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Abstract

Detecting structures at the particle scale within plastically deformed crys-
talline materials allows a better understanding of the occurring phenomena.
While previous approaches mostly relied on applying hand-chosen criteria on
different local parameters, these approaches could only detect already known
structures.

We introduce an unsupervised learning algorithm to automatically de-
tect structures within a crystal under plastic deformation. This approach is
based on a study developed for structural detection on colloidal materials.
This algorithm has the advantage of being computationally fast and easy to
implement. We show that by using local parameters based on bond-angle
distributions, we are able to detect more structures and with a higher degree
of precision than traditional hand-made criteria.
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1. Introduction

Molecular dynamics simulation is a powerful method allowing to simulate
at the particle scale different materials such as colloidal systems (Boattini
et al., 2019), glassy materials (Barbot et al., 2020; Barbot, 2020) or metallic
nanocrystals (Amodeo and Lizoul, 2017). To help in interpreting the simula-
tions results, being able to determine the local structure at the particle-scale
is essential. To do so, several approaches were developed, mainly relying
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on local order parameters to describe the surrounding environment of each
particle (number of neighbours, angles formed with the neighbours, ...) to
detect underlying substructures in the simulated atomistic sample. Among
these methods, we can cite the Bond Orientational Order (BOO) parameter
(Steinhardt et al., 1983), the Common Neighbours Analysis (CNA) (Honey-
cutt and Andersen, 1987), or the Bond-Angle Distribution (BAD) (Ackland
and Jones, 2006). Such methods were applied with success to study several
phenomena such as crystal nucleation (Sanz et al., 2008), melting (Noori
et al., 2015) or plasticity (Ackland and Jones, 2006; Stukowski, 2012; Amodeo
et al., 2014). However, they are mostly relying on hand chosen criteria and
thus only works for already known structures.

Recently, different approaches using machine learning to detect substruc-
tures from local order parameters were developed. The first models, which
relied on supervised learning (Geiger and Dellago, 2013; Dietz et al., 2017;
Boattini et al., 2018), suffered from the same problem as the hand-chosen
techniques: they could only be trained to find an expected structure in the
studied systems. However, a recent work from Boattini et al (Boattini et al.,
2019) successfully applied an unsupervised learning method using the BOO
parameter to automatically detect different structures within a colloidal ma-
terial without relying on a priori knowledge of the underlying structures.
This method also had the advantage of being easy to implement and com-
putationally fast.

While the BOO parameter is able to discriminate between the different
structures in crystalline materials, it does not perform well when the simu-
lated system is under deformation (Lechner and Dellago, 2008). Being able to
automatically detect substructures within crystal under plastic deformation,
including some previously undetected and unexpected case, would open the
way to a better understanding of crystal plasticity at the atomic scale. This
requires to find a local order parameter suitable to discriminate substructures
at the atomistic level for elastically and plastically deformed systems.

In this study, we present a method inspired by the paper from Boattini
et al (Boattini et al., 2019) to automatically study and detect the differ-
ent substructures within a crystal under plastic deformation appearing at
the atomistic scale. This approach relies on the BAD parameters designed
for single crystals to describe the environment around each atom, as high-
lighted in (Ackland and Jones, 2006). This local parameter was already used
in previous structure detection approaches relying on bond-angle distribu-
tions, showing the ability to discriminate structures associated with crystal
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plasticity (Ackland and Jones, 2006; Amodeo et al., 2014).
Our method consists on extracting the most pertinent BAD parameters

using an autoencoder neural networks (Rumelhart et al., 1986; Dietz et al.,
2017) before applying two clustering models: K-means (Lloyd, 1982; Mac-
Queen, 1967) and DBSCAN (Ester et al., 1996). It has the advantage of being
computationally fast and easy to implement. We finally test our approach
on a FCC single crystal of Nickel under plastic deformation.

2. Methods

This section is divided in three main parts. We first describe the system
on which we apply our structure detection method. We then depict the BAD
parameters we use to capture the local environment of each particle. The
last section focuses on the algorithms we use to detect the local atomistic
substructures in the system from the BAD parameters.

2.1. System

In this study, we perform Molecular Dynamics (MD) simulations using
LAMMPS (Thompson et al., 2022) to plastically deform a Ni FCC defect free
single crystal. These simulations are then used as benchmark to apply our
method, based on unsupervised learning, developed to detect the different
structures emerging in the system during plastic deformation.

