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A decentralized algorithm for a Mean Field Control

problem of Piecewise Deterministic Markov Processes ∗

Adrien Seguret1 Thomas Le Corre2 Nadia Oudjane3

Abstract

This paper provides a decentralized approach for the control of a population of N agents to minimize an
aggregate cost. Each agent evolves independently according to a Piecewise Deterministic Markov dynamics
controlled via unbounded jumps intensities. The N -agent high dimensional stochastic control problem is ap-
proximated by the limiting mean field control problem. A Lagrangian approach is proposed. Although the
mean field control problem is not convex, it is proved to achieve zero duality gap. A stochastic version of the
Uzawa algorithm is shown to converge to the primal solution. At each dual iteration of the algorithm, each
agent solves its own small dimensional sub problem by means of the Dynamic Programming Principal, while the
dual multiplier is updated according to the aggregate response of the agents. Finally, this algorithm is used in
a numerical simulation to coordinate the charging of a large fleet of electric vehicles (EVs for short) in order to
track a target consumption profile.

1 Introduction

This paper focuses on a specific family of stochastic control problems called ”large and aggregative”. The problem
consists in optimizing the strategies of a large number of agents, in a random environment, while the decisions of
all the agents interact via the objective function because the latter depends on an ”aggregative” term as the sum of
the decisions of all the agents. This type of problem occurs naturally in several fields of application such as energy
management [16], telecommunications [20], portfolio management [18], robot coordination [4] among others.
To deal with the curse of dimensionality in such high dimensional stochastic control problems, methods based on
the value function, have been developed in the convex setting. For instance, Stochastic Dual Dynamic Program-
ming [21] relies on polyhedral approximations of the value function providing good performances for medium sized
problems with a number of agents N ≤ 30. In our case, where the number of agents is very large N ≥ 1000, we look
more specifically for decentralized solutions, allowing both to respect the privacy of each agent and to reduce the
complexity of the problem. In the particular setting, where controls are bounded and strong convexity conditions
are satisfied, [25] proposed an iterative stochastic algorithm providing a decentralized solution to such problems.
In the same spirit as the Dual Approximate Dynamic Programming [5], this approach relies on a Lagrangian de-
composition technique to obtain a decentralized solution, but it takes advantage of a mean field approximation to
ensure the validity of the approach when the number of agents is sufficiently large.
This paper aims at extending the decentralized approach developed in [25] to a non-convex framework, with un-
bounded controls, allowing for more realistic dynamics ruling the evolution of each agent state. In particular, we
are interested in the aggregative control of Piecewise Deterministic Markov Processes (PDMPs for short), where the
state of each agent is modelled by a PDMP controlled by an unbounded jumps intensity. PDMPs were introduced in
[8] as a class of non-diffusion stochastic models, mixing random jumps and deterministic dynamics between jumps.
This kind of process is used to model a wide broad of phenomena or situations, such as system reliability and
maintenance [10, 28], oil production [29], biology [19, 23] etc. . . The approach proposed in this paper results in a
decentralized algorithm, where at each iteration, each agent is intended to solve its own small dimensional optimal
control problem of PDMP. This type of problem is well known and has been studied through dynamic programming
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and related equations [1, 7, 9, 15, 27]. Due to the large number of agents, the problem is formulated as a Mean Field
Control (MFC for short) problem. Relying on the law of large numbers, the MFC theory consists in controlling a
representative agent of the population, where the interaction between the agents is approximated by the interaction
of this representative agent with the probability distribution of its state or control [3].
This work is particularly motivated by demand-side management in power systems to help balancing between energy
production and consumption. This problem is indeed critical today, due to the increasing share of uncontrollable
energies (wind and solar) in the electricity generation mix, which requires to compensate the uncontrollable charac-
ter of the production by controlling the demand. Controlling the sum of the consumption of each flexible consumer
in order to balance the electrical system has already been investigated successfully in the specific framework of
Quadratic Kullback-Leibler control problems [2]. In [26] and [17], a mean field assumption is also considered to
control the charging of a large fleet of electrical vehicles (EVs), leading to the optimal control of partial differential
equation problems.
The novelty of the present paper is to extend the Lagrangian approach proposed in [25], to a particular non-convex
setting with unbounded controls by first establishing the existence of a saddle point and then ensuring the con-
vergence of the decentralized algorithm. The first contribution lies in the originality of the proof of a saddle point
existence which follows a completely different path than the one developed in [25]. In particular, we make use of
regularity results on the solution of the Hamilton Jacobi equation arising in optimal control of PDMPs developed
in [24] to show the existence of a saddle point of our Lagrangian problem. The second contribution consists in
proving that the Stochastic Uzawa Algorithm proposed in [25] is still providing a converging sequence of controls, in
this new setting involving the PDMP dynamics which violates the convexity conditions originally exploited. Finally,
an application to the smart charging of an electric vehicles fleet by an aggregator illustrates the performance and
the interest of the approach to coordinate the charge of a large number of electric vehicles in order to track a given
target power consumption profile for the whole population of electrical vehicles.

The outline of this paper is as follows. In Section 2, we formulate the optimization problem, the assumptions
and the main results. Section 3 presents a dual approach of this problem. The Stochastic Uzawa algorithm is
presented in Section 4 and is proved to converge in this setting. Section 5 presents simulations of the coordination
of power consumption of a large fleet of electrical vehicles.

In the rest of this section we will list some frequently used notation.

Notation Let X be the state space defined by X := I × [0, 1], where I is a finite set, of cardinality d ∈ N∗. The
space D([0, T ], I) is the space of càdlàg functions from [0, T ] to I. The space C1(X ,R) denotes the set of real-valued
continuously differentiable functions defined on X . The set of Rd+-valued Lipschitz continuous functions defined on

[0, T ]×X is denoted by Lip([0, T ]×X ,Rd). The space of Borel probability measures on the space X is denoted by
P(A). We recall the definition of the Wasserstein distance, denoted by W, on the space P(X ):

W(µ, ρ) := sup {
∑
i∈I

∫ 1

0

ϕ(i, s)(µ(i, ds)− ρ(i, ds)) |ϕ is 1− Lipschitz from X to R}.

We recall that if a function ϕ is 1-Lipschitz continuous from X to R, then |ϕ(i, x)−ϕ(j, x)| ≤ 1 for any i, j ∈ I and
x ∈ [0, 1]. The space C([0, T ],P(X )) is endowed with the distance W‖·‖∞ defined by:

W‖·‖∞(m1,m2) := sup
t∈[0,T ]

W(m1(t),m2(t)). (1.1)

Let H be an Hilbert space and F be a real valued function defined on H. The convex conjugate of F is denoted by
F ∗ and is defined for any x ∈ H by F ∗(x) := sup

y∈H
〈x, y〉H − F (y).

