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ASYMPTOTIC BEHAVIOUR OF THE LINEARIZED COMPRESSIBLE

BAROTROPIC NAVIER-STOKES SYSTEM WITH A TIME VARYING DELAY

TERM IN THE BOUNDARY OR INTERNAL FEEDBACK

SUBRATA MAJUMDAR∗

Abstract. In this paper, we consider the linearized compressible barotropic Navier-Stokes system in
a bounded interval (0, L) with a time-varying delay term acting in the Dirichlet boundary or internal

feedback of the hyperbolic component. Assuming some suitable conditions on the time-dependent delay

term and the coefficients of feedback (delayed or not), we study the exponential stability of the concerned
hyperbolic-parabolic system. Due to the presence of the time-varying delay term, the corresponding spatial

operator is also time-dependent. Using classical semigroup theory with Kato’s variable norm approach,

we first show the existence and uniqueness of the Navier-Stokes system with time delay, acting in the
boundary or interior. Next, we prove the two stabilization results by means of interior delay feedback and

boundary delay. In both cases, we establish the exponential stability results by introducing some suitable

functional energy and using the Lyapunov function approach.

1. Introduction

1.1. Setting of the problem. Control and stability of fluid flow have been a significant topic of study
and have numerous useful applications. Many researchers have been interested in the subject of the
controllability of fluid flows, more so for incompressible flow (see [8], [32], [35], [61], [62], [64]) than for
compressible flow (see [25], [26]). The stability analysis of the linearized compressible Navier-Stokes system
is of interest to us in this research.

The Navier-Stokes equations in Ω ⊂ RN for a compressible isothermal barotropic fluid consists of
continuity equation and the momentum equation:{

∂tζ(t, x) + div[ζ(t, x)v(t, x)] = 0,

ζ[∂tv(t, x) + (v(t, x).∇)v(t, x)] = −∇p(t, x) + ν∆v(t, x) + (λ+ ν)∇ (divv(t, x)) ,

ζ(t, x) and v(t, x) = (v1(t, x), v2(t, x), ..., vN (t, x)) denote fluid density and velocity vector in RN , p denotes
the pressure and we assume that it satisfies the constitutive law

p(t, x) = aζγ(t, x) t > 0, x ∈ Ω for a > 0, γ ≥ 1.

The viscosity coefficients ν, λ are the constants satisfying the thermodynamic restrictions, ν > 0, λ+ν ≥ 0
(see [29] for more details). The second equation can be written component wise as follows

ζ (∂tvi + v.∇vi) = −∂xi
p+ ν∆vi + (λ+ ν)∂xi

[div v].

We write the Navier-Stokes equations for a viscous compressible barotropic fluid in a bounded subset
Ω = (0, L), L <∞ of the real line as

∂tζ(t, x) + (ζv)x (t, x) = 0,

ζ(t, x)[∂tv(t, x)+v(t, x)vx(t, x)] + (p(ζ))x(t, x)− νvxx(t, x) = 0,

p(t, x) = aζγ(t, x) t > 0, x ∈ Ω,

(1.1)

here ζ, v, p, ν are fluid density, velocity, pressure and viscosity like above. To get the linearized system
around (Q0, V0), Q0 > 0, V0 ≥ 0, we perform a change of variable:

σ(t, x) = ζ(t, x)−Q0, u(t, x) = v(t, x)− V0,
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and collect the system including first order terms of σ, u and this leads to the linearized compressible
Navier-Stokes system around (Q0, V0) as follows{

σt + V0σx +Q0ux = 0, (t, x) ∈ (0,∞)× (0, L),

ut − ν
Q0
uxx + V0ux + aγQγ−2

0 σx = 0, (t, x) ∈ (0,∞)× (0, L).
(1.2)

From the perspective of controllability and stabilization, the compressible Navier-stokes equations (1.2) is
one of the fascinating topics of research. Lots of work have been done in this direction, and many results
have yet to be explored, for example, the stabilizability of Navier-Stokes system (1.2) with Dirichlet
boundary data

σ(t, 0) = 0, u(t, 0) = u(t, L) = 0. (1.3)

We refer to the works [23], [22] [46], where controllability and stabilization of the hyperbolic-parabolic
coupled system (1.2) by means of interior control with periodic boundary data have been studied. In [10]
and [42], these null controllability results have been extended to more general transport-parabolic (d× d)
systems with constant coefficients in one dimensional torus T. Null and approximate controllability of
(1.2) with Dirichlet boundary data can be found in [11] and [19], respectively. More precisely, boundary
null controllability result has been explored in [11] with the control acting in the hyperbolic component
(σ(t, 0) = q(t), u(t, 0) = u(t, L) = 0), whereas approximate controllability has been studied with localized
interior control in [19]. We must mention that in the work [46], the authors studied the rapid feedback
stabilization (exponential stabilization with arbitrary prescribed decay rate) of (1.2) with an interior control
acting everywhere in the parabolic equation in periodic set-up. Boundary stabilizability result of (1.2) with
V0 = 0 with certain decay ω0 has been studied in [7], [20] and [24] in Dirichlet set up (u(t, 0) = u(t, 1) = 0)
by spectral analysis and the method of backstepping, respectively.

Let us write the system (1.2) in the abstract formation for Dirichlet boundary conditions (1.3):{
U̇(t) = AU(t), t > 0,

U(0) = (σ0, u0)
T ,

where the operator A is defined as following:D(A) = {(σ, u) ∈ H1(0, L)×H2(0, L) ∩H1
0 (0, L) : σ(0) = 0},

A(σ, u)T =
(
−V0σx −Q0ux,

ν
Q0
uxx − V0ux − aγQγ−2

0 σx

)T
.

The operator A is maximal dissipative in L2(0, L) × L2(0, L). Thus it generates a contraction semigroup
{S(t)}t≥0 of continuous operator. Moreover, the semigroup is exponentially stable, that is for any U0 =
(σ0, u0)

T ∈ L2(0, L)× L2(0, L), there exist positive constants C,ω0 such that

∥S(t)U0∥L2(0,L)×L2(0,L) ≤ Ce−ω0t ∥U0∥L2(0,L)×L2(0,L) , t ≥ 0,

see [36] for more details. In this paper, we show that despite the time-varying delay acting in the boundary
or interior of the hyperbolic component, the concerned system retains its asymptotic behaviour with the
presence of an additional damping term acting in the same component. We explore the time-delayed
phenomenon in the asymptotic analysis for the Navier-Stokes system (1.4). More precisely, we study the
well-posedness and stability analysis of the linearized compressible barotropic Navier-Stokes system with
the effect of delay depending on time acting in the boundary term or as interior feedback. In the next
section, we discuss the stability problems which are the main concerns of this article.

1.2. Brief description about the problem. Let us take V0 > 0 in (1.2). Introducing the change of
variables

σ(t, x) 7→ 1

ε
σ

(
t

υ
,
x

δ

)
, u(t, x) 7→ u

(
t

υ
,
x

δ

)
,

with the following choices of ϵ, υ, δ > 0,

ε :=
(
aγQγ−3

0

)−1/2

, υ :=
Q0V

2
0

ν
, δ :=

Q0V0
ν

,

one can recast the system (1.2) into the following simplified version:{
σt + σx + bux = 0, (t, x) ∈ (0,∞)× (0, δL),

ut − uxx + ux + bσx = 0 (t, x) ∈ (0,∞)× (0, δL),
(1.4)
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with b = Q0

V0

(
aγQγ−3

0

)1/2
. We utilize the advantage of this reduction of the number of system parameters

in our computation by considering the system (1.4) in our analysis. To describe the introductory study
about the problems, let us first consider the following system:

σt + σx + bux = 0, (t, x) ∈ (0,∞)× (0, L),

ut − uxx + ux + bσx = 0, (t, x) ∈ (0,∞)× (0, L),

σ(t, 0) = ασ(t, L) + βσ(t− τ(t), L), u(t, 0) = u(t, L) = 0, t ∈ (0,∞),

σ(0, x) = σ0(x), u(0, x) = u0(x), x ∈ (0, L),

σ(t− τ(0), L) = z0(t− τ(0)), 0 < t < τ(0),

(1.5)

in which we assume that the time varying delay τ(t) satisfies the following properties

τ ∈W 2,∞[0, T ], for all T > 0, (1.6)

0 < τ0 ≤ τ(t) ≤M, for all t ≥ 0, (1.7)

τ̇(t) ≤ m < 1, for all t ≥ 0, where 0 ≤ m < 1. (1.8)

Under the following condition on the damping parameters α, β:

|α|+ |β|+m < 1, (1.9)

we prove that the functional energy associated to the system (1.5)

E(t) =
1

2

∫ L

0

σ2(t, x)dx+
1

2

∫ L

0

u2(t, x)dx+
|β|τ(t)

2

∫ 1

0

σ2(t− τ(t)ρ, L)dρ, t ≥ 0 (1.10)

decays exponentially to zero. That is, there exist some positive constants C > 0, µ > 0 such that the
following is the infinite time behaviour of the energy of the solution of (1.5):

E(t) ≤ CE(0)e−µt, ∀t > 0.