We first create a cubic sample with edge lengths equal to 20nm and
free surfaces oriented along the 〈100〉 directions as shown on Fig 1 (a). The
interatomic interaction linking the atoms is the EAM potential for Ni (Adams
et al., 1989). The system is then equilibrated for 5 ps at 5K using Nose-
Hoover thermostat (Nose, 1984; Hoover, 1985). A deformation is imposed
using uniaxial compression with a flat indenter along the [100] direction,
with a strain rate of 108s−1. The flat indenter is modeled as an infinite plane
exerting a repulsive force on atoms defined by

F (r) = −K(r −R)2, (1)

with r being the atom position, R the plane position and K the force constant.
Here we choose K=1000 eV/Å3. The temperature is maintained at 5K during
the compression through the Nose-Hoover thermostat.

To determine when the first plastic event occurs during the deformation,
we first measure on the fly the compressive stress applied on the system by
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the indenter using a method similar to the one used in (Amodeo et al., 2014)
and looking for the first stress drop corresponding to the first plastic event.
The stress-strain curve obtained from the compression is shown on Fig 1 (b),
with the first plastic event represented by a vertical red line.

In our simulations, we observe the nucleation of Shockley head partial
dislocations with burger vectors: {1

6
[−1 1 2], 1

6
[1 −1 2], 1

6
[−1 −1 2], 1

6
[−1 −

1 −2]}. The dislocation lines are thus accompanied by a stacking fault in
the HCP structure (Hull and Bacon, 2011).

Figure 1: (a) Snapshot made with Ovito (Stukowski, 2009) of the system used in this
study. It consists of a cubic nanoparticle of nickel with edge length equals to 20nm. The
two arrows represent the uniaxial compression performed with a flat indenter along the
[100] direction. The stress-strain curve obtained from this compression is shown on (b).
The vertical red line corresponds to occurence of the first plastic event.

2.2. Bond Angle Distribution Parameter

To describe the local structural environment around each particle, we
measure the Bond-Angle Distribution (BAD) parameters for each of them,
based on the method described in (Ackland and Jones, 2006). For each atom
i, we first extract its nearest neighbors Nb(i) using the adaptive cutoff method
as described in (Stukowski, 2012). This method has the advantage of being
parameter-free, so can be directly applied to any structure, while being just
slightly slower than using a fixed cutoff (Stukowski, 2012).

We define the bond-angle θjik with j, k ∈ {1..Nb(i)} being two nearest
neighbors of i. We then estimate {cos(θjik)} for all the Nb(i)(Nb(i) − 1)/2
neighbor pairs of atom i. From it, we describe nine ranges of {cos(θjik)}
over which the BAD parameters {χl}l∈{0..8} are estimated as shown in Table
1. These ranges are based on those from (Ackland and Jones, 2006) which
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were optimised to differentiate crystal structures. The idea here is to count
the number of bond-angle cosines in each ranges to obtain the value of the
corresponding {χl}l∈{0..8}.

Table 1: Definition of the nine bond angle cosines ranges over which the BAD parameters
χ are estimated. cos(θjik) is the cosines of the angle between rij and rik, with j, k being
two nearest neighbors of the atom i. The ranges were taken from (Ackland and Jones,
2006) and were optimised to differential crystal structures.

BAD Parameter Minimum cos(θjik) Maximum cos(θjik)

χ0 -1.0 -0.945
χ1 -0.945 -0.915
χ2 -0.915 -0.755
χ3 -0.755 -0.705
χ4 -0.705 -0.195
χ5 -0.195 0.195
χ6 0.195 0.245
χ7 0.245 0.795
χ8 0.795 1.0

For instance, let us consider a case where a atom i has six bond-angle
cosines. If two of them are in the range [−1.0,−0.945] and four of them are
in the range [−0.945,−0.915], then for this atom, we will have χ0 = 2, χ1 = 4
and {χl}l∈{2..8} = 0.

Note that in this paper, the BAD parameters were calculated using the
package Pyscal (Menon et al., 2019).

2.3. Unsupervised learning

From the knowledge of the BAD parameters for each atom, the aim of
our method is to determine automatically the different structures present
in the system. This part is done through unsupervised learning and can be
decomposed on two main tasks. First we use an autoencoder to determine the
good number of parameters to describe the local structures in our system.
Then, we apply a perturbative method to the autoencoder to determine
which parameters are the most effective. From this, we focus on the most
effective parameters applying clustering and classification methods to extract
the different substructures of our system.
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Note that as the surface atoms can be easily filtered from their number
of nearest neighbours as in (Amodeo et al., 2014). , i.e. atoms for which
Nb < 11, we filter out the surface atoms using this criteria and focus on the
structures within the inner atoms.

