Jean-François Prefix Suffix

Sophie Prefix

Jean-François Culus
email: jean-francois-culus@espe-martinique.fr

CSPs All Are Approximable Within a Constant Differential Factor

Keywords:

Only a few facts are known regarding the approximability of optimization CSPs with respect to the differential approximation measure, which compares the gain of a given solution over the worst solution value to the instance diameter. Notably, the question whether is approximable within any constant factor is open in case when or . Using a family of combinatorial designs we introduce for our purpose, we show that, given any three constant integers , and , reduces to with an expansion of on the approximation guarantee. When , this implies together with the result of Nesterov as regards

[1] that for all constant integers , is approximable within factor .

Introduction

Optimization Constraint Satisfaction Problems

Thereafter, given a positive integer N , we denote by [N] the discrete interval {1, . . . , N}. Optimization Constraint Satisfaction Problems (CSPs) over an alphabet Σ consider a set {x 1 , . . . , x n } of variables and a set {C 1 , . . . , C m } of constraints, where the variables have domain Σ, and the constraints consist of (non constant) predicates applied to tuples of variables. Most often, a positive weight is associated with each constraint C i . The goal is then to optimize over Σ n an objective function of the form

m i=1 w i C i = m i=1 w i P i (x Ji) = m i=1 w i P i (x i1 , . . . , x i k i)
where for all i ∈ [m], P i : Σ ki → {0, 1}, J i = (i 1 , . . . , i ki) ⊆ [n], and w i > 0.

For example, the Satisfiability Problem (Sat) is the boolean CSP where constraints are disjunctive clauses. In Lin-q, the alphabet is Z q = Z/qZ, and a constraint is a linear equation modulo q. In this paper, given two universal constant integers q, k ≥ 2, we consider the optimization CSP k CSP-q where Σ has size q, each constraint depends on at most k variables, and functions P i are allowed to take rational values. 1 In the sequel, given an instance I of k CSP-q, we will assume either Σ = [q] or Σ = Z q , and that the optimization goal is to maximize. These assumptions are without loss of generality. 2 .

k CSP-q most often becomes harder as k or q grows. On the one hand, given two integers h ≥ 2 and k > h, h CSP-q is a special case of k CSP-q. On the other hand, given two integers p ≥ 2 and q > p, any surjective map from [q] to [p] can be used to convert a function on [p] k to a function on [q] k . The alphabet size more accurately has a logarithmic impact on the constraint arity: if κ = log p q , then any surjective map from [p] κ to [q] similarly allows to convert a function on [q] k to a function on [p] κk . As 2 CSP-2 is NP-hard [START_REF] Garey | Some simplified NP-complete graph problems[END_REF], a major issue as regards k CSP-q consists in charactering its approximation degree.

Their Differential Approximability

Given an instance I of an optimization problem Π, we denote by v(I, .) its objective function, by opt(I) and wor(I) respectively the best and the worst solution values on I. Approximation algorithms aim at providing within polynomial time solution values proved to be relatively close to the optimum solution value, where the proximity to opt(I) is defined with respect to a specific measure. In this paper, we consider the differential approximation measure (see [START_REF] Demange | On an approximation measure founded on the links between optimization and polynomial approximation theory[END_REF] for an introduction). On I, the differential ratio reached at a given solution x is the ratio: v(I, x)wor(I) opt(I)wor(I)

Given ρ ∈]0, 1],
x is said ρ-approximate if this ratio is at least ρ. A polynomial time algorithm A is a ρ-approximation algorithm for Π if it returns on every instance of Π a solution with differential ratio at least ρ. Finally, Π is approximable within factor ρ whenever such an algorithm exists. Only a few facts are known regarding the approximability of k CSP-q within a constant differential factor. On the one hand, the restrictions of Max Sat and Min Sat to unweighted instances (i.e., to instances in which weights w i all are equal to 1) are not approximable within any constant factor unless P = NP [START_REF] Escoffier | Differential approximation of MIN SAT, MAX SAT and related problems[END_REF]. On the other hand, for 2 CSP-2, the semidefinite programming-based algorithm 1 CSPs in which constraints take non-boolean values are commonly called generalized CSPs in the literature. However, given a function P : Σ k → Q with minimal value P * , a constraint P (xJ i) coincides, up to an additive constant term, with the combination

