n. To prove this theorem,
we first show in Section 4.2.1 how to implement an optimal control of the mean field control problem to a finite
population of PEVs, such that the constraint (2.4) is satisfied (Corollary 4.1). Then, in Section 4.2.2 we give an
estimate of the Wasserstein distance between the resulting empirical distribution of the finite population of processes
and the mean field distribution. Finally, we finish the proof of Theorem 4.2 in Section 4.2.3.

4.2.1 Transfer procedure for a finite number of PEVs using a mean field control

The goal of this subsection is to present how a bounded mean field control α can be implemented for a finite
population of PEVs. We provide a convergence rate of the empirical distribution to the mean field distribution.
Let us fix a sequence {m̄n}n of initial distribution in (2.9) satisfying Assumptions 2 and 3. We highlight that, all
the constants in this section depend on ε0 and not on the choice of the sequence {m̄n}n. Let N ∈ N be such that,

N >

(

2C∗

ε0

)3

, (4.10)

where C∗ > 0 is introduced later in (4.17). For any n ∈ N, we consider (m∗,n, E∗,n), a minimizer of J over the set

S(m̄n, D − C∗/n
1
3 ). We define αn by αni,j :=

dm∗,n
i

dE∗,n
i,j

, for any i, j ∈ I. By Assumption 3 and the definition of N in

(4.10), one has for any n ≥ N , and (i, t) ∈ I × [0, T ],

(

Di(t)−
C∗

n
1
3

)

−mn
i (0, [0, 1]) ≤

ε0

2
. (4.11)

By the previous inequality and [48, Theorem 2.1], we have αn ∈ L∞([0, T ] × [0, 1] × I2) and, for any (i, j, t, s) ∈
I2 × [0, T ]× [0, 1],

αni,j(t, s) = H ′

(

βni,j(t, s) +

∫ T

t

(λni − λnj )(dτ)

)

, (4.12)

where βn ∈ Lip([0, T ]× [0, 1]× I2) and λn ∈ M+([0, T ]× I). By Assumption 5, H ′ is Lipschitz continuous on R and
thus, αn is Lipschitz continuous in space uniformly in time. By [48, Lemma 5.3], the upper bound of λn([0, T ]× I)
only depends on ε0 in (4.11) and on the data of the problem. In addition, by [48, Theorem 2.1 ], for any n ∈ N

∗,
there exists ϕn(Lip([0, T ]× [0, 1]× I) +BV ([0, T ]× I)) such that αni,j = H ′(ϕni − ϕnj ), where by [48, Remark 4.5],

16



upper bounds on ‖ϕn‖∞ and ‖∂sϕn‖∞ depend on the data of the problem and on λn([0, T ] × I). Since (4.11) is
satisfied for any n > N , there exists C̄ > 0 that depends on ε0, such that, for any n > N ,

max
(

‖αn‖∞, ‖∂sαn‖∞, λn([0, T ]× I)
)

≤ C̄. (4.13)

Transfer procedure We consider n > N PEVs with an initial state distribution m̄n. At each time step
tk ∈ {∆t, . . . ,∆t(Nn

T − 1)} and for any p ∈ {0, . . . , Nn
s − 1}, we apply the following steps:

• We define V k,pi , the set of indices of PEVs in the mode of charging i ∈ I with a SoC in the range [yp, yp+1)

at time tk, and set Nk,p
i := card(V k,pi ).

• The number of PEVs in V k,pi transferred from the mode of charging i ∈ I to the mode j ∈ I at time tk is

denoted by ani,j(k, p) and is defined by: ani,j(k, p) := ⌊∆tαni,j(tk, yp)Nk,p
i ⌋. The transferred vehicles are the

ones with the lowest indices. We denote by T k,pi,j the set of indices of the transferred vehicles. We have:

T k,pi,j ⊂ V k,pi .

Remark 4.1. By inequalities (2.15) and (4.13), one has, for any n ∈ N, ∆t ≤ 1

|I|‖αn‖∞
. It implies that, for any

i, k, ℓ,

n
∑

j=1,j 6=i

ani,j(k, p) ≤ Nk,p
i . Thus, the maximal amount of PEVs with a state in {i} × [yp, yp+1) that can be

transferred is bounded by the total number of PEVs with a state in i× [yp, yp+1).

Remark 4.2. One can observe that PEVs with a SoC equal to 1 are not taken into account in the transfer procedure
given above. This is without consequence because, following Remark 2.1 and Assumption 2, there is never a PEV
with a SoC equal to 1.

