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Abstract

We propose a non-asymptotic convergence analysis of a two-step approach
to learn a conditional value-at-risk (VaR) and expected shortfall (ES) in a non-
parametric setting using Rademacher and Vapnik-Chervonenkis bounds. Our ap-
proach for the VaR is extended to the problem of learning at once multiple VaRs
corresponding to different quantile levels. This results in efficient learning schemes
based on neural network quantile and least-squares regressions. An a posteriori
Monte Carlo procedure is introduced to estimate distances to the ground-truth
VaR and ES without access to the latter. This is illustrated using numerical ex-
periments in a Gaussian toy-model and a financial case-study where the objective
is to learn a dynamic initial margin.
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1 Introduction

Quantile regression is a classical statistical problem that has received attention since the
1750s. Koenker (2017) notes that the least absolute criterion (or pinball loss function)
for the median even preceded the least squares for the mean (introduced by Legendre
in 1805).

Quantile regression is commonly done in the context of linear models, where the
ensuing minimization problem can be cast as a linear program and subsequently solved
by the simplex method. When several quantile levels are jointly considered, a flaw
inherent to linear quantile regression is the problem of crossing quantile curves. Alter-
native approaches include nonlinear quantile regression based on interior point methods
(Koenker and Park, 1996) or nonparametric quantile regression often implemented by
stochastic gradient descent methods (Rodrigues and Pereira, 2020).
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In harmony with the numerous financial applications, we also refer to quantile as
value-at-risk (VaR) and to superquantile, i.e. the expected loss given the loss exceeds
the VaR (Rockafellar and Royset, 2013), as expected shortfall (ES). Dimitriadis and
Bayer (2019) developed an asymptotic convergence analysis, establishing the consis-
tency and asymptotic normality, under somewhat strong semiparametric assumptions
and regularity conditions, of a joint linear regression estimator for the value-at-risk and
expected shortfall based on their joint elicitability properties (Fissler and Ziegel, 2016;
Fissler, Ziegel, and Gneiting, 2016), implemented numerically using the Nelder-Mead
optimization algorithm. Closer to our proposals, Padilla, Tansey, and Chen (2020)
consider quantile regression with ReLU networks, including a discussion on minimax
rates for quantile functions with Hölder-related regularity conditions, and providing
qualitative non-asymptotic estimates for such networks, of which our corresponding
results can be considered quantitative versions. Shen, Jiao, Lin, Horowitz, and Huang
(2021) consider a different approach to the non-asymptotic analysis, assuming that the
target quantile function has a compositional structure in terms of Hölder-continuous
functions. The authors derive Vapnik–Chervonenkis (VC)-based error bounds that
only depend on the dimension of the composed functions, as opposed to the one of
the inputs usually in the literature, and are therefore less impacted by the curse of
dimensionality.

The contribution of the present paper is the non-asymptotic convergence analysis of
a learning algorithm for VaR and ES using a two-step approach, possibly for multiple
quantile levels at the same time, in a nonparametric setup. We also provide practical
learning schemes to learn the conditional VaR and ES using neural networks as the
function approximators. Our two-step methodology enables the reuse of the VaR neural
network’s hidden layers in the training of the neural network approximating the ES,
allowing to learn the latter using a simple linear regression against a learned regression
basis, hence quickly deducing a conditional ES predictor from the conditional VaR one.
We also address the problem of learning multiple quantiles at the same time and propose
methods to deal with the well-known quantile crossing issue (He, 1997; Koenker, 2004;
Takeuchi, Le, Sears, and Smola, 2006). We provide an a posteriori error estimation
method in order to compute errors against ground-truth values of the conditional VaR
and ES, without the need to approximate the latter with a slow nested Monte Carlo
procedure. For the purpose of assessing our proposed schemes, we provide numerical
experiments in a Gaussian toy model, and a financial case-study where the goal is to
learn a dynamic initial margin in a multi-factor model.

The paper is organized as follows. Section 2 presents our base learning algorithm.
Relying on the general results of the companion paper (Barrera, 2022, Section 3),
Section 3 performs the corresponding convergence analysis. Section 4 discusses special-
izations of this scheme and its errors to the case of inference via neural networks. We
introduce multi-quantile extensions of the above in Section 5. Sections 6 and 7 discuss
numerical experiments. Appendix A gathers classical elicitability results underlying
different possible VaR and ES learning algorithms (including the one in Section 2, but
also a joint representation à la Fissler and Ziegel (2016); Fissler, Ziegel, and Gneiting
(2016), shown less efficient numerically in the paper’s github). Appendix B discusses
the role of data transformations in the scheme proposed and their consequences on the
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respective error bounds.

We denote by (Ω,A,P) a probability space, which admits all the random variables
appearing below (the existence of (Ω,A,P) can be verified a posteriori), with corre-
sponding expectation operator denoted by E [ · ], and we denote by R the Borel sigma
algebra on R.

2 A Learning Algorithm for VaR and ES

Let S be a Polish space with Borel sigma algebra S. From now on

(X,Y ) : Ω→ S × R

is a fixed random vector in S × R1, with Y ∈ L1
P. We will utilize the usual notation

PX , P(X,Y ) for the laws of X and (X,Y ): for every Borel sets A ⊂ S, A′ ⊂ S × R

PX(A) = P [X ∈ A] , P(X,Y )(A
′) = P

[
(X,Y ) ∈ A′] .

We fix a conditional distribution function µ : S×R → [0, 1] of Y given X (Kallenberg,
2006, Theorem 5.3 p.84), and we assume that the function S × R → R defined by
(x, y) 7→ µ(x, (−∞, y]) is (S ⊗R)/R (i.e. Borel)-measurable.2 With these conventions,
we will use implicitly the corresponding version

P [Y ∈ ·|X] := µ(X, ·)

of the conditional probability of Y given X. In particular, we will use the conditional
(cumulative) distribution (function) of Y given X,

FY |X(y) := P [Y ≤ y |X] := µ(X, (−∞, y]). (2.1)

We will finally assume, without loss of generality, that FY |X(ω)(·) is integrable for every
ω ∈ Ω.3 In what follows, for a function F : R→ R and y0 ∈ R

F (y0−) := lim
y↑y0

F (y). (2.2)

Definition 2.1. The conditional value-at-risk (VaR) and expected shortfall (ES) of Y
given X at the confidence level α ∈ (0, 1) are (cf. (A.2))

VaR(Y |X) := VaR(FY |X) = inf F−1
Y |X([α, 1]) = inf{y ∈ R; FY |X(y) ≥ α},

ES(Y |X) :=
1

1− FY |X(VaR(Y |X)−)

∫
[VaR(Y |X),∞)

y FY |X(dy).

(2.3)
1i.e. an A/(S ⊗R) measurable function.
2This the case if for instance S = Rd and (X,Y ) admits a density with respect to Lebesgue measure.
3Since Y ∈ L1

P, we have that

∞ > E [|Y |] = E [E [|Y ||X]] = E

[∫
R
|y|FY |X(dy)

]
,

thus FY |X(ω) is integrable for P-a.e. ω: it suffices to change the version of X to guarantee integrability
for every ω.

