
HAL Id: hal-03910311
https://hal.science/hal-03910311v1

Submitted on 22 Dec 2022 (v1), last revised 31 Mar 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Do CPS translations also translate realizers?
Samuel Gardelle, Étienne Miquey

To cite this version:
Samuel Gardelle, Étienne Miquey. Do CPS translations also translate realizers?. JFLA 2023 - 34èmes
Journées Francophones des Langages Applicatifs, Jan 2023, Praz-sur-Arly, France. pp.134-151. �hal-
03910311v1�

https://hal.science/hal-03910311v1
https://hal.archives-ouvertes.fr

Do CPS translations also translate realizers?

Samuel Gardelle1 and Étienne Miquey2

1 ÉNS de Lyon, France
samuel.gardelle@ens-lyon.fr

2 Aix-Marseille Université, France
etienne.miquey@univ-amu.fr

Abstract

In the realm of the proofs-as-programs correspondence, continuation-passing style
(CPS) translations are known to be twofold: they bring both a program translation and
a logical translation. In particular, when using the former to compile a language with a
control operator, the latter ensures the soundness of the compilation with respect to types.

This work is inspired by [OS08], in which Oliva and Streicher explained how Krivine
realizability could be rephrased as the composition of a CPS and an intuitionistic
realizability model. In this paper, we propose to push one step forward the analysis of
the relation between realizability models and CPS translations to investigate the following
question: assume that two realizability models are de�ned using the source and the
destination of a CPS translation, is it the case that the CPS translates realizers of a
given formula into realizers of the translated formulas?

1 Introduction

Continuation-passing style translations, which where �rst introduced by Sussman and Steel
[SS75], constitute a great tool when it comes to studying operational semantics of calculi: by
making explicit the order in which reduction steps are computed, CPS translations indirectly
specify an evaluation strategy for the translated calculus. In particular, continuation-passing
style translations have a lot of applications in terms of compilation and have been widely studied
for call-by-name and call-by-value strategies of the λ-calculus [Plo75,App92,SF93].

From a logical perspective, CPS translations are also very informative insofar as they
induce a translation at the level of types that mostly amounts to a syntactical model allowing
to transfer logical properties (coherence, normalization) from the target calculus [BPT17].
For instance, standard CPS translations are known to correspond to embeddings of classical
logic into intuitionistic logic through variants of Gödel's negative translation [Gri90,Mur90].
Computationally, the latter corresponds to Gri�n's seminal observation that a classical Curry-
Howard correspondence can be obtained by extending the λ-calculus with control operators,
e.g. Scheme's call/cc. These operators provides a direct handle on continuations (allowing
in particular the de�nition of backtracking programs), as opposed to the indirect one provided
by CPS translations. Several calculi were born from this idea, amongst which Krivine's λc-
calculus [Kri04].

Elaborating on this calculus, Krivine developed in the late 90s the theory of classical
realizability, which is a complete reformulation of its intuitionistic twin. This theory has shown
to be particularly fruitful, both to analyze the computational content of proofs [Kri03,Miq11b,
Miq18] or to de�ne new models of classical theories [Kri12,Kri21].

Studying the structure of Krivine's classical realizability, Oliva and Streicher showed how
the latter could in fact be viewed as the composition of a CPS with a traditional intuitionistic
realizability interpretation [OS08]. This observation unveils a somewhat surprising situation:
the very nature of a CPS translation is syntactical and as such, it is quite unexpected that this

Do CPS translations also translate realizers? Gardelle and Miquey

turns out to be well-behaved with respect to realizability, a semantic notion. In fact, taking a
closer look at Oliva and Streicher's work [OS08], their (classical) realizers are de�ned through
the computational behavior of their CPS translation. In line with this work, Frey also de�nes a
notion of classical realizability directly within the target of a CPS translation [Fre16]. In both
cases, realizers are thus compatible with the CPS by de�nition. In a slightly di�erent setting,
Miquel studied the witness extraction mechanism of classical realizability for Σ0

1 formulas
through the CPS translation, but his results only apply to typed terms [Miq11b].

Therefore, none of these works tackle the following question: do CPS translations also

translate realizers? To phrase it a bit more precisely, let us consider a CPS translation [·] from
a (classical) source calculus, say Krivine λc-calculus, to an intuitionistic calculus, say the λ-
calculus, and let us write J·K for the translation on types it induces. Assume besides that these
two calculi serve as the underlying language of realizers for two realizability interpretations, say
for second-order classical and intuitionistic arithmetic (PA2 and HA2) respectively. Now, if t is
a term of type A (in the source), then [t] is of type JAK (in the destination); but is it the case

that if t realizes A then [t] realizes JAK?
To investigate this question, we will use a very convenient tool to reason about realizability

models: evidenced frames [CMT21] which, as we will see in Section 2.2, capture the algebraic
structure of realizability interpretations. In fact, this work was also an excuse to put this recent
notion in practice and to test the companion notion of morphism against a concrete candidate.
One can think of an evidenced frames morphism as a functional embedding of a realizability
interpretation into another one, and as such, CPS translations provide us with very natural
nontrivial candidates. The main question of this paper could indeed be rephrased in these
terms: do CPS translations de�ne evidenced frame morphisms? As we shall see in Section 3.2,
the answer is nuanced in that in general a CPS translation does not induces an evidences frame
morphism, but we can nonetheless introduce another evidenced frame, which corresponds to
the image of the source calculus through the translation and can serve as the codomain of an
evidenced frame morphism.

Outline of the paper We start by giving a standard example of a realizability interpretation
for HA2 based on the λ-calculus in Section 2, which we will later use as the destination
of the CPS translation we will consider. We take advantage of this section to recall the
de�nition of evidenced frames, and illustrate how the interpretation for HA2 naturally induces
an evidenced frame EFHA2. We then introduce (a call-by-value presentation of) Curien-
Herbelin's λµµ̃-calculus in Section 3, together with its CPS translation into the (pure) λ-
calculus. Finally, in Section 4 we de�ne an evidenced frame EFbv

µµ̃ corresponding to a Krivine
realizability interpretation based on the λµµ̃-calculus, and we investigate the CPS translation
in terms of evidenced frame morphisms. In particular, we show that in general it does not de�ne
a morphism from EFbv

µµ̃ to EFLJ2, but that another evidenced frame EF fw(which also de�nes a
realizability interpretation for HA2) can be introduced for the CPS to de�ne an appropriate
morphism EFbv

µµ̃ → EF fw.

2 Evidenced frames

Before introducing evidenced frames, we give a �rst example of a (very standard) realizability
interpretation that will serve both as the destination of the CPS translation considered in the
sequel and as an introducing example for evidenced frames.

2

Do CPS translations also translate realizers? Gardelle and Miquey

(x : A) ∈ Γ

Γ ` x : A
(Ax)

Γ ` t : A→ B Γ ` u : A
Γ ` t u : B

(→E)
Γ, x : A ` t : B

Γ ` λx . t : A→ B
(→I)

Γ ` t : A Γ ` u : B
Γ ` (t, u) : A ∧B

(∧I)
Γ ` t : A ∧B Γ, x : A, y : B ` u : C

Γ ` let (x, y) = t in u : C
(∧E)

Γ ` t : A[x := n]

Γ ` t : ∃x.A (∃1I)

Γ ` t : ∀x.A
Γ ` t : A[x := n]

(∀1E)
Γ ` t : A x /∈ FV (Γ)

Γ ` t : ∀x.A (∀1I)
Γ ` t : A[X(x1, . . . , xn) := B]

Γ ` t : ∃X.A (∃2I)

Γ ` t : ∀X.A
Γ ` t : A[X(x1, . . . , xn) := B]

(∀2E)
Γ ` t : A X /∈ FV (Γ)

Γ ` t : ∀X.A (∀2I)
Γ ` t : A′ A ∼= A′

Γ ` t : A
(∼=)

Figure 1: A type system for HA2

2.1 Realizability interpretation of HA2

2.1.1 Heyting second-order arithmetic

We start by introducing the terms and formulas of Heyting second-order arithmetic, for which
we mostly follow Miquel's presentation [Miq11a]. Second-order formulas are built on top of
�rst-order arithmetical expressions, by means of logical connectives, �rst- and second-order
quanti�cations and primitive predicates. We use upper case letters for second-order variables
and lower case letters for �rst-order ones.

We consider the usual λ-calculus terms extended with (positive) pairs and the corresponding
destructor (written λ(x, y).t). In the last sections of the paper, we will also include primitives
for booleans for technical purposes. The syntax of formulas and terms is given by

1st-order exp. e ::= x | f(e1, . . . , en)
Formulas A,B ::= X(e1, . . . , en) | A→ B | A ∧B | ∀x.A | ∃x.A | ∀X.A | ∃X.A
Terms t, u ::= λx.t | t u | (t, u) | let (x, y) = t in u

where f : Nn → N is any primitive recursive function. We write Λ for the set of all closed
λ-terms, and we may use the following usual shorthands: > , ∃X.X, ⊥ , ∀X.X and ¬A ,
A→ ⊥.

To simplify the use of existential quanti�ers, as in [Miq11a], we introduce the following
congruence rules, where the variables x,X are not free in B

(∃x.A)→ B ∼= ∀x.(A→ B) (∃X.A)→ B ∼= ∀X.(A→ B) (1)

These congruences allow us to avoid having elimination rules for the existential quanti�ers,
thus simplifying the resulting type system. The type system, which is given in Figure 1,
corresponds to the usual rules of natural deduction. The reader may observe that in particular,
no computational content is given to quanti�ers in the type system.

The one-step (weak head-) reduction over terms is de�ned by the following rules:

(λx.t)u .β t[u/x] let (x, y) = (u, v) in t .β t[u/x][v/y]

t .β t
′

C[t] .β C[t′]

3

Do CPS translations also translate realizers? Gardelle and Miquey

where C[] ::= [] | C[[]u] | C[let (x, y) = [] in t]. We write →β for the re�exive-transitive
closure of .β , which is known to be deterministic1, type-preserving and normalizing on typed
terms [Bar92].

2.1.2 Realizability interpretation

We will now see how to de�ne a realizability interpretation relying on the type system de�ned
in Figure 1. Formulas are interpreted as saturated sets of terms, i.e. as sets of closed terms
S ⊆ Λ such that t →β t

′ and t′ ∈ S imply that t ∈ S. We write SAT to denote the set of all
saturated sets and, given a formula A, we call truth value its realizability interpretation.

De�nition 1 (Valuation). A valuation is a function ρ that associates a natural number ρ(x)
to every �rst-order variable x and a truth value function ρ(X), i.e. a function in Nk → SAT to
every second-order variable X of arity k.

1. Given a valuation ρ, a �rst-order variable x and a natural number n, we denote by ρ, x 7→ n
the valuation de�ned by (ρ, x 7→ n) , ρ| dom(ρ)\{x} ∪ {x 7→ n} .

2. Given a valuation ρ, a second-order variable X of arity k and a truth value function
F : Nk → SAT, the valuation de�ned by (ρ,X 7→ F) , ρ| dom(ρ)\{X} ∪ {X 7→ F} will
be denoted by ρ,X 7→ F .

We say that a valuation ρ is closing the formula A if FV (A) ⊆ dom(ρ).