Recall that m̄n ∈ Pn([0, 1]× I) is the initial distribution of the states of the population of PEVs. The procedure
defined above enables to construct a unique set of n processes {(iℓ, sℓ)}ℓ∈{1,...,n} ∈ Xn(m̄n). For any ℓ ∈ {1, . . . , n}
and t ∈ [0, T ], iℓt and s

ℓ
t denote respectively the mode of charging and the SoC of the ℓth PEV at time t. By Theorem

3.1, the pair (mn, En) defined by (2.18) and (2.19) belongs to Qn(m̄n).
There exists a pair (mn, En) ∈ Qn(m̄n) that is the empirical distribution of the states of the population of

PEVs and of the jumps and that satisfies (2.18) and (2.19). In addition, the following equalities hold, for any
k ∈ {0, . . . , Nn

T − 1}, p ∈ {0, . . . , Nn
s − 1} and i, j ∈ I,

mn
i (t

−
k , [yp, yp+1)) =

Nk,p
i

n
, (4.14)

Eni ([tk, tk+1), [yp, yp+1)) =
ani,j(k, p)

n
. (4.15)

The theorem below gives an estimate of the Wasserstein distance between m∗,n and mn.

Theorem 4.3. There exists C > 0, such that for any n > N and t ∈ [0, T ],

W(m∗,n(t),mn(t)) ≤ C

n
1
3

. (4.16)

We postpone the proof to Section 4.2.2. As we show below, the rate n− 1
3 in the right hand-side of (4.16) comes

from inequality (2.14).
Next result shows that the previous theorem enables to find strategies,based on a mean field optimal control,

satisfying the constraint (2.4). We now set:
C∗ = C + 1, (4.17)

where C > 0 is the constant defined in Theorem 4.3.

Corollary 4.1. One has, for any n ≥ N ,

1

n
1
3

≤ Di(t)−mn
i (t, [0, 1]) ∀(i, t) ∈ I × [0, T ]. (4.18)
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Proof. Observing that

Di(t)−m∗,n
i (t, [0, 1])−W(m∗,n(t),mn(t)) ≤ Di(t)−mn

i (t, [0, 1]),

by Theorem 4.3 and since (m∗,n, E∗,n) ∈ S(m̄n, D − C∗

n
1
3

), one deduces, for any (i, t) ∈ I × [0, T ],

C∗ − C

n
1
3

≤ Di(t)−mn
i (t, [0, 1]).

The conclusion follows from the previous inequality and inequality (4.17).

4.2.2 Proof of Theorem 4.3

We start by stating some preliminary results.

Lemma 4.3. For any function ϕ ∈ C1([0, T ]× [0, 1]× I), we have, for any i ∈ I,

∫ T

0

∫ 1

0

(∂tϕi(t, s) + bi(t)∂sϕi(t, s))m
n
i (t, ds)dt =

∫ 1

0

ϕi(T, s)m
n
i (T, ds)− ϕi(0, s)m̄

n
i (ds)

+
1

n

Nn
T−1
∑

k=1

Nn
s −1
∑

p=0

∑

j∈I,j 6=i







∑

ℓ∈Tk,p
i,j

ϕi(tk, s
ℓ
tk)−

∑

ℓ∈Tk,p
j,i

ϕi(tk, s
ℓ
tk)






.

Proof. This lemma is a direct consequence of the proof of Lemma 3.1.

We introduce m̌n ∈ L1([0, T ]× [0, 1]× I) and α̌n ∈ L∞([0, T ]× [0, 1]× I) defined, for any i, j ∈ I, t ∈ [tk, tk+1)
and s ∈ [yp, yp+1), by:

m̌n
i (t, s) :=

1

∆s
mn
i (tk, [yp, yp+1)) and α̌

n
i,j(t, s) := αni,j(tk, yp). (4.19)

We observe that: m̌n
i (t, s) = Nk,p

i /(∆sn) for any t ∈ [tk, tk+1) and s ∈ [yp, yp+1).

Lemma 4.4. There exists C > 0 such that for any n ≥ N and any function ϕ ∈ C0([0, T ]× [0, 1]× I) and i ∈ I,
we have:

∣

∣

∣

∣

∣

∫ T

0

∫ 1

0

ϕi(t, s)
(

αni,j(t, s)m
n
i (t, ds)− α̌ni,j(t, s)m̌

n
i (t, s)ds

)

dt

∣

∣

∣

∣

∣

≤ C‖ϕ‖∞(∆s+∆t). (4.20)