4



Lemma 2.1. The functions ω 7→ VaR(Y |X(ω)) and ω 7→ ES(Y |X(ω)) are σ(X)-
measurable.

Proof. Given t ∈ R,

{VaR(Y |X) < t} = ∪n∈N{FY |X(t− 1/n) ≥ α},

which is a countable union of σ(X)-measurable sets (FY |X(y) is σ(X)-measurable for
every fixed y). This shows the claim for VaR(Y |X). As for the σ(X)-measurability of
ES(Y |X), notice that the function es : S × R→ R defined by

es(v, x) =
1

1− µ(x, (−∞, v))

∫
y1[v,∞)(y)µ(x, dy)

is Borel-measurable (on the set where µ(x, (−∞, v)) < 1) and that

ES(Y |X) = es(X,VaR(Y |X)).

Then, from the Doob-Dynkin lemma:

Corollary 2.2. There exist Borel measurable functions q : S → R and s : S → R such
that

q(X) = VaR(Y |X), s(X) = ES(Y |X), P-a.s.. (2.4)

Assuming S = Rd, the goal of the article is to present and analyze algorithms for
approximating (PX -versions of) the functions q(·) and/or s(·) in (2.4), efficient in high
dimension d, based on i.i.d. samples of (X,Y ) ∈ Rd × R and on suitable hypothesis
spaces (including families of functions represented in terms of neural nets which are
used in the experimental part of the paper)

F = {f : Rd → R} , G = {g : Rd → R} , H = {h = (f, g) : Rd → R2}

for q(·), s(·), and (q(·), s(·)), respectively.

2.1 VaR and ES as optimization problems

Given α ∈ (0, 1) and an increasing, continuously differentiable function ι : R → R, let
ρι : R2 → R be the loss function defined by

ρι(y, v) = (1− α)−1(ι(y)− ι(v))+ + ι(v). (2.5)

Given a twice continuously differentiable function ς : [0,∞) → R with ς ′′ positive,
let

ϱς(y, v, z) := ς ′(z)
(
z − (1− α)−1(y − v)+

)
− ς(z), (2.6)

e.g.

ϱ·2(y, v, z) =z2 − 2(1− α)−1(y − v)+z (2.7)

=(z − (1− α)−1(y − v)+)2 − ((1− α)−1(y − v)+)2.
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Given functions ι, ς : R→ R with ι′ nonnegative (possibly zero) and continuous, ς ′

negative and ς ′′ non-vanishing, let ρι,ς : R× R× R→ R defined by

ρι,ς(y, v, z) =(1− α)−1(ι(y)− ι(v))+ + ι(v)

+ς ′(z)
(
z − v − (1− α)−1(y − v)+

)
− ς(z). (2.8)

To provide suitable representations of the functions q(·) and s(·) of (2.4) in the
context of convex optimization, we will work under the following assumption.

Assumption 2.2. FY |X (defined by (2.1) for a given α) satisfies Assumption A.4,
P-a.s., and if ρι, ϱς , ρι,ς , q(·) and s(·) are respectively as in (2.5), (2.6), (2.8), (2.4),
then ρι(Y, q(X)), ϱς(Y, q(X), s(X)− q(X)) and ρι,ς(Y, q(X), s(X)) are P-integrable.

Our methods rely on the following elicitability (i.e. minimizing) properties of VaR(Y |X)
and ES(Y |X) of the functions q(·) and s(·) . We use implicitly in the statement the
convention E [h(X,Y )] = ∞ whenever h(X,Y ) is not P-integrable. We also use the
notation L(S) [resp. L+(S)] for the space of Borel measurable functions S → R [resp.
S → R+].

Theorem 2.3. Under Assumption 2.2:

q(·) ∈ arg min
f∈L(S)

E [ρι(Y, f(X))] , (2.9)

s(·)− q(·) ∈ arg min
g∈L+(S)

E [ϱς(Y, q(X), g(X))] , (2.10)

(q(·), s(·)) ∈ arg min
(f,g)∈L(S)×L(S)

E [ρι,ς(Y, f(X), g(X))] . (2.11)

Even more

s(X) = q(X) + (1− α)−1E
[
(Y − q(X))+|X

]
, P-a.s. (2.12)

(this does not depend on the assumptions on ρι, ϱς , ρι,ς . For the P-integrability of q(X)
see the last paragraph in Appendix B).

Proof. All these statements are a straightforward consequence of the fact that, if
h(X,Y ) is P-integrable, then

E [h(X,Y )|X] =

∫
R
h(X, y)FY |X(dy), P-a.s.,

together with the characterizations of VaR and ES in Lemmas A.1, A.2 and A.3.

To illustrate for q(·): using Lemma A.1 and the above identity, we obtain that

E [ρι(Y, q(X))|X] ≤ E [ρι(Y, f(X))|X] , P-a.s.,

for every f ∈ L(S). This implies (2.9) by integrating with respect to P. The other
statements can be proved in a similar fashion.
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Remark 2.3. If (Y −q(X))+ ∈ L2
P, then the representation (2.12) is also a consequence

of the characterization (2.10). To see this notice that, by the Pythagorean theorem and
the nonnegativity of (Y − q(X))+, any r ∈ L+(S) satisfying4

r(·) ∈ arg min
g∈L+(S)

E
[
((1− α)−1(Y − q(X))+ − g(X))2

]
(2.13)

has the property that

r(X) = E
[
(1− α)−1(Y − q(X))+|X

]
, P-a.s..

In view of (2.7), it follows that the minimization criteria (2.10) and (2.13) are exactly
the same, leading in particular to

s(X)− q(X) = r(X) = (1− α)−1E
[
(Y − q(X))+|X

]
, P-a.s.,

as claimed by (2.12).

Remark 2.4. The minimizers in (2.9)-(2.11) do not need to be unique: notice for
instance that the proof of (2.9) (illustrated above) shows that any function q1 : S → R
satisfying FY |X(q1(X)) = α is a minimizer of f 7→ E [ρι(Y, f(X))], and that there are

infinitely many such functions if F−1
Y |X(α) is an interval of positive length on a set with

positive PX-measure.

2.2 The algorithm

The functional representations in (2.9)-(2.13) give immediately rise to equally many
approximation algorithms for conditional VaR and/or ES. In all cases, the numerical
recipe is simply that of replacing the minimization problems in (2.9)-(2.13) by empirical
versions: instead of L(S),L+(S) and L(S)×L(S) we use convenient hypotheses spaces
F ⊂ L(S), G ⊂ L+(S), and H ⊂ L(S)×L(S); instead of integration with respect to P
we use a Monte Carlo approximation based on (properly truncated) i.i.d. samples of
(X,Y ).