2 Problem formulation and main results

We consider the time interval [0, T ] with T > 0 and a population of N independent and identically distributed
processes, controlled by a central planner via a common feedback control α. The space of feedbacks, denoted by A,
is defined by

A := {α ∈ C0([0, T ]×X ,Rd+) : ∀i ∈ I, αi(·, i, ·) = 0}, (2.1)

and is endowed with the norm ‖ · ‖∞. The state of an agent, controlled by the jump intensity α, is given at time
t by Xα

t = (Y αt , Z
α
t ) with Y αt ∈ I and Zαt ∈ [0, 1]. In the smart charging application in Section 5, Y α represents

the charging mode of a vehicle, specifying its discrete charging rate (e.g. i = 0 for not charging, i = 1 for charging
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and i = −1 for discharging). The continuous variable Zα represents the state of charge (SoC for short) of an
EV, that is the ratio of energy charged into the battery w.r.t. the total capacity of the battery. We say that the
process Xα is a PDMP(b, α) controlled by a feedback control α, if Xα = (Y α, Zα) where Y α is a jump process with
values in I switching spontaneously, at jump times {Tαk }k∈N given by a Poisson process with intensity α, while Zα

follows a deterministic dynamics between two consecutive jumps Zαt = φTαk ,ZαTα
k

(Y αTαk , t) for t ∈ [Tαk , T
α
k+1). For any

(τ, t, j, z) ∈ [0, T ]× [τ, T ]×X , the flow φ is the unique solution of the ordinary differential equation:

∂tφτ,z(j, t) = b(j, φτ,z(j, t)) with φτ,z(j, τ) = z , (2.2)

where b is a function given. To be more specific, following the definition of a PDMP given in [11], knowing Tαk and
Xα
Tαk

= (Y αTαk , Z
α
Tαk

), one obtains (Tαk+1, X
α
Tαk+1

) as follows:

Tk+1,j := inf

{
t ≥ Tk : Ek+1,j <

∫ t

Tk

αj(r,X
α
Tk

)dr

}
Tαk+1 := min

j∈{1,··· ,d}
Tk+1,j

Y αTαk+1
= min

{
j ∈ {1, · · · , d} : Tk+1,j = Tαk+1

}
ZαTαk+1

:= φY α
Tα
k

(ZαTαk , T
α
k+1)

Xα
Tαk+1

= (Y αTαk+1
, ZαTαk+1

) ,

where {Ek,j}k,j are independent random variables following an exponential distribution of parameter 1, independent
of Xα

0 . Indeed, the control process α = (αj)j∈I is such that αj(t, x) represents the intensity rate, at time t ∈ [0, T ],
of jumping into mode j ∈ I when coming from state x ∈ X . We initialize T0 = 0 and at time t = 0, the law of the
couple of random variables (Y α0 , Z

α
0 ) is given by m0 ∈ P(X ). The cost function JN for the N -agents problem is

defined for any α ∈ A by:

JN (α) := E

[∫ T

0

f

(
t,

1

N

N∑
n=1

p(t,Xn,α
t )

)
dt+

1

N

N∑
n=1

G(α,Xn,α)

]
, (2.3)

where {Xn,α}n∈{1,...,N} are supposed to be independent PDMP(b, α) driven by d independent exponential variables.
Indeed, for any n ∈ {1, . . . , N}, Xn,α is supposed to be controlled by the common feedback function α ∈ A only
depending on the agent state Xn. Besides, the function G is common to every agent and defined as the the sum of
a running and a terminal cost, such that for any x := (y, z) ∈ D([0, T ], I)× C0([0, T ], [0, 1]), by:

G(α, x) :=

∫ T

0

c(t, xt) +
∑
j∈I

L(αj(t, xt))

 dt+ g(xT ).

From a practical point of view, the function f represents a coupling cost depending on the aggregate quantity

1

N

N∑
n=1

p(t,Xn,α
t ), and G the individual cost. In this paper, we focus on the mean field limit control problem,

corresponding to the problem with an infinite population. Thus, we introduce the function J defined, for any
α ∈ A, by:

J(α) :=

∫ T

0

f (t,E[p(t,Xα
t )]) dt+ E [G(α,Xα)] , (2.4)

where Xα is a PDMP(b, α). This paper is dedicated to the following problem:

min
α∈A

J(α). (2.5)

As the cost function (2.4) is nonlinear w.r.t. the expectation term, E
[
p(t,Xα

t )
]
, via the coupling cost f , Problem

(2.5) goes beyond the scope of optimal control of PDMP. We propose to numerically solve Problem (2.5) by applying
the Stochastic Uzawa Algorithm (1), that is detailed in Section 4. This algorithm is introduced in [25] and is a direct
application of the stochastic gradient descent algorithm [13]. The main result of this paper, stated in Theorem 2.1,
ensures the convergence of the Stochastic Uzawa Algorithm 1 to the solution of Problem (2.5).

Throughout the paper, we assume the following:

General assumptions
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1. The vector field b ∈ C1(X ,R) is assumed to vanish at the boundary: b(j, 0) = b(j, 1) = 0 for any j ∈ I.

2. The function p ∈ C1([0, T ] × X ,R) and f : [0, T ] × R → R is a Carathéodory function being lower semi-
continuous (l.s.c. for short), strictly convex and differentiable w.r.t. the second variable. In addition, there
exists a constant Cf > 0 such that, for any (t, x) ∈ [0, T ]× R,

x2

2Cf
− Cf ≤ f(t, x) ≤ Cf

x2

2
+ Cf . (2.6)

3. For any i ∈ I, it is assumed that ci ∈ C1([0, T ]× [0, 1]) and gi ∈ C1([0, 1]).

4. The function L : R→ R̄ is convex and defined by:

L(x) :=

 l(x) if x > 0,
0 if x = 0,
+∞ otherwise,

where l ∈ C1(R+,R+) is an increasing strongly convex function bounded from above by a quadratic function.
More explicitly, there exists C > 0 such that for any x ∈ R+:

x2

C
− C ≤ l(x) ≤ C(x2 + 1),

where the first inequality is due to the strong convexity of l. We denote by H be the convex conjugate of L.
Note that by Assumption 4, H is non-decreasing, non-negative, and H ′ is Lipschitz continuous on R.

Remark 2.1. The main role of Assumption 1 is to ensure that the flow defined in (2.2) exists and takes values in

[0, 1]. Assumption 2 ensures that
∫ T

0
f (t,E[p(t,Xα

t )]) dt in (2.4) is well defined for any α ∈ A. The continuity of
the map α 7→ E[G(α,Xα)] is an automatic consequence of the properties of c, g and L given in Assumptions 3 and
4.

Remark 2.2. The boundary condition on b may seem restrictive. However, if supp(m0) ⊂ I× (0, 1) and the vector
field b is such that, for any i ∈ I, the sign of b(i, ·) is constant, b(i, 0) ≥ 0 and b(i, 1) ≤ 0, then there exists ε > 0
such that P(Zn,αt ∈ (ε, 1− ε)) = 1 for any n ∈ {1, . . . , N}, any α ∈ A and any t ∈ [0, T ]. Therefore, it is possible to
approximate such a vector field b by a smooth function, vanishing at the boundary without modifying the trajectory
of Zn,αt .

The main results of the paper are summarized in the following theorem.