Next, we study the same issue for the linearized compressible Navier-Stokes equation with internal time
varying delay

σt + σx + bux + a(x)σ(t, x) + c(x)σ(t− τ(t), x) = 0, (t, x) ∈ (0,∞)× (0, L),

ut − uxx + ux + bσx = 0, (t, x) ∈ (0,∞)× (0, L),

u(t, 0) = u(t, L) = σ(t, 0) = 0, t ∈ (0,∞),

σ(0, x) = σ0(x), u(0, x) = u0(x), x ∈ (0, L),

σ(t− τ(0), x) = z0(t− τ(0), x), x ∈ (0, L), 0 < t < τ(0),

(1.11)

where a, c ∈ L∞(0, L) are two non-negative functions with supp c = ω ⊂ (0, L) and

c(x) ≥ c0 a.e. in ω, where c0 is a positive number, (1.12)

a(x) ≥ k0 +
2−m

2(1−m)
c(x) a.e in ω, where k0 > 0. (1.13)

Under the above assumptions on the damping functions a, c, we prove the exponential stability of the
system by using the energy

E(t) =
1

2

∫ L

0

σ2(t, x)dx+
1

2

∫ L

0

u2(t, x)dx+
τ(t)

2

∫
ω

∫ 1

0

ξ(x)σ2(t− τ(t)ρ, x) dx dρ, t ≥ 0,

where ξ ∈ L∞(0, L), supp ξ = ω, a non negative function to be chosen later.

1.3. Bibliographical comments and motivation. Delay effects arise in many applications and practical
problems and may destabilize an otherwise exponentially stable system, see [44], [45], [27]. However,
particular choices of delays may provide the exponential stability. Thus, it is important to explore the
impact of the delay in the asymptotic behaviour of dynamical systems. Throughout years, exponential
stability analysis of a dynamical systems governed by partial differential equations with time delay has
gained immense interest among researchers. In [28], R. F. Datko et al. have shown that an arbitrarily small
time delay in the feedback control may destabilize a distributed system described by the wave equation.
Thereafter, numerous number of works have been performed on the stabilization of wave equations with
time-delayed feedback controls [49], [50], [5], [33], [37], [52], [18], [4], [3]. Internal delay of an abstract
wave equation with Kelvin-Voigt damping has been studied in [6]. For semilinear wave type equation see
[57], nonlinear wave equation with switching delay see [33]. In the constant time delay case, we refer to
the other related works: [54] for Schrodinger equation, [9] for KdV equation with boundary time-delay,
[63] for KdV equation with interior delay feedback, [58] KdV equation with star shaped network, [12],
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[13], and [17] for Kawahara equation with boundary and interior time delay feedback, respectively, [38]
for KdV-Burger equation, Kuramoto-Sivashinsky equation with the time delay in the nonlinear term [65],
Benjamin-Bona-Mahony equation [31], microbeam equation [30], other evolution equation with time delay
feedback see [55].

On the other hand, there is a rich literature regarding the stability of the dynamical system with time-
varying delay feedback. In [56], S. Nicaise et al. have studied the time-varying delay phenomenon for a
parabolic and a hyperbolic model. More precisely, exponential stability has been studied for heat and wave
equations in one dimension with boundary time-varying delays. This work motivates us to consider the
time-dependent delay effect on the coupled hyperbolic-parabolic model, namely the linearized compressible
Navier-Stokes system. To the best of the author’s knowledge, there is no such result where the stability
analysis of the linearized compressible Navier-Stokes system with time-dependent boundary or interior
delay has been taken into account. This is indeed a motivation of this manuscript. Due to the presence
of hyperbolic-parabolic coupling of two different orders of PDEs (transport-heat), the existence theory is
not straightforward like heat or wave equations cases. We need to adopt a vanishing viscosity technique to
establish the well-posedness of the time-dependent semigroup. Moreover, it is worth mentioning that, for
the constant time delay case, there are some works related to the exponential decay analysis for coupled
hyperbolic-parabolic systems with same orders spatial operators (heat-wave). More precisely, in the works
[47] and [48], the authors have explored the exponential stabilization issue with internal delay acting in
the first and second equation, respectively, for the system of linear thermoelasticity.

For the sake of completeness of the bibliographical study, let us mention some other related works for the
time delayed system. In [53], S. Nicaise et al. have extended their previous result [56] for multi-dimensional
wave system. Internal feedback stabilization with boundary delay for wave equation has been established
[51]. Recently, in [59], Parada et al. have utilized the above mentioned works to produce stability analysis
of KdV equation with interior and boundary time varying delay. Time-dependent delay phenomenon for
second order evolution equation can be found in [34]. It is worth mentioning that, in the works [14],
[16], [15], the authors have considered incompressible Navier-Stokes equations and studied its asymptotic
behaviour with the distributed constant delay term (delay acting in the interior). Boundary time delay
effect for the incompressible Navier-Stokes equations and higher dimensional compressible Navier-Stokes
equations can be the objects of future research.

1.4. Organization. In the Section 2, we establish the existence and uniqueness of the solution of the
linearized Navier-Stokes equation with boundary delay feedback. Exponential stability of the concerned
system has been shown here, see Theorem 2.5. We study the well-posedness and stability analysis (Theo-
rem 3.3) of (1.11), that is, the linearized Navier-Stokes system with internal delay in Section 3.

2. Exponential stability of Navier-Stokes with boundary delay

This section is devoted to the well-posedness and stability analysis of the linearized compressible Navier-
Stokes system with a boundary delay feedback. At first, we show the existence and uniqueness of the
Navier-Stokes system (1.5) with the presence of boundary delay term. We start by showing the well-
posedness of the system (1.5) using semigroup theory and Kato’s variable norm technique [41].

2.1. Well-posedness. We will mainly follow the work [56] to prove the well-posedness of the time varying
system (1.5). Let us introduce a new variable to tackle the effect of the delay term

z(t, ρ) = σ(t− τ(t)ρ, L), ρ ∈ (0, 1) and t > 0.

It can be checked that z satisfies the following set of equations


τ(t)zt + (1− τ̇(t)ρ)zρ = 0, t ∈ (0,∞),

z(t, 0) = σ(t, L), t ∈ (0,∞),

z(0, ρ) = z0(−τ(0)ρ), ρ ∈ (0, 1).

(2.1)
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Thus combining (1.5) and (2.1), we write the full system as follows:

σt + σx + bux = 0, (t, x) ∈ (0,∞)× (0, L),

ut − uxx + ux + bσx = 0, (t, x) ∈ (0,∞)× (0, L),

τ(t)zt + (1− τ̇(t)ρ)zρ = 0, (t, ρ) ∈ (0,∞)× (0, 1),

u(t, 0) = u(t, L) = 0, t ∈ (0,∞),

σ(t, 0) = ασ(t, L) + βσ(t− τ(t), L), t ∈ (0,∞),

z(t, 0) = σ(t, L), t ∈ (0,∞),

σ(0, x) = σ0(x), u(0, x) = u0(x), x ∈ (0, L),

z(0, ρ) = z0(−τ(0)ρ), ρ ∈ (0, 1),

σ(t− τ(0), L) = z0(t− τ(0)), 0 < t < τ(0).

(2.2)

Now we will show the existence and uniqueness of the system (2.2) in a semigroup theory framework. Let
us first write this system in infinite dimensional ODE set up. Denote

U = (σ, u, z)T ,U0 = (σ0, u0, z0(−τ(0)·))T .

Thereafter, one can recast the above system as the following abstract ODE:{
U̇(t) = A(t)U(t), t > 0,

U(0) = U0,
(2.3)

where the time dependent operator A(t) can be written as

A(t)U =

 −σx − bux
uxx − ux − bσx
− 1−τ̇(t)ρ

τ(t) zρ

 , (2.4)

with the domain

D(A(t)) =
{
(σ, u, z) ∈ H1(0, L)×H2(0, L) ∩H1

0 (0, L)×H1(0, 1) : z(0) = σ(L), σ(0) = ασ(L) + βz(1)
}
.

(2.5)
Clearly

D(A(t)) = D(A(0)), ∀ t > 0.

Let us introduce the Hilbert space

H = L2(0, L)× L2(0, L)× L2(0, 1),

equipped with the following inner product〈σ1u1
z1

,
σ2u2
z2

〉
H

=

∫ L

0

σ1σ2dx+

∫ L

0

u1u2dx+

∫ 1

0

z1z2dρ. (2.6)

Now, using the variable norm theory of Kato [40], [39], [41], we will show the existence and uniqueness
of the above abstract system with time dependent operator. Similar types of analysis has been done in
many works, see [56], [53], [43], [59] for instances. The main idea of the existence-uniqueness theory is to
show that the triplet {A,H,D(A(0)} with A = {A(t) : t ∈ [0, T ]}, for some fixed T > 0 forms a constant
domain system. More precisely, the following theorem of Kato (see [41, Theorem 1.9]) is enough to serve
our purpose:

Theorem 2.1. Let us assume that

• D(A(0)) is dense in H,
• D(A(t)) = D(A(0)),∀t > 0,
• A(t) generates a strongly continuous semigroup on H for all t ∈ [0, T ] and the family A = {A(t) :
t ∈ [0, T ]} is stable with stability constant C and ω0 independent of t (i.e. the semigroup {St(s)}s≥0

generated by A(t)) satisfies ∥St(s)u∥H ≤ Ceω0s ∥u∥H , for all u ∈ H and s ≥ 0),
• ∂tA(t) belongs to L∞

∗ ([0, T ];B(D(A(0)),H)), the space of equivalent classes of essentially bounded,
strongly measurable functions from [0, T ] into the set B(D(A(0)),H)) of bounded operators from
D(A(0)) into H.