After some preliminary empirical investigations reported in the paper’s GitHub, the
best turned out to be the simplest, i.e. the two-step algorithm that first uses (2.9) to
obtain an approximation q̂(·) of the (conditional) VaR, and then uses (2.12) together
with the interpretation of the conditional expectation as a least-squares minimization
problem, i.e. (2.13), to learn ES, using the approximation q̂(·) obtained before. This
two-step algorithm will be our main focus in what follows. Its pseudo-code is provided
as Algorithm 1. The restrictions on F and ι, the transformation h1, h2 and the trun-
cations TB defined by TBy = max{min{y,B},−B}, (y,B) ∈ R × [0,∞), permit
a fitting of the algorithm within the framework of the bounds developed in Barrera
(2022). They may also have practical advantages, as discussed in Appendix B.

4The existence of such r follows again from Kallenberg (2006, Lemma 1.13 p.7).
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1 Parameters:

• The loss ρ given by (2.5) with ι(z) = z.

• Constants (B1, B2, B3) ∈ (0,∞)3 with B1 ≤ B2.

• A function h1 : S × R→ [−B2, B2] such that, for PX -a.e. x ∈ S,
h1,x(·) := h1(x, ·) is increasing in a set Ix with P [Y ∈ Ix|X = x] = 1.

• A conditionally affine function h2(x, y) = τ(x)y + ν(x) with τ(x) > 0

for PX a.e. x ∈ S.

• A set F of Borel measurable functions S → [−B1, B1].

• A set G of Borel measurable functions S → [0, B3].

2 Input: An i.i.d. sample

D = {(Xk, Yk)}nk=1,

of (X,Y ).
3 Compute

f̂ ∈ argmin
f∈F

n∑
k=1

ρ(h1(Xk, Yk), f(Xk)).

q̂(x) =h−1
1,x ◦ f̂(x)

4 Compute

ĝ ∈ argmin
g∈G

n∑
k=1

(
g(Xk)− TB3((1− α)−1(h2(Xk, Yk)− h2(Xk, q̂(Xk))

+
)
)2

r̂(x) :=(ĝ(x)− ν(x))/τ(x)

Return((V̂aR(Y |·), ÊS(Y |·)) = (q̂(·), q̂(·) + r̂(·)))
Algorithm 1: Estimates of conditional VaR and ES by regression in two steps
with tilted loss (cf. (2.5)) for VaR and quadratic loss for ES.

3 Convergence Analysis of the Learning Algorithm

In what follows, we will be using the assumption hk(x, y) = y (k = 1, 2) for the data
transformations in Algorithm 1. Our results, therefore, leave open the error induced
by the operations (hk(X, ·))−1 used for the final estimates.

We will use the notation

D = {(Xj , Yj)}nj=1 (3.1)

for an i.i.d. sample of (X,Y ) (with n given).
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Using also the notation (2.5), (2.6), (2.8), we will denote, for (f, g) ∈ L(S)×L+(S)

ρ̃ι(f) := E [ρι(Y, f(X))] , ρ̂ι(f) :=
1

n

n∑
k=1

ρι(Yk, f(Xk))

ϱ̃ς(f, g) := E [ϱς(Y, f(X), g(X))] , ϱ̂ς(f, g) :=
1

n

n∑
k=1

ϱς(Yk, f(Xk), g(Xk))

ρ̃ι,ς(f, g) = E [ρι,ς(Y, f(X), f(X) + g(X))] ,

ρ̂ι,ς(f, g) =
1

n

n∑
k=1

ρι,ς(Yk, f(Xk), f(Xk) + g(Xk)). (3.2)

Throughout this section,

F ⊂ L(S), G ⊂ L+(S), H ⊂ L(S)× L+(S)

will be fixed hypothesis spaces. Associated to these and to the loss functions in (3.2)
there are the following quantities of interest,

q̃ ∈ argmin
f∈F

ρ̃ι(f), q̂ ∈ argmin
f∈F

ρ̂ι(f) (3.3)

and given f ∈ L(S),

r̃f ∈ argmin
g∈G

ϱ̃ς(f, g), r̂f ∈ argmin
g∈G

ϱ̂ς(f, g). (3.4)

Thus (3.3) defines respectively the best mean and empirical hypothesis for VaR
within F , and (3.4) defines the best mean and empirical hypotheses for ES − VaR
within G conditioned to the hypothesis f for VaR (f may not belong to F). Similarly,
we define the best mean and empirical joint hypotheses for (VaR,ES−VaR) respectively
by

(q̃, r̃) ∈ arg min
h=(f,g)∈H

ρ̃ι,ς(f, g), (q̂, r̂) ∈ arg min
h=(f,g)∈H

ρ̂ι,ς(f, g).

3.1 The approximation error of the estimator of VaR

Algorithm 1 is based on the following assumption:

Assumption 3.1. The function ι : R → R in (2.5) is the identity function. We
therefore omit ι and write

ρ(y, v) = (1− α)−1(y − v)+ + v,

as well as ρ̃(·) and ρ̂(·) instead of ρι(·, ·), ρ̃ι(·) and ρ̂ι(·).

Assumption 3.1 implies the convexity of ρ(y, ·) (for all y), which we exploit in several
manners. In a sense, Assumption 3.1 is only an apparent restriction: notice that for
any (y, v) ∈ R2

ρι(y, v) = ρ(ι(y), ι(v)),
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which allows us to transport any conclusion under Assumption 3.1 to the respective
conclusion for generic ι, by “transferring” the hypotheses related to (y, v) to hypotheses
related to (ι(y), ι(v)).

The following assumption is a conditional version of Assumption A.4:

Assumption 3.2. There exist functions a, b : S → R such that

FY |X(a(X)) < α ≤ FY |X(b(X)), (3.5)

on a set Ω0 of P-measure one and such that FY |X(ω)(·) is absolutely continuous in
[a(X(ω)), b(X(ω))] for every ω ∈ Ω0.

Notice that, under this assumption, a(X) ≤ q(X) ≤ b(X) except on a set of measure
zero.

Assumption 3.3. (for a generic family F1 ⊂ L(S)) Assumption 3.2 holds, and F1 ⊂
L(S) is such that

1. For every f ∈ F1, a(X) ≤ f(X) ≤ b(X), except on a set Ω0 of P-measure zero.

2. There exists cF1 > 0 such that, for every f ∈ F1,

F ′
Y |X(f(X)) ≥ cF1 , P-a.s..

Assumption 3.3 is needed to succeed in applying Taylor expansions towards the esti-
mation of errors in our analysis.

Lemma 3.1. Given F ⊂ L(S), and under Assumption 3.1, define q̃ by (3.3), let
F0 ⊂ F , and consider

F∗
0 := {tf + (1− t)q : (t, f) ∈ [0, 1]×F0}, F∗ := {tf + (1− t)q : (t, f) ∈ [0, 1]×F},

If F1 ≡ F∗ satisfies Assumption 3.3 and if

CF∗
0
:= sup

f∈F∗
0

{||F ′
Y |X(f(X))||P,∞}, (3.6)

then the inequalities

cF∗ ||q̃ − q||2PX ,2≤2(1− α)(ρ̃(q̃)− ρ̃(q))

≤(2(2− α) inf
f∈F
||f − q||PX ,1) ∧ (CF∗

0
inf
f∈F0

||f − q||2PX ,2) (3.7)

hold.