Theorem 2.1. Problem 2.5 has a solution. Let {αk}k∈N be a sequence in A generated by Algorithm 1 (line 5),
then the following assertions hold

(i) The sequence {αk}k∈N converges a.s. to an element of argmin
α∈A

J(α) w.r.t. the norm ‖ · ‖∞.

(ii) The sequence {J(αk)}k∈N converges a.s. to min
α∈A

J(α).

This theorem can not be obtained by a direct application of [25], which relies on additional assumptions, that
are not verified in the present framework, which involves unbounded controls and PDMP dynamics. The proof of
Theorem 2.1 is given in Section 4. Before, we introduce and analyze in the next section a dual problem proved to
be equivalent, in some sense, to Problem 2.5.

3 Dual approach

In the same vein as [25], a Lagrangian decomposition approach is adopted to obtain a decentralized algorithm.
Contrary to [25], the specific assumptions of convexity, that ensure the absence of duality gap and the convergence
of the Stochastic Uzawa Algorithm, are not satisfied here. In Sections 3 and 4, we propose new theoretical arguments
allowing to demonstrate the validity of the approach proposed in [25] in this specific framework of control of PDMP.

Let F be defined for any v ∈ L2(0, T ) by:

F (v) :=

∫ T

0

f(t, v(t))dt .
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Owing to the properties of f , one deduces that function F is l.s.c., strictly convex, differentiable with a Lipschitz
continuous gradient, and it has at least quadratic growth.

Lemma 3.1. The problem 
min

α∈A,v∈L2(0,T )
J̄(α, v),

J̄(α, v) := F (v) + E [G(α,Xα)] ,

s.t E[p(t,Xα
t )]− v(t) = 0 a.e on [0, T ] ,

(3.1)

is equivalent to Problem (2.5).

Proof. The fact that p ∈ C1([0, T ] × X ,R) implies that the map t 7→ E[p(t,Xα
t )] is in L2(0, T ). The equivalence

between the two problems then follows from the definitions of J and J̄ .

Let us introduce the Lagrangian L : A× L2(0, T )× L2(0, T )→ R:

L(α, v, λ) := L1(α, λ) + L2(v, λ) , (3.2)

where

L1(α, λ) := G(α,Xα) +

∫ T

0

E[p(t,Xα
t )]λ(t)dt ,

L2(v, λ) := F (v)−
∫ T

0

v(t)λ(t)dt ,

and the associated dual function W : L2(0, T )→ R:

W(λ) := inf
α∈A
L1(α, λ) + inf

v∈L2(0,T )
L2(v, λ). (3.3)

The dual problem associated to (3.1) consists of the following maximization problem:

max
λ∈L2(0,T )

W(λ). (3.4)

The following lemma gives the existence of a unique solution of the dual problem (3.4). It is derived from the
assumptions on F and G.

Lemma 3.2. There exists a unique λ̄ ∈ L2(0, T ) such that λ̄ = argmax
λ∈L2(0,T )

W(λ).

Proof. Since F has a Lipschitz continuous gradient, the function λ 7→ F ∗(λ) := sup
v∈L2(0,T )

〈v, λ〉 − F (v) is strongly

convex and l.s.c. [14], and so is the function λ 7→ − inf
v∈L2(0,T )

L2(v, λ). Similarly, for any λ ∈ L2(0, T ), the map

λ 7→ − inf
α∈A
L1(α, λ) is convex and l.s.c.. One deduces that −W is strongly convex and l.s.c. on L2(0, T ). Thus,

problem (3.4) has a unique solution.

The below proposition is a key result, that enables to show the convergence of a sequence {αk}k generated by
Algorithm 4 defined in the next section, to a solution of Problem (2.5).

Theorem 3.1. For any λ ∈ L2(0, T ), argmin
α∈A

L1(α, λ) is not empty. In addition, there exists a selection

λ 7→ α[λ] ∈ argmin
α∈A

L1(α, λ) , (3.5)

such that the map L2(0, T ) 3 λ 7→ α[λ] ∈ A is Lipschitz continuous on any bounded subset of L2(0, T ). The function
λ 7→ α[λ] can be continuously extended to any λ ∈ L2(0, T ).

Theorem 3.1 allows to prove that the dual function W is Gâteaux differentiable in L2(0, T ), that is the main
argument of the proof of Theorem 3.2. Theorem 3.2 gives the existence of a saddle point of the Lagrangian function
L. This result provides a solution of Problem (2.5).
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Theorem 3.2. There is no duality gap associated with Problem (3.4), i.e.,

max
λ∈L2(0,T )

W(λ) = min
α∈A,v∈L2(0,T )

J̄(α, v).

Besides, argmin
α∈A

L1(α, λ̄) and argmin
v∈L2(0,T )

L2(v, λ̄) are not empty and, for any ᾱ ∈ argmin
α∈A

L1(α, λ̄) and v̄ ∈ argmin
v∈L2(0,T )

L2(v, λ̄),

((ᾱ, v̄), λ̄) is a saddle point of the Lagrangian L and ᾱ is a solution of Problem (2.5).

The main argument for the proof of Theorem 3.2 is that the map λ 7→ W(λ) is Gâteaux differentiable in
L2(0, T ). We show that λ 7→ inf

v∈L2(0,T )
L2(v, λ) and λ 7→ inf

α∈A
L1(α, λ) are both differentiable. The second result is

more difficult to prove. Different intermediary results are needed. First, properties of the sub problem w.r.t. the
variable v in the dual problem (3.4) are given in Lemma 3.3. Then, properties of the sub problem w.r.t. the variable
α are proved in Lemma 3.4 in the special case where λ ∈ L∞(0, T ). These properties are extended in Theorem 3.1
to the case where λ ∈ L2(0, T ), with the help of Lemmas A.1 in Appendix A and 3.5. Finally, Lemma 3.6 shows
that the map λ 7→ inf

α∈A
L1(α, λ) is Gâteaux differentiable in L2(0, T ). These lemmas are stated and proved below.

3.1 Proof of Theorem 3.1

The next Lemma shows that, for any λ ∈ L2(0, T ), there exists a unique solution v[λ] of the sub problem and that
the map λ 7→ L2(v[λ], λ) is Gâteaux differentiable.

Lemma 3.3.

(i) For any λ ∈ L2(0, T ), there exists a unique v[λ] satisfying v[λ] = argmin
v∈L2(0,T )

L2(v, λ).

(ii) The map λ 7→ min
v∈L2(0,T )

L2(v, λ) admits a Gâteaux derivative λ 7→ DL2(v[λ], λ)(·) in L2(0, T ), which satisfies

that, for any µ ∈ L2(0, T ):

DL2(v[λ], λ)(µ) = −
∫ T

0

v[λ](τ)µ(τ)dτ. (3.6)

Proof. (i) Since the map v 7→ F (v) is l.s.c., striclty convex with at least quadratic growth, one can deduce the
existence and uniqueness of v[λ] := argmin

v∈L2(0,T )

L2(v, λ).