Then, the system (2.3) has a unique solution U ∈ C([0, T ];D(A(0))) ∩ C1([0, T ];H), when the initial data
lies in D(A(0)).
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Henceforth, we need to verify all the assumptions of the above Theorem 2.1 with the operator (A(t),D(A(0)))
defined in (2.4)-(2.5) and this will ensure that the system (2.3) has a unique solution.

First, we define the following time dependent inner product on H:〈σ1u1
z1

,
σ2u2
z2

〉
t

=

∫ L

0

σ1σ2dx+

∫ L

0

u1u2dx+ τ(t)|β|
∫ 1

0

z1z2dρ.

It can be shown that the norm ∥·∥H and ∥·∥t are equivalent. Indeed,

min(1, |β|τ0) ∥(σ, u, z)∥H ≤ ∥(σ, u, z)∥t ≤ (1 + |β|M) ∥(σ, u, z)∥H . (2.7)

Now, we are in the position of proving the well-posedness of our system (2.3):

Theorem 2.2. For any U0 = (σ0, u0, z0(−τ(0)·))T ∈ H, there exists a unique solution U ∈ C([0,∞);H)
of the Navier-Stokes system (2.3). Moreover, if U0 ∈ D(A(0)), then the solution U ∈ C([0,∞);D(A(0)))∩
C1([0,∞);H).

Proof. We prove this result by showing all the assumptions of the Theorem 2.1 hold for the system (2.3).

• Straightforward analysis will show that D(A(0)) is dense in H. Indeed, let (f, g, w)T ∈ H such
that (f, g, w)T ∈ D(A(0))⊥. Thus by definition, we have∫ L

0

f(x)σ(x)dx+

∫ L

0

g(x)u(x)dx+

∫ 1

0

z(ρ)w(ρ)dρ = 0, for all (σ, u, z) ∈ D(A(0)).

Let us take σ = 0, u = 0 and z ∈ C∞
c (0, 1). As (0, 0, z)T ∈ D(A(0)), we have∫ 1

0

z(ρ)w(ρ)dρ = 0.

By density argument, we obtain w = 0. In a similar manner taking z = 0, σ = 0, u ∈ C∞
c (0, L) or

z = 0, u = 0, σ ∈ C∞
c (0, L), we can prove that f = g = 0. Therefore we deduce that D(A(0))⊥ =

{0}. Thus we have D(A(0)) is dense in H.

• By definition, the second conditions of Theorem 2.1 holds.

• Hereinafter, we show that the family A = {A(t), t ∈ [0, T ]} is stable. Let us denote Φ = (σ, u, z)T .
It can be shown that

∥Φ∥t
∥Φ∥s

≤ e
ĉ

2τ0
|t−s|,∀ t, s ∈ [0, T ], (2.8)

where ĉ is a positive constant. Indeed for all t, s ∈ [0, T ], we have

∥Φ∥2t − ∥Φ∥2s e
ĉ
τ0

|t−s| = (1− e
ĉ
τ0

|t−s|)

(∫ L

0

u2(x)dx+

∫ L

0

σ2(x)dx

)
+
(
τ(t)− e

ĉ
τ0

|t−s|τ(s)
)
|β|
∫ 1

0

z2(ρ)dρ.

Note that (1 − e
ĉ
τ0

|t−s|) ≤ 0. Furthermore,
(
τ(t)− e

ĉ
τ0

|t−s|τ(s)
)

is also non positive for some

constant ĉ > 0. Indeed, as τ ∈W 2,∞[0, T ],∀T > 0, by mean value theorem

τ(t) = τ(s) + (t− s)τ ′(a), a ∈ (s, t),

and therefore

τ(t)

τ(s)
≤ 1 +

ĉ

τ0
|t− s| ≤ e

ĉ
τ0

|t−s|.

Thus we get the estimate (2.8).

• Next, we will show that A(t) is an infinitesimal generator of a contraction semigroup. To prove this,
we first establish that the operator A(t) is maximal dissipative up to some bounded perturbation.
First we evaluate ⟨A(t)U,U⟩t for some fixed t. Let us take U = (σ, u, z)T ∈ D(A(t)). Then we
have

⟨A(t)U,U⟩t =

〈 −σx − bux
uxx − ux − bσx
− 1−τ̇(t)ρ

τ(t) zρ

,
σu
z

〉
t

.
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Performing integration by parts and using the boundary conditions we obtain

⟨A(t)U,U⟩t =−
∫ L

0

σσxdx− b

∫ L

0

σuxdx−
∫ L

0

uuxdx+

∫ L

0

uuxxdx− b

∫ L

0

uσxdx+ |β|τ(t)
∫ 1

0

τ̇(t)ρ− 1

τ(t)
zzρ dρ

=
1

2

(
−σ2(L) + σ2(0)

)
− |β|τ̇(t)

2

∫ 1

0

z2dρ+
|β|(τ̇(t)− 1)

2
z2(1) +

|β|
2
z2(0)−

∫ L

0

u2xdx

=
1

2
(ασ(L) + βz(1))

2 − 1

2
σ2(L)− |β|τ̇(t)

2

∫ 1

0

z2dρ+
|β|(τ̇(t)− 1)

2
z2(1) +

|β|
2
σ2(L)−

∫ L

0

u2xdx.

Let us define the following function

k(t) =
(τ̇(t)2 + 1)1/2

2τ(t)
, t ∈ [0, T ]. (2.9)

Thus we further have,

⟨A(t)U,U⟩t − k(t) ⟨U,U⟩t =
1

2

(
α2σ2(L) + 2αβσ(L)z(1) + β2z2(1)

)
+

1

2
(|β| − 1)σ2(L)−

∫ L

0

u2x dx

−
(
|β|τ̇(t)

2
+ k(t)

|β|τ(t)
2

)∫ 1

0

z2dρ− k(t)

∫ L

0

σ2dx− k(t)

∫ L

0

u2dx+
|β|(τ̇(t)− 1)

2
z2(1)

≤1

2

(
α2σ2(L) + 2αβσ(L)z(1) + β2z2(1)

)
+

1

2
(|β| − 1)σ2(L) +

|β|(m− 1)

2
z2(1)

=
1

2
⟨BΨ,Ψ⟩R2 ,

where Ψ = (σ(L), z(1))T and

B =

α2 − 1 + |β| αβ

αβ β2 + |β|(m− 1)

 . (2.10)

To prove

⟨A(t)U,U⟩t − k(t) ⟨U,U⟩t ≤ 0,

it is enough to show that B is negative definite matrix. Indeed, the following lemma will prove it.

This implies that Ã(t) = A(t)− k(t)I is a dissipative operator with the inner product ⟨·, ·⟩t.

Lemma 2.3. Under the assumption (1.9), the matrix B defined in (2.10) is negative definite.

Proof. Indeed, thanks to (1.9), we compute:

trace(B) =α2 − 1 + |β|+ β2 + |β|(m− 1)

<|α|+ |β| − 1 + |β|m < 0.

In particular α2 − 1 + β < 0. Also,

det(B) =α2|β|(m− 1)− β2 − |β|(m− 1) + |β|3 + β2(m− 1)

=|β|
(
α2(m− 1)−m+ 1− 2|β|+ β2 + |β|m

)
=|β|

(
α2m− α2 + (1− |β|)(1− |β| −m)

)
> 0.

As B is a symmetric matrix, we write B =

b11 b12

b12 b22

 . Here b11 < 0, b11b22 − b212 > 0. Taking

x = (x, y) ∈ R2 \ {(0, 0)}, we compute

⟨Bx,x⟩R2 =b11x
2 + 2b12xy + b22y

2

=b11

(
x+

b12
b11

y

)2

+

(
b22b11 − b212

b11

)
y2 < 0.

Therefore B is negative definite. □

Next, we prove that for all t ∈ [0, T ], A(t) is maximal. Thus we need to prove that for some
λ > 0,

R(λI − A(t)) = H.
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Let us first assume that (f, g, h)T ∈ H. We need to find U = (σ, u, z)T ∈ D(A(t)) such that
(λI − A(t))U = (f, g, h)T , which is equivalent to find U = (σ, u, z)T ∈ D(A(t)) such that

λσ + σx + bux = f,

λu− uxx + ux + bσx = g,

λz +
(

1−τ̇(t)ρ
τ(t)

)
zρ = h,

u(0) = u(L) = 0,

σ(0) = ασ(L) + βz(1),

z(0) = σ(L).

(2.11)

We mainly follow the work [56] to solve the above problem. If we are able to find u and σ with
proper regularity then the third equation of the system (2.11) will give the solution z as follows:

z(ρ) =

{
σ(L)e−λτ(t)ρ + τ(t)e−λτ(t)ρ

∫ ρ

0
eλτ(t)sh(s) ds, if τ̇(t) = 0,

σ(L)eλ
τ(t)
τ̇(t)

ln(1−τ̇(t)ρ) + eλ
τ(t)
τ̇(t)

ln(1−τ̇(t)ρ) ∫ ρ

0
e−λ

τ(t)
τ̇(t)

ln(1−τ̇(t)s) h(s)τ(t)
(1−τ̇(t)s) ds, if τ̇(t) ̸= 0.