v∈Σ k (P (v) -P *) × (xJ i = v) of constraints.
Thus when k and q are universal constants, we may indifferently consider functions with codomain {0, 1} or Q. 2 For the latter assumption, consider that minimizing

m i=1 wiPi(xJ i) reduces to maximize m i=1 wi × -Pi(xJ i).
of Goemans and Williamson [START_REF] Goemans | Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming[END_REF] produces solutions with expected differential ratio at least 2π/2 > 0.429 [START_REF] Nesterov | Semidefinite relaxation and nonconvex quadratic optimization[END_REF], and the algorithm can be derandomized [START_REF] Hariharan | Derandomizing approximation algorithms based on semidefinite programming[END_REF].

A common way to exhibit new approximability lower and upper bounds for a given optimization problem consists in reducing to or from another optimization problem for which approximability bounds are known: Definition 1 (Informal). An optimization problem Π D-reduces to another optimization problem Π if one can derive from any ρ-approximation algorithm A for Π a γ × ρ-approximation algorithm for Π, where γ is some positive quantity. When this occurs, γ is called the expansion of the reduction.

In particular, it is possible to derive from the (2π/2)-approximation algorithm for 2 CSP-2 a (1π/4)-approximation algorithm for 3 CSP-2: Proposition 1. 3 CSP-2 D-reduces to E2 Lin-2 with an expansion of 1/2 on the approximation guarantee.

Proof (sketch). The discrete Fourier transform allows to convert any instance I of 3 CSP-2 over {0, 1} to an instance J of Max 3 Lin-2 such that v(J, .) coincides, up some constant term, with v(I, .). From such an instance J, build an instance H of 2 Lin-2 by removing the equations of odd arity. Let W refer to the total weight of such equations in J. Then for all x ∈ {0, 1} n , v(J, x) + v(J, x) = 2 × v(H, x) + W , where x refers to the componentwise negation of x. Assume that x ∈ {0, 1} n is ρapproximate on J. Then the preceding equality taken at x, an optimum solution on J, and a worst solution on H allows to conclude that solution x or x that performs the best objective value on J is ρ/2-approximate on J.

Still, the question whether k CSP-q is approximable within any constant factor remains open in case when q ≥ 3 or k ≥ 4.

Outline

Given an integer k ≥ 2 and two integers q, p ≥ 2 with q > p, we address the question whether k CSP-q D-reduces to k CSP-p. We more specifically study the expansion of a specific reduction: given an instance I of k CSP-q, the reduction basically consists in considering the restrictions of I to solutions sets of the form T n where T is a p-element subset of Σ. The analysis we propose, though, requires to restrict to the case when p ≥ k.

In the next section, we introduce a family of combinatorial designs (Definition 2) that provides some lower bound γ(q, p, k) for the expansion of the reduction (Theorem 1). Section 3 is then dedicated to the exhibition of such combinatorial designs. Using a recursive construction for the case when p = k (Theorem 2), we show that 1/(qp + k/2) k is a proper lower bound of for γ(q, p, k). Therefore, we obtain the following conditional approximation result: Corollary 1. Given any three integers k ≥ 2, p ≥ k and q > p, k CSP-q D-reduces to k CSP-p with an expansion of 1/(q-p+k/2) k on the approximation guarantee. The reduction involves O(q p) instances of k CSP-p.

The question whether k CSP-q is approximable within some constant factor consequently reduces to the consideration of integers k, q such that k ≥ q ≥ 2. Most importantly, it follows from Nesterov's result as regards 2 CSP-2 (we more specifically refer to Theorem 2.3, Theorem 3.3 and Corollary 3.4 of [START_REF] Nesterov | Semidefinite relaxation and nonconvex quadratic optimization[END_REF]) that for all integers q ≥ 2, 2 CSP-q is approximable within a constant factor: Corollary 2. For all integers q ≥ 2, 2 CSP-q is approximable within factor (2π/2)/(q -1) 2 .