De�nition 2 (Realizability interpretation). We interpret closed arithmetical expressions e in
the standard model of �rst-order Peano arithmetic N. Given a valuation ρ and a �rst-order
expression e (whose variables are in the domain of ρ) we denote its interpretation by JeKρ.
The interpretation of a formula A together with a valuation ρ closing A is the set |A|ρ de�ned
inductively according to the following clauses:

|X(e1, . . . , en)|ρ , ρ(X)(Je1Kρ, . . . , JenKρ)

|A→ B|ρ , {t ∈ Λ : ∀u ∈ |A|ρ.(t u ∈ |B|ρ)}

|A ∧B|ρ , {t ∈ Λ : ∃u ∈ |A|ρ.∃v ∈ |B|ρ.t→β (u, v)}

|∀x.A|ρ ,
⋂
n∈N |A|ρ,x7→n

|∃x.A|ρ ,
⋃
n∈N |A|ρ,x7→n

|∀X.A|ρ ,
⋂
F :Nk→SAT |A|ρ,X 7→F

|∃X.A|ρ ,
⋃
F :Nk→SAT |A|ρ,X 7→F

Observe that in the previous de�nition, the universal quanti�cation cannot be seen as a
generalized conjunction. Indeed, the conjunction is given computational content through pairs,
while the universal quanti�cations are de�ned as intersections of truth values.

It is easy to see that for any formula A and any valuation ρ closing A, one has |A|ρ ∈ SAT.
As it turns out, the congruences de�ned by Equation (1) are sound w.r.t. the interpretation.

Proposition 3 ([Miq11a]). If A and A′ are two formulas of HA2 such that A ∼= A′, then for

all valuations ρ closing both A and A′ we have |A|ρ = |A′|ρ.

1We also could have considered a non-deterministic reduction relation (i.e.. without enforcing any evaluation
strategy) without altering the forecoming de�nition of the realizability interpretation. Nonetheless, this choice
will provide us with a tighter preservation of reduction through the CPS translation.

4

Do CPS translations also translate realizers? Gardelle and Miquey

Proof. By induction on A ∼= A′. Congruence easily goes through by induction, we only prove
the �rst-order case (the second-order case is analogous):

|(∃x.A)→ B|ρ = {t ∈ Λ : ∀u ∈ |∃x.A|ρ, t u ∈ |B|ρ}
= {t ∈ Λ : ∀u ∈

⋃
n∈N |ρ, x 7→ n|ρA, t u ∈ |B|ρ}

= {t ∈ Λ : ∀u, (∃n, u ∈ |ρ, x 7→ n|ρA)→ t u ∈ |B|ρ}
= {t ∈ Λ : ∀u,∀n, (u ∈ |ρ, x 7→ n|ρA→ t u ∈ |B|ρ)}
=
⋂
n∈N{t : ∀u, u ∈ |ρ, x 7→ n|ρA→ t u ∈ |B|ρ}

= |∀x.(A→ B)|ρ

To express that the realizability interpretation is sound with respect to the type system we
need the following preliminary notions.

De�nition 4 (Substitution). A substitution is a �nite function σ from λ-variables to closed
λ-terms. Given a substitution σ, a λ-variable x and a closed λ-term u, we denote by (σ, x := u)
the substitution de�ned by (σ, x := u) , σ| dom(σ)\{x} ∪ {x := u}.

De�nition 5. Given a context Γ and a valuation ρ closing the formulas in Γ, we say that a
substitution σ realizes ρ(Γ) and write σ
 ρ(Γ) if dom(Γ) ⊆ dom(σ) and σ(x) ∈ |A|ρ for every
declaration (x : A) ∈ Γ.

De�nition 6. A typing judgement Γ ` t : A is adequate if for all valuations ρ closing A and Γ
and for all substitutions σ
 ρ(Γ) we have σ(t) ∈ |A|ρ. More generally, we say that an inference

rule

J1 · · · Jn
J0 is adequate if the adequacy of all typing judgements J1, . . . , Jn implies the

adequacy of the typing judgement J0.

Theorem 7 (Adequacy [Miq11a]). The typing rules of Figure 1 are adequate.

Proof. The proof is standard, by case analysis. We draw the reader's attention to the particular
case of the second-order elimination rule

Γ ` t : ∀X.A
Γ ` t : A[X(x1, . . . , xn) := B]

(∀2E)

which relies on the fact that the truth value of any formula (here B) is a saturated set. To
prove that this rule is indeed adequate, let us consider a valuation ρ closing ∀X.A, B and Γ
and a substitution σ
 ρ(Γ) such that σ(t) ∈ |∀X.A|ρ. By de�nition, this implies that for
any function F : Nk → SAT (where k is the arity of X), we have σ(t) ∈ |ρ,X 7→ F |ρA. To
conclude, it su�ces to see that the function n1, . . . , nn 7→ |ρ, x1 7→ n1, . . . , xk 7→ nk|ρB is indeed
in Nk → SAT.

The adequacy theorem is the key result when de�ning realizability interpretations in that
fundamental properties stem from it. For example, we have the following corollary.

Corollary 8 (Consistency). There is no proof term t such that ` t : ⊥.

Proof. The proof is by reductio ad absurdum. It follows from Theorem 7 that if Γ ` t : A is
derivable, then it is adequate. In this case, this entails t ∈ |⊥|ρ = |∀X.X|ρ =

⋂
S∈SAT S = ∅.

5

Do CPS translations also translate realizers? Gardelle and Miquey

While a complete introduction to realizability interpretations and their bene�ts to prove
properties such as soundness or normalization of typed calculi is out of the scope of this paper2,
we would like to point out nonetheless that the proof of adequacy is very �exible. Indeed, if
one wants to add a new instruction to the language of terms via its typing rule, it is enough
to check that this typing rule is adequate while the remainder of the proof is exactly the same.
For instance, to extend the present setting with booleans (as we shall do later on) it is enough
to introduce terms tt,ff, if b then t else u with their typing rules and to prove that the latter
are adequate with the realizability interpretation.

2.2 Evidenced frames

In the previous section, we have seen an example of a proof system labelled with proof terms
derived from the λ-calculus. Note that if proof terms are indeed realizers, there exists realizers
that are not typable. Take for example a non-typable term Ω, and observe that (λ_.λx.x) Ω
is not typable but realizes ∀X.X → X because λx.x does. The realizability interpretation
generalizes this proof system in that it is only concerned with the behavior (semantic) of proof
terms and not their syntax. Note that we loose decidability but we are not concerned about
it since we only want to build interpretations. The essence of a realizability interpretation lies
between the interaction of a programming language and a language of formulas. The formalism
of evidenced frames seeks to abstract in a uni�ed way this structure. It is composed of a triple
(with axioms) that contains two languages: evidences (programs) and proposition (formulas)

as well as a relation · ·−→ · that connects them.

De�nition 9 ([CMT21]). An evidenced frame is a triple (Φ, E, · ·−→ ·), where Φ is a set of

propositions, E is a collection of evidences, and φ1
e−→ φ2 is a ternary evidence relation on

Φ× E × Φ, along with the following3:

Re�exivity There exists evidence eid ∈ E:

- ∀φ. φ eid−→ φ

Transitivity There exists an operator ; ∈ E × E → E:

- ∀φ1, φ2, φ3, e, e′. φ1
e−→ φ2 and φ2

e′−→ φ3 =⇒ φ1
e ; e′−−→ φ3

Top A proposition>∈Φ such that there exists evidence e>∈E:

- ∀φ. φ e>−→ >

Conjunction An operator ∧∈Φ×Φ→Φ such that there exists an operator ⦉·,·⦊∈E×E→E and
evidences efst, esnd ∈ E:
- ∀φ1, φ2. φ1 ∧ φ2

efst−−→ φ1 - ∀φ, φ1, φ2, e1, e2. φ
e1−→ φ1 and φ

e2−→ φ2 =⇒ φ
⦉e1,e2⦊−−−−→ φ1 ∧ φ2

- ∀φ1, φ2. φ1 ∧ φ2
esnd−−→ φ2

Universal Implication An operator⊃ ∈ Φ×P(Φ)→ Φ such that there exists an operator λ∈E→E
and evidence eeval∈E:
2We refer the reader interested in this to the existing literature on classical realizability,e.g. [Rie14,Lep17,

Miq17].
3Observe that the di�erent construct on propositions and evidences are actually part of the de�nition of

an evidenced frame (in particular, several di�erent evidenced frames may be induced from one given triple

(Φ, E, · ·−→ ·)). In the sequel, for conciseness we may nonetheless only state the existence of evidenced frames
through this triple, giving the other de�ning constructs in the proofs.

6

Do CPS translations also translate realizers? Gardelle and Miquey

- ∀ϕ1, ϕ2,
−→
φ , e. (∀φ ∈

−→
φ . φ1 ∧ φ2

e−→ φ) =⇒ φ1
λe−→ φ2⊃

−→
φ

- ∀φ1,
−→
φ , φ ∈

−→
φ . (φ1⊃

−→
φ) ∧ φ1

eeval−−→ φ

Given an evidenced frame (Φ, E, · ·−→ ·), we say that e ∈ E is evidence of φ ∈ Φ if > e−→ φ
holds. The evidenced frame is said to model φ if it has evidence of φ. An evidenced frame is
consistent if it does not model ⊥.

Note that contrary to cartesian closed categories, this formalism does not enforce any
equation between arrows, in fact it does not allow for the axiomatization of reductions: we
only require that the languages of propositions and evidences are expressive enough.

Remark 10. If there exists a huge literature describing realizability interpretations for di�erent
theories based on di�erent notions of computations, the notion of �realizability interpretation�
itself does not have a formal de�nition. The best approximation that one could come up with
would probably be an interpretation of formulas as sets of computing terms plus some extra
intuitions on how terms should compute accordingly to the connectives they realize. The study
of its categorical counterpart gives a more precise picture: the interpretation should induce
a tripos [Pit02, vO08]. As shown in [CMT21], evidenced frames are complete with respect
to triposes, and re�ect the structure of a realizability interpretations in a much more faithful
way than triposes do. As such, �it is an evidenced frame� is probably the best de�nition
one could give of a realizability interpretation, the de�nition of an evidenced frame and of its
di�erent components specifying how formulas are interpreted and what �to realize� means. In
the next section, we will show how the realizability interpretation given for HA2 indeed de�nes
an evidenced frame, but in the sequel of the paper, the reader should understand the existence
of an evidenced frame as the de�nition of a realizability interpretation.

De�nition 11. A morphism4 from EF1 = 〈Φ1, E1, ·
·−→1 ·〉 to EF2 = 〈Φ2, E2, ·

·−→2 ·〉 is a
function F : Φ1 → Φ2 satisfying the following properties:

1. ∀e1. ∃e2. ∀ϕ1, ϕ
′
1. ϕ1

e1−→1 ϕ
′
1 =⇒ F (ϕ1)

e2−→2 F (ϕ′1)

2. ∃e2. >2
e2−→2 F (>1)

3. ∃e2. ∀ϕ1, φ
′
1. F (ϕ1) ∧2 F (ϕ′1)

e2−→2 F (ϕ1 ∧1 ϕ′1)

4. ∃e2. ∀ϕ1,
−→
φ ′1. F (ϕ1)⊃2{F (ϕ′1) | ϕ′1 ∈

−→
φ ′1}

e2−→2 F (ϕ1⊃1
−→
φ ′1)

5. ∃f ∈ Φ2 → Φ1.
((
∃e2. ∀ϕ2. ϕ2

e2−→2 F (f(ϕ2))
)∧(

∃e2. ∀ϕ2. F (f(ϕ2))
e2−→2 ϕ2

))
In broad lines, an evidenced frame morphism F from EF1 to EF2 mostly ensures (�rst

item) that if any two propositions that are logically connected by an evidence, so are their
images through F , and guarantees (second to fourth item) the existence of a uniform evidence
that witnesses that the image of the conjunction of two propositions (and similarly for other
connectives) is the logical consequence of the conjunction of images of these propositions. The
last condition in turns provides us with a constructive mean to relate any proposition in the
codomain Φ2 of the morphism with the image of a proposition in Φ1 that is logically equivalent
to it (which is, again, witnessed by a pair of uniform evidences that do not depend of the
considered proposition).