(ii) Since the function F is proper, strictly convex and differentiable, classical results from convex analysis give
that its convex conjugate F ∗ is differentiable [14]. Therefore, the map λ 7→ L2(v[λ], λ) is diffenrentiable on L2(0, T ),
with derivative λ 7→ v[λ]

Regularity results about α[λ], defined in (3.5), are stated in the next Lemma for any λ ∈ L∞(0, T ).

Lemma 3.4. Let λ ∈ L∞(0, T ). Then, one has:

(i) The value function u associated to the stochastic control problem inf
α∈A
L1(α, λ) is the unique solution of the

associated Hamilton-Jacobi-Bellman equation (in the sense of [15, Theorem 3.4]) on [0, T ]× I × [0, 1]:

−∂tu(t, i, z)− b(i, z)∂zu(t, i, z)− c(t, i, z)− λ(t)p(t, i, z)

= inf
(ai,j)j≥0

∑
j∈I,j 6=i

L(ai,j) + (u(t, j, z)− u(t, i, z))ai,j , (3.7)

with the terminal condition: u(T, i, z) = g(i, z) for any (i, z) ∈ X .

(ii) α[λ] is the unique solution of the problem inf
α∈A
L1(α, λ) and is given, for any i, j ∈ I and (t, z) ∈ [0, T ]× [0, 1],

by,
α[λ]j(t, i, z) = H ′

(
u(t, i, z)− u(t, j, z)

)
.

Moreover, the function α[λ] is in Lip([0, T ]×X ,Rd+)).

(iii) The function L∞(0, T ) 3 λ 7→ α[λ] ∈ A is Lipschitz continuous, w.r.t. the norm ‖ · ‖2, on any bounded subset
of L∞(0, T ).
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Remark 3.1. The proof of Lemma 3.4 essentially relies on [15, Theorem 3.4]. The assumptions needed for the
application of this theorem require bounded running cost in the minimization problem minα∈A L1(α, λ). Thus, we
only consider λ ∈ L∞(0, T ) and not in L2(0, T ) in the statement of Lemma 3.4. The extension of the results of
Lemma 3.4 for λ ∈ L2(0, T ) is stated in Theorem 3.1.

Proof. (i) The problem inf
α∈A
L1(α, λ) is a stochastic control problem of PDMP. Let u be the value function of this

problem, defined on [0, T ]× I × [0, 1] by:

u(t, i, z) := inf
α∈A

∫ T

t

∑
j∈I,j 6=i

E
[
H
(
αj(τ,X

α
τ )
) ∣∣Xα

t = (i, z)
]
dτ

+

∫ T

t

E
[
c(τ,Xα

τ ) + λ(τ)p(τ,Xα
τ )
] ∣∣Xα

t = (i, z)] dτ

+E
[
g(Xα

T )
∣∣Xα

t = (i, z)
]

for a.e. (t, z) ∈ (0, T )× (0, 1).

By [15, Theorem 3.4], the value function u is the unique function satisfying for a.e. (t, z, i) ∈ (0, T )× I × (0, 1):

lim
h→0

u(t, i, z)− u(t+ h, i, φt,z(i, t+ h))

h
= c(t, i, z) + p(t, i, z)λ(t)

+ inf
(ai,j)j≥0

∑
j∈I,j 6=i

L(ai,j) + (u(t, j, z)− u(t, i, z))ai,j ,

with u(T, i, z) = g(i, z) on X . By [15] and the definition of φ in (2.2), u satisfies for any i ∈ I and a.e. (t, z) ∈
[0, T ]× [0, 1]:

lim
h→0

u(t, i, z)− u(t+ h, i, φt,z(i, t+ h))

h
= −(∂tu(t, i, z) + b(i, z)∂zu(t, i, z)).

The conclusion follows from the two previous equalities.
(ii) By taking the infimum on the r.h.s. of the equation (3.7) and recalling that H is the convex conjugate of L,

one obtains that u satisfies for a.e. (t, z, i) ∈ (0, T )× I × (0, 1):

− ∂tu(t, i, z)− b(i, z)∂zu(t, i, z)− ci(t, i, z)− λ(t)p(t, i, z) = −
∑

j∈I,j 6=i

H
(
u(t, i, z)− u(t, j, z)

)
, (3.8)

with u(T, i, z) = g(i, z) on X and where x+ := max(0, x). Since there exists a unique solution u to the previous
equation, there exists a unique ᾱj [λ](t, i, z), defined, for any (t, z, i, j) ∈ [0, T ]× [0, 1]× I × I by:

ᾱj(t, i, z) := argmin
a≥0

L(a) + (u(t, j, z)− u(t, i, z))a = H ′(u(t, i, z)− u(t, j, z)). (3.9)

By [24], since λ ∈ L∞ and p ∈ C1([0, T ]× X ,R), there exists a unique function ū which satisfies for a.e. t ∈ [0, T ]
and for any (i, z) ∈ X :

ū(t, i, z) =

∫ T

t

∑
j∈I
−H

(
ū(τ, i, φt,z(i, τ))− ū(τ, j, φt,z(i, τ))

)
dτ

+

∫ T

t

c(τ, i, φt,z(i, τ)) + λ(τ)p(τ, i, φt,z(i, τ))dτ + g(i, φt,z(i, T )).

Since ū is in Lip([0, T ]×X ,R), the set of real valued Lipschitz continuous functions defined on [0, T ]×X , ū satisfies,
for a.e. (t, i, z) ∈ [0, T ] × X , the equation (3.8). Therefore, ū is the value function associated to the stochastic
control problem inf

α∈A
L1(α, λ). It comes, from (3.9) and u = ū, that α[λ] ∈ Lip([0, T ]× X ,Rd+) and thus, α[λ] ∈ A.

Finally, by [15, Theorem 3.4], α[λ] is in argmin
α∈A

L1(α, λ).

(iii) Let k > 0 and λ, µ ∈ L∞(0, T ) be such that ‖λ‖2 ≤ k and ‖µ‖2 ≤ k. Then, by the same arguments as in
the proof of [24, Lemma 4.5], there exists a constant K(k, T ) > 0 such that for any (t, i, j, z) ∈ [0, T ]× I × I × [0, 1]:

|αj [λ](t, i, s)− αj [µ](t, i, s)| ≤ K(k, T )‖p‖∞‖λ− µ‖2.

The result follows from taking the supremum over [0, T ]×X of the l.h.s. of the previous inequality.
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Lemma 3.5 enables to show the continuity of the map (α, λ) 7→ L1(α, λ).

Lemma 3.5. The map (α, λ) 7→ L1(α, λ) is continuous on Lip([0, T ]×X ,Rd+)×L2(0, T ), where Lip([0, T ]×X ,Rd+)×
L2(0, T ) is endowed with the norm (α, λ) 7→ ‖α‖∞ + ‖λ‖2.