Proof. We observe for any i, j ∈ I:
∣

∣

∣

∣

∣

∫ T

0

∫ 1

0

ϕi(t, s)
(

αni,j(t, s)m
n
i (t, ds)− α̌ni,j(t, s)m̌

n
i (t, s)ds

)

dt

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

Nn
s −1
∑

p=0

Nn
T −1
∑

k=0

∫ tk+1

tk

(

∫ yp+1

yp

ϕi(t, s)α
n
i,j(t, s)m

n
i (t, ds)−

∫ yp+1

yp

ϕi(t, s)α
n
i,j(tk, yp)

Nk,p
i

n∆s
ds

)

dt

∣

∣

∣

∣

∣

∣

≤ ‖ϕ‖∞
Nn

s −1
∑

p=0

Nn
T−1
∑

k=0

∫ tk+1

tk

∣

∣

∣

∣

∣

∣





∑

ℓ∈V k,p
i

αni,j(t, s
ℓ
t)

n



− αni,j(tk, yp)
Nk,p
i

n

∣

∣

∣

∣

∣

∣

dt

= ‖ϕ‖∞
Nn

s −1
∑

p=0

Nn
T−1
∑

k=0

∫ tk+1

tk

∣

∣

∣

∣

∣

∣

∑

ℓ∈V k,p
i

(

αni,j(t, s
ℓ
t)

n
−
αni,j(tk, yp)

n

)

∣

∣

∣

∣

∣

∣

dt.

(4.21)

By equality (4.12), and the uniform Lipschitz continuity property of H ′ and β, one has, for any ℓ ∈ V k,pi and
t ∈ [tk, tk+1):

|αni,j(t, sℓt)− αni,j(tk, yp)| ≤ C
(

|βni,j(t, sℓt)− βni,j(tk, yp)|+
∫ t

tk

(λni + λnj )(dτ)
)

≤ C
(

∆s+∆t+

∫ t

tk

(λni + λnj )(dτ)
)

,
(4.22)
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where the second inequality is deduced by the fact that, if sℓtk ∈ [yp, yp+1), then |sℓt − yp| ≤ (∆s+∆t‖b‖∞) for any

t ∈ [tk, tk+1). Summing the previous inequality over ℓ ∈ V k,pi , one has, for any t ∈ [tk, tk+1),
∣

∣

∣

∣

∣

∣

∑

ℓ∈V k,p
i

(

αni,j(t, s
ℓ
t)

n
−
αni,j(tk, yp)

n

)

∣

∣

∣

∣

∣

∣

≤ Nk,p
i

n
C
(

∆s+∆t+

∫ t

tk

(λni + λnj )(dτ)
)

. (4.23)

By (4.23) and (4.13), inequality (4.21) becomes:
∣

∣

∣

∣

∣

∫ T

0

∫ 1

0

ϕi(t, s)
(

αni,j(t, s)m
n
i (t, ds)− α̌ni,j(t, s)m̌

ni(t, s)ds
)

dt

∣

∣

∣

∣

∣

≤ ‖ϕ‖∞
Nn

s −1
∑

p=0

Nn
T −1
∑

k=0

∫ tk+1

tk

Nk,p
i

n
C
(

∆s+∆t+

∫ t

tk

(λni + λnj )(dτ)
)

dt

≤ ‖ϕ‖∞
Nn

T−1
∑

k=0

Nn
s −1
∑

p=0

Nk,p
i

n
C
(

∆s+∆t+

∫ tk+1

tk

(λni + λnj )(dτ)
)

∆t

≤ ‖ϕ‖∞C(∆s+∆t).

Lemma 4.5. For any i ∈ I, n ≥ N and any function ϕ ∈ C1([0, T ]× [0, 1]× I), with Lipschitz constant denoted
by γϕ > 0, we have:

∣

∣

∣

∣

∣

∫ T

0

∫ 1

0

(∂tϕi(t, s) + bi(s)∂sϕi(t, s))m
n
i (t, ds)dt−

∫ 1

0

ϕi(T, s)m
n
i (T, ds)− ϕi(0, s)m̄

n
i (ds)

−
∫ T

0

∫ 1

0

ϕi(t, s)
(

α̌ni,j(t, s)m̌
n
i (t, s)− α̌nj,i(t, s)m̌

n
j (t, s)

)

dtds

∣

∣

∣

∣

∣

≤ C(γϕ + ‖ϕ‖∞)(∆s+∆t+
1

n∆s∆t
).

