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Abstract

We propose a component-based (CB) parametric model order reduction (pMOR) formulation for pa-
rameterized nonlinear elliptic partial differential equations (PDEs) based on overlapping subdomains. Our
approach reads as a constrained optimization statement that penalizes the jump at the components’ in-
terfaces subject to the approximate satisfaction of the PDE in each local subdomain. Furthermore, the
approach relies on the decomposition of the local states into a port component — associated with the solu-
tion on interior boundaries — and a bubble component that vanishes at ports: since the bubble components
are uniquely determined by the solution value at the corresponding port, we can recast the constrained
optimization statement into an unconstrained statement, which reads as a nonlinear least-squares problem
and can be solved using the Gauss-Newton method. We present thorough numerical investigations for a
two-dimensional neo-Hookean nonlinear mechanics problem to validate our method; we further discuss the
well-posedness of the mathematical formulation and the a priori error analysis for linear coercive problems.

Keywords: parameterized partial differential equations; model order reduction; overlapping domain decom-
position; alternating Schwarz method.

1 Introduction

1.1 Component-based model order reduction for nonlinear PDEs

Parametric model order reduction (pMOR, [25, 27, 47]) refers to a class of computational techniques that aim
at constructing a low-dimensional surrogate (or reduced-order) model (ROM) for a given physical system, over
a range of parameters. In the last few decades, pMOR techniques have received significant attention in science
and engineering, to speed up parametric studies. For complex, large-scale systems with many parameters,
methods that combine pMOR with domain decomposition (DD) methods are of paramount importance to deal
with high-dimensional parameterizations and changes in domain topology. The aim of this work is to present a
general DD pMOR strategy for linear and nonlinear steady partial differential equations (PDEs).

Standard (monolithic) pMOR techniques rely on high-fidelity (HF) solves at the training stage, which might
be unaffordable for very large-scale problems; furthermore, they rely on the assumption that the solution field
is defined over a parameter-independent domain or over a family of diffeomorphic domains: to address these
issues, several authors have proposed component-based pMOR procedures (cf. [30] and the review [9]). During
the offline stage, a library of archetype components is defined, and local reduced-order bases (ROBs) as well
as local ROMs are built; then, during the online stage, local components are instantiated to form the global
system and the global solution is estimated by coupling local ROMs.

CB-pMOR strategies consist of two distinct building blocks: (i) a rapid and reliable DD strategy for online
global predictions, and (ii) a localized training strategy exclusively based on local solves for the construction of
the local approximations. In this work, we focus exclusively on (i); we refer to [5, 54] and [28, section 8.1.7] for
recent works on localized training for nonlinear elliptic PDEs.

We propose a general component-based pMOR procedure for steady PDEs based on overlapping subdomains,
with a particular focus on second-order nonlinear elliptic PDEs. The key features of the approach are twofold:
(i) a constrained optimization statement that penalizes the jump at the components’ interfaces subject to the
approximate (in a sense to be defined) satisfaction of the PDE in each deployed (instantiated) component;
(ii) the decomposition of the local solutions into a port component — associated with the solution on interior
boundaries (ports) — and a bubble component that vanishes at ports, to enable effective parallelization of the
online solver.
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1.2 One-shot overlapping Schwarz method

We first introduce the formulation in the simplified case of two instantiated components Ω1,Ω2 (cf. Figure 1)
— to simplify notation, we do not distinguish between archetype and instantiated components; in section 2, we
present the formulation in the general setting. We denote by Xi ⊂ H1(Ωi) a suitable Hilbert space in Ωi; we
further define the bubble space Xi,0 = {v ∈ Xi : v|Γi = 0} and the port space Ui = {v ∈ Xi : v|Γi = 0}, for
i = 1, 2. Then, we introduce the additive or multiplicative overlapping Schwarz (OS) iterations as

find u
(k)
1 ∈X1 : G1(u

(k)
1 , v) = 0 ∀ v ∈X1,0, u

(k)
1 |Γ1

= u
(k−1)
2 ;

find u
(k)
2 ∈X2 : G2(u

(k)
2 , v) = 0 ∀ v ∈X2,0, u

(k)
2 |Γ2

=

{
u

(k)
1 ,

u
(k−1)
1 ,

(1)

for k = 1, 2, . . .. Here, u
(k)
i denotes the state estimate at the k-th iteration in the i-th subdomain, while G1,G2 are

the variational forms associated with the PDE of interest in Ω1,Ω2. Multiplicative Schwarz iterations correspond

to setting u
(k)
2 |Γ2 = u

(k)
1 in (1)2, while additive Schwarz iterations correspond to setting u

(k)
2 |Γ2 = u

(k−1)
1 .

Convergence of the OS iterations to a limit state (u?1, u
?
2) implies that ‖u?1−u?2‖L2(Γ1∪Γ2) = 0. We thus propose

to consider the formulation

min
u1∈X1,u2∈X2

‖u1 − u2‖L2(Γ1∪Γ2) s.t. Gi(ui, vi) = 0 ∀ vi ∈Xi,0, i = 1, 2. (2)

Clearly, the pair (u?1, u
?
2) is a solution to (2); in section 4, we show that, provided that the overlapping size δ

is strictly positive, the solution to (2) is unique and depends continuously on data for linear coercive problems.
Note that, for linear problems, the solution to (2) can be computed directly without the need for an iterative
scheme: we thus refer to our approach as to one-shot (OS) overlapping Schwarz (OS) method and we use the
abbreviation OS21. From this point forward, we shall use the acronym OS to refer to the standard overlapping
Schwarz method.

Γ2 Γ1

Ω1 Ω2 Ω

Figure 1: configuration considered for illustration in section 1 and for the analysis of the linear coercive problem
in section 4.

In order to recast (2) into an unconstrained problem, we denote by up
1 , u

p
2 the port solutions, that is the

restrictions of u1 and u2 to the corresponding ports; then, we introduce the extension operators Ei : Ui → Xi

and the local port-to-bubble solution maps Fi : Ui →Xi,0 such that, given w ∈ Ui, we have Gi(Fi(w)+Eiw, vi) =
0 ∀ vi ∈Xi,0, for i = 1, 2 — note that the port-to-bubble field is uniquely determined by the corresponding port
solution. Then, we obtain the unconstrained OS2 statement:

min
up
1∈U1,u

p
2∈U2

f(up
1 , u

p
2) := ‖F1(up

1) + E1u
p
1 − F2(up

2)− E2u
p
2‖2L2(Γ1∪Γ2). (3)

The present derivation can be viewed as a static condensation of bubble degrees of freedom and is similar in
scope to the approach in [30]. Following taxonomy from the optimization literature, we might view our approach
as black-box — as opposed to all-at-once [26, section 1.1].

Note that (3) reads as a nonlinear least-squares problem: as in [10], we can thus resort to the Gauss-Newton
method which exploits the underlying structure of the objective function to enable rapid convergence of the
CB-ROM to the optimum.

Practical implementation of a CB-pMOR approach based on (2)-(3) requires to address three major tasks
(i) (data compression) the minimization statement (3) is infinite-dimensional: we should thus drastically reduce
the dimensionality of the port spaces U1,U2; (ii) (reduction of local problems) the local problems associated
with the evaluation of the port-to-bubble maps are also infinite-dimensional: we should thus resort to standard
(monolithic) MOR techniques to devise low-rank approximations of the bubble fields; (iii) (hyper-reduction of
the objective function) evaluation of the objective function in (3) requires integration over the whole curve
Γ1 ∪ Γ2: we should thus devise a low-dimensional quadrature rule that requires evaluation of the local fields in

1More rigorously, we should consider the acronym OSOS or (OS)2; however, we opted for OS2 to simplify the notation.
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a moderate number of quadrature points. In this work, we propose specialized MOR strategies to address these
three tasks: we resort to proper orthogonal decomposition (POD, [58]) based on the method of snapshots [52] to
build low-dimensional port spaces; we rely on Galerkin ROMs (see, e.g., [25, 27, 47]) with hyper-reduction based
on empirical quadrature/mesh sampling and weighting [22, 63]; finally, we consider two distinct approaches to
speed up the computation of the objective function: the former is based on empirical quadrature, while the
latter relies on the empirical interpolation method (EIM, [4]) .

Exploiting the static condensation of the bubble degrees of freedom, we can interpret the OS2 ROM as
a minimum residual formulation of the port (or interface) problem associated with the underlying PDE. We
discuss this interpretation for linear coercive problems in section 4. We remark that, similarly to [38], our
analysis exploits a variational interpretation of the Schwarz method.

The outline of the paper is as follows. In section 2, we present the variational OS2 formulation for general
nonlinear PDEs in arbitrary geometries. In section 3, we discuss the construction of local approximation spaces,
hyper-reduction of the local models and of the objective function. In section 4, we discuss the well-posedness
of the OS2 statement for linear coercive problems and we present an a priori error analysis of the OS2 ROM;
furthermore, we comment on the connection between OS and OS2 and we provide explicit convergence rates
for two representative one-dimensional problems. In section 5, we investigate performance of our method for a
nonlinear elasticity problem. Section 6 concludes the paper.

1.3 Relation to previous works

The aim of this work is to devise a CB-pMOR DD strategy for nonlinear PDEs: we emphasize the development
of an effective solution strategy based on the Gauss-Newton method and on hyper-reduction of the objective
function and of the local problems. The literature on DD for MOR and reduced-order model /full-order model
(ROM-FOM) coupling is extremely vast: CB-pMOR strategies have been presented in [33, 30, 28, 31, 43, 46] and
also recently reviewed in [9]; ROM/FOM coupling strategies have been proposed for a broad range of applications
including compressible flows [16, 36, 39, 50] incompressible flows [2, 6, 59], and structural mechanics [17, 34, 49]
— these methods do not distinguish between archetype and instantiated components and do not necessarily
involve the training of a library of local ROMs. Recently, several authors have proposed to couple iterative
Schwarz DD strategies with local non-intrusive ROMs based on neural network approximations [13, 37].

The OS2 statement shares several features with the minimization formulation first proposed in [19] in the
DD literature, for coercive linear elliptic PDEs. OS2 is also tightly linked to the method proposed in [21] for
the coupling of local and nonlocal diffusion models (see also [7]): as in [21], we interpret the OS2 statement as a
control problem; while in [21] the controls are the nonlocal volume constraint and the local boundary condition,
in this work the controls are the local solutions at ports. We also observe that the authors of [21] do not
exploit the nonlinear least-square structure of the problem and rely on a quasi-Newton scheme to approximate
the solution. We show that the choice of using the port solutions as control variables enables the definition of
configuration-independent archetype components and is thus key for CB-pMOR.

Our approach is related to the Galerkin-free approach proposed in [8] and further developed in [6]. In
[8, 6], the authors consider a HF model in the region of interest and rely on a low-dimensional expansion for
the far-field; instead of projecting the equations in the far-field onto a low-dimensional test space, they simply
rely on the objective function to compute the far-field solution coefficients (Galerkin-free). Exploiting notation
introduced in the previous section, we can state the methods in [8, 6] as:

min
u1∈X1,w2∈Z2

‖u1 − u2‖L2(Ω1∩Ω2) s.t. G1(u1, v1) = 0 ∀ v1 ∈X1,0,

where X1 denotes the HF space in Ω1 and Z2 denotes the reduced-order space in Ω2. The approach presented
in this work is more general, more robust and also leads to more efficient online calculations, at the price of a
much more involved implementation.

Our approach is linked to the minimum residual formulation in [28]: the authors consider a minimization
statement in which continuity of solution and fluxes is enforced as a constraint in the formulation, while the
global dual residual enters directly in the objective function. The imposition of continuity in the objective
function removes compatibility requirements at ports and allows the use of independent spaces in each archetype
component; in particular, the use of an overlapping partition allows us to neither explicitly enforce continuity
of the solution at ports nor to enforce continuity of normal fluxes. For highly-nonlinear PDEs, we found that
this feature remarkably simplifies the implementation of our method and ultimately increases its flexibility.

Finally, the OS2 approach can be interpreted as an alternative to the partition-of-unity method (PUM,
[1]) considered in [54]. Given local approximation spaces, PUM relies on the introduction of a partition of
unity to define a global approximation space, and on Galerkin projection to devise the ROM for the deployed
system. PUM has strong theoretical guarantees both in terms of approximation and in terms of quasi-optimality
properties. Similarly to OS2, PUM requires efficient mesh interpolation to achieve online efficiency. The major
difference between OS2 and PUM is that PUM relies on a global variational formulation based on a single
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model: on the other hand, since in OS2 local models are independent of each other, OS2 can be used to couple
different models in different regions of the domain.