4For simplicity reasons, we adopt here an extensional presentation of evidenced frames and thus of
morphisms, see [CMT21] for further discussion on intensional/extensional aspects of evidenced frames and
their morphisms.

7

Do CPS translations also translate realizers? Gardelle and Miquey

This notion of morphism provides us with the de�nition of a category EF, whose objects are
evidenced frames and whose structure can be further enriched, for instance to equip morphisms
from EF1 to EF2 with a preorder relation F 4 G, de�ned to hold when there exists evidence e2 ∈
E2 satisfying ∀ϕ1 ∈ Φ1. F (ϕ1)

e2−→2 G(ϕ1). Again, for a more detailed introduction on evidenced
frame we refer the reader to the corresponding paper [CMT21], but it is worth mentioning that
any evidenced frame induces a tripos (via a uniform construction that does not depend on the
considered evidenced frame), and that evidenced frames are complete with respect to triposes
in the sense that the category EF is actually equivalent to the category Trip of triposes.

2.3 The induced evidenced frame EFHA2

The interpretation of HA2 given above induces an evidenced frame EFHA2 whose de�nition
simply re�ects the structure of the interpretation: propositions are de�ned by saturated sets of
terms, evidences are just λ-terms and the evidence relation is given by:

ψ
t−→ ϕ ⇐⇒ ∀u ∈ ψ.(t u) ∈ ϕ

This de�nition is reminiscent of the ordering relation on predicates induced by realizability
interpretations, for instance to de�ne triposes [Pit02].

Proposition 12 (EFHA2). The triple (SAT,Λ, · ·−→ ·) de�nes an evidenced frame.

Proof. As hinted by the realizability interpretation in De�nition 2, one can simply de�ne

ρ ∧ θ , {t ∈ Λ : ∃u ∈ ρ.∃v ∈ θ.t→β (u, v)} ρ ⊃
−→
Θ , {t ∈ Λ : ∀u ∈ ρ.∀θ ∈

−→
Θ .(t u) ∈ θ}

which both de�ne saturated sets. Proving the existence of the required evidences is then an
easy exercise of λ-calculus, which amounts to proving that the corresponding realizers exist.

Re�exivity Let ρ ∈ Φ, then ρ
λx.x−−−→ ρ. Indeed if u ∈ ρ : (λx.x) u→β u ∈ ρ

Transitivity Let ρ, θ, µ ∈ Φ such that: ρ
t−→ θ

u−→ µ

Then ρ
t;u−−→ µ, take v ∈ ρ : (t;u) v = (λx.t (u x)) v →β t (u v) with u v ∈ θ by hypothesis

and thus t (u v) ∈ µ by hypothesis.

Top Let ρ ∈ Φ, then ρ
λyx.x−−−−→ >. Let u ∈ ρ, then (λxy.x) u→β λx.x ∈ >.

Conjunction Let efst = λx.π1(x), esnd = λx.π2(x) and ρ, θ, µ ∈ Φ:

� ρ ∧ θ efst−−→ ρ: for u ∈ ρ ∧ θ: efst u→β π1(u) ∈ ρ by hypothesis

� Similarly ρ ∧ θ esnd−−→ θ

� ρ
t−→ θ and ρ

u−→ µ imply ρ
⦉t,u⦊−−−→ θ ∧ µ: Let v ∈ ρ, then ⦉t, u⦊ v →β (t v, u v).

Moreover π1(t v, u v)→β t v ∈ θ, similarly π2(t v, u v)→β u v ∈ µ.

Universal Implication

Let eeval = λx.π1(x) π2(x):

� ∀ρ, µ,
−→
Θ , e : (∀θ ∈

−→
Θ : ρ ∧ µ e−→ θ) =⇒ ρ

λe−→ µ ⊃
−→
Θ

Let u ∈ ρ: λe u →β λy.e (u, y). Moreover λy.e (u, y) ∈ µ ⊃
−→
Θ : take v ∈ µ, θ ∈

−→
Θ :

(λy.e (u, y)) v →β e (u, v) ∈ θ

8

Do CPS translations also translate realizers? Gardelle and Miquey

� ρ,
−→
Θ , θ ∈

−→
Θ : (ρ ⊃

−→
Θ) ∧ ρ eeval−−−→ θ:

Let p ∈ (ρ ⊃
−→
Θ) ∧ ρ: eeval p →β π1(p) π2(p). By hypothesis π1(p) ∈ (ρ ⊃

−→
Θ) and

π2(p) ∈ ρ, thus π1(p) π2(p) ∈ θ for θ ∈
−→
Θ .

Remark 13. Even though we started from an interpretation of second-order Heyting
arithmetic, we should insist on the fact that an evidenced frame always provides us with a
model of higher-logic. Indeed, since propositions are viewed through their semantic counterpart
(here as saturated sets of terms), this allows us to de�ne a (semantic) quanti�cation over any
set of propositions regardless of what the syntax of the language accounts for. In fact, should
we have considered a concrete example for an even simpler theory (say an interpretation of
intuitionistic propositional logic based on the simply-typed λ-calculus), the induced evidenced
frame would still give us an interpretation of higher-order logic.

Conversely, the de�nition of an evidenced frame only speci�es the minimal requirements for
the interpretation to give such a model, but the language of propositions and evidences can
actually be richer. For instance, in Section 4.3 we shall use a primitive data type for booleans,
while in [CMT21] an evidenced frame is build from a computational system allowing for stateful
computations.

3 Classical logic, the λµµ̃-calculus and CPS translation

We present Curien-Herbelin's λµµ̃-calculus [CH00], which we use afterwards as the source
calculus of a CPS translation. To illustrate the �exibility of evidenced frame, we chose on
purpose to pick a call-by-value source calculus. Besides, to ease the later de�nition of the CPS
translation, we opted for a sequent calculus as advocated by [DMMZ10,DMAJ16,MM13], hence
the choice of Curien-Herbelin's λµµ̃-calculus5.

We �rst recall the syntax and operational semantics of the λµµ̃-calculus, before de�ning a
well-behaved CPS that translates it to the λ-calculus de�ned in Section 2.1.1. We will then
study the corresponding evidenced frame EFbv

µµ̃ and its relation to the CPS in Section 4. For
the sake of simplicity, we will use the simply-typed version with pairs of the λµµ̃-calculus.
Quanti�cations (both �rst and second order) will be implicitly taken care of when we de�ne
the corresponding evidenced frame EFbv

µµ̃ in the next section.

3.1 Curien-Herbelin's λµµ̃-calculus

We recall here the spirit of the Curien-Herbelin λµµ̃-calculus [CH00]. The key notion of the
λµµ̃-calculus is the notion of command. A command 〈t || e〉 can be understood as a state of an
abstract machine, representing the evaluation of a term t (the program) against a co-proof e
(the stack) that we call context. The syntax and reduction rules (parameterized over a subset
of terms V and a subset of evaluation contexts E) are given in Figure 2, where µ̃x.c can be read
as a context let x = [·] in c. The µ operator comes from Parigot's λµ-calculus [Par97], µα

5In fact, an even better choice when it comes to de�ning operational semantics and CPS translations of
calculus could have been to rely upon Munch-Maccagnoni's system L [MM13], which can be seen as a �ner-
grained variant of λµµ̃-syntax where the evaluation order is driven by the polarity of terms. In such a syntax,
continuation-passing style translations are really easy to de�ne in that the operational semantics is that of
an abstract machine specifying at each step whether the term or the evaluation context is given the priority.
We mostly chose to stick to Curien-Herbelin's λµµ̃-calculus for the simplicity of the presentation, as its types
system shares the same connectives than the one for HA2 (rather than their decompositions into linear logic).
In fact, call-by-value/call-by-name variants of the λµµ̃-calculus are expressible and correspond to a �xed choice
of polarities when decomposing the di�erent connectives.

9

Do CPS translations also translate realizers? Gardelle and Miquey

Terms t ::= x | µα.c | λx.t | (t, u)
Contexts e ::= α | µ̃x.c | t · e | µ̃(x, y).c
Commands c ::= 〈t || e〉

〈µα.c || e〉 .† c[e/α]
〈t || µ̃x.c〉 .‡ c[t/x]
〈(t, u) || µ̃(x, y).c〉 .‡ c[t/x][u/y]
〈λx.t || u · e〉 .

〈
u
∣∣∣∣ µ̃x.〈t || e〉〉

†where e ∈ E, ‡where t, u ∈ V
a) Syntax b) Reduction rules

Γ ` t : A | ∆ Γ | e : A ` ∆

〈t || e〉 : (Γ ` ∆)
(Cut)

(x : A) ∈ Γ

Γ ` x : A | ∆
(Axr)

Γ, x : A ` t : B | ∆
Γ ` λx.t : A→ B | ∆

(→r)
c : (Γ ` ∆, α : A)

Γ ` µα.c : A | ∆
(µ)

(α : A) ∈ ∆

Γ | α : A ` ∆
(Axl)

Γ ` u : A | ∆ Γ | e : B ` ∆

Γ | u · e : A→ B ` ∆
(→l)

c : (Γ, x : A ` ∆)

Γ | µ̃x.c : A ` ∆
(µ̃)

c : (Γ, x : A, y : B ` ∆)

Γ | µ̃(x, y).c : A ∧B ` ∆
(∧l)

Γ ` t : A | ∆ Γ ` u : B | ∆
Γ ` (t, u) : A ∧B | ∆

(∧r)

(c) Typing rules

Figure 2: The simply-typed λµµ̃-calculus with pairs

binds a context to a context variable α in the same way that µ̃x binds a proof to some proof
variable x.

The λµµ̃-calculus can be seen as a proof-as-program correspondence between sequent
calculus and abstract machines. Right introduction rules correspond to typing rules for
proofs, while left introduction are seen as typing rules for evaluation contexts. In contrast
with Gentzen's original presentation of sequent calculus, the type system of the λµµ̃-calculus
explicitly identi�es at any time which formula is being worked on. In a nutshell, this presentation
distinguishes between three kinds of sequents: sequents of the form Γ ` t : A | ∆ for typing
terms, where the focus is put on the (right) formula A; sequents of the form Γ | e : A ` ∆ for
typing contexts, where the focus is put on the (left) formula A; sequents of the form c : (Γ ` ∆)
for typing commands, where no focus is set. In a right (resp. left) sequent Γ ` t : A | ∆, the
singled out formula6 A reads as the conclusion �where the proof shall continue� (resp. hypothesis
�where it happened before�).