Proof. For any f ∈ F , consider the function [0, 1]→ R defined by

t 7→ Vf (t) := ρ̃(q + t(f − q)),

which has a minimum at t = 0.

10



We use the definition of FY |X(·) and differentiation under the integral sign to obtain,
for every t ∈ [0, 1]

V ′′
f (t) =

∂2

∂t2
E

[∫
R
ρ(y, q(X) + t(f(X)− q(X)))FY |X(dy)

]
=

∂

∂t
E
[
(f(X)− q(X))((1− α)−1(FY |X(q(X) + t(f(X)− q(X)))− 1) + 1)

]
= E

[
(f(X)− q(X))2F ′

Y |X(q(X) + t(f(X)− q(X)))/(1− α)
]

≥ cF∗

1− α
E
[
(f(X)− q(X))2

]
. (3.8)

This shows in particular that Vf is twice continuously differentiable (from the right at
t = 0) and convex. Applying Taylor’s theorem and the fact that V ′

f (0) = 0 we arrive at

cF∗

2(1− α)
||f − q||2PX ,2≤ ρ̃(f)− ρ̃(q). (3.9)

Since this is valid for any f ∈ F , it is valid for f = q̃. This gives

cF∗

2(1− α)
||q̃ − q||2PX ,2≤ ρ̃(q̃)− ρ̃(q). (3.10)

The upper bound

ρ̃(q̃)− ρ̃(q) ≤
CF∗

0

2(1− α)
inf
f∈F0

||f − q||2PX ,2 (3.11)

follows from the inequality ρ̃(q̃) − ρ̃(q) ≤ ρ̃(f) − ρ̃(q) (valid for any f ∈ F0) and an
obvious modification of the previous argument starting from (3.8).

Finally, the upper bound

ρ̃(q̃)− ρ̃(q) ≤
(
2− α

1− α

)
inf
f∈F
||f − q||PX ,1 (3.12)

follows via an elementary estimation using

|a+ − b+|≤ |a− b| (3.13)

and the triangle inequality, together (again) with the inequality ρ̃(q̃)−ρ̃(q) ≤ ρ̃(f)−ρ̃(q),
valid for every f ∈ F . The conclusion follows from (3.10), (3.11) and (3.12).

Remark 3.4. Notice that as F0 gets larger, CF∗
0
in (3.6) increases and inff∈F0 ||f −

q||PX ,2 decreases: by making the bound (3.7) depend of F0 ⊂ F we leave open the room
for a trade-off between these quantities.

Remark 3.5. If we strengthen Assumption 3.3 by requiring that for some (c, C) ∈
(0,∞)× (0,∞), and except on a set of P-measure zero

c ≤ F ′
Y |X(y) ≤ C, for every y ∈ [a(X), b(X)], (3.14)

11



then the conclusion of Lemma 3.1 holds with (cF∗ , CF∗
0
) replaced by (c, C) under the

sole assumption that, for every f ∈ F ,5

[f(X), q(X)] ∪ [q(X), f(X)] ⊂ [a(X), b(X)], except on a set of P-measure zero.

(3.15)

As will be illustrated in Examples 3.6 and 3.7, these observations allow weakening the
dependence on F in the estimate (3.7).

Example 3.6. Assume (3.14) and, given δ > 0, assume that F is such that (3.15)
holds and

inf
f∈F
||f − q||PX ,2< δ.

Denoting by q̃δ the solution to the left-hand side of (3.3), an application of Remark 3.5
gives that

c||q̃δ − q||2PX ,2≤ δ(2(2− α) ∧ Cδ) ≤ Cδ2,

leading to the estimate

||q̃δ − q||PX ,2≤
(
C

c

)1/2

δ. (3.16)

Example 3.7. To give a concrete instance of the previous example, assume that, for
some A ≤ B,

q(X) ∈ [A,B] , PX-a.s.

(see also Remark A.3), assume that (3.5) and (3.14) hold with a(X) ≡ A and b(X) ≡ B,
and assume that there exists a finite or countable partition {Sj}j ⊂ S of S such that,
for all j,

||q||TVSj
:= sup

(x,x′)∈Sj×Sj

|q(x)− q(x′)|< δ

(for instance if q is continous, as S is a Polish space). Then (3.16) holds with

F = {x 7→
∑
j

aj1Sj (x) : aj ∈ [A,B],∀j}.

Partitions {Sj}j as above can be available with only partial information on q on
cases of interests: consider for example the case in which S is compact and q is uni-
formly Lipschitz with a known Lipschitz constant.

5[u, v]∪ [v, u] is just the closed segment of the real line determined by (u, v) ∈ R2. Notice that (3.15)
is exactly the same as 1. in Assumption 3.3 for F1 = F∗.
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3.2 A confidence interval for the estimator of VaR

Let us now give an upper bound for the error in probability associated to the empirical
estimator q̂ of q̃. For this, we need to introduce the following measures of complexity
applicable to the families of hypotheses used along our schemes:

Definition 3.8. If S is a Polish space, H ⊂ L(S), and X1:n is a random sequence in S,
the empirical Rademacher complexity Remp(H, X1:n) and the Rademacher complexity
Rave(H, X1:n) of H at X1:n are defined as

Remp(H, X1:n) = E

[
sup
h∈H

n∑
k=1

Ukh(Xk)
∣∣∣X1:n

]
, Rave(H, X1:n) = E [Remp(H, X1:n)]

where U1:n is an i.i.d. Rademacher sequence P [Uk = 1] = P [Uk = −1] = 1/2 indepen-
dent of X1:n.

The Rademacher complexities have the following property, which we will use later
and whose proof is an easy exercise: if

co(H) :=
⋃
m

{
m∑
k=1

tkhk : h1:m ∈ Hm, t1:m ∈ [0, 1]m,
∑
k

tk = 1

}
(3.17)

is the convex hull of H, and if

cobal(H) = co(H ∪−H) (3.18)

is the balanced convex hull of H, then

Remp(co(H), X1:n) = Remp(H, X1:n), Remp(cobal(H), X1:n) ≤ 2Remp(H, X1:n).

Definition 3.9. If S,H and X1:n are as in Definition 3.8, and if r ≥ 0, the covering
number of H with respect to the empirical L1-norm at X1:n, N1(H, X1:n, r), is defined
as

N1(H, X1:n, r) := min

{
m ∈ N : ∃ g1:m ∈ Lm(S) : sup

h∈H
min
l

n∑
k=1

|h(Xk)− gl(Xk)|< nr

}
;

(3.19)

with the convention inf ∅ = ∞. A sequence g1:m satisfying the condition in (3.19) is
called an r-covering of H with respect to the empirical L1−norm at X1:n.