2 Formulation

2.1 Preliminary definitions

We use the superscript (·)a to indicate quantities and spaces defined for a given archetype component; we further
denote by ` a generic element of the library L of archetype components. We define the archetype components
{Ωa

`}`∈L ⊂ Rd; we denote by Γa,dir
` the open subset of ∂Ωa

` where we impose Dirichlet boundary conditions, and
we denote by Γa

` the portion of ∂Ωa
` that lies inside the computational domain (“port”). For each archetype

component ` ∈ L, we define the local discrete high-fidelity (HF) finite element (FE) space Xa
` ⊂ [H1

0,Γa,dir
`

(Ωa
`)]

D

where D denotes the number of state variables, the bubble space Xa
`,0 = {v ∈ Xa

` : v|Γa
`

= 0}, and the port

space Ua
` = {v|Γa

`
: v ∈Xa

` } ⊂ [H1/2(Γa
`)]

D. We endow Xa
` with the inner product (·, ·)` and the induced norm

‖ · ‖` =
√

(·, ·)`, we define Na
` = dim (Xa

` ), and the extension operator Ea
` : Ua

` →Xa
` such that

(Ea
`w, v)` = 0 ∀ v ∈Xa

`,0, Ea
`w
∣∣
Γa
`

= w, ∀w ∈ Ua
` . (4)

We define the vector of local parameters µ` in the parameter region P`, which include geometric and material
parameters that identify the physical model in any instantiated component of type `. We define the variational
form Ga

` : Xa
` ×Xa

`,0 ×P` → R such that

Ga
` (w, v;µ`) =

Ne∑̀
k=1

∫
D`,k

ηa,e
` (w, v;µ`) dx +

∫
∂D`,k

ηa,f
` (w, v;µ`) dx (5)

where {D`,k}
Ne
`

k=1 denote the elements of the FE mesh for the archetype component Ωa
` . Furthermore, for any

` ∈ L, we define the parametric mapping Φa
` : Ωa

` ×P` → Rd that describes the deformation of the archetype
component ` for the parameter value µ` ∈ P`.

A physical system is uniquely described by a set of Ndd labels {Li}Ndd
i=1 ⊂ L, and the set of parameters

µ := (µ1, . . . , µNdd
) ∈ P :=

⊗Ndd

i=1 PLi . Given µ ∈ P, we define

(i) the mappings {Φi}Ndd
i=1 such that Φi = Φa

Li
(·;µi) for i = 1, . . . , Ndd;

(ii) the instantiated overlapping partition {Ωi = Φi(Ω
a
Li

)}Ndd
i=1 , the global open domain Ω ⊂ Rd such that

Ω =
⋃
i Ωi, the ports Γi = Φi(Γ

a
Li

) and the Dirichlet boundaries Γdir
i = Φi(Γ

a,dir
Li

), for i = 1, . . . , Ndd;

(iii) the deployed FE full, bubble, and port spaces Xi = {v ◦ Φ−1
i : v ∈ Xa

Li
}, Xi,0 = {v ◦ Φ−1

i : v ∈ Xa
Li,0},

and Ui = {v|Γi : v ∈Xi}, for i = 1, . . . , Ndd;

(iv) the extension operators Ei : Ui →Xi such that Eiw = Ea
Li

(w ◦ Φi) ◦ Φ−1
i for i = 1, . . . , Ndd;

(v) the deployed variational forms Gi : Xi ×Xi,0 → R such that

Gi(w, v) = Ga
Li

(w ◦ Φi, v ◦ Φi;µi). (6)

Given i = 1, . . . , Ndd, we further define the set of neighboring elements Neighi = {j : Ωj ∩ Ωi 6= ∅, j 6= i}, and
the partition of Γi {Γi,j = Γi ∩ Ωj : j ∈ Neighi} — note that Γi,j 6= Γj,i.

Given the archetype mesh Ta
` =

(
{xa,v

`,j }
Nv
`

j=1, T`

)
, with nodes {xa,v

`,j }
Nv
`

j=1, connectivity matrix T` and elements

{Dk,`}
Ne
`

k=1, we denote by u a generic element of X` and we denote by u ∈ RDNv
` the corresponding FE vector

associated with the Lagrangian basis of Ta
` , for all ` ∈ L. Following [57], we pursue a discretize-then-map

treatment of parameterized geometries: given the mesh Ta
Li

, we state the local variational problems in the

deformed mesh Φi
(
Ta
Li

)
=
(
{Φi

(
xa,v
j,Li

)
}
Nv

Li
j=1, TLi

)
. In section 3.2, we discuss the hyper-reduced formulation of

the local problems. Note that if (Ta
` ,u) is associated with the element u ∈X`, then (Φi(T

a
` ),u) approximates

u ◦ Φ−1.
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2.2 Model problem

We illustrate the many elements of the formulation for the two-dimensional (plane stress) nonlinear (neo-
Hookean) elasticity problem considered in the numerical experiments. The problem shares the same geometric
configuration with the problem studied in [32] for radioactive management applications. We consider the
constitutive law for the first Piola Kirchhoff stress tensor

P (F (u)) = λ2

(
F (u)− F (u)−T

)
+ λ1 log (det(F (u))) F (u)−T . (7a)

Here, F (u) = 1 + ∇u is the deformation gradient associated with the displacement u, λ1, λ2 are the Lamé
constants given by

λ1 =
Eν

1− ν2
, λ2 =

E

2(1 + ν)
, (7b)

where E is the Young’s modulus, and ν is the Poisson’s ratio. We consider the domain Ω = (0, 1)2 depicted
in Figure 2; we set ν = 0.3 and we consider E = Ek in ωk for k = 1, 2, 3. We prescribe normal homogeneous
Dirichlet conditions on the left and right boundaries; homogeneous Dirichlet conditions on the bottom boundary
Γbtm and the Neumann conditions:

P (F (u))n
∣∣
Γtop

= gtop :=

[
0
−4x1(1− x1)

]
, P (F (u))n

∣∣
Γr,q

= gr := −s
[

0
1

]
, q = 1, . . . , Qa (7c)

with s > 0.

ω1

Γtop

Γbtm

ω2

ω3 Ω

Γr,1 Γr,Qa

Figure 2: global system. Γtop and Γr,1, . . . ,Γr,Qa are associated with the stress conditions; the regions {Γr,q}q
are of equal size `r > 0, and the distance between consecutive regions is constant and equal to d > `r.

The system of equations below summarizes the problem: we seek the solution u : Ω→ R2 to the system

−∇ · P (F (u)) = 0 in Ω

u · n = 0 on {0, 1} × (0, 1)

P (F (u))n = gr on Γr

P (F (u))n = gtop on Γtop

u = 0 on Γbtm = (0, 1)× {0} \ Γr

(8)

where Γr =
⋃Qa

q=1 Γr,q. Our goal is to estimate the solution to (8) for any choice of the Young’s moduli
(E1, E2, E3) associated with the regions ω1, ω2, ω3 in [25, 30]× [10, 20]× [10, 20], any value of s ∈ [0.4, 1] in (7c),
and any Qa ∈ {2, . . . , 7}. Note that variations of Qa induce topological changes that prevent the application of
standard monolithic techniques.

We introduce the library of components Ωa
int and Ωa

ext depicted in Figure 3; in Figure 4 we show examples
of instantiated components and we identify the corresponding ports. We denote by δ > 0 the size of the
overlap. The mapping Φa

int associated with the internal component is a simple horizontal shift, while the
mapping Φa

ext associated with the external component consists in a piecewise-linear map in the horizontal
direction and the identity map in the vertical direction. The internal component is uniquely described by the
vector of parameters µint = [E1, s, xshift] where xshift denotes the magnitude of the horizontal shift; the external
component is described by the vector of parameters µext = [E1, E2, E3, dext] with dext = Qad − δ. Note that

5



the external archetype component (cf. Figure 3) corresponds to the choice Qa = Qref with Qref = 5. We then
introduce the variational forms:

Ga
int(w, v;µint) =

∫
Ωa

int

ηa,e
int (w, v;µint) dx +

∫
Γa
r

ηa,f
int(w, v;µint) dx,

Ga
ext(w, v;µext) =

∫
Ωa

ext

ηa,e
ext(w, v;µint) dx +

∫
Γa
top

ηa,f
ext(w, v;µext) dx.

(9a)

Explicit expressions of ηa,e
` and ηa,f

` can be obtained by resorting to change-of-variable formulas: given the map-
ping Φ, we denote by ∇Φ = ∇Φ−T∇ the corresponding “mapped” gradient and we define ∇s,Φ = 1

2

(
∇Φ +∇TΦ

)
and FΦ = 1 +∇Φ. Then, we have (we omit dependence on the parameter to shorten notation)

ηa,e
int (w, v) = ηa,e

ext(w, v) = P (FΦ(w)) : ∇s,Φv det(∇Φ),

ηa,f
int(w, v) = v · (gr ◦ Φ) ‖∇Φt̂‖2, ηa,f

ext(w, v) = v · (gtop ◦ Φ) ‖∇Φt̂‖2,
(9b)

where t̂ denotes the tangent vector to the surface.

Ωa
int

Γa
r

Γa
int

d + δ

h = 2d

Γa,dir
int

(a)

Ωa
ext

Γa
ext

dext = Qrefd − δ

hext = h− δ

(b)

Figure 3: geometrical configuration. Archetype components. (Qref = 5).

Γr,i

Ωi

Γi,j

Γr,j

Ωj

Γj,i

(a)

ΩNdd

Ω1

Γr,1

Γ1,Ndd

ΓNdd,1

(b)

Figure 4: geometrical configuration. Examples of deployed components. (a): i, j = 1, . . . , Qa, (b): i = 1, j =
Ndd = Qa + 1. The overlap area is marked in yellow.

2.3 Hybridized statement

2.3.1 High-dimensional formulation

We generalize below the OS2 statement introduced in section 1. Given the set of parameters µ = (µ1, . . . , µNdd
) ∈

P =
⊗Ndd

i=1 PLi , we propose the CB full-order model: find uhf = (uhf
1 , . . . , u

hf
Ndd

) ∈X :=
⊗Ndd

i=1 Xi to minimize

min
u∈X

1

2

Ndd∑
i=1

∑
j∈Neighi

‖ui − uj‖2L2(Γi,j)
s.t. Gi(ui, vi) = 0 ∀ vi ∈Xi,0, i = 1, . . . , Ndd. (10)

Note that (10) reduces to (2) for the case of two overlapping components.
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To derive the hybridized formulation, we define the port-to-bubble maps Fi : Ui → Xi,0 such that, given
w ∈ Ui,

Gi (Fi(w) + Eiw, v) = 0 ∀ v ∈Xi,0. (11a)

Note that (11a) corresponds to the FE solution to a localized PDE problem with datum w on Γi. Then, we

rewrite (10) as the unconstrained least-square problem: find uhf,p = (uhf,p
1 , . . . , uhf,p

Ndd
) ∈ U :=

⊗Ndd

i=1 Ui to
minimize

min
up∈U

1

2

Ndd∑
i=1

∑
j∈Neighi

‖up
i − Eju

p
j − Fj(u

p
j )‖2L2(Γi,j)

. (11b)

Minimization problem (11b) reads as a nonlinear least-square problem; in the following we devise a low-
dimensional reduced-order approximation of (11b) based on Galerkin projection of the port-to-bubble maps.

2.3.2 Reduced-order formulation

For all ` ∈ L, we introduce the low-dimensional archetype bubble and port spaces Z
a,b
` ⊂X`,0, Za,p

` ⊂ U` and
the extended port spaces Wa,p

` = {E`ζ : ζ ∈ Z
a,p
` } ⊂X`; we denote by n and m the dimensions of the bubble and

port spaces, respectively; for simplicity, we assume that the dimension of the spaces is the same for all archetype
components. We also define the archetype ROBs Za,b

` : Rn → Z
a,b
` and W a,b

` : Rm →W
a,b
` . Given the deployed

system, we introduce the instantiated (or deployed) bubble and port spaces Zb
i = {ζ ◦ Φ−1

i : ζ ∈ Z
a,b
Li
} and

W
p
i = {ζ ◦ Φ−1

i : ζ ∈ W
a,p
Li
} with ROBs Zb

i = [ζb
i,1, . . . , ζ

b
i,n] : Rn → Zb

i and W b
i = [ψp

i,1, . . . , ψ
p
i,m] : Rm → W

p
i ,

respectively. Then, we define the ansatz:

ûi(α̂i, β̂i) = Zb
i α̂i +W p

i β̂i, i = 1, . . . , Ndd. (12)

We observe that ûb
i = Zb

i α̂i should approximate the bubble field u|Ωi − Ei(u|Γi), while ûp
i = W p

i β̂i is an
approximation of the (extended) port field Ei(u|Γi): we refer to ûb

i , û
p
i as to the bubble and port estimates of

the solution field in the i-th component.
To obtain the low-dimensional formulation, we introduce the local residuals2 (cf. (5), (6) and (9))

R̂hf
i : Rn × Rm → Rn s.t.