(4.24)

Proof. Let ϕ ∈ C1([0, T ]× [0, 1]× I). We observe, for any i, j ∈ I,

∫ T

0

∫ 1

0

ϕi(t, s)
(

α̌ni,j(t, s)m̌
n
i (t, s)− α̌nj,i(t, s)m̌

n
j (t, s)

)

dtds

=

Nn
T−1
∑

k=0

Nn
s −1
∑

p=0

∫ tk+1

tk

∫ yp+1

yp

ϕi(t, s)

(

αni,j(tk, yp)
Nk,p
i

n∆s
− αnj,i(tk, yp)

Nk,p
j

n∆s

)

dtds

=

Nn
s −1
∑

p=0

Nn
T −1
∑

k=0

(

∆tαni,j(tk, yp)
Nk,p
i

n∆s
−∆tαnj,i(tk, yp)

Nk,p
j

n∆s

)

1

∆t

∫ yp+1

yp

∫ tk+1

tk

ϕi(t, s)dtds.

(4.25)

Combining Lemma 4.3 and the previous equality, we get:
∫ T

0

∫ 1

0

(∂tϕi(t, s) + bi(s)∂sϕi(t, s))m
n
i (t, ds)dt −

∫ 1

0

ϕi(T, s)m
n
i (T, ds)− ϕi(0, s)m̄

n
i (ds)

−
∫ T

0

∫ 1

0

ϕi(t, s)
(

α̌ni,j(t, s)m̌
n
i (t, s)− α̌nj,i(t, s)m̌

n
j (t, s)

)

dtds

=
1

n

Nn
T−1
∑

k=0

Nn
s −1
∑

p=0

∑

j∈I,j 6=i







∑

ℓ∈Tk,p
i,j

ϕi(tk, s
ℓ
tk
)−

∑

ℓ∈Tk,p
j,i

ϕi(tk, s
ℓ
tk
)







−
Nn

s −1
∑

p=0

Nn
T −1
∑

k=0

∑

j∈I,j 6=i

(

∆tαni,j(tk, yp)
Nk,p
i

n∆s
−∆tαnj,i(tk, yp)

Nk,p
j

n∆s

)

1

∆t

∫ yp+1

yp

∫ tk+1

tk

ϕi(t, s)dtds.

(4.26)

We recall that there is no transfer at time t0 = 0 in the transfer procedure described in Section 4.2.1. Thus, to find
an upper bound of (4.26), two cases are considered below: k = 0 and k ∈ {1, . . . , Nn

T − 1}.
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• If k = 0, we have, for any i, j ∈ I and p ∈ {0, . . . , Nn
s − 1}, that T k,pi,j = ∅. Thus,

∑

ℓ∈Tk,p
i,j

1

n
ϕi(tk, s

ℓ
tk
) = 0 and

Nn
s −1
∑

p=0

∑

j∈I,j 6=i

∣

∣

∣

∣

∣

∣

∣

∑

ℓ∈Tk,p
i,j

1

n
ϕi(tk, s

ℓ
tk)−∆tαni,j(tk, yp)

Nk,p
i

n

1

∆s∆t

∫ yp+1

yp

∫ tk+1

tk

ϕi(t, s)dtds

∣

∣

∣

∣

∣

∣

∣

=

Nn
s −1
∑

p=0

∑

j∈I,j 6=i

∣

∣

∣

∣

∣

∆tαni,j(tk, yp)
Nk,p
i

n

1

∆s∆t

∫ yp+1

yp

∫ tk+1

tk

ϕi(t, s)dtds

∣

∣

∣

∣

∣

≤ C̄‖ϕ‖∞∆t,

(4.27)

where the constant C̄ > 0 is defined in (4.13).

• For k ∈ {1, . . . , Nn
T − 1}, recalling the definition an in Section 4.2.1, we have, for any i, j, k, p,

|ani,j(k, p)−∆tαni,j(tk, yp)N
k,p
i | ≤ 1,

and thus, one obtains, for any k ∈ {0 . . . , Nn
T − 1} and p ∈ {0, . . . , Nn

s − 1},
∣

∣

∣

∣

∣

(

ani,j(k, p)−∆tαni,j(tk, yp)N
k,p
i

) 1

n∆s∆t

∫ yp+1

yp

∫ tk+1

tk

ϕi(t, s)dtds

∣

∣

∣

∣

∣

≤ ‖ϕ‖∞
n

.

Since, for any i, j, p, card(T k,pi,j ) = ani,j(k, p), one has from the previous inequality, for any p ∈ {0, . . . , Nn
s − 1},

∣

∣

∣

∣

∣

∣

∣

∑

ℓ∈Tk,p
i,j

1

n
ϕi(tk, s

ℓ
tk)−∆tαni,j(tk, yp)

Nk,p
i

n

1

∆s∆t

∫ yp+1

yp

∫ tk+1

tk

ϕi(t, s)dtds

∣

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

∑

ℓ∈Tk,p
i,j

1

n∆s∆t

∫ yp+1

yp

∫ tk+1

tk

ϕi(tk, s
ℓ
tk)dtds−

ani,j(k, p)

n∆s∆t

∫ yp+1

yp

∫ tk+1

tk

ϕi(t, s)dtds

∣

∣

∣

∣

∣

∣

∣

+
‖ϕ‖∞
n

≤

∣

∣

∣

∣

∣

∣

∣

∑

ℓ∈Tk,p
i,j

(

1

n∆s∆t

∫ yp+1

yp

∫ tk+1

tk

(ϕi(tk, s
ℓ
tk
)− ϕi(t, s))dtds

)

∣

∣

∣

∣

∣

∣

∣

+
‖ϕ‖∞
n

.