Regarding the reduction rules, observe that if V and E are not restricted enough, these rules
admit a critical pair:

c[µ̃x.c′/α] / 〈µα.c || µ̃x.c′〉 . c′[µα.c/a].

The di�erence between call-by-name and call-by-value can be characterized by how this
critical pair is solved, by de�ning V and E in such a way that the two rules do not overlap. This
justi�es the de�nition of a subcategory V of proofs, that we call values, and of the dual subset

6This formula is often referred to as the formula in the stoup, a terminology due to Girard.

10

Do CPS translations also translate realizers? Gardelle and Miquey

E of contexts that we call co-values (following Downen and Ariola's denomination [DA14]):

Values V ::= x | λx.t | (V1, V2) Co-values E ::= α | t · e

The call-by-name evaluation strategy amounts to the case where V , Terms and E , Co-

values, while call-by-value corresponds to V , Values and E , Contexts. In the sequel, we
will focus on the latter and we write .bv for the corresponding reduction steps and →bv for
its re�exive-transitive closure. Since the by-value reduction rule for µ̃(x, y).c only computes in
front of a pair of values, we restrict the syntax to these pairs and de�ne pairs of (non-evaluated)
terms through the shorthand (which simulate the left-to-right opening of such pairs):

(t, u) , µα.
〈
t
∣∣∣∣∣∣ µ̃x.〈u ∣∣∣∣ µ̃y.〈(x, y) ||α〉

〉〉
Readers more accustomed to the λ-calculus may wonder why the syntax of terms does not

include the usual application (which we write t@u below), but this can be expressed as a macro,
as well as the let · = · in · construct:

t@u , µα.〈t || u · α〉 let x = t in u , µα.
〈
t
∣∣∣∣ µ̃x.〈u ||α〉〉

In particular, the β-reduction is simulated by the reduction of λµµ̃ commands, since if t, u ∈ Λ
are such that t −→β u, then for any stack e we have 〈t || e〉 →∗β 〈u || e〉. In our setting, we can
observe that the relation .bv induces a (weak-head) call-by-value evaluation strategy for the
application, since if u reduces (in front of any context) to value V , we have:

〈λx.t@u || e〉 →bv

〈
u
∣∣∣∣ µ̃x.〈t || e〉〉 →bv

〈
V
∣∣∣∣ µ̃x.〈t || e〉〉 →bv 〈t[V/x] || e〉

that is analogous to the expected reduction thread in a call-by-value evaluated λ-calculus:

(λx.t)u −→β let x = u in t −→β let x = V in t −→β t[V/x]

Readers familiar with control operators may observe that we can implement call/cc as well
as continuations in this calculus as follows:

call/cc , λx.µα.〈x ||kα · α〉 ke , λy.µ_.〈y || e〉

Forgetting a minute about the call-by-value restriction, we can check that these de�nitions yield
the expected computational behavior of call/cc: in front of a stack t · e, it catches the context
e thanks to the µα binder and reduces as follows:

〈call/cc || t · e〉 =
〈
λx.µα.〈x ||kα · α〉

∣∣∣∣ t · e〉 .
〈
µα.〈t ||kα · α〉

∣∣∣∣ e〉 . 〈t ||ke · e〉

In turns, in front of a stack u · e′, the continuation ke will now catch the context e′ and throw
it away to restore the former context e:

〈ke || u · e′〉 =
〈
λy.µ_.〈y || e〉

∣∣∣∣u · e′〉 .
〈
µ_.〈u || e〉

∣∣∣∣ e′〉 . 〈u || e〉

From a logical perspective, it is an easy exercise to check that call/cc can be typed with
Peirce's law, see Appendix A for the derivation.

11

Do CPS translations also translate realizers? Gardelle and Miquey

3.2 Continuation-passing style translation of the call-by-value λµµ̃-
calculus

We de�ne a CPS translation for the call-by-value variant of the λµµ̃-calculus introduced
previously which is analogous to the translations in [CH00, Miq17]. The de�nition of the
translation can be mechanically derived from the operational semantics of the calculus,
following the methodology of Danvy's semantic artifacts described in [ADH+12,Miq17], or the
decomposition of the λµµ̃-calculus into Munch-Maccagnoni's system L [MM13]. As is usual in
call-by-value, the translation is de�ned on three layers, re�ecting the three syntactic categories
at play: [·]t on terms, [·]e on contexts and [·]V on values.

[〈t || e〉]c , [t]t [e]e

[µα.c]t , λe.(λα.[c]c) e

[V]t , λe.e [V]V

[u · e]e , λV.V [u]t [e]e
[µ̃x.c]e , λV.(λx.[c]c)V

[µ̃(x, y).c]e , λV.let (x, y) = V in [c]c
[α]e , α

[x]V , x

[(V1, V2)]V , ([V1]V , [V2]V)

[λx.t]V , λue.u (λx.[t]t e)

The computational translation induces the following translation on types:

JAKt , JAKe → R
JAKe , JAKV → R

JA→ BKV , JAKt → JBKe → R
JA ∧BKV , JAKV ∧ JBKV

JXKV , X

where R is the return type of continuations, usually de�ned as R , ⊥. This translation
extends naturally to contexts, where the translation of Γ is de�ned in terms of values while ∆
is translated in terms of contexts:

JΓ, x : AKV , JΓKV, x : [A]V J∆, α : AKe , J∆Ke, α : JAKe

Remark 14. Usually, the return type R is chosen to be some speci�c formula of the target
language (here HA2). Actually, we can even consider an even more general settings, where we
extend the language of formulas with a new constant R for which we only have to provide its
realizability interpretation as a saturated set of terms (i.e. |R| ∈ SAT). Since no typing rule
is provided for R, it can be understood as a generalization of ⊥: any derivation of R can be
turned into a derivation of ⊥ (and vice-versa), but contrarily to |⊥| = |∀X.X| = ∅, the semantic
interpretation of R can be chosen not to be empty.

The translation of terms, contexts and commands is sound with respect both to types and
computations7, as shown by the following propositions:

Proposition 15 ([CH00,Miq17]). For any contexts Γ and ∆, we have

1. if Γ ` t : A | ∆ then JΓKV, J∆Ke ` [t]t : JAKt

2. if Γ | e : A ` ∆ then JΓKV, J∆Ke ` [e]e : JAKe

3. if c : Γ ` ∆ then JΓKV, J∆Ke ` [c]c : R
Proposition 16 (Simulation). For any c, c′, we have: c→bv c

′ if and only if [c]c −→β [c′]c .

Proof. The direct implication is standard and proven by induction on .bv [Miq17]. The �only
if� part is proven by contradiction, by considering c and c′ with the shortest reduction path
[c]c −→β [c′]c possible, then reasoning by induction on c.

7To be even more precise, we could restrict ourselves to a weak-head call-by-name evaluation strategy with
the same result.

12

Do CPS translations also translate realizers? Gardelle and Miquey

4 CPS translation of realizers

We are now ready to examine Oliva and Streicher result through the lens of evidenced frames,
and investigate the main question of this paper.

4.1 A call-by-value classical realizability interpretation

We begin by de�ning the evidenced frame induced by the realizability interpretation that
the call-by-value λµµ̃-calculus yields. The structure of this interpretation di�ers from the
(intuitionistic) interpretation introduced in Section 2.1.2 mostly for two reasons: a) it is a
classical (à la Krivine) interpretation, and b) it is based on a call-by-value calculus.

As in intuitionistic realizability, every formula A is interpreted in classical realizability as
a set |A|t of terms (the realizers) that share a common computational behavior determined
by the structure of the formula A [Kri04]. However the di�erence between intuitionistic and
classical realizability is that in the latter, the set of realizers of A is de�ned indirectly, that is
from a set ‖A‖e of contexts that are intended to challenge the truth of A. Intuitively, the set
‖A‖e (which we shall call the falsity value of A) can be understood as the set of all possible
counter-arguments to the formula A. In this framework, a program realizes the formula A if
and only if it is able to defeat all the attempts to refute A by a context in ‖A‖e.

When de�ning such an interpretation on a call-by-value calculus, the falsity value itself is
in fact de�ned in terms of a more primitive notions of truth values of values [MM09]. This set,
which we write |A|V, can be understood as the values that any test challenging A should accept
as a valid answer.

The last ingredient peculiar to Krivine realizability is the fact that realizability interpretations
are parameterized by a set of commands, the pole, which intuitively represents the valid
computations.

De�nition 17 (Pole). A pole ⊥⊥ is a saturated set of commands, i.e. a set such that if c→bv c
′

and c′ ∈ ⊥⊥ then c ∈ ⊥⊥. It should be seen as a set of commands whose computations end with
success.

De�nition 18 (Orthogonal). Given a pole ⊥⊥, we de�ne A⊥⊥ to be the orthogonal of A: if A is
a set of terms (resp. contexts), it is the set of contexts e (resp. terms t) such that 〈t || e〉 ∈ ⊥⊥.

The complete de�nition of the realizability interpretation based on the call-by-value
λµµ̃-calculus introduced before would require once again to de�ne the appropriate notions
of valuations, adequate judgements, etc... Such de�nitions can be found for analogous
interpretation in [MM09, Lep16,Miq20], and will be somewhat hidden here between the lines
of the de�nition of the induced evidenced frame EFbv

µµ̃ . Let us however explain how connectives
are interpreted in terms of values. The aforementioned sets of truth and falsity values are then
de�ned by orthogonality to each others, i.e. |A|t = ‖A‖⊥⊥e and ‖A‖e = |A|⊥⊥V , which in particular
implies that |A|V ⊆ |A|t. For A and B two closed formulas, values realizing implication (resp.
the conjunction) are the expected ones, namely functions (resp. pairs):

|A→ B|V = {λx.t : ∀V ∈ |A|V : t[V/x] ∈ |B|t} |A∧B|V = {(V1, V2) : V1 ∈ |A|V ∧ V2 ∈ |B|V}

Recall that even if the type system introduced earlier does not include quanti�ers, we can
nevertheless de�ne them through their semantic interpretation in terms of values, namely as an
intersection of primitive truth values (where ρ should be the appropriate notion of valuation

13

Do CPS translations also translate realizers? Gardelle and Miquey

for this setting, and X ranges over propositions):

|∀x.A|ρV =
⋂
n∈N
|A|ρ,x7→nV |∀X.A|ρV =

⋂
F∈P(V)

|A|ρ,X 7→F,V

The corresponding evidenced frame thus uses sets of values as propositions, terms as
evidences (we write T for the set of closed terms) and the following evidence relation

ϕ
t−→ ψ ⇐⇒ ∀V ∈ ϕ : t@V ∈ ψ⊥⊥⊥⊥

Theorem 19 (EFbv
µµ̃). The triple EFbv

µµ̃ , (P(V), T , · ·−→ ·) de�nes an evidenced frame.

Proof. The complete proof is given in Appendix B.

4.2 CPS as a morphism

We now wish to investigate whether the CPS translation de�ned in Section 3.2 de�nes an
evidenced frame morphism from EFbv

µµ̃ to EFHA2. To be precise, recall that so far our de�nitions
for the interpretations of the source and destination of the translation leave us two degrees of
liberty: the choice of pole in EFbv

µµ̃ , which we shall write ⊥⊥s; and the realizability interpretation
of the return type R, which we write |R| = ⊥⊥d. As we shall see in Section 4.3, we cannot build
a morphism that works for any choice for these parameters and these two evidenced frames.
However, we investigate the following questions: given an interpretation ⊥⊥s, can we �nd a pole
⊥⊥d for R such that [·]V de�nes an evidenced frame morphism? Reciprocally, given a pole ⊥⊥d,
can we �nd an appropriate ⊥⊥s?