Putting ρ = 1, we write z(1) = σ(L)S0 + Sh, where

S0 =

{
e−λτ(t), if τ̇(t) = 0,

eλ
τ(t)
τ̇(t)

ln(1−τ̇(t)), if τ̇(t) ̸= 0,

and

Sh =

{
τ(t)e−λτ(t)

∫ 1

0
eλτ(t)sh(s) ds, if τ̇(t) = 0,

eλ
τ(t)
τ̇(t)

ln(1−τ̇(t)) ∫ 1

0
e−λ

τ(t)
τ̇(t)

ln(1−τ̇(t)s) h(s)τ(t)
(1−τ̇(t)s) ds if τ̇(t) ̸= 0.

Thus, (σ, u) satisfies the following system
λσ + σx + bux = f,

λu− uxx + ux + bσx = g,

u(0) = u(L) = 0,

σ(0) = (α+ βS0)σ(L) + βSh.

(2.12)

Let us consider a constant function ψ0 defined by (with fixed t)

ψ0(x) =
βSh(t)

(1− α− βS0)
,

and we assume that α̃ = α+βS0(t). Let us denote η = σ−ψ0. Then, we can see that (η, u) satisfy
the following equations 

λη + ηx + bux = f̃ ,

λu− uxx + ux + bηx = g,

u(0) = u(L) = 0,

η(0) = α̃η(L),

(2.13)

where f̃ = f − λψ0 ∈ L2(0, L). Thus the problem (2.13) boils down to showing that there exists
(η, u) ∈ D =

{
H1(0, L)×H2(0, L) ∩H1

0 (0, L) : η(0) = α̃η(L)
}
satisfying (2.13).

We solve this problem by using vanishing viscosity approach. Let ϵ > 0. Instead of solving directly
the above problem (2.13), we first deal with the following regularized problem

λη − ϵηxx + ηx + bux = f̃ ,

λu− uxx + bηx + ux = g,
(2.14)

with the following boundary conditions

η(0) = α̃η(L), α̃ηx(0) = ηx(L), u(0) = 0, u(L) = 0.

Let us proceed through the following steps.
Step 1. We consider the space V, given by

V =
{
(η, u) ∈ H1(0, L)×H1(0, L) : η(0) = α̃η(L), u(0) = 0, u(L) = 0

}
.
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Using Lax-Milgram theorem, we first prove that the system (2.14) has a unique solution in V. Let
us define the operator B : V × V → R by

B

((
η

u

)
,

(
ψ

φ

))
= λ

∫ L

0

ηψdx+ ϵ

∫ L

0

ηxψxdx+ b

∫ L

0

uxψdx+

∫ L

0

ηxψdx

+ λ

∫ L

0

uφdx+

∫ L

0

uxφxdx+ b

∫ L

0

ηxφdx+

∫ L

0

uxφdx,

for all

(
η

u

)
,

(
ψ

φ

)
∈ V. Then, one can show that B is continuous and coercive. Thus, by Lax-

Milgram theorem, for every ϵ > 0, there exists a unique solution (ηϵ, uϵ) ∈ V such that

B

((
ηϵ

uϵ

)
,

(
ψ

φ

))
= G

((
ψ

φ

))
, ∀

(
ψ

φ

)
∈ V, (2.15)

where G : V → R is the linear functional given by

G

((
ψ

φ

))
:=

∫ L

0

f̃ψdx+

∫ L

0

gφdx.

Let us take

(
ψ

0

)
∈ V in (2.15), so that we obtain

λ

∫ L

0

ηϵψdx+ ϵ

∫ L

0

ηϵxψxdx+ b

∫ L

0

uϵxψdx+

∫ L

0

ηϵxψdx =

∫ L

0

f̃ψdx. (2.16)

Similarly, by taking

(
0

φ

)
∈ V, we get

λ

∫ L

0

uϵφdx+

∫ L

0

uϵxφxdx+ b

∫ L

0

uϵxφdx+ b

∫ L

0

ηϵxφdx =

∫ L

0

gφdx. (2.17)

These shows that the equations (2.14) are satisfied in the sense of distribution. Consequently it
gives the regularity of ηϵxx and uϵxx in L2(0, L). Thus the equation (2.14) is satisfied in the strong
sense. Now multiplying the first equation of (2.14) by ψ ∈ H1(0, L) with ψ(0) = α̃ψ(L), and using
integration by parts we obtain

λ

∫ L

0

ηϵψdx+ ϵ

∫ L

0

ηϵxψxdx−ϵ (ηϵx(L)ψ(L)− ηϵx(0)ψ(0)) + b

∫ L

0

uϵxψdx+

∫ L

0

ηϵxψdx =

∫ L

0

f̃ψdx. (2.18)

Comparing the above equation with (2.16), we obtain ηϵx(L) = α̃ηϵx(0).

Step 2. Now, from (2.15), observe that

B

((
ηϵ

uϵ

)
,

(
ηϵ

uϵ

))
= G

((
ηϵ

uϵ

))
.

which yields, applying integration by parts and Young’s inequality

λ

∫ L

0

|ηϵ|2dx+ ϵ

∫ L

0

|ηϵx|2dx+
1

2
(1− α̃2)|ηϵ(L)|2 + λ

∫ L

0

|uϵ|2dx+

∫ L

0

|uϵx|2dx

≤ λ

2

∫ L

0

|ηϵ|2dx+
λ

2

∫ L

0

|uϵ|2dx+ C

(∫ L

0

f̃2 dx+

∫ L

0

g2 dx

)
Note that |α̃| < 1, by (1.9) and the definition of α̃. This shows that (uϵ)ϵ≥0 is bounded in H1(0, L),
(ηϵ)ϵ≥0 is bounded in L2(0, L) and (

√
ϵηϵx)ϵ≥0 is bounded in L2(0, L). Since the spaces H1(0, L)

and L2(0, L) are reflexive, there exist subsequences, still denoted by (uϵ)ϵ≥0, (η
ϵ)ϵ≥0, and functions

η ∈ L2(0, L) and u ∈ H1(0, L), l ∈ R such that

uϵ ⇀ u in H1(0, L), and ηϵ ⇀ η in L2(0, L), ηϵ(L) → l. (2.19)

Furthermore, we have∫ L

0

|ϵηϵx|2dx = ϵ

∫ L

0

|
√
ϵηϵx|2dx→ 0, as ϵ→ 0. (2.20)
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Multiplying the first equation of (2.14) by ψ ∈ C∞
c (0, L) and applying integration by parts, we

get,

λ

∫ L

0

ηϵψdx+ ϵ

∫ L

0

ηϵxψxdx+ b

∫ L

0

uϵxψdx−
∫ L

0

ηϵψx =

∫ L

0

f̃ψdx, ∀ψ ∈ C∞
c (0, L).

Then, passing to the limit ϵ→ 0, we obtain

λ

∫ L

0

ηψdx+ b

∫ L

0

uxψdx−
∫ L

0

ηψxdx =

∫ L

0

f̃ψdx,

and the above relation is true ∀ψ ∈ C∞
c (0, L). As a consequence,

ηx + λη + bux = f̃ , (2.21)

in the sense of distribution and therefore ηx = f−bux−λη ∈ L2(0, L); in other words, η ∈ H1(0, L).

Step 3. We now show u(0) = u(L) = 0. Since the inclusion map i : H1(0, L) ↪→ C0[0, L] is
compact and uϵ ⇀ u in H1(0, L), we obtain

uϵ → u in C0[0, L].

Thus, (uϵ(0), uϵ(L)) → (u(0), u(L)). Since uϵ(0) = uϵ(L) = 0 for all ϵ > 0, we have

u(0) = u(L) = 0.

Similarly from the second equation of (2.14), one can deduce that

λu− uxx + ux + bηx = g, (2.22)

in the sense of distribution and therefore uxx ∈ L2(0, L), that is u ∈ H2(0, L).
Now replacing ψ from the equation of (2.16) by φ ∈ C∞

c (0, L) and using (2.19), (2.20) and (2.21),
we have

lim
ϵ→0

∫ L

0

ηϵxφ =

∫ L

0

ηϵxφ. (2.23)

By density argument, we can say that ηϵx ⇀ ηx in L2(0, L). Similarly using the equations (2.17)
and (2.22) we have uϵ ⇀ u in H2(0, L).
We now show η(0) = α̃η(L). Let us first denote the space

W =
{
(η, u) ∈ H1(0, L)×H2(0, L) : u(0) = 0, u(L) = 0

}
. (2.24)

W is a Hilbert space with graph norm and D is a closed subspace of W. Hence the weak closure
coincides with the strong closure of D in W. In our analysis, we have actually shown that (η, u)
lies in the weak closure of D as (ηϵ, uϵ) ∈ D. Thus it follows that (η, u) ∈ D. In particular, we have
η(0) = α̃η(L).