2.3.1. Autoencoder

As explained above, the aim of this section is to extract the number of
pertinent parameters to determine the different structures of our system. In-
deed, out of the nine BAD parameters, some could be irrelevant or redundant
to describe the local structural environment around each atom. This task is
here performed using an autoencoder based neural network to perform di-
mensionality reduction (Goodfellow et al., 2016; Chen et al., 2018; Boattini
et al., 2019).

The autoencoder network can be divided in two parts: the encoder part
and the decoder part as shown on Fig 2. The encoder aims at encoding
the input into a lower dimension: the bottleneck. Then the decoder will try
to reconstruct the input from the bottleneck. The output of the network
will then be the reconstruction of the input done by the decoder from the
bottleneck.

Figure 2: Schematic representation of autoencoder neural network architecture for dimen-
sional reduction. The neural network is trained in order to reproduce the input at the
output while passing through a bottleneck of lower dimensions. The encoder network aims
at finding a low-dimension representation of the input. The decoder network is trained to
reconstruct the original input from the lower-dimension bottleneck.

In practice, the input of the encoder is χ(i) = {χl}l∈{0..8}(i) ∈ N9, with
i ∈ [1..N ], N being the number of atoms over which the training in performed.
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We train the encoder to reduce the difference between the input and the
output for a bottleneck dimensions going from 1 to 9.

To determine the pertinent dimension of input, we measure for each bot-
tleneck Nbneck dimension the mean square error between the input χ and the
output χ̂ as

ENbneck
=

1

N

N∑
i=1

‖χ(i)− χ̂(i)‖. (2)

We then look from which dimension we have the minimum difference between
the input and the output.

For more details about the implementation of the autoencoder, please
refer to the paper (Boattini et al., 2019) which served as a reference for this
section.

2.3.2. Relevant parameters identification

After determining the relevant number of parameters to study the sub-
structures in our system, we want to go beyond the black box of the neural
network and determine which parameters are most pertinent for our study.
To do so, we use the input perturbation method (Yao et al., 1998; Scardi and
Harding, 1999; Gevrey et al., 2003; Olden et al., 2004).

The principle of this method is to take the trained autoencoder neural
network with the optimal bottleneck dimension, and to perturbate one of
the input parameters by increasing its value with a fixed amount. In this
work, we increase the chosen input value by 10% which was shown to give
satisfactory results (Boattini et al., 2019).

After perturbing one of the inputs, we look at how much this perturbation
influenced the output by calculating:

Epert
k =

1

N

N∑
i=1

‖χ(i)− χ̂pert
k (i)‖, (3)

with k ∈ [0..8] being the index of the perturbed input, χ̂pert
k the output after

the perturbation and χ the input without perturbation.
If the perturbed input k was considered during the training as carrying

no pertinent information to reconstruct the input at the output, the pertur-
bation will not propagate to the output. This will lead to a very small value
of Epert

k . On the contrary, if the perturbed input k is necessary to obtain an
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output similar to the input, its perturbation will lead to a higher value of
Epert

k .
From this, we determine the relative importance RIk of the input k as:

RIk =
∆Ek∑8
j=0 ∆Ej

, (4)

with ∆Ek = Epert
k − E being the difference between the autoencoder mean

square error after perturbation of the input k and without perturbation.
From this relative importance index, we can determine the importance of
each input during the autoencoder training.

2.3.3. Clustering and classification

In the last section, we described how to isolate the most relevant BAD
parameters to study the local structure. In our system most of the atoms
will be in two structures, FCC and HCP (in the stacking fault), which corre-
sponds to close values of BAD parameters (Ackland and Jones, 2006). While
most structure detection approaches focus on the already known main crys-
talline structures, i.e. FCC, BCC and HCP (Stukowski, 2012), the goal of
our method is also to be able to automatically detect substructures without
having an a priori knowledge about them.

To this end, we chose to apply two clustering methods on the relevant
BAD parameters space, one to detect the main structures containing most
of the atoms, and the second one to focus on the substructures containing
few atoms but located far from each other in the parameter space. The
clusters extracted by these two clustering approaches will then be combined
to identify the different substructures of the studied system.

In the next sections, first we introduce the K-means clustering method
(MacQueen, 1967; Lloyd, 1982) we use to detect the main structures. Then,
we detail the Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) (Ester et al., 1996) which allows to detect efficiently more isolated
clusters.