(
R̂hf
i (αi,βi)

)
j

= Gi
(
ûi(αi,βi) , ζ

b
i,j

)
, i = 1, . . . , Ndd, j = 1, . . . , n, (13a)

and the approximate port-to-bubble maps F̂
hf

i : Rm → Rn such that R̂hf
i

(
F̂

hf

i (βi) ,βi

)
= 0. Computation of

the port-to-bubble maps {F̂hf

i }i is expensive due to the need to integrate over the whole computational mesh.

We thus replace the residuals {R̂hf
i }i with the empirical quadrature (EQ) approximations {R̂eq

i }i and we define

the hyper-reduced port-to-bubble maps F̂
eq

i : Rm → Rn such that

R̂eq
i

(
F̂

eq

i (βi) ,βi

)
= 0. (13b)

We discuss in section 3.2 the hyper-reduction strategy employed to construct the approximate residuals R̂eq
i ;

here, we observe that the gradient of the port-to-bubble map can be obtained by differentiating (13b):

∇Feq
i (βi) = −

(
∂αiR̂

eq
i

)−1

∂βiR̂
eq
i

∣∣∣
(αi,βi) = (F̂

eq
i (βi),βi)

(13c)

We remark that the existence and well-posedness of the port-to-bubble maps (13b) is conditioned to the existence

of solutions to the nonlinear systems of equations R̂hf
i = 0 and to the fact that ∂αiR̂

hf
i is non-singular at the

optimum. It thus depends on the particular problem of interest, and might also depend on the overlapping
partition considered and on the reduced-order approximation spaces.

We now focus on the objective function. We observe that

1

2

Ndd∑
i=1

∑
j∈Neighi

∫
Γi,j

‖ûi(x)− ûj(x)‖22 dx

=
1

2

Ndd∑
i=1

∫
Γi

 ∑
j∈Neighi:x∈Ωj

‖ûi(x)− ûj(x)‖22

 dx

=
1

2

Ndd∑
i=1

∫
Γa
Li

 ∑
j∈Neighi:Φi(x̂)∈Ωj

‖ûi(Φi(x̂))− ûj(Φi(x̂))‖22

 Jbnd
i (x̂) dx̂

2The superscript hf encodes the fact that the local residuals are computed using the HF mesh.
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where Jbnd
i = ‖det(∇Φi)∇Φ−Ti na

Li
‖2 and na

` is the outward normal to Γa
` . Note that in the last identity we

used the Narson formula; furthermore, to shorten notation, we omitted dependence of ûi, ûj on bubble and port

coefficients (cf. (12)). We introduce the HF quadrature rules {(xp
`,q, ρ

p
`,q)}

Np
`

q=1 on the archetype ports Γa
` for

` ∈ L; then, we have

1

2

Ndd∑
i=1

∑
j∈Neighi

∫
Γi,j

‖ûi(αi,βi)− ûj(αj ,βj)‖22 dx ≈
1

2

Ndd∑
i=1

ρp
Li
· ηp

i (α,β) (14a)

where α = [α1, . . . ,αNdd
] ∈ RN with N := nNdd, β = [β1, . . . ,βNdd

] ∈ RM , and

ηp
i (α,β) =


ηp
i

(
Φi(x

p
`,1);α,β

)
...

ηp
i

(
Φi(x

p
`,Np

`
);α,β

)
 (14b)

with

ηp
i (x;α,β) =

 ∑
j∈Neighi:x∈Ωj

‖ûi(x;αi,βi) − ûj(x;αj ,βj)‖22

 Jbnd
i (Φ−1

i (x)), (14c)

for i = 1, . . . , Ndd.
Evaluation of (14) is expensive due to the need to integrate over the port boundaries

⋃Ndd

i=1

⋃
j∈Neighi

Γi,j :

we should thus replace the HF quadrature vectors {ρp
` }`∈L with sparse EQ vectors {ρp,eq

` }`∈L. In conclusion,

we obtain the discrete OS2 formulation: find β̂ = [β̂1, . . . , β̂Ndd
] ∈ RM such that

β̂ ∈ arg min
β∈RM

feq(β) = F
(
F̂

eq
(β), β, {ρp,eq

` }`∈L
)

(15a)

where F̂
eq

: RM → RN is the full port-to-bubble map such that F̂
eq

(β) =
[
F̂

eq

1 (β1), . . . , F̂
eq

Ndd
(βNdd

)
]T

, and

F (α, β, {ρp,eq
` }`∈L) =

1

2

Ndd∑
i=1

ρp,eq
Li
· ηp

i (α,β). (15b)

If we denote by Q the total number of quadrature points with repetitions times the number of state variables
D,

Q := D

Ndd∑
i=1

Np
Li∑

q=1

card
{
j : Φi(x

p
Li,q) ∈ Ωj

}
H(ρp,eq

Li,q )

 , with H(x) =

{
1 if x > 0
0 otherwise

(15c)

we find that there exist P ∈ RQ×N and Q ∈ RQ×M such that

feq (β) =
1

2
‖req (β) ‖22, where req (β) = P F̂

eq
(β) + Qβ. (15d)

2.4 Discussion

The remarks below provide a number of comments on the OS2 statement introduced in the previous section.

Remark 2.1. Algebraic representation of the local ROBs. Exploiting notation introduced at the end of
section 2.1, the archetype bubble ROB Za,b

` : Rn → Z
a,b
` admits the algebraic representation Za,b

` : α ∈ Rn 7→(
Ta
` ,Z

b
`α
)

for some Zb
` ∈ RNa

`×n, while the deployed operators can be stated as Zb
i : α ∈ Rn 7→

(
Φi(T

a
Li

),Zb
Li
α
)
,

for i = 1, . . . , Ndd. Note that by virtue of the correspondence between archetype and deployed spaces, we do not
have to explicitly instantiate — and then store — the bubble ROBs for each configuration. The same applies
for the port bases.

Remark 2.2. Extension to non-homogeneous Dirichlet conditions. The OS2 formulation can readily
deal with non-homogeneous Dirichlet boundary conditions. Towards this end, for i = 1, . . . , Ndd, given the
Dirichlet datum gdir

i : Γdir
i → RD, we introduce the lift udir

i such that udir
i |Γdir

i
= gdir

i , and the ansatz

ûi(α̂i, β̂i) = udir
i + Zb

i α̂i +W p
i β̂i, i = 1, . . . , Ndd.

Here, ûb
i = Zb

i α̂i should approximate the bubble field u|Ωi − Ei((u − udir
i )|Γi) − udir

i , while ûp
i = W p

i β̂i is an
approximation of the (extended) port field Ei((u−udir

i )|Γi). Then, we can proceed as before to derive the reduced
port-to-bubble maps and the low-dimensional OS2 formulation. We refer to [24] for a thorough discussion on
the imposition of Dirichlet boundary conditions in Galerkin ROMs.
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Remark 2.3. Computation of the matrices P,Q. The matrices P,Q depend on the configuration of interest
but are independent of the port coefficients β: they can thus be defined after having instantiated the system
and before solving the optimization problem. Since the port quadrature points {Φi(xp

Li,q)}i,q are configuration-
dependent, we should resort to mesh interpolation to assemble the matrices P and Q. In this work, we rely on
structured meshes in the archetype components that enable logarithmic-in-Nv

` FE interpolations.

Remark 2.4. Hyper-reduction. As required in CB-pMOR, hyper-reduction should be defined at the component
level and is then translated to the deployed system using the mappings {Φi}i. From an algorithmic standpoint,
an archetype component ` ∈ L should be interpreted as a complex data structure that comprises (i) bubble and

port ROBs; (ii) the approximate residual R̂eq
` that enables effective computations of port-to-bubble maps; (iii) the

port quadrature rule ρp,eq
` associated with the approximate objective function (15a); and (iv) a (structured) mesh

structure for which efficient (i.e., logarithmic-in-Nv
` ) interpolation procedures are available for the computation

of the matrices P,Q.

2.5 Solution to the OS2 minimization problem

In view of the description of the numerical solution to (15), we observe that the Jacobian of the global port-to-

bubble map F̂
eq

: RM → RN is block-diagonal (cf. (13c)):

Ĵeq
F (β) = diag

[
Ĵeq
F1

(β1), . . . , Ĵeq
FNdd

(βNdd
)
]
, Ĵeq

Fi
(βi) := −

(
∂αiR̂

eq
i

)−1

∂βiR̂
eq
i

∣∣∣
(αi,βi) = (F̂

eq
i (βi),βi)

. (16a)

Then, we observe that

∇req = PĴeq
F + Q, ∇ feq =

(
PĴeq

F + Q
)T

req. (16b)

If Ndd � m (as in the cases considered e.g. in [30, 43]), the Jacobian Ĵeq
F is highly sparse; note that explicit

assembly of the local Jacobians requires to solve m linear systems of size n, while matrix-vector multiplications
Ĵeq
F v and vT Ĵeq

F require Ndd n×m matrix-vector multiplications and Ndd linear solves of size m.
The nonlinear least-square problem (15) can be solved using (i) steepest-descent or quasi-Newton methods,

or (ii) Gauss-Newton or Levenberg-Marquandt algorithms, [45].

(i) Steepest-descent or quasi Newton methods only require the explicit calculation of the objective function

feq and its gradient ∇ feq, which can be computed without explicitly forming Ĵeq
F . However, these methods

do not exploit the underlying least-square structure of the optimization problem and might thus exhibit
slower convergence and/or might be more prone to divergent behaviors.

(ii) The Gauss-Newton method (GNM) reads as

β̂
(k+1)

= β̂
(k)
−
(
∇req

(
β̂

(k)
))†

req

(
β̂

(k)
)

where (·)† denotes the Moore-Penrose pseudo-inverse. The Levenberg-Marquandt algorithm (LMA) is a
generalization of GNM that is typically more robust for poor choices of the initial condition. Note that
GNM/LMA are the methods of choice for least-squares problems; however, they require the assembly of

Ĵeq
F at each iteration.
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Algorithm 1 Solution to (15) through the Gauss-Newton method.

Inputs: α(0) = [α
(0)
1 , . . . ,α

(0)
Ndd

], β(0) = [β
(0)
1 , . . . ,β

(0)
Ndd

] initial conditions (cf. Eq. (20)), tol > 0, maxit.

Outputs: β̂ port coefficients, α̂ = F̂
eq

(β̂) bubble coefficients.

1: Compute the matrices P,Q in (15d).

2: Set β̂
(0)

= β(0) and α̂ = α(0).

3: for k = 1, . . . , maxit do
4: for i = 1, . . . , Ndd do

5: Compute αi s.t. R̂eq
i (αi,β

(k)
i ) = 0 using Newton’s method with initial condition α̂i.

6: Compute Ĵeq
Fi

(β
(k)
i ) (cf. (16)).

7: end for

8: Update α̂ = [α1, . . . ,αNdd
].

9: Compute req,(k) = Pα̂+ Qβ̂
(k)

i and ∇req,(k) = PĴeq
F + Q.

10: Compute β̂
(k+1)

= β̂
(k)
−
(
∇req,(k)

)†
req,(k)

11: if ‖β̂
(k+1)

− β̂
(k)
‖2 < tol‖β̂

(k)
‖2 then, BREAK

12: end if
13: end for

14: Return β̂ = β̂
(k+1)

and α̂ = F̂
eq

(β̂).

Algorithm 1 summarizes the overall procedure as implemented in our code, which relies on GNM to solve
(15); we envision that our approach can cope with LMA with only minor changes: we omit the details. Note
that we update at each iteration the estimates of the bubble coefficients: this is important to speed up the
solution to the local Newton problems. In addition, the algorithm requires to provide an initial guess for port
and bubble coefficients; we discuss the choice of the initial condition in section 3 (cf. Eq. (20)).

As explained in [41], for nonlinear least-squares problems of the form (15d), Gauss-Newton’s method shows

quadratic convergence if req
(
β̂
)

= 0 and a super-linear convergence if ‖req
(
β̂
)
‖2 is small. In the numerical

results, we also investigate performance of a quasi-Newton method — the limited-memory BFGS method [45].
Note that the implementation of the latter follows a similar procedure as in Algorithm 1 with only minor
changes: we omit the details.