(4.28)

By the Lipschitz continuity of ϕ, the definition of ani,j(k, p) and inequality (4.13), one gets:
∣

∣

∣

∣

∣

∣

∣

∑

ℓ∈Tk,p
i,j

(

1

n∆s∆t

∫ yp+1

yp

∫ tk+1

tk

(ϕi(tk, s
ℓ
tk)− ϕi(t, s))dtds

)

∣

∣

∣

∣

∣

∣

∣

≤
ani,j(k, p)γϕ(∆t+∆s)

n

≤ (C̄Nk,p
i ∆t+ 1)γϕ(∆t+∆s)

n
.

Inequality (4.28) becomes:
∣

∣

∣

∣

∣

∣

∣

∑

ℓ∈Tk,p
i,j

1

n
ϕi(tk, s

ℓ
tk)−∆tαni,j(tk, yp)

Nk,p
i

n

1

∆s∆t

∫ yp+1

yp

∫ tk+1

tk

ϕi(t, s)dtds

∣

∣

∣

∣

∣

∣

∣

≤ (C̄Nk,p
i ∆t+ 1)γϕ(∆t+∆s) + ‖ϕ‖∞

n
.

(4.29)

By a similar computation, one can show that:
∣

∣

∣

∣

∣

∣

∣

∑

ℓ∈Tk,p
j,i

1

n
ϕi(tk, s

ℓ
tk
)−∆tαnj,i(tk, yp)

Nk,p
j

n

1

∆s∆t

∫ yp+1

yp

∫ tk+1

tk

ϕi(t, s)dtds

∣

∣

∣

∣

∣

∣

∣

≤
(C̄Nk,p

j ∆t+ 1)γϕ(∆t+∆s) + ‖ϕ‖∞
n

.

(4.30)
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Finally, by inequality (4.27) and summing (4.29) and (4.30) over k, p and j, equality (4.26) becomes:

∣

∣

∣

∣

∣

∫ T

0

∫ 1

0

(∂tϕi(t, s) + bi(s)∂sϕi(t, s))m
n
i (t, ds)dt−

∫ 1

0

ϕi(T, s)m
n
i (T, ds)− ϕi(0, s)m̄

n
i (ds)

−
∑

j∈I,j 6=i

∫ T

0

∫ 1

0

ϕi(t, s)
(

α̌ni,j(t, s)m̌
n
i (t, s)− α̌nj,i(t, s)m̌

n
j (t, s)

)

dsdt

∣

∣

∣

∣

∣

∣

≤ C̄‖ϕ‖∞∆t+
∑

j∈I,j 6=i

Nn
T −1
∑

k=1

Nn
s −1
∑

p=1

(C̄
(

Nk,p
i +Nk,p

j

)

∆t+ 2)γϕ(∆t+∆s) + 2‖ϕ‖∞
n

≤ C(γϕ + ‖ϕ‖∞)(∆s+∆t+
1

n∆s∆t
),

(4.31)

where the constant C depends on C̄, T and |I|.

Lemma 4.6. There exists C > 0 such that, for any i ∈ I, n ≥ N and any function ϕ ∈ C1([0, T ]× [0, 1]× I), with
Lipschitz constant denoted by γϕ > 0, we have:

∣

∣

∣

∣

∣

∣

∫ T

0

∫ 1

0

(∂tϕi(t, s) + bi(s)∂sϕi(t, s))m
n
i (t, ds)dt −

∑

j∈I,j 6=i

∫ T

0

∫ 1

0

ϕi(t, s)
(

αni,j(t, s)m
n
i (t, s)− αnj,i(t, s)m

n
j (t, ds)

)

dt

−
∫ 1

0

ϕi(T, s)m
n
i (T, ds)− ϕi(0, s)m

n
i (0, ds)

∣

∣

∣

∣

≤ C(‖ϕ‖∞ + γϕ)(∆t+∆s+
1

n∆s∆t
).

(4.32)

Proof. This results is a direct consequence of Lemmas 4.4 and 4.5.