Proof. Recalling the expression of H, one has for any (α, λ) ∈ Lip([0, T ]×X ,Rd+)× L2(0, T ):

L1(α, λ) =

∫ T

0

∫ 1

0

∑
i∈I

c(t, i, z)mα(t, i, dz)dt+

∫ T

0

∫ 1

0

∑
i∈I

λ(t)p(t, i, z)mα(t, i, dz)dt

+

∫ T

0

∫ 1

0

∑
i,j∈I

L(αj(t, i, z))m
α(t, i, dz)dt+

∫ 1

0

∑
i∈I

g(i, z)mα(T, i, dz).

Let {(αn, λn)}n be a sequence in Lip([0, T ]× X ,Rd+)× L2(0, T ), converging to (α, λ). The convergence of {mαk}k
to mα, w.r.t. the distance W‖·‖∞ , is derived from Lemma A.1 in Appendix A. Thus, by the regularity of

c, g, p and L in Assumptions 2-4, the maps t 7→
∑
i∈I
∫ 1

0
p(t, i, z)mαn(t, i, dz), t 7→

∑
i∈I
∫ 1

0
c(t, i, z)mαn(t, i, dz),

t 7→
∑
i∈I
∫ 1

0
L(αnj (t, i, z))mαn(t, i, dz) converge, w.r.t. the norm ‖ · ‖∞, when n tends to infinity, respectively

to t 7→
∑
i∈I
∫ 1

0
p(t, i, z)mα(t, i, dz), t 7→

∑
i∈I
∫ 1

0
c(t, i, z)mα(t, i, dz), t 7→

∑
i∈I
∫ 1

0
L(αj(t, i, z))m

α(t, i, dz). Sim-

ilarly
∑
i∈I

∫ 1

0

g(i, z)mαn(T, i, dz) converges when n tends to infinity to
∑
i∈I

∫ 1

0

g(i, z)mα(T, i, dz). The dominated

convergence theorem and the convergence of {λk}k to λ w.r.t. the norm ‖ · ‖2 achieves the proof.

We are now ready to prove Theorem 3.1. The results obtained in Lemma 3.4 for any λ ∈ L∞(0, T ) can now be
extended to any λ ∈ L2(0, T ).

Proof of Theorem 3.1. Let λ ∈ L2(0, T ). Since L∞(0, T ) is dense in L2(0, T ), one can extract a sequence {λk}k in
L∞(0, T ) converging to λ ∈ L2(0, T ).

By [24, Remark 4.5], for any k ∈ N∗, the solution u of (3.7) is such that upper bounds on ‖u‖∞ and ‖∂su‖∞
depend on the data of the problem and on ‖λk‖2. Since {λk}k is converging w.r.t. the norm L2(0, T ), the sequence{
‖λk‖2}k is uniformly bounded. Thus, by the Lipschitz continuity of the map H ′, guaranteed by Assumption 4,

and by equality (3.9), the sequence {α[λk]}k is uniformly bounded and uniformly Lipschitz. By the Ascoli-Arzela
Theorem, there exists α̂ ∈ A such that {α[λk]}k uniformly converges, up to a subsequence, to α̂ ∈ A w.r.t. the norm
‖ · ‖∞. In addition, since {α[λk]}k is uniformly Lipschitz continuous, α̂ is also Lipschitz continuous on [0, T ] × X .
Let α ∈ A, by the definition of λ 7→ α[λ], one has, for any k ∈ N,

0 ≤ L1(α, λk)− L1(α[λk], λk).

According to Lemma 3.5, (α, λ) 7→ L1(α, λ) is continuous on Lip([0, T ] × X ,Rd+) × L2(0, T ). Therefore by taking
the limit k →∞ in the previous inequality, one gets:

0 ≤ L1(α, λ)− L1(α̂, λ).

Thus, α̂ ∈ argminα∈A L1(α, λ). Defining α[λ] := α̂ and using the uniform convergence of {α[λk]}k to α[λ], we
deduce that λ 7→ α[λ] is continuous from L2(0, T ) to A. Since L∞(0, T ) is dense in L2(0, T ) and λ 7→ α[λ] is
continuous in L2(0, T ), the Lipschitz continuity of λ 7→ α[λ] on any bounded subset of L2(0, T ) is derived from
Lemma 3.4.(iii).

3.2 Proof of Theorem 3.12

Note that rewriting Problem (2.5) w.r.t. to the distribution of the states, one can prove Theorem 3.2 by using
a change of variable, as it has been done in [24] for a similar problem. To avoid additional notations, we have
preferred to prove Theorem 3.2 by means of Theorem 3.1.

The next lemma states that the map λ 7→ inf
α∈A
L1(α, λ) is Gâteaux differentiable in L2(0, T ).

Lemma 3.6. The map λ 7→ min
α∈A
L1(α, λ) admits a Gâteaux derivative λ 7→ DL1(α[λ], λ)(·) in L2(0, T ), such that,

for any µ ∈ L2(0, T ):

DL1(α[λ], λ)(µ) =

∫ T

0

E
[
p(τ,Xα[λ]

τ )
]
µ(τ)dτ.
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Proof. For any λ ∈ L2(0, T ), we recall that the definition of the Gâteaux derivative λ 7→ DL1(α[λ], λ)(·) in the
direction µ ∈ L2(0, T ), if it exists, is:

DL1(α[λ], λ)(µ) := lim
h→0

L1(α[λ+ hµ], λ+ hµ)− L1(α[λ], λ)

h
.

For any h ∈ [0, T ], we have:∫ T

0

E
[
p(τ,Xα[λ+hµ]

τ )
]
)µ(τ)dτ =

L1(α[λ+ hµ], λ+ hµ)− L1(α[λ+ hµ], λ)

h

≤ L1(α[λ+ hµ], λ+ hµ)− L1(α[λ], λ)

h

≤ L1(α[λ], λ+ hµ)− L1(α[λ], λ)

h

=

∫ T

0

E
[
p(τ,Xα[λ]

τ )
]
)µ(τ)dτ.

(3.10)

Since lim
h→0

λ + hµ = λ in L2(0, T ), it turns out from Theorem 3.1 that lim
h→0

α[λ + hµ] = α[λ] ∈ Lip([0, T ] × X ,Rd+)

w.r.t. the norm ‖ · ‖∞. Since p ∈ C1([0, T ]×X ,R), one deduces by Lemma A.1 in Appendix A:

lim
h→0

∫ T

0

E
[
p(τ,Xα[λ+hµ]

τ )
]
µ(τ)dτ = lim

h→0

∫ T

0

∑
i∈I

∫ 1

0

p(τ, i, z)mα[λ+hµ](τ, i, dz)µ(τ)dτ

=

∫ T

0

∑
i∈I

∫ 1

0

p(τ, i, z)mα[λ](τ, i, dz)µ(τ)dτ

=

∫ T

0

E
[
p(τ,Xα[λ]

τ )
]
µ(τ)dτ.

The conclusion follows by taking the limit h→ 0 in (3.10).

We now turn to the proof of Theorem 3.2.