Remark 2.5. We remark that the internal loop at lines 4-7 in Algorithm 1 and the construction of the matrices
P,Q are embarrassingly parallelizable.

3 Methodology

3.1 Data compression

In this work, we resort to global solves to construct the archetype ROBs {(Za,b
` ,W a,b

` )}`∈L, Za,b
` = [ζa,b

`,1 , . . . , ζ
a,b
`,n ],

W a,p
` = [ψa,p

`,1 , . . . , ψ
a,p
`,n ]. We generate ntrain global configurations {µ(k)}ntrain

k=1 and we denote by {
(

Ω
(k)
i , L

(k)
i

)
}i,k

the corresponding labeled partitions; we estimate the global solutions {u(k)}ntrain

k=1 using a standard FE solver
and we assemble the datasets

D` =
{
u(k)|

Ω
(k)
i
◦ Φ

(k)
i : L

(k)
i = `, k = 1, . . . , ntrain

}
⊂Xa

` , ` ∈ L; (17a)

we further define the bubble and port datasets

Db
` :=

{
w − Ea

`(w|Γa
`
) : w ∈ D`

}
, D

p
` :=

{
Ea
`(w|Γa

`
) : w ∈ D`

}
; (17b)

finally, we apply proper orthogonal decomposition (POD, [58]) based on the method of snapshots [52] with inner
product (·, ·)`, to obtain the local approximation spaces. Algorithm 2 summarizes the computational procedure.

In view of the application of the empirical quadrature procedures described in sections 3.2 and 3.3.1, for all
` ∈ L we further compute the projected coefficients {α`,j}

ntrain,`

j=1 , {β`,j}
ntrain,`

j=1

(α`,j)i =
(
ub
`,j , ζ

a,b
`,i

)
`
,
(
β`,j

)
q

=
(
up
`,j , ψ

a,p
`,q

)
`
, ` ∈ L, (18)
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for i = 1, . . . , n, q = 1, . . . ,m, j = 1, . . . , ntrain,`, where ub
`,j (resp., up

`,j) denotes the j-th bubble (resp., port)

solution in the dataset Db
` (resp., Dp

` ).

Algorithm 2 Data compression based on global solves

Inputs: training parameters {µ(k)}ntrain
k=1 ; m,n ROB dimensions.

Outputs: {(Za,b
` ,W a,b

` )}`∈L ROBs; {α(k)
` }ntrain,`

k=1 , {β(k)
` }ntrain,`

k=1 local optimal coefficients.

1: Initialize Db
` = D

p
` = ∅ for ` ∈ L.

2: for k = 1, . . . , ntrain do
3: Estimate the global solution uµ to (8) using a global FE method.

4: Update the datasets Db
` and D

p
` using (17b).

5: end for

6: Perform POD to obtain the ROBs Za,b
` = [ζa,b

`,1 , . . . , ζ
a,b
`,n ] and W a,p

` = [ψa,b
`,1 , . . . , ψ

a,b
`,n ]

7: Define the optimal coefficients {α(k)
` }

ntrain,`

k=1 , {β(k)
` }

ntrain,`

k=1 using (18).

We remark that the proposed approach — which was previously considered in [46] — might be highly
inefficient since it requires global solves that are often unfeasible in the framework of CB-pMOR. We envision
to further extend the localized training approach in [54] to address this issue. For practical applications, we
envision that global solves should be performed using a standard FE solver and then resorting to FE interpolation
routines to extract the local solutions: this procedure inevitably introduces an error at the scale of the FE mesh
size between full-order and reduced-order models. Even if this error might be negligible for applications, it
hinders the interpretations of the numerical investigations. To avoid this issue, in the numerical experiments,
we rely on the HF model (11) to generate the dataset of local solutions.

3.2 Hyper-reduction of port-to-bubble problems

We here rely on element-wise EQ, that is we replace the residuals (5) in (13a) with the weighted residual
associated with the variational form

G
a,eq
` (w, v;µ`) =

Ne∑̀
k=1

ρeq
`,k

(∫
D`,k

ηa,e
` (w, v;µ`) dx +

∫
∂D`,k

ηa,f
` (w, v;µ`) dx

)
, (19)

where ρeq
` = [ρeq

`,1, . . . , ρ
eq
`,Ne

`
]T is a sparse vector of non-negative weights.

This hyper-reduction approach, which has been considered in a number of previous works including [32], is
discussed for completeness in A. We anticipate that the algorithm takes as input the projected coefficients (18)

generated by Algorithm 2 and the associated local parameters, {(α(j)
` ,β

(j)
` , µ

(j)
` }

ntrain,`

j=1 .
We remark that, as discussed in [20], the use of elementwise- (as opposed to pointwise-) reduced quadrature

formulations leads to significantly less efficient ROMs, particularly for high-order FE discretizations. On the
other hand, elementwise reduced quadrature formulations are significantly easier to implement and can easily
cope with geometry deformations [57]. We refer to [23, 61, 62] for a thorough introduction to state-of-the-art
hyper-reduction techniques.

3.3 Hyper-reduction of the objective function

Exploiting (15b), it is easy to verify that — we here stress dependence on the parameter value µ —

F (α, β, {ρp,eq
` }`∈L, µ) =

1

2

∑
`∈L

( ∑
i:Li=`

ηp
i (α,β, µ)

)
· ρp,eq

` =
1

2

∑
`∈L

Ndd,`∑
j=1

(Gp
` (α,β, µ)ρp,eq

` )
j
,

where Ndd,` is the number of components of type ` and {Gp
` }` are suitable matrices; to provide a concrete

example, for the model problem of section 2.2, we have

Gp
int(α,β, µ) =


(ηp

1(α,β, µ))
T

...(
ηp
Qa

(α,β, µ)
)T

 , Gp
ext(α,β, µ) =

(
ηp
Qa+1(α,β, µ)

)T
.
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In order to speed up the evaluation of feq, it is necessary to build a sparse quadrature rule {ρp,eq
` }`∈L. In

the remainder of this section, we propose two different strategies to address this task: the former relies on the
solution to a suitable sparse representation problem and is tightly linked to the EQ procedure employed for
hyper-reduction of the port-to-bubble maps; the latter relies on a variant of the empirical interpolation method
(EIM, [4]) for vector-valued functions.

3.3.1 Empirical quadrature method

We denote by (α(k),β(k)) the projected bubble and port coefficients associated with the k-th configuration µ(k)

and Eq. (18); we further denote by (α
(k)
0 ,β

(k)
0 ) the bubble and port coefficients associated with the sample

means,

α
(k)
0 =


α

(k)
0,1
...

α
(k)
0,Ndd,(k)

 , β(k)
0 =


β

(k)
0,1
...

β
(k)
0,Ndd,(k)

 , k = 1, . . . , ntrain, (20a)

where α
(k)
0,i = αavg

L
(k)
i

and β
(k)
0,i = βavg

L
(k)
i

, with

αavg
` :=

1

ntrain,`

ntrain,`∑
j=1

α`,j , βavg
` :=

1

ntrain,`

ntrain,`∑
j=1

β`,j , ∀ ` ∈ L. (20b)

We anticipate that (20) is used in the numerical results to initialize the Gauss-Newton’s algorithm.

Given the random samples s(k) iid∼ Uniform(0, 1), we define the matrices

C` =


Gp
` (α̃(1), β̃

(1)
, µ(1))

...

Gp
` (α̃(ntrain), β̃

(ntrain)
, µ(ntrain))

1T

 , ∀ ` ∈ L, (21a)

where 1 is the vector with entries all equal to one, and α̃(k) and β̃
(k)

are random convex interpolations between

the projected bubble and port coefficients (α(k),β(k)) and the initial conditions for the GNM (α
(k)
0 ,β

(k)
0 ),

α̃(k) = (1− s(k))α(k) + s(k)α
(k)
0 , β̃

(k)
= (1− s(k))β(k) + s(k)β

(k)
0 , k = 1, . . . , ntrain. (21b)

The first ntrain blocks of C` are associated to the “manifold accuracy constraints”, while the last row is associated
to the “constant accuracy constraint” [63]. Then, we compute the empirical weights {ρp,eq

` }`∈L by approximately
solving the non-negative least-square problem

min
ρ∈RN

p
`

‖C` (ρ− ρp
` ) ‖2, s.t. ρ ≥ 0 (21c)

up to a tolerance tolobj
eq using the Matlab function lsqnonneg, which implements the iterative procedure proposed

in [35].

The choice of the port and bubble coefficients {(α̃(k), β̃
(k)

)}k for the “accuracy constraints” in (21a) is
justified by the fact that the objective function should be accurate for all port and bubble coefficients considered
during the GNM iterations; this choice is found to empirically improve the conditioning of the non-negative

least-square problem and ultimately improve performance — compared to the choice α̃(k) = α(k), β̃
(k)

= β(k).
The constant function accuracy constraint, which was first proposed in [63] for hyper-reduction of monolithic
ROMs, is important to bound the `1 norm of the empirical weights; we have indeed

‖ρp,eq
` ‖1 ≤ |1 · (ρp,eq

` − ρp
` )| + ‖ρp

` ‖1 ≤ ‖C` (ρp,eq
` − ρp

` ) ‖2 + ‖ρp
` ‖1, ∀ ` ∈ L. (22)

We also observe that, even if hyper-reduction is ultimately performed at the local level, for each archetype
component, the EQ procedure requires global solves to define the matrices {C`}`.
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3.3.2 Empirical interpolation method

The objective function F is designed to penalize the jump of the solution at the components’ interface. Since
the jumps are dictated by the behavior of the port modes {ψa,p

`,i }mi=1 on the ports Γ`, we propose to replace the
integral in (14) with the discrete sum

1

2

Ndd∑
i=1

∑
j∈Neighi

∫
Γi,j

‖ûi(αi,βi)− ûj(αj ,βj)‖22 dx ≈
1

2

∑
q∈Ip,eq`

(ηp
i (α,β, µ))q , (23)

where I
p,eq
` ⊂ {1, . . . , Np

` } are chosen so that we can adequately recover any element of Z
a,p
` based on the

information at the points {xp
`,j}j∈Ip,eq`

. Note that the approximation (23) is an inconsistent approximation of

the L2 integral (14); however, we expect — and we verify numerically — that the minimization of the right-hand
side of (23) should control the jump at elements’ interfaces and ultimately ensure accurate performance.

We here rely on a variant of EIM to select the quadrature indices I
p,eq
` . EIM was first proposed in [4]

to identify accurate interpolation points for arbitrary sets of scalar functions. In this work, we resort to the
extension of EIM to vector-valued fields considered in [56]. We refer to the MOR literature for other variants of
EIM for vector-valued fields; in particular, we observe that the present algorithm returns exactly m quadrature
points: we refer to [40, Algorithm 2] and to [14] for extensions of EIM that resort to over-collocation to improve
performance.

Algorithm 3 reviews the computational procedure: note that, for each ` ∈ L, the algorithm takes as input
the port functions {ψa,p

`,i }mi=1 and returns the indices Ip,eq
` . Given the set of indices Ip,eq

` and the space Z
a,p
` , we

denote by I`,m the approximation least-square operator

I`,m(v) := I (v; Ip,eq
` ,Za,p

` ) = arg min
ψ∈Za,p

`

∑
j∈Ip,eq`

‖v(xp
`,j)− ψ(xp

`,j)‖
2
2, ∀ v ∈ C(Γ`;RD), ` ∈ L.

Note that for D > 1 I`,m is not an interpolation operator.

Algorithm 3 Empirical Interpolation Method for vector-valued fields

Input: {ψa,p
`,i }mi=1, ` ∈ L

Output: Ip,eq
` = {i?`,1, . . . , i?`,m}

Set i?`,1 := arg max
j∈{1,...,Np

` }
‖ψa,p

`,1 (xp
`,j)‖2, and define I`,1 := I

(
·; {i?`,1}, span{ψa,p

`,1 }
)

for m′ = 2, . . . ,m do

Compute rm′ = ψa,p
`,m′ − I`,m′−1

(
ψa,p
`,m′

)
Set i?`,m′ := arg max

j∈{1,...,Np
` }
‖rm′(xp

`,j)‖2

Update I`,m′ := I
(
·; {i?`,j}m

′

j=1, span{ψa,p
`,j }m

′

j=1

)
.

end for

4 Analysis and interpretation for linear coercive problems

We analyze the OS2 statement for linear coercive problems. To simplify the presentation, we consider the
case with two subdomains depicted in Figure 1. We denote by (X, ‖ · ‖Ω) the global ambient space such that
H1

0 (Ω) ⊂X ⊂ H1(Ω); given the ports Γ1,Γ2 (cf. Figure 1), we define the bubble and port spaces:

Xi,0 := {v ∈Xi : v|Γi = 0} , Ui := {v|Γi : v ∈Xi} , i = 1, 2.