Therefore we have proved that A(t) is maximal operator for any fixed t ∈ [0, T ]. As k(t) > 0

defined in (2.9), it can be shown that the time dependent operator λI − Ã = (λ+ k(t)) I − A is

also surjective for some λ > 0. This shows that Ã is maximal. Hence Ã(t) generates a strongly

continuous semigroup of contraction on H. Also by (2.8), Ã = {Ã(t) : t ∈ [0, T ]} is a stable family
of generators in H with suitably constants independent of t.

• We need to establish the last assumption of Theorem 2.1, that is, ∂tA(t) ∈ L∞
∗ ([0, T ];B(D(A(0)),H)).

First we compute

∂tA(t)U =

 0
0

τ(t)τ̈(t)ρ−τ̇(t)(τ̇(t)ρ−1)
τ2(t) zρ

 . (2.25)

It can be shown that τ(t)τ̈(t)ρ−τ̇(t)(τ̇(t)ρ−1)
τ2(t) zρ is bounded on [0, T ] by the properties of τ ( see (1.6),

(1.7), (1.8)). Next from (2.9), we have

k̇(t) =
τ̈(t)τ̇(t)

2τ(t) (1 + τ̇2(t))
1/2

−
τ̇(t)

(
1 + τ̇2(t)

)1/2
2τ2(t)

(2.26)

and it is bounded in [0, T ] for any T > 0. Thus combining (2.25) and (2.26), we finally have:

∂tÃ(t) ∈ L∞
∗ ([0, T ];B(D(A(0)),H)).
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Thanks to the Theorem 2.1, there exists unique solution Ũ ∈ C([0,∞);D(A(0))) ∩ C1([0,∞);H) of the
following abstract system {

∂tŨ(t) = Ã(t)Ũ(t),

Ũ(0) = U0.

Let us denote

U(t) = e
∫ t
0
k(s)dsŨ(t).

It can be shown that this U(t) is the unique solution of (2.3). Because, on differentiation we have

∂tU(t) =k(t)e
∫ t
0
k(s)dsŨ(t) + e

∫ t
0
k(s)ds∂tŨ(t)

=e
∫ t
0
k(s)ds

(
k(t)Ũ(t) + Ã(t)Ũ(t)

)
=e

∫ t
0
k(s)dsA(t)Ũ(t)

=A(t)U(t).

Thus the proof is completed. □

2.2. Boundary stability result. In this section, we prove one of the main results regarding the boundary
stability of the system (1.5). It relies on the choice of suitable Lyapunov function and crucial energy
estimate.

2.2.1. Energy decay. We recall the energy functional defined in (1.10)

E(t) =
1

2

∫ L

0

σ2(t, x)dx+
1

2

∫ L

0

u2(t, x)dx+
|β|τ(t)

2

∫ 1

0

σ2(t− τ(t)ρ, L)dρ, t ≥ 0. (2.27)

The choice of this energy functional is classical when we deal with the time-varying delay effect through
the boundary, see [56]. Below we prove that this energy (2.27) is non-increasing.

Proposition 2.4. Let us assume that (1.6), (1.7), (1.8) and (1.9) hold. Then for all regular solution of
the system (1.5), the energy E in (2.27) is non-increasing and satisfies:

Ė(t) ≤ 1

2

〈
B

(
σ(t, L)

σ (t− τ(t), L)

)
,

(
σ(t, L)

σ (t− τ(t), L)

)〉
R2

−
∫ L

0

u2x ≤ 0.

Proof. Indeed on differentiation (2.27) with respect to t, we have:

Ė(t) =

∫ L

0

σσtdx+

∫ L

0

uutdx+
|β|τ̇(t)

2

∫ 1

0

σ2(t−τ(t)ρ, L)dρ+|β|τ(t)
∫ 1

0

σ(t−τ(t)ρ, L)∂tσ(t−τ(t)ρ, L)dρ.

(2.28)
Plugging the expressions for σt, ut from (1.5) and applying integration by parts, we have:∫ L

0

σσtdx+

∫ L

0

uutdx =
1

2

(
α2σ2(t, L) + 2αβσ(t, L)σ (t− τ(t), L) + β2σ2 (t− τ(t), L)

)
− 1

2
σ2(t, L)−

∫ 1

0

u2x dx. (2.29)

Thanks to the identity

−τ(t)∂tσ(t− τ(t)ρ, L) = (1− τ̇(t)ρ)∂ρσ(t− τ(t)ρ, L)

and then applying integration by parts, we have

|β|τ(t)
∫ 1

0

σ(t− τ(t)ρ, L)∂tσ(t− τ(t)ρ, L)dρ

= −|β|
∫ 1

0

(1− τ̇(t)ρ)σ(t− τ(t)ρ, L)∂ρσ(t− τ(t)ρ, L)dρ

= −|β|τ̇(t)
2

∫ 1

0

σ2(t− τ(t)ρ, L)dρ+
1

2
|β|σ2(t, L) +

|β|(τ̇(t)− 1)

2
σ2 (t− τ(t), L) . (2.30)

Thus combining (2.29) and (2.30), we obtain from (2.28),

Ė(t) =
1

2

(
α2σ2(t, L) + 2αβσ(t, L)σ (t− τ(t), L) + β2σ2 (t− τ(t), L)

)
+

1

2
(|β| − 1)σ2(t, L)

+
|β|(τ̇(t)− 1)

2
σ2 (t− τ(t), L)−

∫ 1

0

u2x dx. (2.31)
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Recall the negative definite matrix B in (2.10)

B =

α2 − 1 + |β| αβ

αβ β2 + |β|(m− 1)

 .

From (2.31), we have further,

Ė(t) ≤ 1

2

〈
B

(
σ(t, L)

σ (t− τ(t), L)

)
,

(
σ(t, L)

σ (t− τ(t), L)

)〉
R2

−
∫ 1

0

u2x ≤ 0.

□

This result regarding the energy E is not sufficient to address the exponential stability issues of the
studied system. In the next section we answer this question by choosing appropriate Lyapunov function.

2.2.2. Exponential stability. Let us take γ1, γ2 ∈ (0, 1) are positive constants, small enough, to be chosen
later. Consider the Lyapunov functional

E(t) = E(t) + γ1E1(t) + γ2E2(t), t > 0, γ1, γ2 ∈ (0, 1), (2.32)

where

E1(t) =
1

2

∫ L

0

e−λxσ2(t, x)dx, for some λ > 0. (2.33)

E2(t) =
τ(t)

2

∫ 1

0

(1− ρ)σ2(t− τ(t)ρ, L)dρ. (2.34)

It is easy to note that E(t) ≤ E(t), for all t ≥ 0. On the other hand, it follows that

γ1E1(t) + γ2E2(t) ≤
γ1
2

∫ L

0

σ2(t, x)dx+
γ2τ(t)

2

∫ 1

0

σ2(t− τ(t)ρ, L)dρ

≤ γ1
2

∫ L

0

σ2(t, x)dx+
γ2|β|τ(t)

2|β|

∫ 1

0

σ2(t− τ(t)ρ, L)dρ

≤ max

{
γ1,

γ2
|β|

}
E(t),

that is,

E(t) ≤ E(t) ≤

(
1 + max

{
γ1,

γ2
|β|

})
E(t), for all t ≥ 0. (2.35)

This ensures that the Lyapunov E is equivalent to the energy E.

Theorem 2.5. Let us assume that (1.6), (1.7), (1.8) and (1.9) hold. Let us also assume that U0 =
(σ0, u0, z0(−τ(0)·))T ∈ H. Then the energy E defined in (2.27) decays exponentially, that is there exist
positive constants C, µ such that the following happens

E(t) ≤ CE(0)e−µt, ∀t > 0,

where for γ1, γ2 ∈ (0, 1) small enough,

C ≤

(
1 + max

{
γ1,

γ2
|β|

})
and

µ ≤ min

{
π2

L2

(
1− bγ1

2

)
,
γ2(1−m)

2M(γ2 + |β|)
,
γ1(λ− b)

2(γ1 + eλL)

}
, λ > b.

Proof. First we assume that the solution of the system is sufficiently smooth by takingU0 = (σ0, u0, z0(−τ(0)·))T ∈
D(A(0)). We perform a differentiation on (2.33) and write

Ė1(t) =
∫ L

0

e−λxσσt dx = −
∫ L

0

e−λxσσx dx− b

∫ L

0

e−λxσux dx

=− λ

2

∫ L

0

e−λxσ2 dx− e−λL

2
σ2(t, L) +

1

2
σ2(t, 0)− b

∫ L

0

e−λxσux dx. (2.36)
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Differentiating both sides of (2.34),we have

Ė2(t) =
τ̇(t)

2

∫ 1

0

(1− ρ)σ2(t− τ(t)ρ, L)dρ+ τ(t)

∫ 1

0

(1− ρ)σ(t− τ(t)ρ, L)∂tσ(t− τ(t)ρ, L)dρ

=
τ̇(t)

2

∫ 1

0

(1− ρ)σ2(t− τ(t)ρ, L)dρ

−
∫ 1

0

(1− ρ)(1− τ̇(t)ρ)σ(t− τ(t)ρ, L)∂ρσ(t− τ(t)ρ, L)dρ. (2.37)

In the last term of (2.37), we have used the identity −τ(t)∂tσ(t− τ(t)ρ, L) = (1− τ̇(t)ρ)∂ρσ(t− τ(t)ρ, L).
Performing integration by parts for the last term of the above identity we have

Ė2(t) =
τ̇(t)

2

∫ 1

0

(1− ρ)σ2(t− τ(t)ρ, L)dρ− τ̇(t)

2

∫ 1

0

(1− ρ)σ2(t− τ(t)ρ, L)dρ

− 1

2

∫ 1

0

(1− τ̇(t)ρ)σ2(t− τ(t)ρ, L) dρ+
1

2
σ2(t, L).