While K-means is able to efficiently determine the cluster of a new data
point without having to re-apply the clustering over the whole data set, it is
not the case for DBSCAN. We thus need to apply a classification algorithm
over the clusters detected by DBSCAN. We thus present in the last part the
logistic regression classifier we use to perform this task.
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2.3.3.1 Kmeans

In order to detect the main substructures present in the system, we use the K-
means clustering algorithm (MacQueen, 1967; Lloyd, 1982) as implemented
in sci-kit learn (Pedregosa et al., 2011). The principle of the method is the
following: let us consider a set of N data points in the parameter space that
we want to separate into K clusters. We name {xi}i∈[1..N ] the position of the
data point in the parameter space and {µj}j∈[1..K] the center of each cluster,
commonly called ”centroid”.

The aim of the K-means algorithm is to choose optimal centroids in order
to minimize the inertia defined by

IN(K) =
N∑
i=1

minj∈[1..K](‖xi − µj‖2). (5)

If the points are located in clusters, the inertia will be minimized by placing
the centroids at the center of each cluster.

While the K-means requires the number of clusters as an input, the opti-
mal number of cluster can be obtained with the following procedure: we first
apply K-means to our data set for varying number of clusters K and calculate
the corresponding inertia IN(K). In this paper, we did it for K ∈ [1..10].
Then we apply the elbow method to the function IN(K) following the pro-
tocol described in (Salvador and Chan, 2004). From this method, we can
obtain the value of K from which the inertia stop decreasing with K, thus
corresponding to the optimal number of clusters for K-means clustering.

After training the K-means algorithm over the data set for the optimal
cluster number K, we obtain the centroids locations {µj}j∈[1..K] of the differ-
ent clusters. From this information, we can determine in which cluster is a
new data point by looking at its closest centroid. This allows to classify new
data depending on their cluster without having to retrain the algorithm each
time.

The K-means method being only looking at the distance between the data
points and the centroid, it does not perform well for elongated clusters orfor
clusters with irregular shapes. However, it performs very well if most of the
data points are located in the same position in space. As the main crystalline
structures are each associated with a specific position in the BAD parameter
space, the K-means algorithm is well suited to detect the clusters associated
with these structures.
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2.3.3.2 DB Scan

To be able to detect clusters with smaller number of points and non-isotripic
shape, we apply another clustering method: the Density-Based Spatial Clus-
tering of Applications with Noise (DBSCAN) (Ester et al., 1996) as imple-
mented in sci-kit learn (Pedregosa et al., 2011).

The principle of the algorithm is the following: we input two parameters:
(1) the maximum distance between two points lmax and (2) the minimum
number of points per cluster Nmin. In this method, two data points located
at a distance l < lmax are considered as neighbors. From it, the algorithm
will class the data points into three categories:

(i) if a data point has at leastNmin−1 neighbors, it will then be considered
as a ”core point”.

(ii) if a data point has less than Nmin − 1 neighbors but at least one of
them is a core point, it will be considered as a ”border point”.

(iii) the remaining data points will be considered as ”noise”.
The core points and the border points are then regrouped together to form

clusters, located at a distance lcluster > lmax from each other. In our system,
many atoms can be associated with the same values of BAD parameters.
As the DBSCAN only look at the distance between points, having many
points located at the same spatial position will only slow down the clustering
without improving the result. We thus apply the DBSCAN over the list of
the unique spatial positions of our data set. Finally, the BAD parameters
being integers, we use for the distance parameter the value lmax = 1. We
also determined that Nmin = 5 gives satisfactory results for our data set.

As this method is not influenced by the number of point at a given spa-
tial position but only by the distance between the unique spatial positions
in the data set, it would be able detect clusters associated with structure
containing fewer atoms but isolated from the clusters corresponding to the
main crystalline structures.

2.3.3.3 Logistic regression classifier

In the opposite of K-means, if we want to know from DBSCAN in which
cluster is a new data point, we would need to re-perform the clustering over
the whole data set, plus the new data point. But this solution would be very
inefficient and time consuming. One solution to solve this problem is to train
a classification algorithm over the clusters detected by DBSCAN.
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The classification algorithm takes as an input the training data set and
as the output the cluster found by DBSCAN. It will then decompose the
parameter space into region; each associated with a cluster. When a new
data point is added, it will be attributed a cluster depending on its location
in the parameter space.

In this study, we use the logistic regression classifier (Brzezinski and
Knafl, 1999) implemented in scikit-learn as it simple, fast and gives satis-
factory result when applied to the clusters which detected by DBSCAN in
this system. More details about this classifier can be found in sci-kit learn
(Pedregosa et al., 2011).

2.3.3.4 Cluster combination

In the previous parts, we described two clustering methods. One to detect
the main structures in the system: the K-means algorithm, the other one
to detect the substructures containing few points, more isolated in the pa-
rameter space: the DBSCAN. Then, both K-means and the association of
DBSCAN with the logistic regression classifier will separate the parameter
space into regions corresponding to detected clusters. Thus, each data point
will be associated with two clusters: the one detected by K-means, the other
detected by DBSCAN.