Reducing the Alphabet Size of a CSP Instance

Let k ≥ 2, p ≥ 2 and q > p be three integers, and I be an instance of k CSP-q over alphabet [q]. Thereafter, P p ([q]) refers to the set of the p-element subsets of [q].

Given S = (S 1 , . . . , S n) ∈ P p ([q]) n , any set {π S,j :

S j → [p] | j ∈ [n]
} of bijections allows to interpret the restriction of I to solutions in S as an instance of k CSP-p. Therefore, a natural way to derive approximate solutions on I from a hypothetical algorithm A for k CSP-p consists in restricting I to solution subsets S ∈ P p ([q]) n . The standard approximation measure evaluates the performance of a given solution x by the ratio v(I, x)/opt(I). In [START_REF] Charikar | Near-optimal algorithms for maximum constraint satisfaction problems[END_REF], the authors study the randomized reduction that consists in picking S ∈ P p ([q]) n uniformly at random, and then using A to compute a solution x ∈ S. They show that, provided that the goal on I is to maximize and I is such that

w i P i ≥ 0, i ∈ [m]
, the expected value of max y∈S {v(I, y)} over all S ∈ P p ([q]) n is at least (p/q) k × opt(I). Accordingly, picking S ∈ P p ([q]) n uniformly at random, and then computing a solution x ∈ S with value at least ρ × max y∈S {v(I, y)}, one gets a solution with expected value at least (p/q) k ρ × opt(I). The reduction therefore preserves the expected standard ratio up to a multiplicative factor of (p/q) k .

Given T ∈ P p ([q]), we denote by I(T) the restriction of I to solution set T n . Then similarly to [START_REF] Charikar | Near-optimal algorithms for maximum constraint satisfaction problems[END_REF], we analyse the reduction that consists in using A to compute for all T ∈ P p ([q]) an approximate solution x(T) on I(T), and then returning a solution x(T) that performs the best objective value.

Seeking Symmetries in the Solution Set

We assume w.l.o.g. that the goal on I is to maximize, in which case the extremal values on I and on subinstances I(T) trivially satisfy:

opt(I) ≥ opt(I(T)) ≥ wor(I(T)) ≥ wor(I), T∈ P p ([q]) (1)
Now assume that for all T ∈ P p ([q]), we are given a solution x(T) ∈ T n that is ρ-approximate on I(T). Then for all T * ∈ P p ([q]), we have:

max T ∈Pp([q]) {v(I, x(T))} ≥ v(I, x(T *)) ≥ ρ × opt(I(T *)) + (1 -ρ) × wor(I(T *)) ≥ ρ × opt(I(T *)) + (1 -ρ) × wor(I) by (1) (2)
Eventually assume that T * is a set in P p ([q]) that contains a solution with optimal value over {T n | T ∈ P p ([q])}. Then, provided that opt(I(T *)) is δ-approximate on I, one gets the following connection with opt(I(T)):

max T ∈Pp([q]) {v(I, x(T))} -wor(I) ≥ ρ × (opt(I(T *)) -wor(I)) (2) ≥ ρ × δ × (opt(I) -wor(I)) (3)
Hence, if we are able to compare-in a differential approximation manneropt(I(T *)) to opt(I), then we can deduce from approximate solutions on subinstances I(T) approximate solutions on I. We thus shall seek a lower bound for the differential ratio reached on I at opt(I(T *)).