In what follows, (X,Y )1:n is the sample (3.1) used to compute q̂ and

ρ(F) := {(x, y) 7→ ρ(y, f(x)) : f ∈ F},

is the family of instantaneous losses associated to F .
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Lemma 3.2. Under the hypotheses of Lemma 3.1, and given δ ∈ (0, 1), the bound

cF∗ ||q̂ − q||2
PX,2
≤
(
2(2− α) inf

f∈F
||f − q||PX ,1

)
∧
(
CF∗

0
inf
f∈F0

||f − q||2PX ,2

)
+(1− α)

(
25

n

)1/2
(
sup
f∈F
||ρ(Y, f(X))||P,∞

(
log

(
2

δ

))1/2

+

(
2

n

)1/2

Rave(ρ(F), (X,Y )1:n)

)

(3.20)

holds with probability at least 1− δ. The right-hand side of (3.20) can be further upper
bounded via the inequalities, valid for every r > 0

Rave(ρ(F), D) ≤((2− α)/(1− α))Rave(F , X1:n)

≤((2− α)/(1− α))(r +
√
n sup

f∈F
||f(X)||P,∞E

[√
2 log(N1(F , X1:n, r/n))

]
).

Rave(ρ(F), D) ≤r +
√
n sup

f∈F
||ρ(Y, f(X))||P,∞E

[√
2 log(N1(ρ(F), D, r/n))

]
≤r +

√
n sup

f∈F
||ρ(Y, f(X))||P,∞E

[√
2 log(N1(F , X1:n, (1− α)r/(2− α)n))

]
.

(3.21)

Remark 3.10. If max{||Y ||P,∞, supf∈F ||f(X)||P,∞} ≤ B then, clearly,

sup
f∈F
||ρ(Y, f(X))||P,∞≤

(
2− α

1− α

)
B.

Proof. (of Lemma 3.2) According to (3.9), for every f ∈ F

cF∗ ||f − q||2PX ,2≤ 2(1− α)(ρ̃(f)− ρ̃(q)),

implying in particular that

cF∗ ||q̂ − q||2PX ,2≤ 2(1− α)((ρ̃(q̂)− ρ̃(q̃)) + (ρ̃(q̃)− ρ̃(q)))

The term 2(1−α)(ρ̃(q̃)− ρ̃(q)) is upper bounded in (3.7). To upper bound ρ̃(q̂)− ρ̃(q̃)
in probability we apply the Rademacher bound Barrera (2022, (3.38)) taking Zk =
(Xk, Yk) ∼ (X1, Y1) i.i.d. and the diagonal family

ρ(F)(n)1:n = {((xk, yk))k∈1:n 7→ (ρ(f)(xk, yk)/n)k∈1:n : f ∈ F}

to obtain the inequality (see also Barrera (2022, eqns. (2.25), (2.26))

ρ̃(q̂)− ρ̃(q̃) ≤2((1/
√
n) sup

f∈F
||ρ(Y, f(X))||P,∞

√
2 log(2/δ) + (2/n)Rave(ρ(F), D))

=(23/n)1/2
(
sup
f∈F
||ρ(Y, f(X))||P,∞(log(2/δ))1/2 + (2/n)1/2Rave(ρ(F), D)

)

(3.22)
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with probability at least 1− δ. We deduce (3.20) combining (3.22) with the above.
To prove the first inequality in (3.21), note that by Talagrand contraction lemma

(Mohri, Rostamizadeh, and Talwalkar (2018, Lemma 4.2 p.78)), since

u 7→ (1− α)−1u+

is (1− α)−1-Lipschitz, then for any (x, y)1:n ⊂ (S × R)n

Remp(ρ(F), (x, y)1:n) ≤Remp({(1− α)−1(y − f)+ : f ∈ F}, (x, y)1:n) +Remp(F , x1:n)

≤(1− α)−1Remp({(y − f) : f ∈ F}, (x, y)1:n) +Remp(F , x1:n)

≤(1− α)−1Remp({y}, y1:n) +
(
2− α

1− α

)
Remp(F , x1:n)

=

(
2− α

1− α

)
Remp(F , x1:n),

which implies the first inequality in (3.21) by integration with respect to the law of D.
The second and third inequalities in (3.21) are a direct consequence of Barrera

(2022, eqn. (3.47)) and the argument in Barrera (2022, eqn. (3.53)). The fourth
follows easily from the fact that if F ′ ⊂ L(S) is a (1 − α)r/(2 − α) covering of F
with respect to the empirical L1-norm at x1:n, then {(x, y) 7→ y − f(x)|f ∈ F ′} is
an r-covering of ρ(F) with respect to the empirical L1-norm at (x, y)1:n (this can be
proved using (3.13)).

Let us now introduce the following hypothesis, which covers the estimation error of
f̂ in Algorithm 1.

Assumption 3.11. For given 0 < B1 ≤ B2,

||Y ||P,∞≤ B2.

In addition, VaR(Y |X) takes values in (−B1, B1] and y 7→ FY |X(ω)[(−∞, y]] is P-a.e.
differentiable, with derivative uniformly bounded away from 0 and ∞ in [−B1, B1].
That is,

FY |X(−B1) < α ≤ FY |X(B1), P-a.s.,

and there exist 0 < cB1 ≤ CB1 <∞ such that

cB1 ≤ F ′
Y |X(y) ≤ CB1 , P-a.s.,

for every y ∈ [−B1, B1].

Using Assumption 3.11, the following result follows easily from Lemma 3.2:

Theorem 3.3. Under Assumption 3.11, let

F ′ ⊂ F ⊂ co(F ′) ⊂ L(S) (3.23)
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where F is a family of functions uniformly bounded by B1 (see also (3.17)). Then the
inequality

cB1 ||q̂ − q||2
PX,2
≤
(
2(2− α) inf

f∈F
||f − q||PX ,1

)
∧
(
CB1 inf

f∈F
||f − q||2PX ,2

)
+(22(2− α)/

√
n)

(
B2

√
2 log (2/δ) + 2B1

(
1 + E

[√
2 log(N1(F ′, X1:n, B1/

√
n))

]))

(3.24)

holds for every δ ∈ (0, 1) with probability at least 1− δ.

Proof. As discussed in Remark 3.5, it is easy to see that the hypotheses of Lemma
3.1 hold for cF∗ = cB1 and CF∗ = CB1 in this case.

The inequalities in (3.21) and Barrera (2022, Remark 3.4) for

(H′
1:n,H1:n) = (diag(F ′)1:n, diag(F)1:n)

(see Barrera (2022, eqn. (2.3))) give that for every δ > 0

Rave(ρ(F), (X,Y )1:n)

≤((2− α)/(1− α))

(
δ +
√
n sup

f∈F
||f(X)||P,∞E

[√
2 log(N1(F ′, X1:n, r/n))

])
.

(3.25)

Taking

δ = B1

√
n

and using (3.25) we obtain

Rave(ρ(F), (X,Y )1:n) ≤ ((2− α)/(1− α))B1

√
n(1 + E

[√
2 log(N1(F ′, X1:n, B1/

√
n))

]
).

This inequality, when used to estimate the right-hand side of (3.20), gives the right
hand side of (3.24).