Remark 4.3. Lemma 4.6 also holds when T is replaced by any t ∈ (0, T ].

Remark 4.4. The term
T

n∆s∆t
on the r.h.s. of the inequality in Lemma 4.6, implies to choose carefully the time

and space steps, depending on the number of agents n. To this end, inequality (2.14) is crucial.

We can now prove Theorem 4.3.

Proof of Theorem 4.3. Let ψ ∈ C1([0, 1]× I) and ϕ ∈ C1([0, T ]× [0, 1]× I) be the classical solution of the PDE:

∂τϕi(τ, s) + bi(s)∂sϕi(τ, s) = 0 (τ, s, i) ∈ [0, t]× [0, 1]× I
ϕi(t, s) = ψi(s) (s, i) ∈ ×[0, 1]× I.

(4.33)

One has ‖ϕ‖∞ = ‖ψ‖∞, and denoting by γψ the Lipschitz constant of ψ, for any t ∈ [0, T ] ϕi(t, ·) is Lipschitz

continuous with Lipschitz constant γψe
T‖b′‖∞ . Since (m∗,n, E∗,n) is a weak solution of the continuity equation (2.9)

with initial distribution m̄n, and ϕ a classical solution of (4.33), using that αni,j =
dE∗,n

i,j

dm∗,n
i

, we have:

∫ 1

0

ψi(s)m
∗,n
i (t, ds) =

∫ 1

0

ϕi(0, s)m
n
i (0, s)ds−

∫ t

0

∫ 1

0

∑

j∈I,j 6=i

ϕi(τ, s)(α
n
i,j(τ, s)m

∗,n
i (τ, ds)−αnj,i(τ, s)m

∗,n
j (τ, ds))dτ.

(4.34)
From Lemma 4.6 and Remark 4.3, we have, for any t ∈ (0, T ]:

∫ 1

0

ψi(s)m
n
i (t, ds) ≤

∫ 1

0

ϕi(0, s)m
n
i (0, ds)−

∑

j∈I,j 6=i

∫ t

0

∫ 1

0

ϕi(t, s)
(

αni,j(t, s)m
n
i (t, s)− αnj,i(t, s)m

n
j (t, ds)

)

dt

+C(‖ψ‖∞ + γψe
T‖b′‖∞)(∆t +∆s+

1

n∆s∆t
).

(4.35)
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From the previous equality and inequality, one deduces:

∑

i∈I

∫ 1

0

ψi(s)(m
∗,n
i (t, ds)−mn

i (t, ds)) ≤ −
∑

i∈I

∫ t

0

∫ 1

0

∑

j∈I,j 6=i

ϕi(τ, s)α
n
i,j(τ, s)(m

∗,n
i (τ, ds)−mn

i (τ, ds))dτ

+
∑

i∈I

∫ t

0

∫ 1

0

∑

j∈I,j 6=i

ϕi(τ, s)α
n
j,i(τ, s)(m

∗,n
j (τ, ds)−mn

j (τ, ds))dτ

+C(‖ψ‖∞ + γψ)(∆t+∆s+
1

n∆s∆t
).

(4.36)
By inequality (4.13), {αn(t, ·)}n>N,t∈[0,T ] is uniformly Lipschitz continuous with constant C̄. Thus, for any t ∈ [0, T ],

(s, i, j) 7→ ϕi(t, s)αi,j(t, s) is Lipschitz on [0, 1]× I × I with Lipschitz constant C̄(‖ψ‖∞ + γψe
T‖b′‖∞). We deduce

that, for any τ ∈ [0, T ]:

∑

i∈I

∫ 1

0

∑

j∈I,j 6=i

ϕi(τ, s)α
n
i,j(τ, s)(m

∗,n
i (τ, ds)−mn

i (τ, ds))dτ ≤ C̄|I|(‖ψ‖∞ + γψe
T‖b′‖∞)W(m∗,n(τ),mn(τ)).

Using the previous inequality, equality (4.36) becomes:

∑

i∈I

∫ 1

0

ψi(s)(m
∗,n
i (t, ds)−mn

i (t, ds)) ≤ 2C̄|I|(‖ψ‖∞ + γψe
T‖b′‖∞)

∫ t

0

W(m∗,n(τ),mn(τ))dτ

+C(‖ψ‖∞ + γψe
T‖b′‖∞)(∆t+∆s+

1

n∆s∆t
).