Thus we have finally

Ė2(t) =− 1

2

∫ 1

0

(1− τ̇(t)ρ)σ2(t− τ(t)ρ, L) +
1

2
σ2(t, L). (2.38)

Using (2.31), (2.36) and (2.38), for some µ > 0 we have

Ė(t) + 2µE(t)≤1

2

〈
B

(
σ(t, L)

σ (t− τ(t), L)

)
,

(
σ(t, L)

σ (t− τ(t), L)

)〉
R2

− λγ1
2

∫ L

0

e−λxσ2 dx− γ1e
−λL

2
σ2(t, L)

+
γ1
2
σ2(t, 0)− bγ1

∫ L

0

e−λxσux dx−
∫ L

0

u2x dx− γ2
2

∫ 1

0

(1− τ̇(t)ρ)σ2(t− τ(t)ρ, L) dρ+
γ2
2
σ2(t, L)

+ µ

∫ L

0

σ2 dx+ µ

∫ L

0

u2 dx+ µ|β|τ(t)
∫ 1

0

σ2(t− τ(t)ρ, L)dρ+ µγ1

∫ L

0

e−λxσ2(t, x) dx

+ γ2µτ(t)

∫ 1

0

(1− ρ)σ2(t− τ(t)ρ, L)dρ

≤1

2

〈
B

(
σ(t, L)

σ (t− τ(t), L)

)
,

(
σ(t, L)

σ (t− τ(t), L)

)〉
+
γ1
2
σ2(t, 0) +

γ2
2
σ2(t, L)− λγ1

2

∫ L

0

e−λxσ2 dx

− bγ1

∫ L

0

e−λxσux dx−
∫ L

0

u2x dx+ µ

∫ L

0

σ2 dx+ µ

∫ L

0

u2 dx+ µγ1

∫ L

0

e−λxσ2(t, x) dx

+
(
µ|β|M + γ2µM − γ2

2
(1−m)

)∫ 1

0

σ2(t− τ(t)ρ, L)dρ.

(2.39)

Let us simplify the first three terms of the right hand side of (2.39). Now,

1

2

〈
B

(
σ(t, L)

σ (t− τ(t), L)

)
,

(
σ(t, L)

σ (t− τ(t), L)

)〉
R2

+
γ1
2
σ2(t, 0) +

γ2
2
σ2(t, L)

=
1

2

〈
B

(
σ(t, L)

σ (t− τ(t), L)

)
,

(
σ(t, L)

σ (t− τ(t), L)

)〉
R2

+
γ1
2

(ασ(t, L) + βz(t, 1))
2
+
γ2
2
σ2(t, L)

=
1

2

〈
(B+Bγ1

γ2
)

(
σ(t, L)

σ (t− τ(t), L)

)
,

(
σ(t, L)

σ (t− τ(t), L)

)〉
R2

,

where

Bγ1
γ2

=

α2γ1 + γ2 αβγ1

αβγ1 β2γ1

 = γ1

α2 αβ

αβ β2

+ γ2

1 0

0 0

 .

Since B is negative definite and trace and determinant map is continuous, we can find γ1, γ2 small enough
such that B+Bγ1

γ2
is negative definite.

Thanks to the Poincaré inequality with best constant, we have

µ

∫ L

0

u2(x) dx ≤ µL2

π2

∫ L

0

u2x(x) dx, as u ∈ H1
0 (0, 1). (2.40)
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Using Young’s inequality we estimate the following:

bγ1

∫ L

0

e−λxσux dx ≤ bγ1
2

∫ L

0

e−λxσ2 dx+
bγ1
2

∫ L

0

e−λxu2x dx. (2.41)

Thus combining (2.39), (2.40) and (2.41), we have :

Ė(t) + 2µE(t) ≤
(
µL2

π2
− 1 +

bγ1
2

)
︸ ︷︷ ︸

J1

∫ L

0

u2x(t, x)dx+
(
µ|β|M + γ2µM − γ2

2
(1−m)

)
︸ ︷︷ ︸

J2

∫ 1

0

σ2(t− τ(t)ρ, L)dρ

+

(
−λγ1

2
+
bγ1
2

+ µeλL + µγ1

)
︸ ︷︷ ︸

J3

∫ L

0

e−λxσ2(t, x)dx.

Now we are at the position of choosing our parameters involved in the Lyapunov function to achieve the
required estimate:

Ė(t) + 2µE(t) ≤ 0. (2.42)

• To have J1 ≤ 0 we need to take µ ≤ π2

L2 (1 − bγ1

2 ) and also there is a restriction on the small

parameter γ1 used in the Lyapunov expression as γ1 ≤ 2
b .

• J2 ≤ 0 iff µ ≤ γ2(1−m)
2M(γ2+|β|) .

• If we take λ > b and µ < γ1(λ−b)
2(γ1+eλL)

, then we have J3 ≤ 0.

By the conditions of the Theorem 2.5 we have (2.42). Therefore using the inequality (2.35) we have

E(t) ≤

(
1 + max

{
γ1,

γ2
|β|

})
E(0)e−2µt, ∀ t > 0.

A standard density argument allows to extend the desired result to U0 ∈ H. □

3. Exponential Stability of NSE with time varying internal delay

In this section, we study the stability analysis of the Navier-Stokes equations (1.11) with internal time-
delay feedback. As before, we first study the well-posedness of the internal time varying delay system.
Then using Lyapunov approach, we prove the exponential stability of the system.

3.1. Well-posedness of the problem. This section is devoted to the well-posedness of the above system
(1.11). As the boundary delay case, let us introduce the variable

z(t, x, ρ) = σ(t− τ(t)ρ, x), x ∈ ω, ρ ∈ (0, 1), t > 0.

Then the system (1.11) reduces to the following:

σt + σx + bux + a(x)σ(t, x) + c(x)σ(t− τ(t), x) = 0, (t, x) ∈ (0,∞)× (0, L),

ut − uxx + ux + bσx = 0, (t, x) ∈ (0,∞)× (0, L),

τ(t)zt + (1− τ̇(t)ρ)zρ = 0, x ∈ ω, (t, ρ) ∈ (0,∞)× (0, 1),

u(t, 0) = u(t, L) = σ(t, 0) = 0, t ∈ (0,∞),

z(t, x, 0) = σ(t, x), x ∈ ω, t ∈ (0,∞),

z(0, x, ρ) = z0(−τ(0)ρ, x), x ∈ ω, ρ ∈ (0, 1),

σ(0, x) = σ0(x), u(0, x) = u0(x), x ∈ (0, L),

σ(t− τ(0), x) = z0(t− τ(0), x), x ∈ (0, L), 0 < t < τ(0).

(3.1)

Let us set

U = (σ, u, z)T ,U0 = (σ0, u0, z0(−τ(0)·, ·))T .
Thus we write the above system as: {

U̇(t) = A(t)U(t), t > 0,

U(0) = U0,
(3.2)

where the time dependent operator A(t) can be written as

A(t)U =

−σx − bux − aσ − cze(·, 1)
uxx − ux − bσx
− 1−τ̇(t)ρ

τ(t) zρ

 ,
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where ze is the zero extension of z outside ω, with the domain

D(A(t)) =
{
(σ, u, z) ∈ H1(0, L)×H2(0, L) ∩H1

0 (0, L)× L2(ω,H1(0, 1)) : z(x, 0) = σ|ω(x), σ(0) = 0
}
.

Clearly D(A(t)) = D(A(0)),∀t > 0. Let us introduce the Hilbert space H̃ = L2(0, L)× L2(0, L)× L2(ω ×
(0, 1)) induced with the following inner product depending on time〈σ1u1

z1

,
σ2u2
z2

〉
t

=

∫ L

0

σ1σ2dx+

∫ L

0

u1u2dx+ τ(t)

∫
ω

∫ 1

0

ξ(x)z1z2 dx dρ, (3.3)

where ξ is a non-negative function in L∞(0, L) such that supp ξ = supp c = ω and it satisfies following
condition

1

1−m
c(x) + k0 ≤ ξ(x) ≤ 2a(x)− c(x)− k0 a.e. in ω. (3.4)

By the definition of the inner product (3.3) we further have:

min(1, τ0c0) ∥(σ, u, z)∥2H̃ ≤ ∥(σ, u, z)∥2t ≤
(
1 + 2M ∥a∥L∞(0,L)

)
∥(σ, u, z)∥2H̃ , (3.5)

where ∥.∥H̃ is the usual norm on H̃. Now we are ready to prove the well-posedness result for the linear
system (1.11) using time dependent semigroup theory.