Remark 3.12. As the proof shows, we obtain the same conclusion if F and F ′ are
simply assumed to satisfy

Rave(F , X1:n) ≤ Rave(F ′, X1:n),

in particular for F ⊂ (co(F ′))+ by a novel application of Talagrand’s contraction
lemma. Notice also that a slightly bigger upper bound is obtained in place of (3.24)
(some terms are multiplied by 2) if we replace (3.23) by the less restrictive condition

F ′ ⊂ F ⊂ cobal(F ′)

(cobal(F) is defined in (3.18)).
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3.3 A Rademacher confidence interval for the estimator of ES− VaR

In what follows, we will focus on the estimator r̂q̂ of r = s − q obtained under the
following assumption corresponding to the scheme for approximating r in Algorithm 1.

Assumption 3.13. Assume that ϱς ≡ ϱ(B) in (3.4) (see below) is given by the square
loss with truncation on the response

ϱ(B)(y, v, z) =(z − TB((1− α)−1(y − v)+))2 (3.26)

for B > 0, and that G is a family of functions S → [0, B].

As seen in Remark 2.3, the choice (3.26) corresponds to an approximation scheme
(with an additional truncation) for the case ς(z) = z2. We will also consider the family

ϱ
(B)
f (G) defined (for f fixed) by

ϱ
(B)
f (G) := {(x, y) 7→ ϱ

(B)
f (g)(x, y) := ϱ(B)(y, f(x), g(x))|g ∈ G}.

Let us denote by rf (f ∈ L+(S)) any function satisfying

rf (X) = E
[
(1− α)−1(Y − f(X))+|X

]
, P-a.s.,

and let r(B)

f : S → [0, B] be one of its truncated companions, defined by

r(B)

f (X) = E
[
TB((1− α)−1(Y − f(X))+)|X

]
, P-a.s..

For every (f, g) ∈ L(S)× L+(S), we will define

h(f,g)(X,Y ) := ϱ(B)(Y, f(X), g(X))− ϱ(B)(Y, f(X), r(B)

f (X)),

which is the same as the function in Barrera (2022, Section 4 eqn.(4.5)) for the case in
consideration.

Lemma 3.4. For every (f, f ′, B) ∈ L+(S) × L+(S) × (0,∞] and every p ≥ 1, the
inequalities

||rf − r(B)

f ||PX ,p≤||((1− α)−1(y − f)+ −B)+||PX ,p

||r(B)

f − r(B)

f ′ ||PX ,p≤(1− α)−1||f − f ′||PX ,p

hold (with r(∞)

f ≡ rf ).

Proof. The first inequality is a direct consequence of Jensen’s inequality:

E [|E [(W − TBW )|X] |p] ≤ E [|W − TBW |p] = E
[
((|W |−B)+)p

]
,

valid for p ≥ 1 and any integrable random variable W . As for the second, notice first
that for every (a, b, B) ∈ R× R× [0,∞],

|TBa− TBb|≤ |a− b|. (3.27)

Combining (3.27) with (3.13) and with Jensen’s inequality we get, for every p ≥ 1:

||r(B)

f − r(B)

f ′ ||pPX ,p= E
[
|E
[
TB((1− α)−1(Y − f(X))+)− TB((1− α)−1(Y − f ′(X))+)|X

]
|p
]

≤ E
[
E
[
|TB((1− α)−1(Y − f(X))+)− TB((1− α)−1(Y − f ′(X))+)|p|X

]]
≤ (1− α)−p||f − f ′||pPX ,p.
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Theorem 3.5. Under Assumption 3.13, given f ∈ L(S) and given

G′ ⊂ G ⊂ co(G′) ⊂ L+(S)

where G is a family of functions uniformly bounded by B, the inequality

||r̂f − r||PX ,2≤ inf
g∈G
||g − r||PX ,2

+ 2((1− α)−1||f − q||PX ,2+||((1− α)−1(y − q)+ −B)+||PX,Y ,2)

+B

(
(2/
√
n)

(√
2 log(2/δ) + 8

(
1 + E

[√
2 log(N1(G′, X1:n, B/

√
n))

])))1/2

.

(3.28)

holds for every δ ∈ (0, 1), with probability at least 1−δ (and Remark 3.12 also applies).

Proof. In this proof, ||·|| denotes either the L2
PX

seminorm on L+(S) or the L2
PX,Y

seminorm on L(S × R), the appropriate choice will be always clear (any other norm
will be made explicit).

For f ∈ F , the triangle inequality gives

||r̂f − r||≤||r̂f − r(B)

f ||+||r
(B)

f − r(B)
q ||+||r(B)

q − r||

≤||r̂f − r(B)

f ||+(1− α)−1||f − q||+||((1− α)−1(y − q)+ −B)+||, (3.29)

by Lemma 3.4.
Now, if (X ′, Y ′) is an independent copy of (X,Y ), then by the argument leading to

Barrera (2022, Section 4, eqn. (4.15))6

||r̂f − r(B)

f ||
2− inf

g∈G
||g − r(B)

f ||
2

=E
[
ϱ(B)(Y ′, f(X ′), r̂f (X

′))− ϱ(B)(Y ′, f(X ′), rf (X
′))|D

]
≤ sup

g∈G

{
1

n

n∑
k=1

(E
[
ϱ(B)(Y, f(X), g(X))

]
− ϱ(B)(Yk, f(Xk), g(Xk)))

}

+sup
g∈G

{
1

n

n∑
k=1

(ϱ(B)(Yk, f(Xk), g(Xk))− E
[
ϱ(B)(Y, f(X), g(X))

]
)

}
.

We conclude as in the argument for Barrera (2022, eqn. (3.38)) that the inequality

||r̂f − r(B)

f ||
2− inf

g∈G
||g − r(B)

f ||
2

≤(2/
√
n)(sup

g∈G
||ϱ(B)

f (g)(X,Y )||P,∞
√
2 log(2/δ) + (2/

√
n)Rave(ϱ

(B)
f (G), (X,Y )1:n))

(3.30)

holds for every δ ∈ (0, 1) with probability at least 1− δ. In virtue again of the triangle
inequality and the inequality √

a2 + b2 ≤ |a|+|b|,
6Taking Z′

1:n = (X,Y )′1:n ∼ (X,Y ) i.i.d., independent of (X,Y )1:n and λ = 1.
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(3.30) and Lemma 3.4 imply that

||r̂f − r(B)

f ||≤ inf
g∈G
||g − r||

+ (1− α)−1||f − q||+||((1− α)−1(Y − q(X))+ −B)+||

+ ((2/
√
n)(sup

g∈G
||ϱ(B)

f (g)(X,Y )||P,∞
√

2 log(2/δ) + (2/
√
n)Rave(ϱ

(B)
f (G), (X,Y )1:n)))

1/2.

(3.31)

A combination of (3.29) and (3.31) leads to

||r̂f − r||≤ inf
g∈G
||g − r||

+ 2((1− α)−1||f − q||+||((1− α)−1(y − q)+ −B)+||)

+ ((2/
√
n)(sup

g∈G
||ϱ(B)

f (g)(X,Y )||P,∞
√

2 log(2/δ) + (2/
√
n)Rave(ϱ

(B)
f (G), (X,Y )1:n)))

1/2.