Proof of Theorem 3.2. According to Lemma 3.3.(ii) and Lemma 3.6, one has that W is Gâteaux differentiable in
L2(0, T ). For any λ ∈ L2(0, T ), the Gâteaux differential of W at λ is denoted by DW(λ)(·) and is given in the
direction µ ∈ L2(0, T ) by:

DW(λ)(µ) =

∫ T

0

(
E
[
p(τ,Xα[λ]

τ )
]
− v[λ](τ)

)
µ(τ)dτ. (3.11)

By the definition of λ̄ given in Lemma 3.2, it results that 0 ∈ ∂(−W(λ̄)). Since −W is convex and Gâteaux
differentiable, its sub-differential is reduced to a singleton and is equal to −DW. One has, for any µ ∈ L2(0, T ), by
the previous equality: ∫ T

0

(
E
[
p(τ,Xα[λ̄]

τ )
]
− v[λ̄](τ)

)
µ(τ)dτ = 〈∂(−W(λ̄)), µ〉 = 0.

Therefore, one has for a.e. t ∈ [0, T ]:

E
[
p(τ,X

α[λ̄]
t )

]
− v[λ̄](t) = 0.

By the previous equality, one has L(α[λ̄], v[λ̄], λ̄) = L(α[λ̄], v[λ̄], λ) for any λ ∈ L2(0, T ) and, for any α ∈ A and
v ∈ L2(0, T ), satisfying E[p(t,Xα

t )]− v(t) = 0 a.e on [0, T ], one has:

J(α[λ̄]) = J̄(α[λ̄], v[λ̄]) = L(α[λ̄], v[λ̄], λ̄) ≤ L(α, v, λ̄) = J̄(α, v) = J(α).
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4 Stochastic Uzawa Algorithm

While the existence of a unique solution λ̄ of the dual problem (3.4) is established in Lemma 3.2, we propose in
this section an iterative algorithm converging to λ̄. This algorithm is directly derived from the gradient descent in
Hilbert space [13], and has been introduced in [25] to solve dual problems. This algorithm is an adaptation of the
Uzawa Algorithm in stochastic optimization settings. The sub gradient of the opposite of the dual function W is
estimated by Monte Carlo simulations. Convexity assumptions introduced in [25] are not satisfied here.

We consider a sequence {ρk}k satisfying

∞∑
k=0

ρk = ∞ and

∞∑
k=0

ρ2
k < ∞ to ensure the convergence. Typically,

consider the sequence defined by ρk =
a

b+ k
with a > 0 and b > 0 chosen empirically to accelerate the convergence.

Algorithm 1 Stochastic Uzawa

1: Initialization λ0 ∈ L∞(0, T ), set {ρk} and M ∈ N∗
2: k ← 0.
3: for k = 0, 1, . . . do
4: vk ← v[λk] where v[λk] is defined in Lemma 3.3.
5: αk ← α[λk] where α[λk] is defined in Lemma 3.4.

6: Generate M independent states realizations (X1,αk , . . . , XM,αk) independent of previous iterations simula-
tions.

7: Uk+1 ← vk − 1

M

M∑
j=1

p(·, Xj,αk

· ) .

8: λk+1 ← λk + ρk U
k+1 .

The next Lemma shows that it is possible at any iteration k to compute α[λk] defined in line 5 of the Algorithm 1.

Lemma 4.1. For any k ∈ N, λk ∈ L∞(0, T ) a.s..

Proof. The proof is done by induction. For k = 0, λ0 is initialized as an element of L∞(0, T ). Assume now that

λk ∈ L∞(0, T ) for an integer k. Since p ∈ C1([0, T ] × X ,R), one has that a.s.
1

M

M∑
j=1

p(·, Xj,αk

· ) ∈ L∞(0, T ). We

show now that v[λk] ∈ L∞(0, T ). Since f is l.s.c., it is a normal integrand. By the exchange property [22, Theorem
14.60], one has:

inf
v∈L2(0,T )

∫ T

0

f(t, v(t))− v(t)λk(t)dt =

∫ T

0

inf
v∈R

f(t, v)− vλk(t)dt.

and for a.e. t ∈ [0, T ]:
v[λk](t) ∈ argmin

v∈R
f(t, v)− vλk(t). (4.1)

For any t ∈ [0, T ], f∗(t, ·) denotes the convex conjugate of f(t, ·). Since for any t ∈ [0, T ], f(t, ·) is strictly convex
and by inequality (2.6) has at most quadratic growth, f∗(t, ·) is diferentiable, with linear growth [25, Lemma A.1].
Then, there exists a constant C > 0, such that for any t ∈ [0, T ] one has:

|∇f∗(t, λ(t))| ≤ C
(
|λ(t)|+ 1

)
,

where ∇f∗(t, ·) is the derivative of z 7→ f∗(t, z). By (4.1), one has, for a.e. t ∈ [0, T ], that v[λk](t) = ∇f∗(t, λ(t)).
By previous inequality, one deduces that

‖v[λk]‖∞ ≤ C
(
‖λk‖∞ + 1

)
. (4.2)

The conclusion follows from the definition of λk+1 at line 8 of Algorithm 1, previous inequality and the fact that

a.s.
1

M

M∑
j=1

p(·, Xj,αk

· ) ∈ L∞(0, T ).

The next Lemma provides an estimate on the norm of the gradient ofW, that is crucial to show the convergence
of Algorithm 1.
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Lemma 4.2. There exists C > 0 such that the sequence {Uk+1}k generated by Algorithm 1 (line 7) satisfies, for
any k ∈ N,

E
[
‖Uk+1‖2

]
≤ C

(
‖λk‖2 + 1

)
.

Proof. By Assumption 2, p is in C1([0, T ] × X ,R) thus, there exists C > 0, such that, for any k ∈ N and j ∈
{1, . . . ,M}:

E
[
‖p(·, Xj,αk

· )‖2
]
≤ C.

The conclusion follows from previous inequality, inequality (4.2) in the proof of Lemma 4.1 and the definition of
Uk+1 at line 7 of Algorithm 1.

The convergence of Algorithm 1 is stated in the next lemma.

Lemma 4.3. The sequence {λk}k, generated by Algorithm 1, converges to λ̄ a.s. in L2(0, T ).

Proof. Since W is convex and Gateau differentiable (proof of Theorem 3.2), by Lemma 4.2, the proof is a simple
adaptation of the one in [13, Theorem 3.6], as it has been done in [25].

Before to give the proof of the main result of this paper, we need the following regularity result on the function
J .

Lemma 4.4. The map J defined in (2.4) is continuous on Lip([0, T ]×X ,Rd+).

Proof. By the definition of mα, the map J can be rewritten as:

J(α) =

∫ T

0

f
(
t,
∑
i∈I

∫ 1

0

p(t, i, z)mα(t, i, dz)
)
dt+

∫ T

0

∫ 1

0

∑
i∈I

c(t, i, z)mα(t, i, dz)dt

+

∫ T

0

∫ 1

0

∑
i,j∈I

L(αj(t, i, z))m
α(t, i, dz)dt+

∫ 1

0

∑
i∈I

g(i, z)mα(T, i, dz).

By the regularity of the functions p, c, g and L in Assumptions 2-4 and the continuity of the map α 7→ mα on
Lip([0, T ]× X ,Rd+) stated in Lemma A.1 in Appendix A, one obtains the continuity of J over Lip([0, T ]× X ,Rd+)
w.r.t. the norm ‖ · ‖∞.