4.2.1 The forward evidenced frame

We �rst tackle the �rst problem, that is to de�ne from a �xed pole ⊥⊥s in the source an
interpretation ⊥⊥d for R such that the CPS induces a morphism, we can restrict ourselves to
consider instead the image of EFbv

µµ̃ through the CPS translation as an evidenced frame itself
(as is done in [OS08]). To begin with, we de�ne the interpretation of the return type R as the
saturation of the image of the pole ⊥⊥s through the CPS:

⊥⊥d , {t : ∃c ∈ ⊥⊥s.t −→β [c]c }

We take as propositions the images of sets of values through the translation of values [·]V , i.e.
Φfw , [P(values)]V . Similarly, we take evidences to be translated terms: Efw , [terms]t . As
for the evidence relation, we can see it as the image of the evidence relation in EFbv

µµ̃ through
the translation (up to some technical details), that is:

ϕ
t−→fw ψ , ∀V ∈ φ.∀e ∈ contexts.[(∀[V ′]V ∈ ψ : [V ′]t [e]e ∈ ⊥⊥d) =⇒ (t#V) [e]e ∈ ⊥⊥d]

where a#b , λα.a (λV.V (λe.e b) α). This operator is solely motivated by technical reasons,
in order to satisfy the equation [t@V]t = [t]t #[V]V .

Theorem 20. EF fw = (Φfw, Efw, ·
·−→fw ·) de�nes an evidenced frame and the map F : V 7→ [V]V

induces a morphism from EFbv
µµ̃ to EF fw.

Proof. The proof, which mostly relies on the observation that [·]t is injective by construction
and thus admit an inverse, is given in Appendix D.1

14

Do CPS translations also translate realizers? Gardelle and Miquey

Proof. The proof of the preceding theorem gives directly the preservation of evidences. The
evidences that make the morphism well-behaved with regard to >,∧,⊃ are just the identity,
by the de�nition of these operation in EFbw. Finally, the function f is just [·]−1V .

As the proof of Theorem 20 shows, not only does the CPS translation induce a morphism,
but it does so while preserving evidences. In other words, in this setting, we can actually
conclude that the CPS translation does preserve realizers. Observe nonetheless that this is
almost a tautology, in that evidences in EF fw are by de�nition translated terms. In particular,
if EF fw de�nes a model for HA2, it is by nature very di�erent from the one that EFHA2 provides.

4.2.2 The backward evidenced frame

We now tackle the other question, that is, we consider a �xed interpretation ⊥⊥d ∈ SAT of
the return type R in the realizability interpretation. To de�ne a pole in the source of the
translation, we simply pick the sets ⊥⊥s = {c : [c]c ∈ ⊥⊥d} of commands whose translations
belong to ⊥⊥d. This indeed de�nes a saturated set of commands, since the translation [·]c
preserves computation and ⊥⊥d is itself a saturated set of terms.

For technical reasons, we now take propositions to be pairs made of the translation of a
proposition in EFbv

µµ̃ and the translation of its orthogonal set: Φbw = {([S]V , [S
⊥⊥]e) : S ∈ P(V)}.

Evidences are again de�ned as translation of terms Ebw = [terms]t while the evidence relation
is given by:

(ϕV , ϕe)
t−→bw (ψV , ψe) ⇐⇒ ∀V ∈ ϕV .∀e ∈ ψe. (t#V) e ∈ ⊥⊥d

Theorem 21. The triple EFbw = (Φbw, Ebw, ·
·−→bw ·) de�nes an evidenced frame and the map

F : V 7→ ([V]V , [V
⊥⊥]e) induces a morphism from EFbv

µµ̃ to EFbw.

The proof is analogous to the one of Theorem 20 (in particular, realizers are also trivially
preserved in this case), and actually unveils that EF fw and EFbw are essentially the same.

Proposition 22. For any term t, we have: (ϕV , ϕe)
[t]t−−→bw (ψV , ψe) ⇐⇒ ϕV

[t]t−−→fw ψ
V .

Proof. We prove that both statement are equivalent to [ϕ]V
−1 t−→bv [ψ]V

−1, where [·]−1V is the
inverse of the injective map [·]V . This relies in turn on the de�nitions of the poles ⊥⊥d, ⊥⊥s and
on the fact that the CPS translation simulates computations (Proposition 16).

Remark 23 (De�niteness). Note that [·]−1V is de�nable: observe that the translation [·]V makes
the size of its output grow compared to its input. To �nd the inverse of a term t, all we need
to do is to enumerate λµµ̃-terms with a size smaller than that of t and translate them to �nd
the one (if any) that translate to t.

4.3 A counter-example

We shall now give an example of a pole ⊥⊥s together with a term that is a realizer in the
interpretation based on the λµµ̃-calculus, but whose translation is not a realizer of the translated
formula. We follow here the lines of Oliva-Streicher's presentation of Krivine realizability
through a CPS translation, in particular we assume that an interpretation of the return type
⊥⊥d is given and we de�ne the pole ⊥⊥s , {c : [c]c ∈ ⊥⊥d} consequently. In the rest of this
section, we write t
s A when t is a λµµ̃-term which realizes A in the source, and t
d A when
t is a λ-term realizing A in the destination.

15

Do CPS translations also translate realizers? Gardelle and Miquey

To give a simple example, we will extend thereafter the de�nitions of the source and
destination of the CPS to include a type B of booleans, whose translation at the level of
types will be given by: JBKt = (B → R) → R, and we will present a term t such that t
s B
but [t]t 6
d JBKt. Let us brie�y guide the reader through the rationale of our construction. To
prove that [t]t 6
d JBKt, we shall exhibit a continuation k
d B→ R such that [t]t k /∈ ⊥⊥d. By
de�nition, if t
s B in particular for any context e ∈ ‖B‖e, the fact that 〈t || e〉 ∈ ⊥⊥s means that
[t]t [e]e ∈ ⊥⊥d. Therefore we should look for a continuation that is not in the image of the CPS
translation. Besides, [t]t k should not reduce to k b where b is a boolean, since otherwise the
fact that k
d B → R, b
d B and antireduction would also entail that [t]t k ∈ ⊥⊥d. For these
reasons, we will pick an inert constant κ for t, de�ne the pole ⊥⊥d to enforce κ
d B and select
a continuation k that will be syntactically discriminated for any translated context.

4.3.1 Extension with booleans

We brie�y review the extensions of the λµµ̃-calculus and of the λ-calculus to include a type B of
booleans in the corresponding languages of formulas. We �rst extend the syntax and reduction
rules of the λµµ̃-calculus to account for boolean values tt and ff, a context to eliminate booleans
and an inert term κ:

Terms t ::= ... | κ
Values V ::= ... | tt | ff
Contexts e ::= ... | µ̃B.[c1 | c2]

〈tt || µ̃B.[c1 | c2]〉 .bv c1
〈ff || µ̃B.[c1 | c2]〉 .bv c2

These terms can be typed with the following rules:

c1 : (Γ ` ∆) c1 : (Γ ` ∆)

Γ | µ̃B.[c1 | c2] : B ` ∆
(Bl)

Γ ` tt : B | ∆
(tt)

Γ ` ff : B | ∆
(ff)

Similarly, the λ-calculus that serves as a destination of the CPS translation can be extended
with booleans and an inert constant, for which we use the same notations:

t, u ::= ... | κ | ff | tt | if t then u else v if tt then u else v .β u if ff then u else v .β v

Once again, we can give typing rules to the terms computing with booleans:

Γ ` b : B Γ ` t : A Γ ` u : A
Γ ` if b then t else u : A

(if)
Γ ` tt : B

(tt)
Γ ` ff : B

(ff)

The CPS translation is then naturally extended (following what is already de�ned for values
and base types):

JBKV , B [tt]V , tt [ff]V , ff [µ̃B.[c1 | c2]]e , λb. if b then [c1]c else [c2]c [κ]t , κ

It is straightforward to verify that the di�erent properties of the CPS translation still hold for
the extended calculi.

4.3.2 An untranslatable realizer

It now only remains to extend the realizability interpretation, in the λµµ̃-calculus we simply
de�ne the primitive truth value of B as the set containing the two boolean values

|B|V , {tt,ff}

16

Do CPS translations also translate realizers? Gardelle and Miquey

while for the intuitionistic interpretation based on the target calculus, we consider the set of
terms reducing to a boolean value:

|B| , {t −→β tt} ∪ {t −→β ff}

These de�nitions make the typing rules for booleans adequate with the corresponding
realizability interpretations.

Finally, we de�ne the pole (and thus the realizability interpretations), which will allow us
to complete the construction of the counter-example:

⊥⊥d , {u ∈ Λ : u −→β [t]t λx.v for some term v} ⊥⊥s , {c : [c]c ∈ ⊥⊥d}

Lemma 24. We have κ
s B

Proof. Since any context e translates into a function of the shape λx.v, for any context e ∈ ‖B‖e,
we have in particular [〈κ || e〉]c = κ [e]e ∈ ⊥⊥d, and then 〈κ || e〉 ∈ ⊥⊥s.

Lemma 25. Let us �x p ∈ ⊥⊥d, and de�ne k , (λx.x)λb.p. Then it holds that k
d B→ R.

Proof. Recall that we de�ne |R| = ⊥⊥d and |B| = {t : t −→β b with b ∈ B}. Let b ∈ B, and t
be such that t −→β b. We have

k t = ((λx.x)λb.p)t −→β (λb.p)t −→β p ∈ ⊥⊥d

hence the fact that k
d B→ R by antireduction.

We can now check that :

Proposition 26. We have [κ]t 6
d JBKt.

Proof. We have [κ]t k = κk. Since this term does not reduce (recall that β is a weak-head
reduction relation) and k is not of the shape λx.v, it does not belong to ⊥⊥d. The result then
follows from Lemma 25.

Nonetheless, this example is not entirely satisfying in that the subsequent realizability
interpretation is not coherent:

Proposition 27. The closed term t⊥ , µα.
〈
κ
∣∣∣∣ µ̃x.〈x ||α〉〉 satis�es t⊥
s⊥.

Proof. Indeed, for any context e we have:

〈t⊥ || e〉 .bv

〈
κ
∣∣∣∣ µ̃x.〈x || e〉〉

Since [µ̃x.〈x || e〉]e = λx.(λk.k x)[e]e , in particular we have κ [µ̃x.〈x || e〉]e ∈ ⊥⊥d and thus
〈t⊥ || e〉 ∈ ⊥⊥s by antireduction.

5 Conclusion

As mentioned in the introduction, the motivation behind this work was twofold. On the one
hand, from a methodological perspective, this work also was a pretext to experiment with
evidenced frames as a tool to reason on realizability interpretation. As such, the result of this
experimentation turns out to be pretty satisfactory, for they have shown to be very helpful
during the research process to identify the key ingredients necessary for the di�erent results

17

Do CPS translations also translate realizers? Gardelle and Miquey

exposed. In particular, they provided us with a precious algebraic viewpoint to avoid loosing
ourselves in the implementation details of realizers and translations. In particular, we could
easily reproduce Oliva-Streicher's construction while using di�erent calculi.