Consider η ∈ Lip([0, 1] × I) with a Lipschitz constant equal to 1 and satisfying ηi(0) = 0 for a certain i ∈ I (to
bound ‖η‖∞). Let {ψm}m be a sequence in C1([0, 1]× I) that is uniformly bounded w.r.t. the Lipschitz norm and
that approximates η w.r.t. the norm ‖ · ‖∞. Since the previous inequality holds for any function ψ in C1([0, 1]× I),
one deduces that:

∑

i∈I

∫ 1

0

ηi(s)(m
∗,n
i (t, ds)−mn

i (t, ds)) ≤ C

(∫ t

0

W(m∗,n(τ),mn(τ))dτ +∆t+∆s+
1

n∆s∆t

)

,

where C > 0 depends on C̄ and |I|. Since η is arbitrary, one has:

W(m∗,n(t),mn(t)) ≤ C

(∫ t

0

W(m∗,n(τ),mn(τ))dτ +∆t+∆s+
1

n∆s∆t

)

.

Applying the Grownwall Lemma and usig inequality (2.14), there exists C > 0 such that one gets, for any t ∈ (0, T ],

W(m∗,n(t),mn(t)) ≤ C

n
1
3

.

4.2.3 Proof of Theorem 4.2

We need the following preliminary results.

Lemma 4.7. There exists C > 0 such that, for any n ∈ N, the function defined on [0, T ], by

t 7→
∑

i,j∈I,j 6=i

∫ 1

0

L(αni,j(t, s))m
∗,n
i (t, ds) (4.37)

has a total variation on [0, T ] lower than C.

Proof. For any i, j ∈ I and t1, t2 ∈ [0, T ] with t2 > t1, we have:

∣

∣

∣

∣

∫ 1

0

L(αni,j(t2, s))m
∗,n
i (t2, ds)−

∫ 1

0

L(αni,j(t1, s))m
∗,n
i (t1, ds)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ 1

0

L(αni,j(t2, s))(m
∗,n
i (t2, ds)−m∗,n

i (t1, ds))

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ 1

0

(L(αni,j(t1, s)− L(αni,j(t2, s)))m
∗,n
i (t1, ds)

∣

∣

∣

∣

.
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By (4.13) one has that {αni,j}i and {∂sαni,j}n are uniformly bounded. By Assumption 5, one gets that L is locally
Lipschitz continuous and by [48, Theorem 2.1] that m∗,n ∈ Lip([0, T ],P([0, 1]× I)), with a Lipschitz constant that
only depends on ‖b‖∞, T and ‖αn‖∞ . Thus, there exists a constant C > 0 independent of n such that:

∑

i∈I

∣

∣

∣

∣

∫ 1

0

L(αni,j(t2, s))(m
∗,n
i (t2, ds)−m∗,n

i (t1, ds))

∣

∣

∣

∣

≤ C|t2 − t1|. (4.38)

By (4.12), inequality 4.13 and the locally Lipschitz continuity of L, one gets

∣

∣

∣

∣

∫ 1

0

(L(αni,j(t1, s))− L(αni,j(t2, s)))m
∗,n
i (t1, ds)

∣

∣

∣

∣

≤ C

∫ 1

0

|αni,j(t1, s)− αni,j(t2, s)|m∗,n
i (t1, ds)

≤ C

(

|t1 − t2|+
∫ t2

t1

(λni + λnj )(dτ)

)

.

(4.39)

By inequalities 4.13, (4.38) and (4.39), we deduce that the total variation of the function defined in (4.37) on [0, T ]
is bounded by a constant.

Lemma 4.8. There exists C > 0 such that, for any n ≥ N ,

Jn(mn, En) ≤ J(m∗,n, E∗,n) +
C

n
1
3

. (4.40)

Proof of Lemma 4.8. By equality (4.15), one deduces, for any k ∈ {1, . . .Nn
T − 1}, i ∈ I and p ∈ {1, . . .Nn

s − 1}
satisfying mn

i (t
−
k , [yp, yp+1)) > 0,

∣

∣

∣

∣

En([tk, tk+1), [yp, yp+1))

∆tmn
i (t

−
k , [yp, yp+1))

− αni,j(tk, yp)

∣

∣

∣

∣

≤ 1

n∆tmn
i (t

−
k , [yp, yp+1))

. (4.41)

The function L being locally Lipschitz continous, one has:

∑

i,j

Nn
T −1
∑

k=1

Nn
s −1
∑

p=0

L
(Eni,j([tk, tk+1), [yp, yp+1))

∆tmn
i (t

−
k , [yp, yp+1))

)

mn
i (t

−
k , [yp, yp+1))∆t

≤
∑

i,j

Nn
T −1
∑

k=0

Nn
s −1
∑

p=0

L(αni,j(tk, xℓ))m
n
i (t

−
k , [yp, yp+1))∆t+

C

n∆s∆t
,

(4.42)