We can now prove Theorem 2.1.

Proof of Theorem2.1. 2.5This is a direct consequence of Theorem 3.2.
(i) This is a direct consequence of Lemma 4.3 and Theorem 3.1.
(ii)This is a direct consequence of Theorem 2.1.(i) and Lemma 4.4.

5 Simulations

This section illustrates the results with an example of smart charging. In this use case, the discrete variable taking
values in I represents the charging mode and the continuous variable taking value in [0, 1] represents the state of
charge (SoC) of electrical vehicles (EV) relatively to the maximum energy capacity of the battery.

5.1 Definition of the use Case

We consider a large fleet of EVs controlled by a central planner during their charging period [0, T ]. The goal of the
central planner is to provide ancillary services to the transmission grid by controlling the aggregate consumption
profile of the fleet on the time horizon [0, T ]. More specifically, the central planner aims at making the consumption
profile of the fleet to be close to a given profile r = (rt)0≤t≤T , supposed to be known on the whole period [0, T ]. In
our simulation we compare two situations. In the first case known as V1G, it is assumed that the vehicle batteries
can only draw electricity from the grid, then the set of charging modes is I = {0, 1}, where 0 stands for idle mode
and 1 for charging. In the second case known as V2G, it is assumed that the batteries can either draw or inject
electricity into the grid, then the charging modes are I = {−1, 0, 1}, where −1 corresponds to injection mode. In
each situation, each mode i ∈ I is characterized by its charging rate b(i, ·) such that
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• i = −1 corresponds to a V2G mode with b(−1, z) = −a for z ≥ 0.25 and b(−1, z) = −az for z ≤ 0.25, with

a =
2

5
.

• i = 0 corresponds to a non-charging mode with b(0, z) = 0,

• i = 1 corresponds to a charging mode with b(1, z) = a for z ≤ 0.75 and b(1, z) = a(1 − z) for z ≥ 0.75, with

a =
2

5
,

The charging rate b of the batteries has been designed based on industrial data [12]. The state of each EV, controlled
by α, is represented by a PDMP Xα = (Y α, Zα) with Y αt , the charging mode and Zαt , the SoC of the vehicle at time
t. We assume that the power consumption of a vehicle at state (i, z) ∈ X is equal to its instantaneous charging rate
b(i, z). At time t = 0, Y α0 equals 0 or 1 with probability 1/2, while Zα0 = min(1, |z0|+ 0.15) where z0 ∼ N (0, 0.2).

To ensure customer satisfaction, the final cost g(i, z) := 30× (1− e5(z−0.75))+ penalizes vehicles with a final SoC
z lower than 75%. As previously stated, high values of α are penalized through the cost α2/2 in order to avoid high
frequencies of jumps damaging the batteries. For any t ∈ [0, T ],

c(t, i, z) = 0
p(t, i, z) := b(i, z)

l(a) :=
a2

2

F (v) := κ

∫ T

0

(v(t)− r(t))2dt

with κ = 1000 in order to ensure that the overall consumption is close to the profile r.
The target profile r is a slight modification of the nominal behaviour of the fleet of EVs (without control), with

the same energy consumed over the fixed time horizon [0, T ]. The nominal behaviour corresponds to the situation
where the EVs are not required to fit the target profile and seek only to satisfy their own comfort (namely F (v) = 0).
The idea is to define a realistic target profile so that it is possible for the fleet to follow this profile while satisfying
their charging needs. We consider a population of N = 105 EVs. The optimal control of Problem (2.5) is computed
using Algorithm 1.

5.2 Algorithm parameters

For the implementation of the algorithm, the line 5 is computed by discretization of the Hamilton Jacobi-Bellman-
Equation III.5 associated to α[λ] defined in III.6 with Nt = 1000 regular points of time and Ns = 400 regular points
of SoC. The Lagrangian multipliers λk are obtained after k = 1000 iterations and with M = 1000 realizations and

are displayed in Figure 4. The initial multiplier is λ0 = 0 and the stepsize sequence is such that ρk = min(30,
500

1 + k
).

For each multiplier λ, the associated optimal strategy α[λ] is computed.

5.3 Results

Four periods on Figure 3 are distinguished, depending on whether the target profile is above or below the nominal
consumption. The reference profile is displayed in green. EVs are encouraged to consume more than the nominal
consumption during periods P1 and P3, and to consume less during periods P2 and P4. First, we observe that both
V1G (blue line) and V2G (red line) consumptions are close to the profile r (green line). The main difference lies
in P4, where the possibility for the EVs to perform V2G allows the fleet consumption to stay closer to the target
profile. As expected, the profile is better tracked with the V2G mode, due to the additional degree of liberty. On
Figure 6 one can observe that V2G is used during periods P2 and P4, when the profile r is lower than the nominal
consumption. Ten trajectories of SoC, generated in the V2G use case, are represented in Figure 1. The green line
is an example of a PDMP switching from mode 0 to mode 1 around t = 0.2h, from mode 1 to mode -1 around
t = 2.6h and then from mode -1 to mode 1 around t = 4h. The initial and final distribution of the SoC of the fleet
are displayed on Figures 7 and 8. While the initial distribution is the same for both scenarios, one can observe that
their final distribution are very closed, and that very few EVs have a SoC lower than 0.75% in both cases. Thus,
the comfort of each agent is weakly impacted by the V2G mode.

To conclude, the interest of adding V2G is confirmed by the comparison of the optimal cost of each scenario

(Figure 2). These optimal costs are decomposed into three parts: the switching cost (
1

2

∫ T

0

∑
j 6=I

αj(t,X
i,α
t )2dt), the
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final cost (g) and the distance to profile (F ). The low value of the final cost (3.6× 10−4 in the V1G use case and
4.8× 10−2 in the V2G one) shows that, despite the tracking objective, EVs have enough battery at the end of the
period, as previously stated. Moreover, this performance is achieved without significant loss in switching costs, thus
preserving fleet batteries.

A Appendix

In this section, we provide some classical results about the distribution mα of a process Xα that is a PDMP(b, α)
(the definition of a PDMP(b, α) is given in Section 2), when α is in Lip([0, T ]×X ,Rd+). We introduce the continuity
equation on [0, T ]×X :

∂tm(t, i, z) + ∂z(b(i, z)m(t, i, z)) = −
∑
j 6=i

(αj(t, i, z)m(t, i, z)− αi(t, j, z)m(t, j, z)) (t, i, z) ∈ (0, T )×X ,

mi(0, z) = m0
i (z) (i, z) ∈ X ,

(A.1)

where m0 ∈ P(X ) is given. The next definition gives the characterization of weak solutions of (A.1).