In order to have a precise detection of the structures present in the sys-
tem, we combine the results obtained from the two clustering methods. Fi-
nally, we obtain NKmeans · NDBSCAN clusters, with NKmeans and NDBSCAN

corresponding to the number of clusters found by K-means and DBSCAN,
respectively.

3. Results and discussions

In this section, we present the results obtained by following the procedure
described in the previous sections. First we analyse the data obtained we get
from the autoencoder: the relevant number of the BAD order parameter
necessary to detect the substructures in our system as well as which of the
χ(i) = {χl}l∈{0..8}(i) ∈ N9 parameters are the most significant. We then ap-
ply the clustering methods on the extracted parameter, later analysing their
performances. Finally, we examine the different substructures detected by
this method, comparing the outcomes with other structure detection meth-
ods.
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3.1. Autoencoder output analysis

After compressing our Ni crystal until the first plastic event occurs, as
described in Section 2.1, we record at a regular time step interval the atomic
positions of the simulated nano-object. We then measure BAD parameters
for each atoms as detailed in Section 2.2, filtering out the surface atoms as
explained in Section 2.3. It turned out that computing the BAD parameters
of a single time step is sufficient to train the autoencoder and to observe
the appearance of different clusters. Here, the time step used to train our
algorithm corresponds to an applied strain of ∆ε = 0.05% after the first
plastic event.

Fig 3 shows the mean square error between the autoencoder input and
output for different bottleneck dimensions. We can observe that the error
reaches a plateau for a bottleneck dimension of N = 3. We thus consider
here that the pertinent number of BAD parameters to study the structure
in our system is therefore three.

Figure 3: Means square error E between the input and the output for different bottleneck
dimensions. The error reaches a plateau for a bottleneck dimension of N = 3 which
corresponds to the relevant number of BAD parameters sufficient to reconstruct the input
data.

Our next step is to determine which are the three most pertinent BAD
parameters out of nine we computed for each atom. To this end, we calculate
the relative importance (RI) of each parameter applying the perturbation
method described in Section 2.3.2. The results are shown in Fig 4. From
this figure, we can clearly observe the most significant three parameters:
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the triplet {χ4, χ5, χ7}. From here on in this study, we will only focus on
these three BAD parameters to study the substructures within the studied
Ni nano-object.

Figure 4: Relative importance index of the BAD parameters obtained from the input
perturbation method. The index is calculated by perturbating consecutively each input
parameter and measure how much this perturbation affected the output. The parameters
{χ4, χ5, χ7} are shown to be the most relevant ones to study the different structures in
the system.

3.2. Clustering methods combination

We determined that the most pertinent BAD parameters to study the
emerging substructures in our numerical sample are {χ4, χ5, χ7}. Here, we
apply two clustering algorithms on these parameters, K-means and DB-
SCAN, and then we combine the outcome of the obtained clusters. The
dataset used for the clustering processes is the same that we used for extract
BAD parameters using the autoencoder (we also verified that using different
atomistic configurations extracted after the onset of plasticity gives similar
results) .

On Fig 5 (a), we show a scatter plot representing for each atom their
position in the {χ4, χ5, χ7} space, as well as the result of the K-means clus-
tering. Note that as the BAD parameters are integers, one position in the
{χ4, χ5, χ7} space can correspond to many atoms. Each point represented
here corresponds to at least one atom. On this figure, we can see that the
algorithm detected two clusters: one in dark blue and the other in yellow.

As detailed in Section 2.3.3.1, the aim of using the K-means clustering
is to detect the main crystalline structures, located close to each other in
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Figure 5: The upper part of the figure (a) represents a Scatter plot of the BAD parameters
projected on the most relevant parameters: {χ4, χ5, χ7}. The colors correspond to the
substructures detected with K-means clustering. The lower part shows histograms showing
the distribution of χ4 (b), χ5 (c), χ7 (d). On the χ4 histogram, we observe that most
of the atoms are concentrated on two values, while on the χ5 and χ7 histograms, most
atoms are concentrated on a single value. Thus, two combinations of {χ4, χ5, χ7} contains
most of the atoms and corresponds in practice to the FCC and the stacking fault (HCP)
structures.