Theorem 3.1. Let a, c ∈ L∞(0, L) be two non-negative functions with (1.12), (1.13) and we also assume

(1.6), (1.7), (1.8) and (3.4). For any U0 = (σ0, u0, z0(−τ(0)·, ·))T ∈ H̃, there exists a unique solution

U ∈ C([0,∞); H̃) of (3.2). Moreover, if U0 ∈ D(A(0)), then U ∈ C([0,∞);D(A(0))) ∩ C1([0,∞); H̃).

Proof. To prove the existence-uniqueness of the solution of (3.2), we follow similar kind of argument as
the boundary time delay case. Since the analysis is standard, we only give a sketch of the proof.

At first, it is elementary to check that D(A(0)) is dense in H̃ and D(A(t)) = D(A(0)),∀t > 0. Let us
take U = (σ, u, z)T ∈ D(A(t)). We compute

⟨A(t)U,U⟩t =−
∫ L

0

σσx dx− b

∫ L

0

σux dx+

∫ L

0

uuxx dx−
∫ L

0

uux dx− b

∫ L

0

σux dx−
∫ L

0

a(x)σ2 dx

−
∫
ω

c(x)σ(x)z(x, 1)dx+ τ(t)

∫
ω

∫ 1

0

ξ(x)
τ̇(t)ρ− 1

τ(t)
zzρ dρdx

=
1

2

(
−σ2(L) + σ2(0)

)
−
∫ L

0

u2x dx−
∫ L

0

a(x)σ2 dx−
∫
ω

c(x)σ(x)ze(x, 1) dx

+
1

2

∫
ω

ξ(x)(−1 + τ̇(t))z2(x, 1) dx+
1

2

∫
ω

ξ(x)z2(x, 0) dx− τ̇(t)

2

∫
ω

∫ 1

0

ξ(x)z2 dρdx.

Applying the inequality ab ≤ a2

2 + b2

2 for the term
∫
ω
c(x)σ(x)z(x, 1), we further obtain

⟨A(t)U,U⟩t ≤
∫
ω

(
−a(x) + c(x)

2
+
ξ(x)

2

)
σ2(x)dx+

1

2

∫
ω

(c(x) + ξ(x)(τ̇(t)− 1)) z2(x, 1) dx

− τ̇(t)

2

∫
ω

∫ 1

0

ξ(x)z2(x, ρ) dρdx.

Thanks to (3.4), we have
(
−a(x) + c(x)

2 + ξ(x)
2

)
< 0 and (c(x) + ξ(x)(τ̇(t)− 1)) < c(x) + ξ(x)(m − 1) <

0, a.e. in ω.

Let us recall the function k(t) = (1+τ̇2(t))1/2

2τ(t) . Therefore one can easily show that the time dependent

operator Ã(t) = A(t)− k(t)I is dissipative.
Next, we will compute ⟨A(t)∗U,U⟩t, where A(t)∗, the adjoint of the operator A(t)∗ is defined by:

A(t)∗U =

σx + bux − aσ + ξze(·, 0)
uxx + ux + bσx
1−τ̇(t)ρ

τ(t) zρ − τ̇(t)
τ(t)z

 ,

with the domain:

D(A(t)∗) =
{
(σ, u, z) ∈ H1(0, L)×H2(0, L) ∩H1

0 (0, L)× L2(ω,H1(0, 1))|

σ(L) = 0, z(x, 1) =
−c(x)

ξ(x)(1− τ̇(t))
σ|ω(x)

}
.
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Let us consider U = (σ, u, z)T ∈ D(A(t)∗). Thus applying integration by parts, we obtain

⟨A(t)∗U,U⟩t =
∫ L

0

σσx dx+ b

∫ L

0

σux dx+

∫ L

0

uuxx dx+

∫ L

0

uux dx+ b

∫ L

0

σux dx−
∫ L

0

a(x)σ2 dx

−
∫
ω

c(x)σ(x)z(x, 0) dx+ τ(t)

∫
ω

∫ 1

0

ξ(x)
−τ̇(t)ρ+ 1

τ(t)
zzρ dx dρ− τ(t)

∫
ω

∫ 1

0

ξ(x)
τ̇(t)

τ(t)
z2 (x, ρ)dx dρ

=
1

2
(σ2(L)− σ2(0))−

∫ L

0

u2x dx−
∫
ω

a(x)σ2 dx−
∫
ω

∫ 1

0

c(x)σ(x)z(x, 0) dx+
1

2

∫
ω

∫ 1

0

τ̇(t)ξ(x)z2(x, ρ) dρ dx

+
1

2

∫
ω

ξ(x)(−1 + τ̇(t))z2(x, 1) dx− 1

2

∫
ω

ξ(x)z2(x, 0) dx− τ̇(t)

∫
ω

∫ 1

0

ξ(x)z2(x, ρ)dρdx.

Utilizing the boundary data, we derive

⟨A(t)∗U,U⟩t =− 1

2
σ2(0)−

∫ L

0

u2x dx−
∫
ω

a(x)σ2 dx−
∫
ω

∫ 1

0

c(x)σ(x)z(x, 0) dx− 1

2

∫
ω

∫ 1

0

τ̇(t)ξ(x)z2(x, ρ) dx

+
1

2

∫
ω

c2(x)

ξ(x)(1− τ̇(t))
σ2(x) dx− 1

2

∫
ω

ξ(x)z2(x, 0) dx

≤1

2

∫
ω

(
−2a(x) + ξ(x) +

c2(x)

ξ(x)(1− τ̇(t))

)
σ2(x)− 1

2

∫
ω

∫ 1

0

τ̇(t)ξ(x)z2(x, ρ)dxdρ.

Thanks to the inequality (3.4) and the upper bound condition (1.8) of τ̇(t), we have

c2(x)

ξ(x)(1− τ̇(t))
≤ c(x)

ξ(x)

c(x)

(1−m)
≤ c(x), a.e. in ω.

Again by (3.4), we further obtain
(
−2a(x) + ξ(x) + c2(x)

ξ(x)(1−τ̇(t))

)
≤ −k0 < 0, a.e. in ω.

Therefore as in the previous case, straightforward computations show that the time dependent operator

Ã(t)∗ = A(t)∗ − k(t)I is dissipative. It can be shown that Ã(t) is a densely defined closed linear operator.

Henceforth Ã(t) generates a C0 semigroup of contraction on H̃ (see [60]).
Proceeding with similar argument as boundary delay feedback cases, one can prove (2.8). And thus the

family Ã = {Ã(t) : t ∈ [0, T ]} is stable with stability constants C and ω0 independent of t. Hence, the first

three conditions of Theorem 2.1 hold. Finally, one can also show that ∂tÃ(t) ∈ L∞
∗ ([0, T ];B(D(A(0)), H̃)).

Thanks to Theorem 2.1, the following ODE{
˙̃
U(t) = Ã(t)Ũ(t), t > 0,

Ũ(0) = U0,
(3.6)

has a unique solution Ũ ∈ C([0,∞);D(A(0))) ∩ C1([0,∞); H̃), provided U0 ∈ D(A(0)). Thus U(t) =

e
∫ t
0
k(s)dsŨ(t) solves the ODE (3.2). □

3.2. Stability analysis. In this section, we prove the exponential stability result for the system (1.11).
Let us first consider the energy for the system (1.11)

E(t) =
1

2

∫ L

0

σ2(t, x)dx+
1

2

∫ L

0

u2(t, x)dx+
τ(t)

2

∫
ω

∫ 1

0

ξ(x)σ2(t− τ(t)ρ, x)dρ, t ≥ 0. (3.7)

Our first goal is to show that this energy is a decreasing function of time.

Proposition 3.2. Let a, c ∈ L∞(0, L) be two non-negative functions with (1.12), (1.13) and we also
assume that (1.6), (1.7), (1.8) and (3.4) hold. Then for all regular solutions of the system (1.11), the
energy E in (3.7) is non-increasing and satisfies:

Ė(t) < 0.



STABILIZATION OF NAVIER-STOKES WITH TIME VARYING DELAY FEEDBACK 17

Proof. Differentiating E with respect to t and using the equation (1.11) and applying integration by parts
successively, we get,

Ė(t) =

∫ L

0

σσtdx+

∫ L

0

uutdx+
τ̇(t)

2

∫
ω

∫ 1

0

ξ(x)σ2(t− τ(t)ρ, x)dρ

+ τ(t)

∫
ω

∫ 1

0

ξ(x)σ(t− τ(t)ρ, x)∂tσ(t− τ(t)ρ, x)dρ dx

=− 1

2
σ2(L)−

∫ L

0

u2x dx−
∫ 1

0

a(x)σ2 dx−
∫
ω

c(x)σ(x)σ(t− τ(t), x) dx

− 1

2

∫
ω

ξ(x)(1− τ̇(t))σ2(t− τ(t), x)dx+
1

2

∫
ω

ξ(x)σ2(t, x) dx

Here, we have inserted the identity −τ(t)∂tσ(t− τ(t)ρ, x) = (1− τ̇(t)ρ)∂ρσ(t− τ(t)ρ, x), x ∈ ω in the term

τ(t)

∫
ω

∫ 1

0

ξ(x)σ(t− τ(t)ρ, x)∂tσ(t− τ(t)ρ, x)dρ dx

and performing integration by parts we derived

τ(t)

∫
ω

∫ 1

0

ξ(x)σ(t− τ(t)ρ, x)∂tσ(t− τ(t)ρ, x)dρdx = − τ̇(t)
2

∫
ω

∫ 1

0

ξ(x)σ2(t− τ(t)ρ, x)dρdx

− 1

2

∫
ω

ξ(x)(1− τ̇(t))σ2(t− τ(t), x)dx+
1

2

∫
ω

ξ(x)σ2(t, x)dx

On simplification, we obtain

Ė(t) ≤ 1

2

∫
ω

(−2a(x) + ξ(x) + c(x))σ2(t, x)dx+
1

2

∫
ω

(c(x)− (1−m)ξ(x))σ2(t− τ(t), x)dx−
∫ L

0

u2xdx.