Let x * be an optimal solution of I. Then one way to obtain such a lower bound consists in exhibiting two solution multisets X = (x 1 , . . . , x R) and Y = (y 1 , . . . , y R) of the same size R, and that satisfy the following conditions:

X ⊆ {T n | T ∈ P p ([q])} (4) R * |{r ∈ [R] | y r = x * |} ≥ 1 (5) |{r ∈ [R] | x r Ji = v}| = |{r ∈ [R] | y r Ji = v}|, v ∈ [q] Ji , i ∈ [m] (6)
Requirements (4), (5) and (6) respectively ensure that X exclusively considers solutions of subinstances I(T), x * occurs at least once in Y, and each constraint P i (x Ji) of I is evaluated on the same collection of |J i |-tuples over solution multisets X and Y. Requirement (6) thus ensures that the sum of solution values over X and Y are identical. Provided that such a pair (X , Y) exists, we have:

opt(I(T *)) ≥ R r=1 {v(I, x r)}/R by definition of T * , and (4) = R r=1 {v(I, y r)}/R by (6) ≥ R * × opt(I)/R + (R -R *) × wor(I)/R by (5) (7)
Thus opt(I(T *)) is R * /R-approximate on I. Therefore, one shall seek such pairs (X , Y) on which the ratio R * /R is as hight as possible.

This is precisely what we do, and this is why we restrict our analysis to the case when k ≤ p. Indeed, e.g. assume that J 1 = (1, . . . , k) and (x * 1 , . . . , x * k) = (1, . . . , k). Then by (6) and (5), X shall contain at least R * > 0 solutions x r with (x r 1 , . . . , x r k) = (1, . . . , k). If k > p, then such solutions violate condition (4). Hence, from now on, we assume q > p ≥ k.

Partition-Based Solution Multisets

Solution x * induces a partition of [n] into q-possibly empty-subsets depending on the q possible values taken by its coordinates. Given c ∈ [q], we denote by V c the set of indices j ∈ [n] such that x * j = c. We restrict our solution multisets to vectors x that satisfy

x * j = x * h ⇒ x j = x h , j, h ∈ [n].
It is thus possible to identify X and Y with two arrays Ψ and Φ with q columns, coefficients in [q], and the same number R of rows, where: each row Ψ r = (Ψ 1 r , . . . , Ψ q r) of Ψ gives rise in X to the vector of [q] n that satisfies for every c ∈ [q] that its coordinates with index in V c all are equal to Ψ c r ; Y is derived from Φ in the exact same way. Formally, we define π x * : [q] q → [q] n by

π x * (u) Vc = (u c , . . . , u c), c ∈ [q] and X , Y by X = (π x * (Ψ r) | r ∈ [R]) and Y = (π x * (Φ r) | r ∈ [R]). Given i ∈ [m],
we denote by c i,1 , . . . , c i,hi the distinct values taken by the coordinates of x * with index in J i , by H i = {c i,1 , . . . , c i,hi } the set of such values, by Ψ Hi and Φ Hi the restrictions of Ψ and Φ to their columns with index in H i . Then solution multisets X and Y meet requirements (4), (5) and (6) of Sect. 2.1 iff arrays Ψ and Φ satisfy:

|{Ψ 1 r , . . . , Ψ q r }| ≤ p, r ∈ [R] (8) R * |{r ∈ [R] | Φ r = (1, . . . , q)}| ≥ 1 (9) |{r ∈ [R] | Ψ Hi r = v}| = |{r ∈ [R] | Φ Hi r = v}|, v ∈ [q] |Hi| , i ∈ [m] (10)
Hence, if we are aware of such a pair of arrays, then we know by (7) that opt(I(T *)) is R * /R-approximate. In light of these observations, we introduce the following families of combinatorial designs and their associated numbers: Definition 2. Let k ≥ 2, p ≥ k and q ≥ p be three integers. Then given any two integers R ≥ 1 and R * ∈ [R], we define Γ (R, R * , q, p, k) as the (possibly empty) set of pairs (Ψ, Φ) of arrays with R rows, q columns, and coefficients in [q] that satisfy the following:

1. the components of each row of Ψ take at most p distinct values; 2. (1, . . . , q) occurs R * times as a row in Φ; 3. for all J = {c 1 , . . . , c k } ⊆ [q] with |J| = k, subarrays Ψ J = (Ψ c1 , . . . , Ψ c k) and Φ J = (Φ c1 , . . . , Φ c k) coincide up to the ordering of their rows.