We introduce the bilinear form a : X ×X → R with continuity constant γ and coercivity constant α > 0, and
we introduce the linear functional f ∈X′. Then, we introduce the model problem:

find u? ∈X : a(u?, v) = f(v) ∀ v ∈X. (24)

In section 4.1, we derive the port formulation of the problem (24); in section 4.2, we present two important
results for the port problem; in section 4.3 we exploit the results of the previous section to derive an a priori
bound for the OS2 statement; in section 4.4, we comment on an alternative variational interpretation of the
OS2 statement; finally, in section 4.5, we derive explicit estimates for two representative model problems.
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Given v ∈ Xi,0, we denote by vext ∈ X the trivial extension of v to Ω that is zero in Ω \ Ωi. We assume
that a and f are associated to a differential (elliptic) problem; in particular, we assume that

a(u, vext) = a
(
u
∣∣
Ωi
, v
)
, ∀ v ∈Xi,0. (25)

Note that by construction we have f(vext) = f (v) for all v ∈Xi,0.

4.1 Port formulation

We define the tensor-product space U = U1×U2 endowed with the inner product 〈w, v〉 =
∑
i=1,2(wi, vi)H1/2(Γi)

and the induced norm |||·||| =
√
〈·, ·〉. We introduce the local solution operators Ti : Ui →Xi and Gi : X′ →Xi,0

such that:
(Tiλ)

∣∣
Γi

= λ, a(Tiλ, v) = 0 ∀ v ∈Xi,0; (26)

(Gif)
∣∣
Γi

= 0, a(Gif, v) = f(v) ∀ v ∈Xi,0. (27)

Since the elements of Xi,0 can be trivially extended to zero in Ω \ Ωi, we have that the form a is continuous
and coercive in Xi,0 with continuity and coercivity constants bounded from above and below by γ and α, due
to the fact that Xi,0 ⊂X.

Therefore, Ti and Gi are well-defined linear bounded operators. By comparing the previous definitions with
(11a), we note that the affine operators Fi := Ti − Ei + Gif correspond to the port-to-bubble maps that are
exploited to derive the hybridized formulation in section 2: we have u?|Ωi = Fiλ

?
i + Eiλ

?
i = Tiλ

?
i +Gif , where

λ?i ∈ Ui is equal to u?|Γi .
Given the trace operators χΓ1

: X2 → U1, χΓ2
: X1 → U2, we introduce the operators T : U → U and

G : X′ → U such that

Tλ =

[
χΓ1T2λ2

χΓ2T1λ1

]
, Gf =

[
χΓ1G2f
χΓ2G1f

]
, ∀λ ∈ U, f ∈X′. (28a)

Finally, we introduce the port problem: find λ? ∈ U such that

ap(λ?, v) = fp(v) ∀ v ∈ U, where ap(λ, v) := 〈λ− Tλ, v〉, fp(v) := 〈Gf, v〉. (28b)

Remark 4.1. Connection with OS methods. We can rewrite standard additive and multiplicative OS
iterations using the operators introduced in (28). In more detail, multiplicative OS iterations can be written as
(see, e.g., [48, Chapter 1])[

Id 0
−χΓ2

T1 Id

]
λ(k+1) =

[
0 χΓ1

T2

0 0

]
λ(k) + Gf, k = 1, 2, . . . ,

while additive OS iterations can be written as[
Id 0
0 Id

]
λ(k+1) =

[
0 χΓ1

T2

χΓ2
T1 0

]
λ(k) + Gf, k = 1, 2, . . . .

These identities imply that any fixed point of the OS iterations satisfies (28b) and thus OS and OS2 converge to
the same limit as k → +∞. As discussed in the introduction, this connection between OS and OS2 formulations
is valid for both linear and nonlinear problems; however, the analysis is strictly restricted to the linear case.

4.2 Analysis of the port problem

Theorem 4.1 clarifies the relationship between the variational statement (24) and the port problem (28); on the
other hand, Theorem 4.2 is key for the analysis of the OS2 ROM. Proofs are postponed to B. The results rely
on the introduction of a partition-of-unity (PoU, [1]) {φi}2i=1 ⊂ Lip(Ω;R) associated with {Ωi}2i=1 such that

2∑
i=1

φi(x) = 1,

{
0 ≤ φi(x) ≤ 1 ∀x ∈ Ω,

φi(x) = 0 ∀x /∈ Ωi,
i = 1, 2.

Proposition 4.1. Let u? be the solution to (24). Then, λ? = (u?|Γ1
, u?|Γ2

) solves (28b). Conversely, if λ? is

a solution to (28b), then u? =
∑2
i=1 (Tiλ

?
i +Gif)φi solves (24).

Proposition 4.2. Let the operator T in (28a) be compact. Then, the form ap : U × U → R defined in (28b)
is inf-sup stable and continuous, that is

αp = inf
w∈U

sup
v∈U

ap(w, v)

|||w||||||v|||
> 0, γp = sup

w∈U
sup
v∈U

ap(w, v)

|||w||||||v|||
<∞. (29)
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The proof of the compactness of the operator T depends on the underlying PDE. For several problems, includ-
ing the Laplace equation, the advection-diffusion-reaction equation, the Stokes equations, and the Helmholtz’s
equation, we can prove compactness of the operator T using Caccioppoli’s inequalities: we refer to [55, Ap-
pendix C] and also [53] for further details. We further observe that Theorem 4.2 does not provide an explicit
relationship among the stability constant αp in Theorem 4.2, the PDE of interest and the size of the overlap.
We envision that the derivation of explicit bounds for the stability constant αp in terms of the PDE of interest
and the size of the overlap will shed light on the underlying properties of the OS2 formulation and might also
lead to new algorithmic developments. We note that there is a vast body of works that address the derivation
of sharp estimates for the convergence of overlapping Schwarz methods (see, e.g., [11, 15]): the derivation of
analogous results for this setting is beyond the scope of the present paper.

As discussed in B, proofs of Propositions 4.1 and 4.2 rely on the fact that, if we introduce the spaces
X1,2 = {v|Ω1∩Ω2 : v ∈X} and X0

1,2 = {v ∈X1,2 : v|Γ1∪Γ2 = 0}, the problem of finding u ∈X1,2 such that

a(u, v) = 0 ∀ v ∈X0
1,2, u|Γ1

= λ1, u|Γ2
= λ2,

admits a unique solution for any (λ1, λ2) ∈ U. This result is trivial for coercive problems, but it is significantly
less trivial — and requires additional assumptions — for inf-sup stable problems and is not addressed in this
work. On the other hand, we envision that the analysis for nonlinear PDEs requires more sophisticated tools
and is beyond the scope of this work.

4.3 Analysis of the OS2 statement

We consider the following OS2 formulation for the linear problem (24):

find λ̂ = arg min
λ∈Zp

∣∣∣∣∣∣∣∣∣λ− T̂ λ− Ĝf ∣∣∣∣∣∣∣∣∣. (30)

Note that (30) corresponds to the OS2 statement (11) with the important difference that we replace the L2

norm with the H1/2 norm |||·|||. In particular, in our work, the space Zp in (30) is given by the tensor product of

the local port spaces, Zp = Z
p
1 ×Z

p
2 , and T̂ , Ĝ are associated to the approximate local solution operators that

are obtained by Galerkin projection. We further introduce the OS2 formulation with perfect local operators:

find λ̃ = arg min
λ∈Zp

|||λ− Tλ−Gf |||. (31)

We observe that (31) corresponds to the minimum residual formulation of the port problem (28); we have
indeed

|||λ− Tλ−Gf ||| = sup
v∈U

〈λ− Tλ−Gf, v〉
|||v|||

= sup
v∈U

ap(λ, v)− fp(v)

|||v|||
.

Recalling the result in [60], we thus have∣∣∣∣∣∣∣∣∣λ? − λ̃∣∣∣∣∣∣∣∣∣ ≤ γp

αp
inf
λ∈Zp

|||λ? − λ|||, (32)

which proves the quasi-optimality of the OS2 statement with perfect local operators (31).

To estimate the error
∣∣∣∣∣∣∣∣∣λ̂− λ̃∣∣∣∣∣∣∣∣∣, we resort to a perturbation analysis. We denote by α̂p and γ̂p the stability

and continuity constants associated with the problem (30): it is possible to resort to a perturbation analysis
to estimate these constants; since the argument is completely standard, we omit the details. We define the
quantities εT and εG as follows:

εT := sup
ψ∈Zp

∣∣∣∣∣∣∣∣∣(T − T̂ )ψ
∣∣∣∣∣∣∣∣∣

|||ψ|||
, εG :=

∣∣∣∣∣∣∣∣∣(G− Ĝ)f
∣∣∣∣∣∣∣∣∣. (33)

Then, it is possible to show that

∣∣∣∣∣∣∣∣∣λ̃− λ̂∣∣∣∣∣∣∣∣∣ ≤ 1

α2
p

M (γp + γ̂p)

∣∣∣∣∣∣∣∣∣Ĝf ∣∣∣∣∣∣∣∣∣
α̂p

εT +
√
M
(
γ̂pεG +

∣∣∣∣∣∣∣∣∣Ĝf ∣∣∣∣∣∣∣∣∣εT

) . (34)

We postpone the proof of (34) to B.
By combining (34) with (32), we obtain the following result. We observe that (35) is the sum of two terms:

the first term is associated with the approximation properties of the port space, while the second term is directly
linked to the accuracy of the local solution operators.
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Proposition 4.3. Let γp, αp be the continuity and stability constants of the form ap and let γ̂p, α̂p be the

continuity and stability constants of the form âp(λ, v) = 〈λ− T̂ λ , v〉. Given the M -dimensional space Zp ⊂ U,
we have

∣∣∣∣∣∣∣∣∣λ? − λ̂∣∣∣∣∣∣∣∣∣ ≤ 1

αp

γp inf
λ∈Zp

|||λ? − λ||| +
1

αp

M (γp + γ̂p)

∣∣∣∣∣∣∣∣∣Ĝf ∣∣∣∣∣∣∣∣∣
α̂p

εT +
√
M
(
γ̂pεG +

∣∣∣∣∣∣∣∣∣Ĝf ∣∣∣∣∣∣∣∣∣εT

) . (35)

4.4 Alternative variational interpretation of the OS2 statement

Following [38], we might also consider the alternative variational framework of the OS limit formulation (see

also [48, Chapter 1.5.2]): find (ub
1 , u

p
1 , u

b
2 , u

p
2) ∈

⊗2
i=1 Xi,0 ×Ui such that a

(
ub
i + Eiu

p
i , vi

)
= f(vi) ∀ vi ∈Xi,0, i = 1, 2;(

up
1 − χΓ1

(
ub

2 + E2u
p
2

)
, ψ1

)
H1/2(Γ1)

+
(
up

2 − χΓ2

(
ub

1 + E1u
p
1

)
, ψ2

)
H1/2(Γ2)

= 0 ∀ψ = (ψ1, ψ2) ∈ U;

(36)
where E1, E2 are the extension operators, ub

1 , u
b
2 are the bubble solutions and up

1 , u
p
2 are the port solutions. Given

the reduced spaces Zb
i ⊂ Xi,0 and Z

p
i ⊂ Ui, and the approximate port-to-bubble maps F̂i = T̂i + Ĝif − Ei,

for i = 1, 2, the reduced-order OS2 formulation can be stated as follows: find (ûb
1 , û

p
1 , û

b
2 , û

p
2) ∈

⊗2
i=1 Z

b
i ×Z

p
i

such that a
(
ûb
i + Eiû

p
i , vi

)
= f(vi) ∀ vi ∈ Zb

i , i = 1, 2;(
ûp

1 − χΓ1

(
ûb

2 + E2û
p
2

)
, ψ1

)
H1/2(Γ1)

+
(
ûp

2 − χΓ2

(
ûb

1 + E1û
p
1

)
, ψ2

)
H1/2(Γ2)

= 0 ∀ψ = (ψ1, ψ2) ∈ Z̃p;

(37a)

where Z̃p ⊂ U is the M -dimensional space given by

Z̃p =
{(
ζp
1 − χΓ1 T̂2(ζp

2 ), ζp
2 − χΓ2 T̂1(ζp

1 )
)

: ζp
i ∈ Z

p
i , i = 1, 2

}
, (37b)

and T̂iζ satisfies T̂iζ = ub(ζ) + Eiζ with ub
i (ζ) ∈ Zb

i and a(ub
i (ζ) + Eiζ, v) = 0 for all v ∈ Zb

i .
The proof of (37) is straightforward, and it is provided for completeness in B. Note that the OS2 statement

reads as a Petrov-Galerkin projection of (36) for a suitable choice of the test space Z̃p. We envision that (37)
could be exploited to devise an alternative error analysis for the OS2 statement. We do not address this issue
in the present work.