Thanks to the inequality (3.4), we obtain Ė(t) < 0. □

Now, we will establish that the energy E decays exponentially towards the origin. Let us consider the
Lyapunov functional

E(t) = E(t) + γ1E1(t) + γ2E2(t), t > 0, γ1, γ2 ∈ (0, 1),

where

E1(t) =
1

2

∫ L

0

e−λxσ2(t, x)dx, for some λ > 0. (3.8)

E2(t) =
τ(t)

2

∫
ω

∫ 1

0

(1− ρ)σ2(t− τ(t)ρ, x)dxdρ. (3.9)

It is easy to note that E(t) ≤ E(t), for all t ≥ 0. On the other hand, it follows that

γ1E1(t) + γ2E2(t) ≤
γ1
2

∫ L

0

σ2(t, x)dx+
γ2τ(t)

2

∫
ω

∫ 1

0

σ2(t− τ(t)ρ, x)dx dρ

≤ γ1
2

∫ L

0

σ2(t, x)dx+
γ2τ(t)

2c0

∫
ω

∫ 1

0

ξ(x)σ2(t− τ(t)ρ, x) dx dρ

≤ max

{
γ1,

γ2
c0

}
E(t),

that is,

E(t) ≤ E(t) ≤

(
1 + max

{
γ1,

γ2
c0

})
E(t), for all t ≥ 0. (3.10)

This ensures that the Lyapunov E is equivalent to the energy E. Now, we prove our exponential stability
result for interior delay case.

Theorem 3.3. Let a, c ∈ L∞(0, L) be two non-negative functions with (1.12), (1.13) and we also assume

that (1.6), (1.7), (1.8), (1.13) and (3.4) hold. Let us also assume that U0 = (σ0, u0, z0(−τ(0)·, ·))T ∈ H̃.
Then the energy E defined in (3.7) decays exponentially, that is there exist positive constants C, µ such
that the following happens

E(t) ≤ CE(0)e−µt, ∀t > 0,
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where for γ1, γ2 ∈ (0, 1) small enough,

C ≤

(
1 + max

{
γ1,

γ2
c0

})

and

µ ≤ min

{
π2

L2

(
1− bγ1

2

)
,

γ2(1−m)

2M(γ2 + ∥ξ∥L∞(0,L))
,
γ1(λ− b)

2(γ1 + eλL)

}
, λ > b.

Proof. Analogous to boundary feedback case, here we first assume that the solution of the system (1.11)
is sufficiently smooth by taking U0 = (σ0, u0, z0(−τ(0)·, ·))T ∈ D(A(0)). A standard density argument

allows to extend the desired result to U0 ∈ H̃.
Differentiating (3.8) with respect to t, we have

Ė1(t) =
∫ L

0

e−λxσσt dx

=−
∫ L

0

e−λxσσx dx− b

∫ L

0

e−λxσux dx−
∫ L

0

a(x)e−λxσ2 dx−
∫
ω

e−λxc(x)σ(t− τ, x)σ(t, x) dx

=− λ

2

∫ L

0

e−λxσ2 dx− e−λL

2
σ2(t, L) +

1

2
σ2(t, 0)− b

∫ L

0

e−λxσux dx−
∫ L

0

a(x)e−λxσ2 dx

−
∫
ω

e−λxc(x)σ(t− τ, x)σ(t, x) dx

≤− λ

2

∫ L

0

e−λxσ2dx− b

∫ L

0

e−λxσux dx−
∫ L

0

a(x)e−λxσ2 dx−
∫
ω

e−λxc(x)σ(t− τ, x)σ(t, x) dx.

(3.11)

Differentiating (3.9) with respect to t we have

Ė2(t) =
τ̇(t)

2

∫
ω

∫ 1

0

(1− ρ)σ2(t− τ(t)ρ, x)dxdρ+ τ(t)

∫
ω

∫ 1

0

(1− ρ)σ(t− τ(t)ρ, x)∂tσ(t− τ(t)ρ, x)dxdρ

(3.12)

Thanks to the identity −τ(t)∂tσ(t− τ(t)ρ, x) = (1− τ̇(t)ρ)∂ρσ(t− τ(t)ρ, x), x ∈ ω, we write the last term
of the above identity as follows:

τ(t)

∫
ω

∫ 1

0

(1− ρ)σ(t− τ(t)ρ, x)∂tσ(t− τ(t)ρ, x)dxdρ

=−
∫
ω

∫ 1

0

(1− ρ)(1− τ̇(t)ρ)σ(t− τ(t)ρ, x)∂ρσ(t− τ(t)ρ, x)dxdρ

=− 1

2

∫
ω

∫ 1

0

(1− τ̇(t)ρ)σ2(t− τ(t)ρ, x)dxdρ− 1

2
τ̇(t)

∫
ω

∫ 1

0

(1− ρ)σ2(t− τ(t)ρ, x)dxdρ

+
1

2

∫
ω

σ2(t, x)dx.

The above identity along with (3.12) provides

Ė2(t) = −1

2

∫
ω

∫ 1

0

(1− τ̇(t)ρ)σ2(t− τ(t)ρ, x)dx+

∫
ω

σ2(t, x)dx. (3.13)
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Combining (3.11) and (3.13) and using Young’s inequality, we proceed

Ė(t) + 2µE(t) ≤1

2

∫
ω

(−2a(x) + ξ(x) + c(x) + γ1c(x) + γ2)︸ ︷︷ ︸
I1

σ2(t, x) dx

+
1

2

∫
ω

(c(x)− (1−m)ξ(x) + γ1c(x))︸ ︷︷ ︸
I2

σ2(t− τ(t), x)dx−
∫
(0,L)\ω

a(x)σ2dx

+
1

2

∫
ω

∫ 1

0

(2µMξ(x)− (1−m)γ2 +M2µγ2)︸ ︷︷ ︸
I3

σ2(t− τ(t)ρ, x)dx

+
1

2

∫ L

0

(
−γ1λ− γ1a(x) + 2µeλL + 2γ1µ+ bγ1

)︸ ︷︷ ︸
I4

e−λxσ2dx+

(
−1 +

µL2

π2
+
bγ1
2

)
︸ ︷︷ ︸

I5

∫ L

0

u2xdx.

Thus to prove Ė(t) + 2µE(t) < 0, we need to choose the Lyapunov parameters γ1, γ2 and the decay µ in
such a way that I1, I2, I3, I4, I5 are negative.

• As (−2a(x)+ ξ(x)+ c(x)) < 0, c(x)− (1−m)ξ(x) < 0 a.e. on ω, we can choose γ1, γ2 small enough
to get I1, I2 < 0. In fact, the inequality (3.4) ensures that the following choices serve our purpose:

γ1 ≤ inf
ω

{
2a(x)− ξ(x)− c(x)

c(x)
,
(1−m)ξ(x)− c(x)

c(x)

}
,

γ2 ≤ inf
ω

{
2a(x)− ξ(x)− c(x)− γ1c(x)

}
.

• Clearly, if we consider µ ≤ (1−m)γ2

2M(∥ξ∥L∞(0,L)+γ2)
, then I3 ≤ 0.

• To prove that I4 < 0, that is, µ < γ1(λ+a(x)−b)
2(eλL+γ1)

, it is enough to consider that

µ <
γ1 (λ− b)

2(eλL + γ1)
, λ > b.

• To have I5 < 0 we need to take µ < π2

L2 (1 − bγ1

2 ) and also there is a restriction on the small

parameter γ1 used in the Lyapunov expression as γ1 <
2
b . This completes the Theorem 3.3.

□

4. Conclusion

In this article, we have investigated the time-dependent delay effect in the asymptotic behaviour of
the linearized compressible Navier-Stokes equations. We established two well-posedness results of the
concerned system with the time delay term acting in the boundary and in the interior of the hyperbolic
component. We have explored the exponential stability results of the Navier-Stokes system under some
conditions on the damping parameters and delayed terms as well. In this work, we have assumed that the
delay function is strictly positive; see (1.7). An interesting question arises that, can we demonstrate our
stability analysis for the degenerate delay case, like [53]? We will address this question in the near future.
It is reasonable to examine the impact of the time dependent delay acting in the parabolic component of
the linearized Navier-Stokes system. Also, it will be interesting to explore these stability results in other
related fluid models, such as linearized compressible Navier-Stokes equations in the case of Creeping flow
[21] or linearized compressible Navier-Stokes system with Maxwell’s law [2], and [1].
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