the BAD parameter space (Ackland and Jones, 2006). While the Fig 6 (a)
clearly shows three blocks, the two detected clusters seems to correspond to
half of the central block. To understand what was detected by the K-means
algorithm, we look on Fig 5 the distribution of χ4 (b), χ5 (c) and χ7 (d). From
this figure, we can see that the large majority of the atoms are concentrated
on two close positions in the {χ4, χ5, χ7} space: {21, 13, 24} and {24, 12, 24}.
On (Ackland and Jones, 2006), these two configurations were defined as
corresponding to HCP and FCC, respectively. As HCP corresponds to the
stacking fault structure in a FCC crystal (Hull and Bacon, 2011), we can
expect that most of the atoms will be in these two structures. From what
we can see, K-means seems to have only succeeded in separating these two
configurations located within the central block. This will be confirmed in
the next part focusing on analysing the structures detected by the clustering
algorithms.

While the K-means algorithm successfully separated the two locations in
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the {χ4, χ5, χ7} space, we can see on Fig 5 (a) that it totally fails in identi-
fying two clusters, corresponding to different substructures, located further
away from the central block. To detect them, we use another clustering
method: the DBSCAN combined with the logistic regression classifier de-
tailed in 2.3.3.2 and 2.3.3.3, respectively. We show its results on Fig 6 (b).
From this figure, we can see that the DBSCAN successfully managed to sep-
arate into three clusters the three blocks observed in the scatter plot. After
measuring the proportion of data points contained in each cluster, it ap-
pears that the central cluster (in purple) contains 99.8% of the points, while
the two remaining clusters contains 0.1% each. This confirms that most of
the atoms are located in the main structures, corresponding to the central
block, making it difficult for the K-means clustering to detect the two smaller
blocks.

Finally, to detect the main crystalline structures while being able to dis-
cern other structures containing fewer atoms in the system, we combine the
results obtained by the two clustering methods (K-means shown on Fig 6
(a), DBSCAN shown on Fig 6 (b)) as highlighted on Fig 6 (c). From this
figure, we can see that we managed to detect a total of six different clusters:
the dark blue and yellow ones from the central structures from the central
block, containing the 99.8% of the atoms, corresponding to the main crys-
talline structures. The red and green cluster, corresponding to the two other
aggregation of points clearly visible in the scatter plot of Fig 6 (c). Finally,
the sky blue and the orange clusters, which only corresponds to few atoms,
and detected only in few time steps.

3.3. Analysis of detected structures

On the previous section, by combining two clustering methods, we man-
aged to extract six different clusters from our dataset by a projection in
the {χ4, χ5, χ7} space. We now focus on analyzing the structures associated
with each cluster. To this end, we show on Fig 7 (a) a snapshot made with
OVITO (Stukowski, 2009) of the Ni nano-cube deformed plastically, with an
applied strain of ∆ε = 0.02% beyond the yield point. On this snapshot, the
atoms are colored corresponding to their clusters. For instance, the atoms
contained in the yellow cluster on Fig 6 (c) will be colored in yellow on Fig 7.
On Fig 7 (a), we can see that most of the atoms are contained in the yellow
cluster which we can then associate with the FCC structure as our system is
a Ni FCC nano-crystal.
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Figure 6: Scatter plots of the BAD parameters projected on the most relevant parameters:
{χ4, χ5, χ7}. The colors correspond to the clustering methods used to detect different
structures with: (a) K-means clustering, (b) DB scan clustering combined with logistic
regression classification, and (c) a combination of the clusters obtained through (a) and
(b). Each point corresponds to at least one atom, the distribution for each parameter can
be seen on Fig 5. In total, six differents structures were detected through this combination
of two clustering methods: FCC (yellow), HCP in the stacking fault (blue), upper and
lower part of the dislocation lines (green and red), the interaction between dislocation line
and stacking fault (skyblue) and the interaction between two dislocation lines (orange).

After filtering out the atoms in the FCC structure, we can now see on
Fig 7 (b) atoms in three different structures. Fig 7 (c) corresponds to a
zoom within Fig 7 (b) to highlight more clearly the detected substructures.
From this figure, the atoms colored in green and red follows what looks like
a dislocation line, while the atoms in dark blue seems to correspond to the
stacking fault created after the glide of a partial dislocation. By using the
algorithm DXA (Stukowski et al., 2012) implemented in OVITO (Stukowski,
2009), we could confirm our prediction: the green and the red atoms are
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Figure 7: Snapshot of the system. The atoms are colored depending on their cluster as
shown in Fig 6 c). On panel (a), we observe that most of the atoms belongs to the yellow
cluster which we associate with the FCC structure. On (b), we show the same snapshot
after filtering out the FCC structure. We can observe that the combination of the two
clustering methods is capable to separate the atoms linked with dislocation lines (green
and red atoms) and those correlated with stacking faults (dark blue atoms).

surrounding a partial dislocation line. The relative position of the green and
red atoms depends on the burger vector as well as on the direction of the
dislocation line (see the appendix Appendix A for more details). From this,
we can deduce that the dark blue atoms correspond to HCP stacking fault
structures generated by the gliding of a partial dislocations (as mentioned
above in FCC crystals stacking faults have a HCP structure).