4.5 Explicit convergence rates for two one-dimensional model problems

Given Ω = (−1, 1) and the partition Ω1 = (−1, δ), Ω2 = (−δ, 1), we study the convergence of (multiplicative)
OS and OS2 for the problems {

u′′ = 2 in Ω,
u(−1) = u(1) = 1;

(38a)

and {
−u′′ + γu′ = 0 in Ω,
u(−1) = 0, u(1) = 1;

(38b)

in the limit |δ| � 1.
The analysis can be readily extended to the additive OS method.
For OS2, we resort to the gradient descent method with optimal choice of the step size, and to the Gauss-

Newton method (OS2-GN) — the choice of the gradient descent method is intended to simplify calculations
(compared to quasi-Newton methods). The motivation of this analysis is twofold: first, we show that the use
of gradient-based methods — as opposed to Gauss-Newton — is increasingly sub-optimal as δ → 0; second, we
provide explicit estimates for the constants αp and γp of Proposition 4.2 for two representative model problems.

We denote by ûi the approximation of the solution in Ωi for i = 1, 2; we define β1 = û1(δ) and β2 = û2(−δ).
We can show that OS and OS2 iterations can be written as

β(k) = Pos
δ β

(k−1) + Fos
δ , β(k) = Pos2

δ β(k−1) + Fos2
δ ,

for k = 1, 2, . . . and suitable choices of
(
Pos
δ ,F

os
δ

)
and

(
Pos2
δ ,Fos2

δ

)
. On the other hand, since the problems are

linear, OS2-GN reduces to a direct method and can be stated as

Aδβ = Fδ
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for suitable choices of
(
Aδ,Fδ

)
.

In B, we show that the spectral radii ρos
δ and ρos2

δ of the transition matrices Pos
δ and Pos2

δ satisfy

ρos
δ ∼ 1− 4δ, ρos2

δ ∼ 1− 4δ2 for (38a);

ρos
δ ∼ 1− 2

eγ + 1

eγ − 1
γδ, ρos2

δ ∼ 1− eγ + 2

8(eγ − 1)
γ2δ2 for (38b);

(39a)

while the condition number of the linear system associated to OS2-GN satisfies

cond (Aδ) =
1

δ
, for (38a);

cond (Aδ) ∼
4(eγ − 1)

4(eγ + 2)γ
δ−1 for (38b);

(39b)

and the constants αp and γp defined in Theorem 4.2 satisfy

αp =
2δ

1 + δ
, γp =

2

1 + δ
, for (38a);

αp ∼
4(eγ + 2)γδ

2(eγ − 1)
, γp ∼ 2, for (38b);

(39c)

As expected, OS, OS2 and OS2-GN become increasingly ill-conditioned as δ decreases to zero and do not
converge for δ = 0; however, we observe that for small values of δ OS exhibits significantly faster convergence
rates than OS2 based on the gradient-descent method: this observation further strengthens the importance of
exploiting the least-square structure of the OS2 statement.

5 Numerical results

5.1 Assessment metrics and training parameters

We train the CB-ROM based on ntrain = 70 global parameters Ξtrain = {µ(k)}ntrain

k=1 such that

(E
(k)
1 , E

(k)
2 , E

(k)
3 , s(k))

iid∼ Uniform
(
[25, 30]× [10, 20]2 × [0.4, 1]

)
, Q(k)

a
iid∼ Uniform ({2, . . . , 7}) ;

on the other hand, we assess performance based on ntest = 20 out-of-sample global parameters Ξtest = {µ̃(j)}ntest
j=1

generated using the same distribution. In view of the assessment, we also define the PoU {φi}Ndd
i=1 ⊂ Lip(Ω;R)

associated with the partition {Ωi}Ndd
i=1 such that

Ndd∑
i=1

φi(x) = 1,

{
0 ≤ φi(x) ≤ 1 ∀x ∈ Ω,

φi(x) = 0 ∀x /∈ Ωi,
i = 1, . . . , Ndd.

Given u ∈X :=
⊗Ndd

i=1 Xi, we define the PoU operator

Ppu[u] :=

Ndd∑
i=1

φi ui ∈ H1(Ω). (40)

Note that we omit the dependence of {φi}i and also Ndd on the parameter to shorten notation. Finally, we
define the out-of-sample average and maximum prediction errors

Eavg :=
1

ntest

∑
µ∈Ξtest

‖Ppu[uhf
µ ]− Ppu[ûµ]‖H1(Ω)

‖Ppu[uhf
µ ]‖H1(Ω)

, (41a)

Emax := max
µ∈Ξtest

‖Ppu[uhf
µ ]− Ppu[ûµ]‖H1(Ω)

‖Ppu[uhf
µ ]‖H1(Ω)

. (41b)

As mentioned in section 3, we here resort to the HF CB solver to generate HF data for training and test, to
simplify interpretation of the numerical results. In several figures, we compare the prediction error (41a) with
the error associated with the mapped H1(Ωa

Li
) projection of uhf

µ ◦ Φi, for i = 1, . . . , Ndd,

Eopt
avg :=

1

ntest

∑
µ∈Ξtest

‖Ppu[uhf
µ ]− Ppu[ûopt

µ ]‖H1(Ω)

‖Ppu[uhf
µ ]‖H1(Ω)

, with
(
ûopt
µ

)
i

=
(

Π
Z

a,b
Li
∪Wa,p

Li

uhf
µ ◦ Φi

)
◦ Φ−1

i , (42)
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for i = 1, . . . , Ndd. Note that (42) is not optimal — that is, it is not the relative H1(Ω) projection error associated
with the instantiated spaces — but it can be shown to be quasi-optimal exploiting [1, Theorem 1]. We omit the
details.

We resort to a P2 FE discretization with N e
int = 1120 and N e

ext = 3960 elements, and Np
int = 272 and

Np
ext = 200 port quadrature points. We emphasize that the HF component-based discretization is constructed

to ensure that the local grids match exactly for Qa = Qref (cf. Figure 3); however, we remark that internal and
external meshes do not lead to a global conforming discretization for any other value of Qa.

All simulations are performed in Matlab 2020b on a commodity laptop. The implementation of the method
does not resort to any parallelization of offline and online solves.

5.2 Reduced-order model with HF quadrature

We show the performance of the OS2 ROM without hyper-reduction. First, we show the behavior of the
percentage of retained energy of the POD eigenvalues {λi}i of the Gramian matrix associated with the snapshot

set. To facilitate visualization, we show the average in-sample error En = 1−
∑n
i=1 λi∑ntrain
j=1 λj

for several values of n,

for port and bubble components, and for the two archetype components. We observe that the POD eigenvalues
decay extremely rapidly, for both components.
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Figure 5: behavior of the average squared in-sample error En = 1 −
∑n
i=1 λi∑ntrain
j=1 λj

for several values of n, for port

and bubble components, and for the two archetype components.

In Figure 6, we compare the average error Eavg (41a) associated with the OS2 ROM for several values of m
and n = m and n = 2m, with the average error Eopt

avg (42) obtained through projection. We observe that the
OS2 ROM achieves near-optimal performance for all choices of the port and bubble ROBs. We also observe
that doubling the number of port modes m by keeping the same number of bubble modes n does not lead to
relevant differences in terms of both projection and OS2 prediction error. In the remainder, we set m = n.
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Figure 6: out-of-sample performance of OS2 ROM without hyper-reduction for several values of m, with n = m
and n = 2m; comparison with optimal (“opt”) average error Eopt

avg (42)
.

Figure 7 shows the behavior of the solution over a vertical slice of the domain for a test configuration with
Qa = 7; boundaries of the Qa internal subdomains associated with repositories and the external subdomain
are marked as black dots in 7 (a); the vertical slice, drawn as a purple dashed line, corresponds to points
(x, y) such that x = x̄ = 0.43, 0 ≤ y ≤ 1. Points of the slice belong to either the instantiated component
Ω3 or Ω8 (or both). We apply the partition of unity operator (40) to generate globally-defined solutions. We

compute therefore approximate solutions Ppu[û
(n=2)
? ] Ppu[û

(n=10)
? ] corresponding to two choices of the ROB size

n = m = 2 and n = m = 10 and for subscript ? corresponding to x and y components; we also compare
the reduced solutions with the HF globally defined solutions Ppu[uhf

? ]. We observe that the choice n = m = 2
enables qualitatively accurate approximations of the vertical displacement (cf. 7(c)), but extremely inaccurate
approximations of the horizontal displacement (cf. Figure 7(b)), while the choice n = m = 10 leads to accurate
predictions for both horizontal and vertical displacements.

5.3 Hyper-reduction of the port-to-bubble maps

Figure 8 investigates performance of the EQ rule for different tolerances toleq (cf. A): Figures 8(a) and 8(b)
show the behavior of the out-of-sample relative error compared to the OS2 ROM with HF quadrature (dubbed
HFQ); in Figure 8(a) we depict Eavg, in Figure 8(b) we depict Emax. Figures 8(c) and 8(d) show the percentage
of sampled elements as a function of m, for the two archetype components and for several tolerances. We observe
that for toleq ≤ 10−10 the hyper-reduced OS2 ROM is as accurate as the OS2 ROM with HF quadrature for all
values of m considered. We further observe that the percentage of sampled elements is between three and five
times larger in the internal component — since N e

ext ≈ 3.5N e
int, we have that the absolute number of sampled

elements is nearly the same for the two components.
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(a) geometry configuration and slice

(b) horizontal displacement (c) vertical displacement

Figure 7: visualization of the horizontal and vertical displacement components for a vertical slice.
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Figure 8: hyper-reduction of the port-to-bubble maps for several tolerances toleq and port space sizes m, with
n = m. Behavior of the (a) average, (b) max out-of-sample prediction. (c)-(d) percentage of sampled elements
in Ωa

int and Ωa
ext.
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5.4 Hyper-reduction of the objective function

In Figure 9, we show the behavior of the L∞ error

E∞avg,eim(`,m) :=
1

ntrain,`

ntrain,`∑
k=1

∥∥∥up
`,k − I`,m[upk]

∥∥∥
∞

where {up
`,k}

ntrain,`

k=1 are the port fields associated with the `-th component and employed to generate the port
basis (cf. Algorithm 2). We observe near-exponential convergence of the L∞ error for both components;
interestingly, the interpolation error for the internal component is one order of magnitude larger than the error
for the external component.

2 4 6 8
10−7

10−6

10−5

10−4

10−3

m

E
∞ a
v
g
,e

im

(a) Ωa
int

2 4 6 8
10−7

10−6

10−5

10−4

10−3

m

E
∞ a
v
g
,e

im

(b) Ωa
ext

Figure 9: application of the EIM procedure for vector-valued fields (cf. Algorithm 3). (a)-(b) behavior of the
in-sample L∞ approximation error E∞avg,eim for the internal and the external component.

In Figure 10, we report the percentage of sampled quadrature points by the two hyper-reduction procedures.
By construction, EIM selects mp,eq = m points; on the other hand, the number of points selected by the EQ
procedure of section 3.3.1 weakly depends on the size m of the port basis.
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Figure 10: hyper-reduction of the objective function for internal and external archetype components, with
respect to m, with n = m. (a) percentage of sampled quadrature points based on EIM. (b)-(c) percentage of
sampled quadrature points based on the EQ procedure, for two tolerances toleq,p.

In Figure 11, we investigate the performance of the fully hyper-reduced ROM: Figure 11(a) shows the
behavior of the prediction error (41a), while Figure 11(b) shows the behavior of the maximum wall-clock time
over the test set. We observe that the speed-up due to hyper-reduction of the objective function is of the order
1.5 for all choices of m; on the other hand, performance of the two considered hyper-reduction strategies is
comparable for all tests. In Figure 11(c) the out-of-sample error distributions are depicted in the case without
hyper-reduction on the objective function for different values of m.
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Figure 11: hyper-reduction of the objective function based on EIM and EQ. (a) worst out-of-sample performance
of the hyper-reduced OS2 ROM for several choices of m, with n = m. (b) maximum computational cost over the
test set. (c) Out-of-sample error distributions for the EQ+HFQ case. Results are based on the EQ tolerance
toleq = 10−10 for the local problems and the tolerances toleq,p = 10−4 and toleq,p = 10−6 for the objective
function (for EQ+EQ).