On the other hand, from a logical perspective, we were actually really interested in the
question raised in the title. In that regards, we gave here partial answers, by giving some
su�cient conditions, namely the restriction to the backward and forward evidenced frame,
for CPS translations to be well-behaved with respect to the realizability interpretations; as
well as an example of two realizability interpretations where the translation does not preserve
realizers. Many interesting questions remain to be explored in that direction: are there counter-
examples that do not require an incoherent pole? What can be said in general of realizers that
are compatible with the CPS translation? In particular, which are the terms that are always

compatible (i.e. regardless of the choice of ⊥⊥d and ⊥⊥s) with a CPS? In particular, it would
be very interesting to wonder whether universal realizers (i.e. compatible with any pole) are
soundly CPS translated. This can be shown for simple data types (for instance boolean or
natural numbers) by means of speci�cation techniques [GM16a,GM16b] (but more details on
this would drive us out of the scope of this paper), and is still to be investigated for more
complex types (functions, etc.).

It is worth mentioning that all these questions go beyond the sole case of CPS translations
and also extend to other syntactic translations, and in particular to a wide range of e�ects
accounted for by monads. On a long-term perspective, a lot is yet to be learned on the
syntactic translations that are compatible with semantics interpretations, that is, which yield
EF morphisms preserving evidences.

18

Do CPS translations also translate realizers? Gardelle and Miquey

References

[ADH+12] Zena M. Ariola, Paul Downen, Hugo Herbelin, Keiko Nakata, and Alexis Saurin. Classical
call-by-need sequent calculi: The unity of semantic artifacts. In Tom Schrijvers and Peter
Thiemann, editors, Functional and Logic Programming - 11th International Symposium,
FLOPS 2012, Kobe, Japan, May 23-25, 2012. Proceedings, Lecture Notes in Computer
Science, pages 32�46. Springer, 2012.

[App92] Andrew W. Appel. Compiling with Continuations. Cambridge University Press, New York,
NY, USA, 1992.

[Bar92] Henk Barendregt. Lambda calculi with types. In S. Abramsky, Dov M. Gabbay, and S. E.
Maibaum, editors, Handbook of Logic in Computer Science (Vol. 2), pages 117�309. Oxford
University Press, Inc., New York, NY, USA, 1992.

[BPT17] Simon Boulier, Pierre-Marie Pédrot, and Nicolas Tabareau. The next 700 syntactical
models of type theory. In Proceedings of CPP 2017, pages 182�194, New York, NY, USA,
2017. ACM.

[CH00] Pierre-Louis Curien and Hugo Herbelin. The duality of computation. In Proceedings of
ICFP 2000, SIGPLAN Notices 35(9), pages 233�243. ACM, 2000.

[CMT21] Liron Cohen, Étienne Miquey, and Ross Tate. Evidenced frames: A unifying framework
broadening realizability models. In 2021 36th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), pages 1�13, 2021.

[DA14] Paul Downen and Zena M. Ariola. The duality of construction. In Zhong Shao, editor,
Programming Languages and Systems, pages 249�269, Berlin, Heidelberg, 2014. Springer
Berlin Heidelberg.

[DMAJ16] Paul Downen, Luke Maurer, Zena M. Ariola, and Simon Peyte Jones. Sequent calculus as
a compiler intermediate language. In ICFP 2016, 2016.

[DMMZ10] Olivier Danvy, Kevin Millikin, Johan Munk, and Ian Zerny. Defunctionalized Interpreters
for Call-by-Need Evaluation, pages 240�256. Springer Berlin Heidelberg, Berlin, Heidelberg,
2010.

[Fre16] Jonas Frey. Classical Realizability in the CPS Target Language. Electronic Notes in
Theoretical Computer Science, 325(Supplement C):111 � 126, 2016. The Thirty-second
Conference on the Mathematical Foundations of Programming Semantics (MFPS XXXII).

[GM16a] Mauricio Guillermo and Alexandre Miquel. Specifying Peirce's law in classical realizability.
Mathematical Structures in Computer Science, 26(7):1269�1303, 2016.

[GM16b] Mauricio Guillermo and Étienne Miquey. Classical realizability and arithmetical formulæ.
Mathematical Structures in Computer Science, page 1�40, 2016.

[Gri90] Timothy Gri�n. A formulae-as-type notion of control. In Proceedings of the 17th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL '90,
pages 47�58, New York, NY, USA, 1990. ACM.

[Kri03] Jean-Louis Krivine. Dependent choice, `quote' and the clock. Th. Comp. Sc., 308:259�276,
2003.

[Kri04] Jean-Louis Krivine. A call-by-name lambda-calculus machine. In Higher Order and
Symbolic Computation, 2004.

[Kri12] Jean-Louis Krivine. Realizability algebras II : new models of ZF + DC. Logical Methods
in Computer Science, 8(1):10, February 2012. 28 p.

[Kri21] Jean-Louis Krivine. A program for the full axiom of choice. Logical Methods in Computer
Science, Volume 17, Issue 3, September 2021.

[Lep16] Rodolphe Lepigre. A classical realizability model for a semantical value restriction. In Peter
Thiemann, editor, Programming Languages and Systems - 25th European Symposium on
Programming, ESOP 2016, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016,

19

Do CPS translations also translate realizers? Gardelle and Miquey

Proceedings, volume 9632 of Lecture Notes in Computer Science, pages 476�502. Springer,
2016.

[Lep17] Rodolphe Lepigre. Semantics and Implementation of an Extension of ML for Proving
Programs. (Sémantique et Implantation d'une Extension de ML pour la Preuve de
Programmes). PhD thesis, Grenoble Alpes University, France, 2017.

[Miq11a] Alexandre Miquel. Existential witness extraction in classical realizability and via a negative
translation. Logical Methods in Computer Science, 7(2):188�202, 2011.

[Miq11b] Alexandre Miquel. Forcing as a program transformation. In Proceedings of the 2011 IEEE
26th Annual Symposium on Logic in Computer Science, LICS '11, page 197�206, USA,
2011. IEEE Computer Society.

[Miq17] Étienne Miquey. Classical realizability and side-e�ects. Ph.D. thesis, Université Paris
Diderot ; Universidad de la República, Uruguay, November 2017.

[Miq18] Étienne Miquey. A sequent calculus with dependent types for classical arithmetic. In LICS
2018, pages 720�729. ACM, 2018.

[Miq20] Étienne Miquey. Revisiting the Duality of Computation: An Algebraic Analysis of
Classical Realizability Models. In Maribel Fernández and Anca Muscholl, editors, 28th
EACSL Annual Conference on Computer Science Logic (CSL 2020), volume 152 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 30:1�30:18, Dagstuhl, Germany,
2020. Schloss Dagstuhl�Leibniz-Zentrum fuer Informatik.

[MM09] Guillaume Munch-Maccagnoni. Focalisation and Classical Realisability. In Erich Grädel
and Reinhard Kahle, editors, Computer Science Logic '09, volume 5771 of Lecture Notes
in Computer Science, pages 409�423. Springer, Heidelberg, 2009.

[MM13] Guillaume Munch-Maccagnoni. Syntax and Models of a non-Associative Composition of
Programs and Proofs. PhD thesis, Univ. Paris Diderot, 2013.

[Mur90] Chetan Murthy. Extracting constructive content from classical proofs. Ph.D. thesis, Cornell
University, 1990.

[OS08] P. Oliva and T. Streicher. On Krivine's realizability interpretation of classical second-order
arithmetic. Fundam. Inform., 84(2):207�220, 2008.

[Par97] M. Parigot. Proofs of strong normalisation for second order classical natural deduction. J.
Symb. Log., 62(4):1461�1479, 1997.

[Pit02] Andrew M. Pitts. Tripos theory in retrospect. Mathematical Structures in Computer
Science, 12(3):265�279, 2002.

[Plo75] Gordon D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theor. Comput.
Sci., 1(2):125�159, 1975.

[Rie14] Lionel Rieg. On Forcing and Classical Realizability. Theses, Ecole normale supérieure de
lyon - ENS LYON, June 2014.

[SF93] Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-passing
style. Lisp and Symbolic Computation, 6(3-4):289�360, 1993.

[SS75] Gerald J. Sussman and Guy L. Steele, Jr. An interpreter for extended lambda calculus.
Technical report, Massachusetts Institute of Technology, Cambridge, MA, USA, 1975.

[vO08] Jaap van Oosten. Realizability: an introduction to its categorical side, volume 152 of Studies
in Logic and the Foundations of Mathematics. Elsevier B. V., Amsterdam, 2008.

20

Do CPS translations also translate realizers? Gardelle and Miquey

A call/cc and Peirce's law

We give the typing derivation for the encoding of call/cc within the λµµ̃-calculus:

a : (A→ B)→ A ` a : (A→ B)→ A | •
(Axr)

•, a′ : A ` a′ : A | •
(Axr)

• | α : A ` α : A, •
(Axl)

〈a′ ||α〉 : (•, a′ : A ` α : A, β : B)
(Cut)

•, a′ : A ` µβ.〈a′ ||α〉 : B | α : A)
µ

• ` λa′.µβ.〈a′ ||α〉 | α : A
→r

| α : A ` α : A
(Axl)

• | λa′.µβ.〈a′ ||α〉 · α : (A→ B)→ A ` α : A)
→l〈

a
∣∣∣∣λa′.µβ.〈a′ ||α〉 · α〉 : (a : (A→ B)→ A ` α : A)

(Cut)

a : (A→ B)→ A ` µα.
〈
a
∣∣∣∣λa′.µβ.〈a′ ||α〉 · α〉 : A |

µ

` λa.µα.
〈
a
∣∣∣∣λa′.µβ.〈a′ ||α〉 · α〉 : ((A→ B)→ A)→ A |

→r

where the notation • is used to omit useless parts of the typing contexts.

B The evidenced frame EFbv
µµ̃

We give here the complete proof that EFbv
µµ̃ indeed de�nes an evidenced frame.

Proof of Theorem 19.

Re�exivity Let φ ∈ Φ, then φ
λx.x−−−→ φ. Indeed, if V ∈ φ then (λx.x)@V ∈ φ⊥⊥⊥⊥. Take

e ∈ φ⊥⊥:

〈(λx.x)@V ‖ e〉
= 〈µα. 〈λx.x ‖ V · α〉 ‖ e〉
.bv 〈λx.x ‖ V · e〉
.bv 〈V ‖ µ̃x. 〈x ‖ e〉〉
.bv 〈V ‖ e〉 ∈ ⊥⊥

Transitivity De�ne f ; g , λv.µα.
〈
g@v

∣∣∣∣ µ̃x.〈f@x ||α〉
〉
.

Let φ1, φ2, φ3 ∈ Φ, if φ1
t1−→ φ2

t2−→ φ3 then φ1
t1;t2−−−→ φ3.

Indeed, take V ∈ φ1, e ∈ φ⊥⊥3 . Then 〈(t1; t2)@V || e〉 ∈ ⊥⊥:

〈(t1; t2)@V || e〉
=
〈
µα.〈t1; t2 ||V · α〉

∣∣∣∣ e〉
.bv 〈t1; t2 ||V · e〉

=
〈
λv.µα.