The two remaining clusters detected in in Fig 6 c), the orange and the
sky blue one, are very rarely observed during the time steps recorded during
the deformation. The orange structure is observed when two dislocation lines
are located close to each other while the sky blue one is detected during the
interaction between a dislocation line and a stacking fault, as shown later.

On Fig 8, we compare our structure detection method, shown in panel
(a), with three other existing methods: (i) hand-chosen criterion using the
BAD parameters from (Ackland and Jones, 2006) (Fig 8 (b)), (ii) the CNA
method (Honeycutt and Andersen, 1987; Stukowski, 2012) implemented in
OVITO ,which is one of the most commonly used method for structure de-
tection (Fig 8 (c)) and which consists of using hand-chosen criterion on a
radial-distribution based local order parameter, and (iii) the autoencoder ap-
proach using the BOO parameters from (Boattini et al., 2019) which served
as an inspiration for this paper (Fig 8 (d)). For this comparison, we filtered
beforehand the surface atoms following the method explained in section 2.3.

On Fig 8, we only focus on one dislocation line and the associated stack-
ing fault. From this figure, we can see that our method is able to capture
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with much more details the different structures present within a FCC crystal
plastically deformed. To further emphasize the efficiency of our method, on
Fig 9 we show a snapshot of the system with two dislocation lines about to
interact and on Fig 10 we show the interaction between a dislocation line
and a stacking fault.

Figure 8: Snapshot of the system. The atoms are colored depending on their surrounding
structure obtained from (a) our combination of BAD and autoencoder, (b) hand-chosen
criteria applied on BAD from (Ackland and Jones, 2006), (c) the CNA method (Honeycutt
and Andersen, 1987) from OVITO (Stukowski, 2009), and (d) the combination of BOO
and autoencoder as detailed in (Boattini et al., 2019). Note that for the four structure
detection methods shown here, we removed the surface atoms beforehand.

Out of the three methods used for comparison, two were mostly designed
to detect the main crystalline structures (FCC, HCP or BCC): the hand-
chosen criterion using the BAD parameters and CNA. We can still remark
that CNA, which also relies on hand-chosen criterion, is able to capture
the location of the dislocation line but with less accuracy than our method:
the number of atoms close to the line defect is much larger than in our
method. Also, this method is not able to capture sub-structures associated
with plasticity. The atoms outside of the main crystalline structures, such
as those in the line defect, are labelled as ”other” (in red in Fig 8 (c)). The
hand chosen method using the BAD also categorizes from time to time atoms
in the category ”other”, like in Fig 9 (b), but it is not able to capture the
line defect.

The last method, the autoencoder applied to the BOO parameters, is
also designed to detect automatically the different structures present within
the system. However, when applying the method to our system, only two
structures were detected: one associated with FCC and the other associated
with HCP (the stacking fault). Also, only two structures were visible on
the lower dimensional subspace over which the clustering was applied when
following the method (see appendix Appendix B). We thus conclude that

18



Figure 9: Snapshot of two dislocations about to interact. These snapshots were obtained
after filtering out the FCC structure. The atoms are colored depending on their surround-
ing structure obtained from (a) the combination of BAD and autoencoder, (b) hand-chosen
criteria applied on BAD from (Ackland and Jones, 2006), (c) the CNA method (Honeycutt
and Andersen, 1987) from OVITO (Stukowski, 2009), and (d) the combination of BOO
and autoencoder as detailed in (Boattini et al., 2019). We can remark on (a) two atoms
belonging to the orange cluster from Fig 6 (c) within the dislocation lines. Atoms from
this cluster were observed when two dislocations are close to each other. We can also re-
mark on (b) one atom in red corresponding to the unassigned category on the hand-chosen
criteria applied to BAD from (Ackland and Jones, 2006).

the BOO parameters are not the most pertinent parameters to detect the
structures within a plastically deformed crystal.