Definition A.1. A pair (m,α) satisfies (A.1) in the weak sense if t ∈ [0, T ] 7→ m(t, ·) ∈ P(X ) is continuous, for
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Figure 5: Evolution of the proportion of vehicles for V1G
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Figure 6: Evolution of the proportion of vehicles for V2G

Figure 7: Initial and Final SoC in the V1G case Figure 8: Initial and Final SoC in the V2G case
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any i, j ∈ I with i 6= j, it holds that α ∈ L2
mi([0, T ]×X ,Rd) and for any test function φ ∈ C∞c ([0, T ]×X ), we have:

∑
i∈I

∫ 1

0

φi(T, i, z)m(T, i, dz)− φ(0, i, z)m0
i (dz)

=

∫ T

0

∫ 1

0

∑
i∈I

(∂tφ(t, i, z) + b(i, z)∂zφ(t, i, z))m(t, i, dz) +
∑

j∈I,j 6=i

(φ(t, j, z)− φ(t, i, z))αj(t, i, z)m(t, i, dz)dt.

Proposition A.1. Let m0 ∈ P([0, 1]×I), α ∈ Lip([0, T ]×X ,Rd+) and Xα be a PDMP(b, α). Then, the distribution
mα of Xα is the unique distribution such that (mα, α) is a weak solution of (A.1) in the sense of Definition A.1.

Proof. This result is proved in [6] for controls α that are continuous in space and time independent. The extension
of this result to bounded controls that are measurable in time is straightforward.

Continuity results of the map α 7→ mα is presented in the next lemma.

Lemma A.1. The map α 7→ mα is continuous from Lip([0, T ] × X ,Rd+) endowed with the norm ‖ · ‖∞ to
C([0, T ],P(X )), endowed with the distance W‖·‖∞ .

Proof. Let ψ ∈ C1(X ) and let ϕ ∈ C1([0, T ]×X ) be the classical solution of the PDE:

∂τϕ(τ, i, z) + b(i, z)∂sϕ(τ, i, z) = 0 (τ, i, z) ∈ [0, t]×X
ϕ(t, i, z) = ψ(i, z) (i, z) ∈ ×X . (A.2)

One has ‖ϕ‖∞ = ‖ψ‖∞, and denoting by γψ the Lipschitz constant of ψ, for any t ∈ [0, T ] ϕ(t, ·, ·) is Lipschitz

continuous with Lipschitz constant γψe
T‖b′‖∞ .

Let α, ᾱ ∈ Lip([0, T ]×X ,Rd+). Since Xα is a PDMP(b, α) and X ᾱ is a PDMP(b, ᾱ), by Proposition A.1, (mα, α)
and (mᾱ, ᾱ) are both weak solutions of the continuity equation (A.1) on [0, T ]× I × [0, 1]. Then, by equality (A.2),
one has: ∫ 1

0

∑
i∈I

ψ(i, z)
(
mα(t, i, dz)−mᾱ(t, i, dz)

)
=
∑
i∈I

∫ t

0

∫ 1

0

∑
j∈I,j 6=i

ϕ(i, τ, z)
(
− αj(τ, i, z)mα(τ, i, dz) + αi(τ, j, z)m

α(t, j, dz)
)
dτ

+
∑

i∈I,j 6=i

∫ t

0

∫ 1

0

∑
j∈I

ϕ(i, τ, z)
(
ᾱj(τ, i, z)m

ᾱ(τ, i, dz)− ᾱi(τ, j, z)mᾱ(τ, j, dz)
)
dτ

=
∑

i∈I,j 6=i

∫ t

0

∫ 1

0

∑
j∈I

ϕ(i, τ, z)αj(τ, i, z)
(
mᾱ(τ, i, dz)−mα(τ, i, dz)

)
dτ

+
∑
i∈I

∫ t

0

∫ 1

0

∑
j∈I,j 6=i

ϕ(i, τ, z)αj(τ, i, z)
(
mα(τ, j, dz)−mᾱ(τ, j, dz)

)
dτ

+
∑
i∈I

∫ t

0

∫ 1

0

∑
j∈I,j 6=i

ϕ(i, τ, z)
(
ᾱj(τ, i, z)− αj(τ, i, z)

)
mᾱ(τ, i, dz)dτ

+
∑
i∈I

∫ t

0

∫ 1

0

∑
j∈I,j 6=i

ϕ(i, τ, z)
(
αi(τ, j, z))− ᾱi(τ, j, z)

)
mᾱ(τ, j, dz)dτ

(A.3)

Using that ϕ(t, ·, ·) is Lipschitz continuous with Lipschitz constant γψe
T‖b′‖∞ and that α ∈ Lip([0, T ] × X ,Rd+),

there exists L > 0 such that:∑
i∈I

∫ t

0

∫ 1

0

∑
j∈I,j 6=i

ϕ(i, τ, z)αj(τ, i, z)
(
mᾱ(τ, i, dz)−mα(τ, i, dz)

)
dτ ≤ LγψeT‖b

′‖∞
∫ T

0

W(mα(τ),mᾱ(τ))dτ, (A.4)

∑
i∈I

∫ t

0

∫ 1

0

∑
j∈I,j 6=i

ϕ(i, τ, z)αj(τ, i, z)
(
mα(τ, j, dz)−mᾱ(τ, j, dz)

)
dτ ≤ LγψeT‖b

′‖∞
∫ T

0

W(mα(τ),mᾱ(τ))dτ. (A.5)
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Since α, ᾱ ∈ Lip([0, T ]×X ,Rd+) and that ‖ϕ‖∞ ≤ ‖ψ‖∞, one has:

∑
i∈I

∫ t

0

∫ 1

0

∑
j∈I,j 6=i

ϕ(i, τ, z)
(
ᾱj(τ, i, z)− αj(τ, i, z)

)
mᾱ(τ, i, dz)dτ ≤ |I|‖ψ‖∞‖α− ᾱ‖∞, (A.6)

∑
i∈I

∫ t

0

∫ 1

0

∑
j∈I,j 6=i

ϕ(i, τ, z)
(
αi(τ, j, z))− ᾱi(τ, j, z)

)
mᾱ(τ, j, dz)dτ ≤ |I|‖ψ‖∞‖α− ᾱ‖∞. (A.7)

By inequalities (A.4)-(A.7), inequality (A.3) becomes:∫ 1

0

∑
i∈I

ψ(i, z)
(
mα(t, i, dz)−mᾱ(t, i, dz)

)
≤ 2|I|‖ψ‖∞‖α− ᾱ‖∞ + 2Lγψe

T‖b′‖∞
∫ t

0

W(mα(τ),mᾱ(τ))dτ.

Since ψ is arbitrary and in C1(X ), previous inequality becomes, for any t ∈ [0, T ],

W(mα(t),mᾱ(t)) ≤ 2|I|2‖ψ‖∞‖α− ᾱ‖∞ + 2LeT‖b
′‖∞

∫ t

0

W(mα(τ),mᾱ(τ))dτ.

By Gronwall inequality, one deduces that there exists a constant C > 0 such that, for any t ∈ [0, T ],

W(mα(t),mᾱ(t)) ≤ L‖α− ᾱ‖∞.

Thus, W‖·‖∞(mα,mᾱ) ≤ L‖α− ᾱ‖∞ and the continuity of α 7→ mα follows.
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