Furthermore, we define γ(q, p, k) as the greatest number γ ∈ [0, 1] for which there exist two natural numbers R, R * such that R * /R = γ and Γ (R, R * , q, p, k) = ∅. Table 1. Pairs of arrays that achieve γ(4, 3, 2) and γ(5, 3, 2).

Table 1 pictures two such combinatorial designs. Since cardinalities |H i | may be at most min{q, k} = k, by requirement 3, a pair (Ψ, Φ) ∈ Γ (R, R * , q, p, k) does satisfy (10) regardless of the precise instance I of k CSP-q and the precise solution x * of I we consider. By [START_REF] Charikar | Near-optimal algorithms for maximum constraint satisfaction problems[END_REF], this implies that γ(q, p, k) is a proper lower bound for the differential ratio reached on I at opt(I(T *)). We thus have established the following: Lemma 1. For all integers k ≥ 2, p ≥ k and q > p, on any instance of k CSP-q, solutions that perform the best objective value among those whose coordinates take at most p distinct values are γ(q, p, k)-approximate.

To conclude, according to inequality (3), Lemma 1 also establishes that γ(q, p, k) is a proper lower bound for the expansion of our reduction: Theorem 1. For all integers k ≥ 2, p ≥ k and q > p, k CSP-q D-reduces to k CSP-p with an expansion of γ(q, p, k) on the approximation guarantee. The reduction involves O(q p) instances of k CSP-p.

A Lower Bound for Numbers γ(q, p, k)

It remains us to exhibit lower bounds for numbers γ(q, p, k). To do so, we mainly present a recursive construction for the case when p = k. But first, we mention a few combinatorial identities that are involved in the analysis of this construction.

We define:

T (a
T (a, b) = 2 b a-1 b + T (a -1, b -1) (13) = 2 b a b -T (a, b -1) (14) = 2 a-1 c=b T (c, b -1) + 1 (15)
Proof (sketch). Recursions (13) and (14) are obtained applying Pascal's rule to coefficients of the form respectively a r and a-1-r b-r . Identity (15) can then be deduced from those recursions. Proof (sketch). By induction on integer ba.

A Recursive Construction for Families Γ (R, 1, q, k, k)

This section is dedicated to the proof of the following Theorem:

Theorem 2. Let k ≥ 2 and q ≥ k be two integers. Then γ(q, k, k) is equal to 1 if q = k, and bounded below by 2/(T (q, k) + 1) otherwise.

The case when q = k is trivial, considering Ψ = Φ = {(1, . . . , k)}. For greater integers qk, the argument relies on the following Lemma: k,k). We assume w.l.o.g. that (1, . . . , q -1) occurs at row 1 in Φ. Our goal is to add in arrays Ψ and Φ a single new column, and as few rows as possible, so as to obtain a new pair (Ψ, Φ) of arrays with q columns and coefficients in [q] that meets requirements 1, 2, 3 of Definition 2.

Lemma 2. Let k ≥ 2, q > k, R * ≥ 1 and R ≥ R * be four integers such that Γ (R, R * , q -1, k, k) = ∅. Then Γ (R + T (q -1, k -1), 1, q, k, k) = ∅. Proof. Let (Ψ, Φ) ∈ Γ (R, R * , q -1,

Table 2. Construction of a pair of arrays in

Γ (R + T (q -1, k -1), 1, q, k, k) starting with a pair (Ψ, Φ) ∈ Γ (R, R * , q -1, k, k) with Φ1 = (1, . . . , q -1).
The construction is described in Table 2. We make a few comments before proving its rightness. Step 1 first inserts a qth column in the arrays. If we set Ψ q to Ψ 1 and Φ q to Φ 1 , then (Ψ, Φ) trivially fulfils requirements 1 and 3. However, as (1, . . . , q) mu st occur at least once as a row in Φ, we assign value q rather than Φ 1 1 to Φ q 1 . As a result, (Ψ, Φ) violates requirement 3. Hence, during Step 2, we insert new rows in the arrays until they satisfy this requirement.