Figure 10: Snapshot of the system focusing on the interaction between two dislocations,
one of them crossing the stacking fault of the other. These snapshots were obtained after
filtering out the FCC structure. The atoms are colored depending on their surrounding
structure obtained from (a) the combination of BAD and autoencoder, (b) hand-chosen
criteria applied on BAD from (Ackland and Jones, 2006), (c) the CNA method (Honeycutt
and Andersen, 1987) from OVITO (Stukowski, 2009), and (d) the combination of BOO
and autoencoder as detailed in (Boattini et al., 2019). We can observe on (a) atoms
belonging to the sky blue cluster from Fig 6 (c). Atoms from this cluster are observed
after the interaction between a dislocation line and a staking fault.

Overall, these comparisons shows that our method is able to detect more
structures than the other presented approaches. It is also able to capture the
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contours of the dislocation lines with a better precision than CNA as we can
see on Fig 10.

4. Conclusion

In conclusion, we improved a method initially developed to detect auto-
matically structures in colloidal materials. Through this method, we were
able to finely detect different structure present in a Ni FCC crystal under
plastic deformation. This algorithm uses the BAD parameters to describe the
local environment of the atoms. Thanks to an autoencoder associated with a
perturbation method, the most relevant BAD parameters were extracted.
Then, by applying on these selected parameters two clustering methods,
Kmeans and DBscan as well as the logistic regression classifier, different
local structures have been successfully extracted. This procedure was able to
detect the local structures present within the dislocation lines with a higher
degree of precision compared to the commonly used CNA method. Our pro-
cedure is also more efficient than a method relying on hand-chosen criteria
applied to BAD parameters or than combining autoencoder with BOO pa-
rameters.

Overall, this study shows that unsupervised learning applied to the BAD
parameters is a promising approach to obtain more precise structure detec-
tion within crystalline materials. As the method detailed in this paper is
based on parameters using hand-chosen ranges in its definition, it is not
directly applicable to other crystalline system, especially alloys. While mod-
ified BAD parameters adapted for specific systems exist (Amodeo et al.,
2014), developing a method to automatically find the optimal ranges to define
the BAD parameters for any materials would allow to achieve an universal
method for structural detection for crystalline materials.
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Appendix A. Linking detected structures and dislocation lines

Figure A.11: Snapshot of the system. On (a) the FCC atoms are filtered out to only keep
the atoms in a stacking fault (in blue) and in a dislocation line (in green and in red). To
understand the relative position between the green and the red atoms, we show on (b)
the dislocation lines (in green) obtained from DXA (Stukowski, 2012). The green arrows
on the dislocation lines corresponds orientation of the dislocation line. The black arrows
corresponds to the burger vectors direction. The figures (c), (d) and (e) corresponds
to zooms on the dislocation lines for easier visualization. We remark that when the
dislocation line direction goes towards the trigonometric direction around the z-axis while
the dislocation goes toward the center of the dislocation loop (as in (c) and (e)), the red
atoms are above the green ones.

On Fig A.11 we show a comparison between the structures detected with
our method (a) and the dislocation lines obtained from DXA (Stukowski,
2012) (b). On Fig A.11 (b) the black arrows correspond to the burger vector
of each dislocation and the green arrows show the dislocation lines directions.
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Appendix B. Autoencoder and clustering applied to BOO param-
eters

To compare more precisly the BOO and BAD parameters to detect local
structure, we reproduced the method from (Boattini et al., 2019), which
served as an inspiration for our method, and applied it to our data set.
The method consist basically on calculation the BOO parameters for each
atoms and training the autoencoder to find the optimal bottleneck dimension.
Then, our method diverge from ours as they apply gaussian clustering directly
to the output of the bottleneck.

Figure B.12: Scatter plot showing the output of the 2-dimensional bottleneck obtained by
applying the method from (Boattini et al., 2019) on our training data set. We calculate for
each atom their BOO parameters using pyscal (Menon et al., 2019). We then obtained an
optimal dimension of two at the bottleneck. Finally, we applied gaussian clustering at the
bottleneck output detected two clusters: the yellow one corresponding to FCC structure
and the blue one corresponding to HCP structure. As no other clusters can be seen, we
observe that BOO is not able to separate the dislocation lines from the staking faults.

By applying this approach, we obtain an optimal bottleneck dimension
equal to two. We then show on Fig B.12 a scatter plot showing for each atom
their position in the space of the two bottleneck dimensions that we name
{btneck1, btneck2}. By following the clustering method detailed in (Boattini
et al., 2019), we extract two clusters: one in yellow corresponding to the FCC
structure and one in blue corresponding to the HCP structure (in the stacking
faults). We can see that no other clusters that could correspond to the
structures within the dislocation lines are visible on Fig B.12. From this, we
deduce that the BOO parameter is not pertinent to separate the dislocation
lines from the other structures in a crystal under plastic deformation.
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