(3.32)

Let us now upper bound the Rademacher complexity in (3.32). Since the function

u 7→ u2, u ∈ [0, 2B]

is Lipschitz with Lipschitz constant 4B, Talagrand’s contraction lemma gives

Rave(ϱ
(B)
f (G), (X,Y )1:n) ≤ 4BRave(G, X1:n) = 4BRave(G′, X1:n). (3.33)

An application of Barrera (2022, (3.47)) together with (3.33) gives the inequality

Rave(ϱ
(B)
f (G), (X,Y )1:n) ≤ 4B(r +B

√
nE
[√

2 log(N1(G′, X1:n, r/n))
]
)

for every r > 0, which in turns implies that (taking r = B
√
n)

Rave(ϱ
(B)
f (G), (X,Y )1:n) ≤ 4B2√n

(
1 + E

[√
2 log(N1(G′, X1:n, B/

√
n))

])
(3.34)

(3.28) follows by a combination of (3.32), (3.34), and the bound

sup
g∈G
||ϱ(B)

f (g)(X,Y )||P,∞≤ B2.

3.4 A Vapnik-Chervonenkis confidence interval for the estimator of
ES− VaR

We will proceed now to prove the following error bound for ||r̂f − r||PX ,2 (see (2.13)
and (3.4)):
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Theorem 3.6. Under Assumption 3.13, given f ∈ L+(S) and G ⊂ L+(S), the inequal-
ity

||r̂f − r||PX ,2≤
√
(6λ− 5) inf

g∈G
||g − r||PX ,2

+ (1 +
√
(6λ− 5))((1− α)−1||f − q||PX ,2+||((1− α)−1(y − q)+ −B)+||PX,Y ,2)

+ (27 · 3)1/2B((1/((λ− 1)n)) (log(42) + log (1/δ) + log (E [N1 (G, X1:n, B/(24n))])) )1/2

(3.35)

holds for every δ ∈ (0, 1) with probability at least 1− δ, provided that

1 < λ ≤ 13/12. (3.36)

Proof. In this case we depart from the estimate (3.29) and we then estimate ||r̂f−r(B)

f ||
via Barrera (2022, Theorem 4.2) , which depends on the functions

A :Sn × (1,∞)× (1,∞)× (0,∞)→ (0,∞]

a :(1,∞)× (1,∞)× (0,∞)→ (0,∞]

ϵn :(1,∞)× (1,∞)→ (0,∞)

b :(1,∞)× (1,∞)→ (0,∞)

given by

A(x1:n, c, λ, ϵ) :=2(c+ 1)(2c+ 3)N1

(
TBG, x1:n,

1

25
1

B

1

λ(c− 1) + 1
(1− 1

c
)ϵ

)
,

a(c, λ, ϵ) :=E [A(X1:n, c, λ, ϵ)] ,

ϵn(c, λ) :=8B2(−(λ− 1) +
√

(λ− 1)2 + c(c+ 1)λ2/n)

b(c, λ) :=
1

25B2

1

(13(1−
1
c )(1−

1
λ) + (2λ− 1))2

(1− 1

c
)3(1− 1

λ
).

Indeed we arrive, by an argument as the one leading to (3.32), at the estimate

||r̂f − r||≤
√
(6λ− 5) inf

g∈G
||g − r||

+(1 +
√

(6λ− 5))((1− α)−1||f − q||+||((1− α)−1(y − q)+ −B)+||)

+

(
6

(
ϵn(c, λ) ∨ (

1

nb(c, λ)
(log a(c, λ, ϵn(c, λ)) + log(2/δ)))

))1/2

(3.37)
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with probability at least 1− δ. Restricting λ to the range (3.36) and using the analysis
leading to Barrera (2022, (4.41)), we deduce from (3.37) that

||r̂f − r||≤
√
(6λ− 5) inf

g∈G
||g − r||

+(1 +
√
(6λ− 5))((1− α)−1||f − q||+||((1− α)−1(y − q)+ −B)+||)

+(27 · 3)1/2B((1/((λ− 1)n)) (log(42) + log (1/δ) + log (E [N1 (G, X1:n, B/(24n))])) )1/2

holds with probability at least 1− δ.

Rademacher vs VC: from “small” to “big” data To give a crude comparison
between Theorems 3.5 and 3.6, first note that, since

√
6λ− 5 ≈ 1 (under (3.36)), it is

reasonable to limit the discussion to a comparison between the terms in the third line
of the inequalities (3.28) and (3.35).

The ratio between these two terms is lower bounded (crudely) by

(23 · 3)−1/2((λ− 1)
√
n)1/2(log (42E [N1 (G, X1:n, B/(24n))] /δ))−1/2,

which shows that (3.28) is worse (bigger) than (3.35) provided that

√
n ≥ 23 · 3

λ− 1
log (42E [N1 (G, X1:n, B/(24n))] /δ)

≥25 · 32(log(42) + log(1/δ)), (3.38)

where in the last inequality we used the upper bound for λ in (3.36).
The first inequality in (3.38) is an exact (but crude) criterion on the sample size

indicating an interval where (3.35) is preferable to (3.28). The inequality between the
first and the third terms in (3.38) can be understood as an “heuristic” criterion for this
preference, indicating in particular the heuristic boundary

n ≥ (25 · 32 · log(42))2

between “small-medium” and “big” data, where we pass from the Rademacher to the
VC regime.

3.5 A Posteriori Monte Carlo Validation of VaR and ES learners

Assuming one has access to the generative process of the data, as it is the case in most
quantitative finance problems, one can in fact estimate distances of any guesses to the
groundtruth (conditional) VaR and ES without directly computing the latter, using a
simple twin-simulation trick.

Proposition 3.7. Let q̌ and š be two Borel functions of x (tentative approximations
q̌(X) and š(X) of q(X) = VaR(Y |X) and s(X) = ES(Y |X) at the confidence level
α). Introducing two conditionally independent copies7 Y (1) and Y (2) of Y given X and

7i.e. for any bounded Borel functions φ and ψ, we have E[φ(Y (1))|X] = E[φ(Y (2))|X] = E[φ(Y )|X]
and E[φ(Y (1))ψ(Y (2))|X] = E[φ(Y (1))|X]E[ψ(Y (2))|X].
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denoting Y (1) ∧ Y (2) = min{Y (1), Y (2)}, we have

∥P[Y ≥ q̌(X)|X]− 1 + α∥P,2= (3.39)√
(1− α)(1− α− 2P(Y > q̌(X))) + P[Y (1) ∧ Y (2) > q̌(X)],

∥š(X)− s(X)∥P,2= ∥š(X)− q̌(X)− E[(1− α)−1(Y − q̌(X))+|X]∥P,2+ϵ, (3.40)

where

∥š(X)− q̌(X)− E[(1− α)−1(Y − q̌(X))+|X]∥2P,2= ∥š(X)− q̌(X)∥2P,2

+
1

(1− α)2
E[(Y (1) − q̌(X))+(Y (2) − q̌(X))+]

− 2

1− α
E[(š(X)− q̌(X))(Y − q̌(X))+]

(3.41)

and, assuming that F ′
Y |X(Y ) ≥ c holds P-a.s for some c > 0,

0 ≤ ϵ ≤ 1

c
(1 + (1− α)−1)∥P[Y ≥ q̌(X)|X]− 1 + α∥P,2, (3.42)

which is in turn given by (3.39).