In Figure 12 we show the speed-up factor of the hyper-reduced OS2 solvers with respect to a representative
monolithic HF solver of comparable accuracy for different numbers of subdomains. The monolithic P2 FE solver
runs in approximately3 2.7806 [s] for Ndd = 2 and in 9.9971 [s] for Ndd = 8; the CB HF solver (10) that is used
to generate training and test data is roughly a factor three slower than the corresponding monolithic solver.
We define the speed-up factor as:

speed-up(Ndd) :=
thf(Ndd)

tOS2(Ndd)

where thf is the estimated execution time of the monolithic HF solver averaged over 5 tests and tOS2 is the
execution time associated with the CB ROM, averaged over the same 5 configurations, for Ndd ∈ {3, . . . , 8}.
We perform hyper-reduction of the port-to-bubble maps using the tolerance toleq = 10−10 and we consider the
tolerances toleq,p = 10−4 and toleq,p = 10−6 for the hyper-reduction of the objective function (for the EQ+EQ
case).

3Computational times are based on an average over 5 tests for each number of subdomains; the computational grid has 17177
FE nodes for Ndd = 2 and it has 38637 nodes for Ndd = 8.
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Figure 12: Speed-up of the OS2 ROMs with respect to the HF monolithic solver for several values of the number
of subdomains. (a) performance for m = 8; (b) performance for m = 16. EQ tolerance for the port-to-bubble
maps is set equal to toleq = 10−10.

We observe that the speed-up factors depicted in Figure 12 depend weakly on the number of subdomains.
The EIM method leads to slightly larger speed-ups than the EQ method for m = n = 16 (cf. Figure 12(b)),
while performance is comparable for the case m = n = 8 (Figure 12(a)). We envision that more effective
implementations of Algorithm 1 — which rely on parallelization of the port-to-bubble loop at Lines 4-7 and
on pointwise EQ hyper-reduction of the port-to-bubble maps, as opposed to element-wise EQ — will lead to
significantly larger speed-ups.

5.5 Optimization strategy: comparison between Gauss-Newton, quasi-Newton
and overlapping Schwarz

We compare the performance of the Gauss-Newton method and the quasi-Newton method discussed in section
2.5 for various choices of m and n = m; to provide a concrete reference, we also consider the multiplicative
overlapping Schwarz method with Dirichlet interface conditions. More precisely, we implement the iterative
procedure described in Algorithm 4: note that the OS method simply requires the solution to a sequence
of problems on the subdomains with information propagating through the boundary conditions; since the
discretization is not conforming across components, we should define the i-th port mode using projection (cf.

Line 5, Algorithm 4). Note that at step i of the for loop at Lines 4− 7 we use the values of β̂i, . . . , β̂Ndd
at the

previous iteration and the values β̂1, . . . , β̂i−1 at the current iteration: the for loop is thus not parallelizable. We
set tol = 10−6 in Algorithm 1 (cf. Line 11) and we consider the same termination criterion for the quasi-Newton
solver and the OS solver. In this test, we perform hyper-reduction at the local level (EQ tolerance 10−10), but
we do not hyper-reduce the objective function.
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Algorithm 4 Overlapping Schwarz method.

Inputs: α(0) = [α
(0)
1 , . . . ,α

(0)
Ndd

], β(0) = [β
(0)
1 , . . . ,β

(0)
Ndd

] initial conditions (cf. Eq. (20)), tol > 0, maxit.

Outputs: β̂ port coefficients, α̂ = F̂
eq

(β̂) bubble coefficients.

1: Set β̂
(0)

= β(0) and α̂ = α(0).

2: for k = 1, . . . , maxit do

3: Initialize α̂(k) = α̂(k−1) and β̂
(k)

= β̂
(k−1)

.

4: for i = 1, . . . , Ndd do

5: Update β̂
(k)

i ∈ arg minβ∈Rm
∑
j∈Neighi

‖W p
i β − Zb

j F̂
eq

j (β̂
(k)

j ) − W p
j β̂

(k)

j ‖2L2(Γi,j)
.

6: Update α̂
(k)
i = F̂

eq

i (β̂
(k)

i ).
7: end for

8: if ‖β̂
(k)
− β̂

(k−1)
‖2 < tol‖β̂

(k)
‖2 then, BREAK

9: end if
10: end for

Figure 13(a) shows the behavior of the objective function in (15) with respect to the ROB sizes over the test
set, while Figure 13(b) shows the number of iterations required to meet the termination criterion: we observe
that GNM requires many fewer iterations without any deterioration in accuracy. Figure 13(c) shows the wall-
clock average cost for the three methods: even if GNM has a slightly larger per-iteration cost, we empirically
find that OS2 with GNM is significantly more rapid than the other two approaches. Furthermore, since the OS
internal loop (cf. Lines 4-7 Algorithm 4) is not parallelizable as opposed to the corresponding loop of the OS2
solver (cf. Lines 4-7 Algorithm 1), we expect significantly larger computational gains if we resort to parallel
computing.
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Figure 13: comparison between OS2 with Gauss-Newton optimization and with quasi-Newton optimization,
and multiplicative overlapping Schwarz methods. (a) average value of the objective function with respect to m
and for n = m. (b) maximum number of iterations to meet the convergence criterion. (c) average wall-clock
cost with respect to m and for n = m.

In Figure 14, we repeat the test of Figure 13 for the choice of the initial conditions α(0) = 0 and β(0) = 0 in
Algorithm 1 and Algorithm 4. We observe that OS and OS2 with GNM show similar performance with respect
to all metrics, while OS2 with QN, instead of converging to the optimal solution, converges to a different local
minimum for two configurations for m = 6.

6 Conclusions

In this work we developed and numerically validated the one-shot overlapping Schwarz (OS2) approach to
component-based MOR of steady nonlinear PDEs. The key features of the approach are (i) a constrained
optimization statement that penalizes the jump at the components’ interfaces subject to the approximate
satisfaction of the PDE in each deployed (instantiated) component; (ii) the decomposition of the local solutions
into a port component — associated with the solution on interior boundaries (ports) — and a bubble component
that vanishes at ports, to enable effective parallelization of the online solver. Hyper-reduction of the local
sub-problems and of the objective function is performed to reduce online assembly costs. We illustrate the
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Figure 14: comparison between Gauss-Newton, quasi-Newton methods, and multiplicative overlapping Schwarz
methods with zero initial condition. (a) average value of the objective function with respect to m and for n = m.
(b) maximum number of iterations to meet the convergence criterion. (c) average wall-clock cost with respect
to m and for n = m.

many elements of the formulation through the application to a two-dimensional nonlinear mechanics (Neo-
Hookean) PDE model; for this problem, we are able to devise a CB-ROM that reduces online costs by a factor
20 compared to a standard monolithic FE model with less than 0.1% prediction error, and without resorting to
any parallelization of the online ROM solver. We also observe that for the particular model problem considered
in this paper the OS2 formulation provides acceptable results also for under-resolved ROBs.

We aim to extend our approach in several directions. First, we wish to apply the OS2 method to more
challenging problems in nonlinear mechanics, with particular emphasis on thermo-hydro-mechanical (THM)
systems [32]: towards this end, we should extend the OS2 formulation to unsteady PDEs and we should also
devise specialized routines to deal with internal variables. In this respect, we envision to combine our approach
with the recently-developed OS method discussed in [44, 18, 3]. Second, we wish to devise localized training
techniques to avoid the solution to global HF problems at training stage: in this regard, we aim to extend
the approach in [54] to unsteady PDEs with internal variables. Third, we aim to combine data-fitted and
projection-based ROMs in the OS2 framework: we envision that the successful combination of first-principle
and data-fitted models might offer new solutions for data assimilation (state estimation) applications, for a
broad range of engineering tasks. Fourth, we wish to investigate the possibility of generalizing our approach to
non-overlapping decompositions: this requires to add in the objective function a term that penalizes the jump
of the normal stresses; a deep investigation of the connection with discontinuous Galerkin methods should also
be considered.
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A Hyper-reduction of port-to-bubble problems

We review the element-wise EQ hyper-reduction procedure that is employed here to speed up the solution to
the port-to-bubble problems. The approach exploits the methods first proposed in [22, 63]: we refer to [57]

for further details. We recall that, for any ` ∈ L, {xa,v
`,j }

Nv
`

j=1 are the nodes of the reference mesh of the `-th

component, while T` ∈ NNe
`×nlp is the connectivity matrix, with nlp equal to the number of elemental degrees

of freedom. We denote by e1, . . . , eD the vectors of the canonical basis in RD and we denote by ϕ`,k,i the FE
basis associated with the i-th degree of freedom of the k-th element of the `-th component.

Given u ∈Xa
` , we denote by uun ∈ Rnlp×Ne

`×D the corresponding third-order tensor such that

uun
i,k,d =

(
u
(
xa,v
`,T`,k,i

))
d
, i = 1, . . . , nlp, k = 1, . . . , N e

` , d = 1, . . . , D.

Similarly, given the ROB basis Za,b
` : Rn → Z

a,b
` , we denote by Za,b,un

` ∈ Rnlp×Ne
`×D×n the corresponding

fourth-order tensor. We further define the unassembled residual associated with the field u and the parameter
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µ`,

Ra,un
`,i,k,d(u;µ`) :=

∫
D`,k

ηa,e
` (u, ϕ`,k,i ed;µ`) dx +

∫
∂D`,k

ηa,f
` (u, ϕ`,k,i ed;µ`) dx,

for ` ∈ L, i = 1, . . . , nlp, k = 1, . . . , N e
` , d = 1, . . . , D. Then, it is easy to verify that(

R̂?
` (γ`)

)
j

=
∑
i,k,d

ρ?`,k Z
a,b,un
`,i,k,d,j Ra,un

`,i,k,d(γ`) = (Ga
`(γ`)ρ

?
` )j , j = 1, . . . , n, (43a)

where ? ∈ {hf, eq}, γ` = (α`,β`, µ`) denotes the triplet of bubble coefficients, port coefficients and parameter,

Ga
` : Rn×Rm×P` → Rn×Ne

` is the matrix-valued function that satisfies (Ga
`(γ`))j,k =

∑
i,d Z

a,b,un
`,i,k,d,j Ra,un

`,i,k,d(γ`)
for j = 1, . . . , n and k = 1, . . . , N e

` . The latter identity implies that

R̂hf
` (γ`) − R̂eq

` (γ`) = Ga
`(γ`)

(
ρhf
` − ρ

eq
`

)
(43b)

For any ` ∈ L, EQ procedures aim to find a vector ρeq
` ∈ RNe

` such that (i) ρeq
` is as sparse as possible; (ii)

the constant function is integrated accurately, that is

∣∣ Ne∑̀
k=1

ρeq
`,k |D`,k| − |Ω

a
` |
∣∣� 1; (44)

(iii) given the training set of triplets Σtrain,eq
` := {γ(j)

` }
ntrain,`

j=1 , the residual is adequately calculated for all
elements of the training set,∣∣Jb

` (γ`)
−1
(
R̂hf
` (γ`) − R̂eq

` (γ`)
) ∣∣� 1, where Jb

` := ∂αR̂
hf
` , ∀γ` ∈ Σtrain,eq

` . (45)

As discussed in section 3 (cf. (22)), the constant accuracy constraint (44) is designed to control the `1 norm
of the weights that is related to the stability of the quadrature rule (see, e.g., [29, section 2.3]); the constraints
(45) are directly linked to the approximation error between the ROM estimate with HF quadrature and the
hyper-reduced ROM estimate (cf. [63, Proposition 3.2]).

We observe that the EQ problem can be recast as a sparse representation problem of the form

min
ρ∈RN

e
`

‖ρ‖`0 , s. t. ‖Ceq
`

(
ρhf
` − ρ

eq
`

)
‖2 ≤ toleq, (46)

where ‖ρ‖`0 is the `0 norm that counts the number of non-zero entries in the vector ρ, Ceq
` is a suitable matrix

that can be readily derived from (44) and (45), and toleq is a suitable tolerance. Problem (46) is NP hard;
however, several effective approximate strategies have been proposed in the literature to determine parsimonious
quadrature rules for MOR applications, [22, 63, 12, 42]. In this work, we resort to the non-negative least-square
algorithm implemented in the Matlab routine lsqnonneg, which takes as input the matrix Ceq

` , the vector
beq
` := Ceq

` ρ
hf
` and the tolerance toleq, and returns the sparse quadrature rule.