Now we compare
∑

i,j

Nn
T−1
∑

k=0

Nn
s −1
∑

p=0

L(αni,j(tk, yp))m
n
i (t

−
k , [yp, yp+1))∆t and

∑

i,j

∫ T

0

∫ 1

0

L(αni,j(t, s))m
∗,n
i (t, ds)dt. Recall

that, for any i, j ∈ I, s 7→ L(αni,j(t, s)) is Lipschitz continuous on [0, 1] uniformly in time. We have:

∑

i,j

Nn
T −1
∑

k=0

Nn
s −1
∑

p=0

L(αni,j(tk, yp))m
n
i (t

−
k , [yp, yp+1))∆t ≤

∑

i,j

Nn
T −1
∑

k=0

∫ 1

0

L(αni,j(tk, s))m
n
i (t

−
k , ds)∆t+ C∆s

≤
∑

i,j

Nn
T −1
∑

k=0

∫ 1

0

L(αni,j(tk, s))m
∗,n
i (t−k , ds)∆t+

C

n
1
3

,

(4.43)

where the last inequality is obtained by Theorem 4.3 and the fact that ∆s = O(n− 1
3 ). From Lemma 4.7, there exits

C > 0 such that t 7→
∫ 1

0

L(αni,j)m
∗,n
i (t, ds) has a total variation on [0, T ] lower than C. Applying classical results

on approximation of Riemann sum of bounded total variation functions, we have, for any i, j ∈ I:

Nn
T −1
∑

k=0

∫ 1

0

L(αni,j(tk, s))m
∗,n
i (tk, ds)∆t ≤

∫ T

0

∫ 1

0

L(αni,j(t, s))m
∗,n
i (t, ds)dt+

C

n
1
3

, (4.44)
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where we used that ∆t = O(
1

n
1
3

). By inequalities (4.42), (4.43) and (4.44), and by the definition of α,

∑

i,j

Nn
T−1
∑

k=1

Nn
s −1
∑

p=0

L
(Eni,j([tk, tk+1), [yp, yp+1))

∆tmn
i (t

−
k , [yp, yp+1))

)

mn
i (t

−
k , [yp, yp+1))∆t ≤

∫ T

0

∫ 1

0

L(αni,j(t, s))m
∗,n
i (t, ds)dt +

C

n
1
3

=

∫ T

0

∫ 1

0

L
(dE∗,n

i,j

dm∗,n
i

(t, s)
)

m∗,n
i (t, ds)dt +

C

n
1
3

.

From the previous inequality and Theorem 4.3, using that g ∈ C1([0, 1] × I), c ∈ C1([0, T ] × [0, 1] × I) and the
definition of Jn and J , one has:

Jn(mn, En) ≤ J(m∗,n, E∗,n) +
C

n
1
3

.

We now turn to the proof of Theorem 4.2.

Proof of Theorem 4.2. By [48, Proposition 7.1], the value of Problem (2.13) is Lipschitz continuous, with Lipschitz
constant CL, w.r.t. the initial distribution m̄ and the congestion constraint D. Then, since (m∗,n, E∗,n) is a

minimizer of J over the set S(m̄n, D − C∗/n
1
3 ), one has:

J(m∗,n, E∗,n) ≤ inf
(m,E)∈S(m̄n,D)

J(m,E) +
CLC

∗

n
1
3

.

By the previous inequality and Lemma 4.8:

Jn(mn, En) ≤ inf
(m,E)∈S(m̄n,D)

J(m,E) +
C + CLC

∗

n
1
3

. (4.45)

By Corollary 4.1, one has for any i ∈ I, t ∈ [0, T ] and n ≥ N , that:

0 ≤ Di(t)−mn
i (t, [0, 1]),

yielding that (mn, En) ∈ Sn(m̄n, D). It follows from Corollary 3.1 and inequality (4.45) that there exist N,C > 0
such that, for any sequence {m̄n}n in Pn([0, 1]× I) satisfying Assumptions 2 and 3, one has, for any n > N ,

inf
(i,s)∈T n(m̄n,D)

J n(i,s)− C

n
1
3

≤ inf
(m,E)∈S(m̄n,D)

J(m,E). (4.46)

One can consider a constant C > 0 large enough such that previous inequality holds for any n ∈ N
∗.

4.3 Proof of Theorem 2.2

In this section we provide a proof of Theorem 2.2, based on the results obtained above in Section 4.

Proof of Theorem 2.2. The convergence of a subsequence of {(mn, En)} to (m∗, E∗) is given by Lemma 4.1. One
obtains that (m∗, E∗) is optimal for Problem (2.13) by Theorem 2.1 and the proof of Theorem 4.1 .
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