〈
t1@V

∣∣∣∣ µ̃a.〈t2@a ||α〉
〉 ∣∣∣∣∣∣V · e〉

.bv

〈
µα.
〈
t1@V

∣∣∣∣ µ̃a.〈t2@a ||α〉
〉 ∣∣∣∣∣∣ e〉

.bv

〈
t1@V

∣∣∣∣ µ̃a.〈t2@a || e〉
〉

By hypothesis we have t1@V ∈ φ⊥⊥⊥⊥2 . Let's show that µ̃a.〈t2@a || e〉 ∈ φ⊥⊥2 : let W ∈ φ2.

21

Do CPS translations also translate realizers? Gardelle and Miquey

〈
W
∣∣∣∣ µ̃a.〈t2@a || e〉

〉
→ 〈t2@W || e〉 ∈ ⊥⊥
{ since t2@W ∈ φ⊥⊥⊥⊥3 and e ∈ φ⊥⊥3 }

Top De�ne > , {λx.x}.
Let φ ∈ Φ, then: φ

λyx.x−−−−→ >. Consider V ∈ φ, then (λyx.x)@V ∈ >. Let e ∈ >⊥⊥:

〈(λyx.x)@V ‖ e〉
= 〈µα. 〈λyx.x ‖ V · α〉 ‖ e〉
.bv 〈λyx.x ‖ V · e〉
.bv 〈V ‖ µ̃y. 〈λx.x ‖ e〉〉
.bv 〈λx.x ‖ e〉 ∈ ⊥⊥

Conjunction De�ne

φ1 ∧ φ2 , {V : π1@V ∈ φ⊥⊥⊥⊥1 and π2@V ∈ φ⊥⊥⊥⊥2 } ⦉f, g⦊ , λx.(f@x, g@x)

With the abbreviations:

π1 , λp.µα. 〈p ‖ µ̃(x, y). 〈x ‖ α〉〉 π2 , λp.µα. 〈p ‖ µ̃(x, y). 〈y ‖ α〉〉

1. Let efst = π1 and esnd = π2. For all φ1, φ2 ∈ Φ

φ1 ∧ φ2
efst−−→ φ1 and φ1 ∧ φ2

esnd−−→ φ2

Take (U, V) ∈ φ1 ∧ φ2, without loss of generatlity consider the case for efst and let
e ∈ φ⊥⊥1 , then:

〈efst@(U, V) ‖ e〉
= 〈(λp.µα. 〈p ‖ µ̃(x, y). 〈x ‖ α〉〉)@(U, V) ‖ e〉
.+bv 〈µα. 〈(U, V) ‖ µ̃(x, y). 〈x ‖ α〉〉 ‖ e〉
.bv 〈(U, V) ‖ µ̃(x, y). 〈x ‖ e〉〉
.bv 〈U ‖ e〉 ∈ ⊥⊥

2. Moreover, we need to check that if φ1
t1−→ φ2 and φ1

t2−→ φ3 then φ1
⦉t1,t2⦊−−−−→ φ2 ∧ φ3:

Let V ∈ φ1, let's check that ⦉t1, t2⦊@V ∈ (φ2 ∧ φ3)⊥⊥⊥⊥. Let e ∈ (φ2 ∧ φ3)⊥⊥:

〈⦉t1, t2⦊@V ‖ e〉
= 〈(λx.(t1@x, t2@x))@V ‖ e〉
.+bv 〈(t1@V, t2@V) ‖ e〉 ∈ ⊥⊥
because (t1@V, t2@V) ∈ (φ2 ∧ φ3)

Indeed, consider the case for φ2. Let e
′ ∈ φ⊥⊥⊥⊥2 :

〈π1@(t1@V, t2@V) ‖ e′〉
= 〈(λp.µα. 〈p ‖ µ̃(x, y). 〈x ‖ α〉〉)@(t1@V, t2@V) ‖ e′〉
.+bv 〈µα. 〈(t1@V, t2@V) ‖ µ̃(x, y). 〈x ‖ α〉〉 ‖ e′〉

.bv 〈t1@V ‖ e′〉 ∈ ⊥⊥ since φ1
t1−→ φ2

22

Do CPS translations also translate realizers? Gardelle and Miquey

Universal implication

De�ne φ1 ⊃
−→
Φ , {t ∈ values : ∀V ∈ φ1,∀φ ∈

−→
Φ : t@V ∈ φ⊥⊥⊥⊥} and λt , λxy.t@(x, y).

1. First, suppose we have
−→
Φ , t, φ1, φ2 such that: ∀φ ∈

−→
Φ : φ1 ∧ φ2

t−→ φ: then

φ1
λt−→ (φ2 ⊃

−→
Φ).

We need to show that if V ∈ φ1 then (λt)@V ∈ (φ2 ⊃
−→
Φ)⊥⊥⊥⊥. It is indeed the case,

consider e ∈ (φ2 ⊃
−→
Φ)⊥⊥:

〈(λt)@V ‖ e〉
= 〈µα. 〈λt ‖ V · α〉 ‖ e〉
.bv 〈λt ‖ V · e〉
= 〈λxy.t@(x, y) ‖ V · e〉
.bv 〈V ‖ µ̃x. 〈λy.t@(x, y) ‖ e〉〉
.bv 〈λy.t@(V, y) ‖ e〉 ∈ ⊥⊥

{ because λy.t@(V, y) ∈ (φ2 ⊃
−→
Φ) }

Consider W ∈ φ2, φ ∈
−→
Φ and e′ ∈ φ⊥⊥:

〈(λy.t@(V, y))@W ‖ e′〉
= 〈µα. 〈λy.t@(V, y) ‖W · α〉 ‖ e′〉
.bv 〈λy.t@(V, y) ‖W · e′〉
.bv 〈W ‖ µ̃y. 〈t@(V, y) ‖ e′〉〉
.bv 〈t@(V,W) ‖ e′〉 ∈ ⊥⊥
{ because (V,W) ∈ φ1 ∧ φ2}

We need to check that π1@(V,W) ∈ φ⊥⊥⊥⊥1 and π2@(V,W) ∈ φ⊥⊥⊥⊥2 . Without loss of
generality, consider the �rst case. Let e′′ ∈ φ⊥⊥1 :

〈π1@(V,W) ‖ e′′〉
= 〈µα. 〈π1 ‖ (V,W) · α〉 ‖ e′′〉
.bv 〈π1 ‖ (V,W) · e′′〉
.+bv 〈V ‖ e

′′〉 ∈ ⊥⊥

2. Moreover, we need to check the second axiom holds, let:

eeval = λp.µα. 〈π1@p ‖ µ̃f. 〈f@(π2@p) ‖ α〉〉

It veri�es for all φ ∈
−→
Φ : (φ1 ⊃

−→
Φ) ∧ φ1

eeval−−−→ φ.

Let V ∈ (φ1 ⊃
−→
Φ) ∧ φ1, φ ∈

−→
Φ and e ∈ φ⊥⊥:

〈eeval@V ‖ e〉
.+bv 〈eeval ‖ V · e〉
= 〈λp.(...) ‖ V · e〉
.2bv 〈µα.(〈...〉 [V/p]) ‖ e〉
.bv 〈π1@V ‖ µ̃f. 〈f@(π2@V)〉 ‖ e〉 ∈ ⊥⊥

{ because π1@V ∈ (φ1 ⊃
−→
Φ)⊥⊥⊥⊥ and µ̃f. 〈f@(π2@V) ‖ e〉 ∈ (φ1 ⊃

−→
Φ)⊥⊥}

23

Do CPS translations also translate realizers? Gardelle and Miquey

Consider W ∈ (φ1 ⊃
−→
Φ):

〈W ‖ µ̃f. 〈f@(π2@V) ‖ e〉〉
.bv 〈W@(π2@V) ‖ e〉 ∈ ⊥⊥
{ because π2@V ∈ φ1,
thus W@(π2@V) ∈ φ⊥⊥⊥⊥

and e ∈ φ⊥⊥}

C Proof of simulation

Proposition 28 (Simulation). For any c, c′, we have c→bv c
′ i� [c]c −→β [c′]c .

Proof. ⇒c The left to right implication is standard (see for instance [Miq17]), proven by
induction on the reduction .bv.
⇐c The right to left implication is obtained by a proof by contradiction. Assume that
[c]c−→β [c′]c and c 6→bv c

′ (in particular, this implies that c 6= c′). Without loss of generality,
assume that c and c′ are chosen such that [c]c−→β [c′]c is minimal (let us write H this
hypothesis), i.e. along the reduction path [c]c−→β [c′]c there is no other term of the shape
[c′′]c such that [c′′]c−→β [c′]c and c′′ 6→bv c

′ (otherwise simply pick c = c′′).
We can now proceed by induction on c. Let us write c = 〈t || e〉. Then [c]c = [t]t [e]e .

Since by construction [t]t is always an abstraction and →β is the weak-head reduction, the
�rst reduction step of [t]t [e]e is necessarily induced by the application. We can now reason by
induction on t.

� If t = µα.c′ then [t]t = λe.(λα.[c′]c) e. Thus

[c]c = [t]t [e]e →β (λα.[c′′]c) [e]e →β [c′′]c [[e]e /α] = [c′′[e/α]]c

Moreover 〈µα.c′′ ‖ e〉 .bv c
′′[e/α], which contradicts H .

� If t is a value V then [t]t = λe.e [V]V Thus [c]c = [t]t [e]e .β [e]e [V]V . By de�nition
of []c , [c′]c 6= [e]e [V]V , and therefore this term has to reduce. Similarly, because of the
way [·]e is de�ned, [e]e is always an abstraction and thus may not reduce on its own. We
continue the proof by reasoning on the syntax of e. There are only three cases to examine
(if e is a variable, the reduction is blocked).

� If e = µ̃x.c′′ then [e]e = λV.(λx.[c′′]c) V . Thus

[c]c →β (λx.[c′′]c) [V]V →β [c′′]c [[V]V /x] = [c′′[V/x]]c

Moreover c = 〈V || µ̃x.c′′〉 .bv c
′′[V/x], which contradicts H .

� If e = µ̃(x, y).c′′ then [e]e = λV.(let (x, y) = V in [c′′]c . Therefore,

[c]c = [V]t [e]e .β [e]e [V]V

= (λV.(let (x, y) = V in [c′′]c)[V]V

.β let (x, y) = [V]V in [c′′]c

24

Do CPS translations also translate realizers? Gardelle and Miquey

By construction, neither of these two terms obtained by reduction can be of the shape
[c′]c . Therefore the last term can be reduced, which entails that V is necessarily of
the shape V = (V1, V2). We thus get:

[c]c −→β let (x, y) = [(V1, V2)]V in [c′′]c

.β [c′′]c [[V1]V /x][[V2]V /y] = [c′′[V1/x][V2/y]]c

Moreover c = 〈(V1, V2) || µ̃(x, y).c′′〉 .bv c
′′[V1/x][V2/y], which again contradicts H.

� If e = u · e′ then [e]e = λV.V [u]t [e]e . and thus [e]e [V]V .β [V]V [u]t [e]e . Again,
since this term cannot be of the shape [c′]c , it has to reduce, which entails that [V]V
is an abstraction. The only possible case is V = λx.t′, and then we have:

[c]c = [〈λx.t′ || u · e〉]c
−→β let (x, y) = [(V1, V2)]V in [c′′]c

= (λue.u (λx.[t′]t e)) [u]t [e′]e

.2β [u]t (λx.[t′]t [e′]e) = [
〈
u
∣∣∣∣ µ̃x.〈t′ || e′〉〉]c

Since 〈λx.t′ || u · e〉.bv

〈
u
∣∣∣∣ µ̃x.〈t′ || e′〉〉 we obtain again a contradiction with H , which

allows us to conclude the proof.