Let J = {c 1 , . . . , c k-1 } be a (k -1)-element subset of [q -1], and v = (c 1 , . . . , c k-1). After Step 1, row 1 is the single row of subarray (Φ J , Φ q) that coincides with (v, q), while there is no such row in (Ψ J , Ψ q). As (Φ J 1 , Φ 1 1) = (v, 1) while (Φ, Ψ) ∈ Γ (R, R * , q -1, k, k), (Φ J , Φ q) symmetrically coincides with (v, 1) on one less row than (Ψ J , Ψ q) does. Iteration h = k -1 corrects this precise imbalance when it inserts row vectors (α(J), q) in Ψ and (α(J), 1) in Φ.

However, this iteration also introduces new violations of requirement 3. Notably, let s ∈ [k -1], and v = (c 1 , . . . , c s-1 , q, c s+1 , . . . , c k-1). Then iteration h = k -1 inserts in each array a new row u with u J = v each time it selects a (k -1)-element subset H of [q -1] with c 1 , . . . , c s-1 , c s+1 , . . . , c k-1 ∈ H and c s / ∈ H. Since there are q -1 -(k -1) = qk such subsets, we deduce that at the end of this iteration, vectors (v, q) and (v, 1) occur respectively qk and 0 times as a row in (Ψ J , Ψ q), while the converse holds for (Φ J , Φ q). Iteration h = k -2 corrects this precise imbalance when it inserts qk copies of row vectors (α(J\{c s }), 1) and (α(J\{c s }), q) in respectively Ψ and Φ. More generally, for all h ∈ {0, . . . , k -1}, given any v ∈ {c 1 , q} × . . . × {c k-1 , q} with exactly h coordinates in [q -1] and any a ∈ {1, q}, iteration h ensures that (v, a) occurs the same number of times as a row in (Ψ J , Ψ q) and (Φ J , Φ q). Table 3. The recursive construction for families Γ ((T (5, 2) + 1)/2, 1, 5, 2, 2) and Γ ((T (4, 3) + 1)/2, 1, 4, 3, 3) of combinatorial designs.

We now prove that, at the end of the process, (Ψ, Φ) ∈ Γ (R , 1, q, k, k) where R = R + T (q -1, k -1). By construction, the resulting arrays satisfy that:

-their number R of rows is R + k-1 h=0 q-1 h q-2-h k-1-h = R + T (q -1, k -1)
; -in Ψ , the coefficients of every row take at most k distinct values; -in Φ, row 1 is the single row that coincides with (1, . . . , q). It remains us to show that (Ψ, Φ) fulfils requirement 3. Let J = (c 1 , . . . , c k) be a strictly increasing sequence of integers in [q], and v be a vector of [q] k . We shall establish that subarrays Ψ J and Φ J coincide with v on the same number of rows. The case when q / ∈ J is trivial. Thus assume c k = q. We consider two cases:

• v / ∈ {c 1 , q} × . . . × {c k-1 , q} × {1, q}. Ψ J r = v or Φ J r = v may not occur unless r ∈ [R]. Let r ∈ [R] and let K = (c 1 , . . . , c k-1 , 1). Then Ψ J r = Ψ K r , while Φ J r = Φ K r unless r = 1, in which case Φ J 1 = v = Φ K 1 .
Since the original pair of arrays belongs to Γ (R, R * , q -1, k, k), we deduce that Ψ J and Φ J indeed coincide with v on the same number of rows.

• v ∈ {c 1 , q} × . . . × {c k-1 , q} × {1, q}. If (v 1 , . . . , v k-1) = (c 1 , . . . , c k-1), then
we already argued that iteration h = k -1 of Step 2 corrects the imbalance induced by assignment Φ q 1 = q. Otherwise, let L refer to the set of indices c s ∈ {c 1 , . . . , c k-1 } such that v s = c s , and let = |L|. As ≤ k -2, Ψ J r = v or Φ J r = v may not occur unless r > R. So consider an iteration h ∈ {0, . . . , k-1} of Step 2. For each h-element subset H of [q -1] with L ⊆ H and H\L ⊆ [q -1]\J, this iteration generates q-2-h k-1-h rows u with u J = v. If v k = q (resp., v k = 1), then these rows occur in Ψ (resp., in Φ) iff h has the same parity as k -1. Since there are q-k h-such subsets H of [q -1], we deduce:

|{r ∈ [R] | Ψ J r = v}| -|{r ∈ [R] | Φ J r = v}| = ± k-1 h= (-1) k-1-h q-2-h k-1-h q-k h- = ± k-1- r=0 (-1) k-1--r q-2--r k-1--r q-k r = ±S(q -k, q -2 -, k -1 -) Now we know from Property 2 that S(q -k, q -2 -, k -1 -) is equal to k-2- k-1-, which is 0. We conclude that (Ψ, Φ) indeed belongs to Γ (R + T (q - 1, k -1), 1, q, k, k).
The proof of Theorem 2 is straightforward from Lemma 2. Namely, given two integers k ≥ 2 and q ≥ k, we consider the following recursive construction:

1. Set Ψ = {(1, . . . , k)} and Φ = {(1, . . . , k)}. 2. For a = k + 1 to q, apply construction underlying Lemma 2 to (Ψ, Φ).

Table 3 illustrates the construction when k ∈ {2, 3}. On the one hand, in view of Lemma 2, the resulting pair (Ψ, Φ) of arrays belongs to Γ (R, 1, q, k, k) where

R = 1 + q a=k+1 T (a -1, k -1) = 1 + q-1
a=k T (a, k -1) On the other hand, by (15), we have:

1 + q-1 a=k T (a, k -1) = 1 + (T (q, k) -1)/2 = (T (q, k) + 1)/2
This completes the proof of Theorem 2.

Deduced Approximation Results

Let k ≥ 2, p ≥ k and q > p be three integers. If p = k, then Theorem 2 together with Theorem 1 provides a lower bound of 2/(T (q, k) + 1) for the expansion of our reduction from k CSP-q to k CSP-k. We seek an estimate of 2/(T (q, k)+1). Proof. Applying recursions first (14), and then (13), one gets equality:

T (a, b) + 1 = 2 b a b -2 b-1 a-1 b-1 -T (a -1, b -2) + 1 (16)
On the one hand, we deduce again from (13) that

T (a -1, b -2) -1 ≥ T (a -b + 1, 0) -1 = 0. On the other hand, we can rewrite 2 b a b -2 b-1 a-1 b-1 as: 2 b a b -2 b-1 a-1 b-1 = 2(a -b/2) × 2 b-1 /b! × b-2 i=0 (a -1 -i)
On the one hand, 2 b-1 /b! ≤ 1. On the other hand, the inequality of arithmetic and geometric means yields inequality

b-2 i=0 (a -1 -i) ≤ (a -b/2) b-1 .
Table 4. Numbers γ(q, p, k) and γE(q, p, k) for some triples (q, p, k). These values (and the underlying pairs of arrays) were calculated by computer.

Hence, when p = k, the expansion of the reduction is at least 1/(qk/2) k . In particular, if k = 2, then 2/(T (q, 2) + 1) = 1/(q -1) 2 . As 2CSP -2 is approximable within factor 2-π/2, Corollary 2 thus holds. When p > k, simply observe that we have:

γ(q, p, k) ≥ γ(q -p + k, k, k) ≥ 2/(T (q -p + k, k) + 1) (17)
Indeed, let a = qp + k, and assume that R and R * are two integers such that Γ a,k,k). Substituting for every row u = (u 1 , . . . , u a) of Ψ and Φ row vector u = (u 1 , . . . , u a , a + 1, . . . , q), one gets a new pair of arrays that trivially belongs to Γ (R, R * , q, p, k). Hence, combining Theorem 1, inequality (17) and Property 3, one obtains Corollary 1.

(R, R * , a, k, k) = ∅. Let then (Ψ, Φ) ∈ Γ (R, R * ,
Table 5. Pairs of arrays that achieve γE(5, 3, 2) and γE [START_REF] Goemans | Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming[END_REF][START_REF] Escoffier | Differential approximation of MIN SAT, MAX SAT and related problems[END_REF][START_REF] Demange | On an approximation measure founded on the links between optimization and polynomial approximation theory[END_REF].