B Proofs

B.1 Proof of Theorem 4.1

Proof. Let u? be the solution to (24). Then, we find

a(u?|Ωi , v)
(25)
= a(u?, vext) = f(vext) = f(v) ∀ v ∈Xi,0;

therefore, u?|Ωi = Tiu
?|Γi +Gif . The latter implies that λ? = (u?|Γ1 , u

?|Γ2) satisfies

λ? − Eλ? −Gf = (u?|Γ1 − u?|Γ1 , u?|Γ2 − u?|Γ2) = 0,

and thus that λ? solves (28).
Let λ? satisfy (28). We define u?i = Tiλ

?
i + Gif for i = 1, 2. If we define the space X0

1,2 = {v|Ω1∩Ω2
: v ∈

X, v|Γ1∪Γ2
= 0}, we observe that u?1, u

?
2 satisfy

u?i |Γ1
= λ?1, u?i |Γ2

= λ?2, a(u?i , v) = f(v) ∀ v ∈X0
1,2, i = 1, 2. (47)

Since a : X0
1,2 ×X0

1,2 → R is coercive, the solution to (47) exists and is unique: therefore, u?1 = u?2 in Ω1 ∩ Ω2.

In particular, if we define u? =
∑2
i=1 u

?
i , we have u?|Ωi = u?i for i = 1, 2.

Given v ∈X, we have vφi ∈Xi,0, since, by construction, suppφi ⊂ Ωi. We thus have

a(u?, v) =
∑
i=1

a(u?, φiv) =
∑
i=1

a(u?
∣∣
Ωi
, φiv) =

∑
i=1

a(u?i , φiv) =
∑
i=1

f(φiv) = f(v),

which is the desired result.
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B.2 Proof of Proposition 4.2

Proof. Continuity of ap follows from the continuity of the trace operators, and the local operators T1, T2. We
omit the details. To prove inf-sup stability of the problem, we resort to the Fredholm’s alternative: since T is
compact, provided that ν = 1 is not an eigenvalue of T , the equation λ− Tλ = f admits a unique solution for
any f ∈ U and there exists a constant C such that |||λ||| ≤ C|||f ||| (see, e.g., [51, Theorem 6.6.8]). It thus suffices
to prove that Tλ = λ only holds for λ = 0.

Towards this end, we consider the problem:

find w ∈X1,2 : a(w, v) = 0 ∀ v ∈X0
1,2, w|Γ1

= γ1, w|Γ2
= γ2,

with X0
1,2 = {v|Ω1∩Ω2

: v ∈ X}, and X0
1,2 = {v|Ω1∩Ω2

: v ∈ X, v|Γ1∪Γ2
= 0}. Since T1λ1 = λ1 on Γ1 by

definition and T1λ1 = λ2 on Γ2 since Tλ = λ, we have that T1λ1|Ω1,2 = w; similarly, we find T2λ2|Ω1,2 = w.
As observed in the proof of Theorem 4.1, there exists a unique solution to the problem w ∈ X1,2: this implies
that T1λ1|Ω1,2

= T2λ2|Ω1,2
. Given the partition of unity φ1, φ2 associated with {Ωi}2i=1, we define the field

u =
∑2
i=1 φiTiλi ∈X, which satisfies u|Ωi = Tiλi for i = 1, 2. We observe that

a(u, v) =

2∑
i=1

a (u, φiv)
(25)
=

2∑
i=1

a (u|Ωi , φiv) =

2∑
i=1

a (Tiλi, φiv) = 0.

Since a is coercive, we must have u ≡ 0 and thus λ ≡ 0.

B.3 Proofs of the estimate (34)

Proof. We first introduce the orthonormal basis {ψi}Mi=1 of Zp; given λ ∈ Zp, we denote by λ ∈ RM the

corresponding vector of coefficients such that λ =
∑M
i=1(λ)iψi. By straightforward calculations, we find that

Ã λ̃ = F̃, Â λ̂ = F̂, with


(
Ã
)
i,j

= 〈(Id− T )ψj , (Id− T )ψi〉,
(
F̃
)
i

= 〈(Id− T )ψi, Gf〉,(
Â
)
i,j

= 〈(Id− T̂ )ψj , (Id− T̂ )ψi〉,
(
F̂
)
i

= 〈(Id− T̂ )ψi, Ĝf〉.
(48)

By straightforward calculations, we obtain

λ̃− λ̂ = Ã−1
(
F̃− F̂−

(
Ã− Â

)
λ̂
)

and thus
‖λ̃− λ̂‖2 ≤ ‖Ã−1‖2︸ ︷︷ ︸

=:(I)

(
‖Ã− Â‖2︸ ︷︷ ︸

=:(II)

‖λ̂‖2︸ ︷︷ ︸
=:(III)

+ ‖F̃− F̂‖2︸ ︷︷ ︸
=:(IV)

)
. (49)

We estimate each term of (49) independently: combination of the estimates for (I)-(IV) leads to (34).

(I) Recalling the definition of αp, we have |||ψ − Tψ||| ≥ αp|||ψ|||; therefore, we have

ψT Ãψ = |||ψ − Tψ|||2 ≥ α2
p|||ψ|||

2
= α2

p‖ψ‖22,

which implies (I).

(II) By summing and subtracting 〈(Id−T )ψj , (Id− T̂ )ψi〉 to
∣∣ (Ã)

i,j
−
(
Â
)
i,j

∣∣ and recalling the definitions

of γp, γ̂p and εT, we obtain∣∣ (Ã)
i,j
−
(
Â
)
i,j

∣∣ ≤ (γp + γ̂p) εT, ∀ i, j = 1, . . . ,M.

Estimate (II) then follows by exploiting the fact that for any M × M matrix A, we have ‖A‖2 ≤
M maxi,j |Ai,j |.

(III) Estimate (III) follows directly from the properties of minimum residual formulations of inf-sup stable
problems. Indeed, since the bilinear form ap is continuous and inf-sup stable, using the Nečas theorem

(see, e.g., [51, Thm 6.42]) we have ‖λ̂‖2 =
∣∣∣∣∣∣∣∣∣λ̂∣∣∣∣∣∣∣∣∣ ≤ 1

α̂p

∣∣∣∣∣∣∣∣∣Ĝf ∣∣∣∣∣∣∣∣∣ for all f ∈X′.

(IV) Proceeding as in (II), we find∣∣ (F̃)
i
−
(
F̂
)
i

∣∣ ≤ γ̂pεG + |||Gf |||εT, ∀ i = 1, . . . ,M,

and thus ‖F̃ − F̂‖2 ≤
√
M‖F̃ − F̂‖∞ ≤

√
M (γ̂pεG + |||Gf |||εT) .
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B.4 Proof of (37)

Proof. For the two-subdomain problem, the OS2 statement (30) can be stated as:

min
(ψ1,ψ2)∈Zp

1×Z
p
2

‖û1(ψ1)− û2(ψ2)‖H1/2(Γ1∪Γ2) (50)

where ûi(ψi) = ûb
i (ψi) + Eiψi and ûb

i (ψi) ∈ Zb
i satisfies a(ûb

i (ψi) + Eiψi, v) = f(v) for all v ∈ Zb
i and all

ψi ∈ Z
p
i , for i = 1, 2. If we differentiate (50), we obtain the optimality conditions(
ûp

1 − χΓ1

(
ûb

2 (ûp
2) + E2û

p
2

)
, ψ1 − χΓ1

(
ûb

2(ψ2) + E2ψ2

))
H1/2(Γ1)

+
(
ûp

2 − χΓ2

(
ûb

1 (ûp
1) + E1û

p
1

)
, ψ2 − χΓ2

(
ûb

1(ψ1) + E1ψ1

))
H1/2(Γ2)

= 0 ∀ψ = (ψ1, ψ2) ∈ Z
p
1 ×Z

p
2 ,

which can rewritten as in (37).

B.5 Proofs of the estimates in section 4.5

In the following, we use the Taylor expansions:

ex ∼ 1 + x+ x2,
1

1− x
∼ 1 + x+ x2, (1 + x)1/2 ∼ 1 +

1

2
x− 1

8
x2, (1 + x)2 ∼ 1 + 2x, (51)

which are valid for |x| � 1. We further employ the identiy:

max {|1− σλ1|, |1− σλ2|} =

{
1− σλ1 σ < 2

λ1+λ2

σλ2 − 1 σ ≥ 2
λ1+λ2

(52)

that is valid for any 0 ≤ λ1 ≤ λ2.

B.5.1 Problem (38a)

It is easy to verify that the local solutions û1, û2 satisfy

û1(x, β) = x2 − δ2

1 + δ
(1 + x) +

β

1 + δ
(1 + x), û2(x, β) = x2 − δ2

1 + δ
(1− x) +

β

1 + δ
(1 + x). (53)

By imposing β1 = û2(δ, β2) and β2 = û1(δ, β1) we obtain the system of equations:

Aδ β = Fδ, with Aδ =

[
1 −cδ
−cδ 1

]
, Fδ =

[
dδ
dδ

]
,

and cδ = 1−δ
1+δ , dδ = 2δ3

1+δ . The matrix Aδ is symmetric with positive eigenvalues 1− cδ and 1 + cδ; we thus have

cond (Aδ) =
1 + cδ
1− cδ

=
1

δ
, αp = 1− cδ =

2δ

1 + δ
, γp = 1 + cδ =

2

1 + δ
.

which are (39b) and (39c).
Multiplicative OS corresponds to the application of the Gauss-Seidel iterative method to the linear system

Aδ β = Fδ. We thus find

β(k) = Pos
δ β

(k−1) + Fos
δ , with Pos

δ =

[
0 cδ
0 c2δ

]
, Fos

δ =

[
dδ
dδ + cδdδ

]
.

We can then verify that the spectral radius of Pos
δ is equal to

ρos
δ = c2δ ∼ 1− 4δ.

The OS2 method for (38a) reads as

min
β∈R2

1

2

∑
x∈{−δ,δ}

(û1(x, β1)− û2(x, β2))
2

=
1

2
‖Aδ β − Fδ‖22. (54)

If we apply the gradient descent method to (54), we obtain

β(k) =
(
1− σAT

δ Aδ

)
β(k−1) + σAT

δ Fδ.

By tedious calculations, we can verify that the eigenvalues of the transition matrix 1 − σAT
δ Aδ are equal to

1 − σ(cδ + 1)2 and 1 − σ(cδ − 1)2: recalling (52), we find that the spectral radius of the transition matrix is
minimized by σ = 1

c2δ+1
and is equal to

ρos2
δ =

2cδ
c2δ + 1

∼ 1− 4δ2.
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B.5.2 Problem (38b)

The local solutions û1, û2 satisfy

û1(x, β) = β
eγx − e−γ

eγδ − e−γ
, û2(x, β) =

eγx − e−γδ

eγ − e−γδ
+ β

eγ − eγx

eγ − e−γδ
. (55)

Exploiting the Taylor expansions in (51), we obtain

û1(−δ, β) ∼ β
(
1− 2cγδ + 2c2γδ

2
)
, û2(δ, β) ∼ 2dγδ − 2d2

γδ
2 + β

(
1− 2dγδ + 2d2

γδ
2
)

where cγ := γ
1−e−γ and dγ :=

cγ
eγ . We thus find the (approximate) system of equations

Aδ β = Fδ, with Aδ =

[
1

(
−1 + 2dγδ − 2d2

γδ
2
)(

−1 + 2cγδ − 2c2γδ
2
)

1

]
, Fδ =

[
2dγδ − 2d2

γδ
2

0

]
.

Therefore, the Gauss-Seidel transition matrix is approximately equal to

Pos
δ ∼

[
0 −1 + 2dγδ
0 − (1− 2dγδ) (1− 2cγδ)

]
and thus

ρos
δ ∼ 1− 2 (cγ + dγ) δ = 1− 2

eγ + 1

eγ − 1
γδ.

On the other hand, the eigenvalues of AT
δ Aδ are approximately equal to

λ1 ∼
(cγ + 2dγ)2

4
δ2, λ2 ∼ 4 − (2cγ + 4dγ)δ,

and thus

αp =
√
λ1 ∼

4(eγ + 2)γδ

2(eγ − 1)
, γp =

√
λ2 ∼ 2.

Exploiting (52), we find that the approximately optimal choice of the step size σ is equal to σ = 1
2

(
1 +

( cγ
2 + dγ

)
δ
)

and thus

ρos2
δ ∼ 1− σλ1 ∼ 1− 1

8
(cγ + 2dγ)

2
δ2.

On the other hand, we obtain that the condition number of Aδ is given by

cond(Aδ) =

√
λmax(AT

δ Aδ)

λmin(AT
δ Aδ)

∼
√

4 − (2cγ + 4dγ)δ
(cγ+2dγ)

2 δ
∼ 4

(cγ + 2dγ)δ
=

4(eγ − 1)

4(eγ + 2)γδ
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