D Proofs of Section 3.2

D.1 The forward evidenced frame

Recall that the following de�nitions from Section 4.2.1:

� ⊥⊥d , {t : ∃c ∈ ⊥⊥s.t −→β [c]c }.

� Φfw , [P(values)]V .

� Efw , [terms]t .

� the evidence relation is de�ned by:

φ
t−→fw ψ , ∀V ∈ φ.∀e ∈ contexts.[(∀[V ′]V ∈ ψ : [V ′]t [e]e ∈ ⊥⊥d) =⇒ (t#V) [e]e ∈ ⊥⊥d]

Observe that [·] is injective by construction. Thus [·]−1V (resp. [·]−1t) is well de�ned on Φfw (resp.
Efw). Let us start by proving the following key lemma:

Lemma 29.

φ
t−→fw ψ ⇐⇒ [φ]V

−1 [t]t
−1

−−−−→bv [ψ]V
−1

Proof.

φ→fw ψ i�. ∀V ∈ φ.∀e ∈ contexts.[(∀V ′ ∈ ψ : [e]e V ′ ∈ ⊥⊥d) =⇒ (t#V) [e]e ∈ ⊥⊥d]

Recall the de�nitions:

� For EF fw

φ
t−→fw ψ i�. ∀V ∈ φ.∀e ∈ contexts.[(∀[V ′]V ∈ ψ : [V ′]t [e]e ∈ ⊥⊥d) =⇒ (t#V) [e]e ∈ ⊥⊥d]

Moreover, note that a#b , λα.a (λV.V (λe.e b) α) satis�es [t@V]t = [t]t #[V]V .

25

Do CPS translations also translate realizers? Gardelle and Miquey

� For EFbv
µµ̃ :

φ
t−→bv ψ i�. ∀V ∈ φ.t@V ∈ ψ⊥⊥⊥⊥

Now, we can prove the equivalence:

φ
t−→fw ψ

⇐⇒ ∀V ∈ φ.∀e ∈ contexts.
[
(∀V ′ ∈ ψ.(λe.e V ′) [e]e ∈ ⊥⊥d

)
=⇒ (t#V) [e]e ∈ ⊥⊥d]

⇐⇒ ∀V ∈ φ.∀e ∈ contexts.
[
(∀V ′ ∈ ψ.(λe.e V ′) [e]e ∈ ⊥⊥d

)
=⇒ [[t]t

−1]t #[[V]−1V]V [e]e ∈ ⊥⊥d]

⇐⇒ ∀V ∈ φ.∀e ∈ contexts.
[
(∀V ′ ∈ ψ.(λe.e V ′) [e]e ∈ ⊥⊥d

)
=⇒ [[t]t

−1@[V]−1V]t [e]e ∈ ⊥⊥d]

⇐⇒ ∀V ∈ φ.∀e ∈ contexts.
[
(∀V ′ ∈ ψ.(λe.e V ′) [e]e ∈ ⊥⊥d

)
=⇒ [〈[t]t −1@[V]−1V ‖ e〉]c ∈ ⊥⊥d]

⇐⇒ ∀[V]V ∈ φ.∀e ∈ contexts.
[
(∀V ′ ∈ ψ.(λe.e V ′) [e]e ∈ ⊥⊥d

)
=⇒ [〈[t]t −1@V ‖ e〉]c ∈ ⊥⊥d]

⇐⇒ ∀[V]V ∈ φ.∀e ∈ contexts.
[
(∀[V ′]V ∈ ψ.(λe.e [V ′]V) [e]e ∈ ⊥⊥d

)
=⇒ [〈[t]t −1@V ‖ e〉]c ∈ ⊥⊥d]

⇐⇒ ∀[V]V ∈ φ.∀e ∈ contexts.
[
(∀[V ′]V ∈ ψ.[V ′]t [e]e ∈ ⊥⊥d

)
=⇒ [〈[t]t −1@V ‖ e〉]c ∈ ⊥⊥d]

⇐⇒ ∀[V]V ∈ φ.∀e ∈ contexts.
[
(∀[V ′]V ∈ ψ.[〈V ′ ‖ e〉]c ∈ ⊥⊥d

)
=⇒ [〈[t]t −1@V ‖ e〉]c ∈ ⊥⊥d]

⇐⇒ ∀V ∈ [φ]V
−1.∀e ∈ contexts.

[
(∀V ′ ∈ [ψ]V

−1.[〈V ′ ‖ e〉]c ∈ ⊥⊥d

)
=⇒ [〈[t]t −1@V ‖ e〉]c ∈ ⊥⊥d]

†⇐⇒ ∀V ∈ [φ]V
−1.∀e ∈ contexts.

[
(∀V ′ ∈ [ψ]V

−1. 〈V ′ ‖ e〉 ∈ ⊥⊥s

)
=⇒ 〈[t]t −1@V ‖ e〉 ∈ ⊥⊥s]

⇐⇒ ∀V ∈ [φ]V
−1.∀e ∈ contexts.

[
(e ∈ ([ψ]V

−1)⊥⊥) =⇒ 〈[t]t −1@V ‖ e〉 ∈ ⊥⊥s]

⇐⇒ ∀V ∈ [φ]V
−1.∀e ∈ ([ψ]V

−1)⊥⊥. 〈[t]t −1@V ‖ e〉 ∈ ⊥⊥s

⇐⇒ ∀V ∈ [φ]V
−1.[t]t

−1@V ∈ ([ψ]V
−1)⊥⊥⊥⊥

⇐⇒ [φ]V
−1 [t]t

−1

−−−−→bv [ψ]t
−1

where the equivalence marked with † relies on Proposition 16.

We can now prove that EF fw = (Φfw, Efw, ·
·−→fw ·) de�nes an evidenced frame.

Proof of Theorem 20. Lemma 29 alone implies that EF fw is an evidenced frame. The axioms of
evidenced frames only require the existence of arrows and operations and these can be recovered
through the translation. For example, let:

φ1 ∧EF fw
φ2 , [[φ1]−1V ∧EF fw

[φ2]−1V]V

We then have

[φ1]V
−1 ∧ [φ2]V

−1 π1=[[π1]t]t
−1

−−−−−−−−−→bv [φ1]V
−1

which implies

φ1 ∧ φ2
[π1]t

−1

−−−−−→EF fw
φ1It is then straightforward to verify that: F : V 7→ [V]V is a morphism from EFbv

µµ̃ to EF fw.
The �rst part of the proof directly gives the preservation of evidences: The evidences that
make the morphism well-behaved with regard to >,∧,⊃ are just the identity, by the de�nition
of these operation in EFbw. Finally, the function f is just [·]−1V .

26

Do CPS translations also translate realizers? Gardelle and Miquey

D.2 The backward evidenced frame

Recall the following de�nitions from Section 4.2.2:

� ⊥⊥d is �xed

� ⊥⊥s = {c : [c]c ∈ ⊥⊥d} of commands Let EFbw = (E,Φ, · ·−→ ·) with

� E = [terms]t

� Φ = {([S]V, [S
⊥⊥]e) | S ⊂ values}

� (φV , φe)
t−→bw (ψV , ψe) ⇐⇒ ∀V ∈ φV .∀e ∈ ψe. (t#V) e ∈ ⊥⊥d

Again, we start by proving the following technical lemma.

Lemma 30.

(φV , φe)
t−→bw (ψV , ψe) ⇐⇒ [φV]V

−1 [t]t
−1

−−−−→bv [ψV]V
−1

Proof.

Recall the de�nitions:

� For EFbw:

(φV , φe)
t−→bw (ψV , ψe) ⇐⇒ ∀V ∈ φV .∀e ∈ ψe. (t#V) e ∈ ⊥⊥d

� For EFbv
µµ̃ :

φ→bv ψ i�. ∀V ∈ φ.t@V ∈ ψ⊥⊥⊥⊥

Now, we can prove the equivalence:

(φV , φe)
t−→bw (ψV , ψe)

⇐⇒ ∀V ∈ φV .∀e ∈ ψe : (t#V) e ∈ ⊥⊥d

⇐⇒ ∀V ∈ φV .∀e ∈ ψe : ([[t]t
−1]t #[[V]−1V]V) e ∈ ⊥⊥d

⇐⇒ ∀V ∈ φV .∀e ∈ ψe : [[t]t
−1@[V]−1V]t e ∈ ⊥⊥d

⇐⇒ ∀V ∈ φV .∀e ∈ ψe : [〈[t]t −1@[V]−1V ‖ [e]−1e 〉]c ∈ ⊥⊥d

⇐⇒ ∀V ∈ φV .∀e ∈ ψe : 〈[t]t −1@[V]−1V ‖ [e]−1e 〉 ∈ ⊥⊥s

⇐⇒ ∀[V]V ∈ φV .∀[e]e ∈ ψe : 〈[t]t −1@V ‖ e〉 ∈ ⊥⊥s

⇐⇒ ∀[V]V ∈ φV .∀[e]e ∈ [([ψV]V
−1)⊥⊥]e : 〈[t]−1t @V ‖ e〉 ∈ ⊥⊥s

⇐⇒ ∀V ∈ [φV]−1V .∀e ∈ ([ψV]V
−1)⊥⊥ : 〈[t]−1t @V ‖ e〉 ∈ ⊥⊥s

⇐⇒ ∀V ∈ [φV]−1V .([t]t
−1@V) ∈ ([ψV]V

−1)⊥⊥⊥⊥

⇐⇒ [φV]V
−1 [t]t

−1

−−−−→ [ψV]V
−1

Proof of Theorem 21. The proof is analogous to the proof of Theorem 20 using Lemma 30. We
can recover >,∧,⊃ the same way we did for EF fw.

As for the second part, to prove that F : V 7→ ([V]V , [V
⊥⊥]e) induces a morphism from EFbv

µµ̃

to EF fw. the only di�erence with the proof of Theorem 20 is that the function f is de�ned by:
(X,Y) 7→ [X]V

−1.

27

Do CPS translations also translate realizers? Gardelle and Miquey

D.3 Equivalences between EF fw and EFbw

Proof of Proposition 22. The proof is direct from Lemmas 29 and 30, since we have:

(ϕV , ϕe)
[t]t−−→bw (ψV , ψe) ⇐⇒ [ϕ]

−1
V

t−→bv [ψ]
−1
V

⇐⇒ ϕV
[t]t−−→fw ψ

V .

28

	Introduction
	Evidenced frames
	Realizability interpretation of
	Heyting second-order arithmetic
	Realizability interpretation

	Evidenced frames
	The induced evidenced frame EFHA2

	Classical logic, the -calculus and CPS translation
	Curien-Herbelin's -calculus
	Continuation-passing style translation of the call-by-value -calculus

	CPS translation of realizers
	A call-by-value classical realizability interpretation
	CPS as a morphism
	The forward evidenced frame
	The backward evidenced frame

	A counter-example
	Extension with booleans
	An untranslatable realizer

	Conclusion
	call/cc and Peirce's law
	The evidenced frame EFbv
	Proof of simulation
	Proofs of s:cps
	The forward evidenced frame
	The backward evidenced frame
	Equivalences between EFfw and EFbw