Concluding Remarks

We make a few remarks as regards the combinatorial designs we introduced. When p = k, we think that 2/(T (q, k) + 1) is the exact value of γ(q, k, k). The question whether 2/(T (q, k) + 1) is optimal, though, still has to be settled. By contrast, when p > k, the only estimate of γ(q, p, k) we are aware of is the trivial lower bound of γ(qp + k, k, k). Yet, it the most likely holds given three integers k ≥ 2, p ≥ k and q > p that γ(q + 1, p + 1, k) > γ(q, p, k). Table 4, in which we indicate the value of γ(q, p, k) for a few triples (q, p, k), illustrates this fact quite well. Now, according to Lemma 1, these numbers provide for optimization CSPs with a bounded arity some lower bound on "how much we lose" on their optimum value when decreasing the size of their alphabet. This is a good motivation for studying families Γ (R, R * , q, p, k) of combinatorial designs in case when p > k.

Likewise, let k CSP(E q) refer to the (generalized) optimization CSP over Z q where functions P i that occur in the constraints have arity at most k, are rational-valued, and satisfy: P i (y 1 + a, . . . , y ki + a) = P i (y 1 , . . . , y ki), y∈ Z ki q , a ∈ Z q (18)

k CSP(E q) notably covers the restriction of Lin-q to equations of the form α 1 y 1 + . . . + α k-1 y k-1 -(α 1 + . . . + α k-1)y k ≡ α 0 mod q. Given an integer a, we denote by a the vector-of dimension that depends on the context-(a, . . . , a). On an instance I of k CSP(E q), any constraint C i evaluates the same on any two entries x Ji and x Ji + a. The objective function v(I, .) similarly evaluates the same on any two entries x and x + a. This suggests to consider the slight relaxation Γ E (R, R * , q, p, k) of families Γ (R, R * , q, p, k) where Ψ and Φ have coefficients in Z q and, rather than requirements 2 and 3, satisfy the two conditions below: 2'. Φ r ∈ {(a, 1 + a, . . . , q -1 + a) | a ∈ Z q } holds for R * indices r ∈ [R]; 3'. for all J ⊆ [q] with |J| = k and all v ∈ {0} × Z k-1 q , Ψ J and Φ J coincide with a vector in {(v 1 + a, . . . , v k + a) | a ∈ Z q } on the same number of rows.

We define numbers γ E (q, p, k) just as the same as numbers γ(q, p, k). Table 5 pictures two such pairs of arrays, while Table 4 provides the value of γ E (q, p, k) for some triples (q, p, k). Using a similar argument as for the general case, it is not hard to see that, when restricting to input instances of k CSP(E q), the reduction we proposed from k CSP-q to k CSP-p preserves the differential ratio up to a multiplicative factor of γ E (q, p, k). Notably, as γ E (q, 2, 2) = 1/q, q ∈ {3, 4, 5, 7}, it follows from [START_REF] Nesterov | Semidefinite relaxation and nonconvex quadratic optimization[END_REF] that when q ∈ {3, 4, 5, 7}, 2 CSP(E q) is approximable within factor 0.429/q (and not only 0.429/(q -1) 2). Therefore, one also shall investigate families Γ E (R, R * , q, p, k) of combinatorial designs, starting with the case when p = k = 2.

Property 1 .

 1 , c ∈ N, b ≥ c (12) Numbers T (a, b) and S(a, b, c) satisfy the following: For all a, b ∈ N with a > b ≥ 1, the following equalities hold:

Property 2 .

 2 For all a, b, c ∈ N with b ≥ max{a, c}, S(a, b, c) equals b-a c .

Property 3 .

 3 For all a, b ∈ N with a > b ≥ 2, (ab/2) b is a proper lower bound for (T (a, b) + 1)/2.

CSPs All Are Approximable Within a Constant Differential Factor