Proof. We have

∥P[Y ≥ q̌(X)|X]−1+α∥P,2=
√
E[P[Y ≥ q̌(X)|X]2] + (1− α)2 − 2(1− α)P[Y ≥ q̌(X)],

where

E[P[Y ≥ q̌(X)|X]2] = E[P[Y (1) ≥ q̌(X)|X]P[Y (2) ≥ q̌(X)|X]] = P[Y (1) ∧ Y (2) ≥ q̌(X)].

Thus (3.39) follows. For the ES, note that with ρ(y, v) = (1− α)−1(y− v)++ v so that
E[ρ(Y, q(X))|X] = s(X):

∥š(X)− s(X)∥2P,2= ∥E[Z|X]∥2P,2,

where Z := š(X)− ρ(Y, q(X)) satisfies by the conditional Jensen inequality:

∥E[Z|X]∥2P,2= E[(E[Z|X])2] ≤ EE[Z2|X]) = E[Z2] = ∥š(X)− ρ(Y, q(X))∥2P,2.

An application of the triangular inequality yields

∥š(X)− ρ(Y, q(X))∥P,2≤ ∥š(X)− ρ(Y, q̌(X))∥P,2+∥ρ(Y, q(X))− ρ(Y, q̌(X))∥P,2.

One then uses the (1 + (1− α)−1)-Lipschitz regularity of ρ with respect to its sec-
ond argument and the assumed 1

c -Lipschitz regularity of F−1
Y |X to deduce (3.40) from

the above, for ϵ satisfying (3.42). Using the twin-simulation trick again, we get (3.41).

The expectations and probabilities in (3.39) and (3.41) can then be estimated via a
simply dedoubled (twin) Monte Carlo simulation (see Algorithm 2), as opposed to a
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plain nested Monte Carlo that would be required to explicitly attempt to approximate
conditional expectations. Moreover the accuracy of the twin Monte-Carlo estimates can
be controlled by computing confidence intervals. Noting that 1− α = P[Y ≥ q(X)|X]
holds almost P surely, the distance in (3.39) can be interpreted as a distance in p-values
between the quantile estimate q̌(X) and the true quantile q(X), as opposed to a distance
directly between values of conditional quantile estimators. If the approximation q̌ is
sufficiently good, i.e. if this distance is sufficiently small (as compared to 1− α), then
(3.41) can be used as a proxy for ∥š(X) − s(X)∥2P,2: see Algorithm 2. Note however

that, because of the (1− α)−1 factor in (3.42), the inequality in (3.42) becomes crude
when α gets close to 1.

name : TwinVal
input : out-of-sample {(Xi, Y

(1)
i , Y

(2)
i )}ni=1 with Y

(1)
i , Y

(2)
i independent copies of Y

given X = Xi, a confidence level α, corresponding estimates q̌ and š of q and
s, tolerance levels δvar and δes

output: Quality of q̌ and š
1 Compute (ϵvar)2 = 1

n

∑n
i=1 ((1− α)(1− α− 21

Y
(1)
i >q̌(Xi)

) + 1
Y (1)∧Y

(2)
i >q̌(Xi))

2 if ϵvar > δvar then
3 Reply already q̌ is bad
4 else

5 Compute (ϵes)2 = 1
n

∑n
i=1

[
(š(Xi)− q̌(Xi))

2 + 1
(1−α)2 (Y

(1)
i − q̌(Xi))

+(Y
(2)
i −

q̌(Xi))
+ − 2

1−α (š(Xi)− q̌(Xi))(Y
(1)
i − q̌(Xi))

+]
]

6 if ϵes > δes then
7 Reply q̌ is good but š is bad
8 else
9 Reply q̌ and š are good

10 end

11 end

Algorithm 2: Twin Monte Carlo validation for VaR and ES.

In the case where the twin Monte Carlo estimates for the right-hand-sides in (3.39)
and (3.41), after having been confirmed to be accurate by drawing enough samples, are
not good enough, one can improve the numerical optimization, in first attempt, and
then act on the hypothesis space. For instance, in the case of the next section of the
paper where hypothesis spaces of neural networks are used, one can improve the corre-
sponding stochastic gradient descent (e.g. switching from Algorithm 3 to Algorithm 8)
by changing the optimizer and/or its hyperparameters, in first attempt, and then try
to train with more layers/units or better architectures.
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name : SGDOpt
input : {(Xi, Yi)}ni=1, a partition B of {1 . . . n}, a number of epochs E ∈ N⋆, a

learning rate η > 0, initial weight (matrix) Ŵ and bias (vector) b̂
parameters, and a loss function ρ = ρ(W, b,batch)

output: Trained parameters Ŵ and b̂
1 for epoch = 1, . . . , E do // loop over epochs

2 for batch ∈ B do // loop over batches

3 Ŵ ← Ŵ − η∇W ρ(Ŵ , b̂,batch)

4 b̂← b̂− η∇bρ(Ŵ , b̂,batch)

5 end

6 end

Algorithm 3: Stochastic gradient descent in a neural net hypothesis space.

4 Learning Using Neural Networks

4.1 Error bound of the single-α learning algorithm with one-layer
neural networks

We apply the previous developments to the estimation of errors from Algorithm 1
when one-hidden-layer neural networks with bounded weights are used to define the
hypothesis spaces. We consider the following families of functions:

Definition 4.1. Let σ : R → [0, 1] be a nondecreasing measurable function that is
applied element-wise when supplied with a vector as input and let (d,M,B) ∈ N×N×
(0,∞). Denote by F̃(d,B,m, σ) ⊂ LRd the family of neural networks on S = Rd with m
(or less) units, one hidden layer, activation function σ and Lasso regularization bound
B, defined as follows

F̃(d,B,m, σ) = {Rd ∋x 7→ c0 +
m∑
k=1

ckσ(ak · x+ bk)∈ R |

(a1:m, b1:m) ∈ (Rd)m × Rm, c0:m ∈ Rm+1 with
m∑
k=0

|ck|≤ B}.

It is clear that F̃(d,B,m, σ) is totally bounded by B. Notice also that for all
m ∈ N⋆

F̃(d,B, 1, σ) ⊂ F̃(d,B,m, σ) ⊂ co(F̃(d,B, 1, σ)) = cobal(F̃(d,B, 1, σ)),

where co(·) and cobal(·) are defined in (3.17) and (3.18).
We have from Barrera (2022, Example 3.2) for all 0 < r < B

2 :

log(N1(F̃(d,B,m, σ), X1:n, r)) ≤ ((2d+ 5)m+ 1)(1 + log(12) + log(B/r) + log(m+ 1))

This estimate can be combined with Theorem 3.3 to give an error estimate for Algo-
rithm 1. In the context of this algorithm, we simplify the notation by writing

Yhk
(ω) = hk(X(ω), Y (ω)), qhk

(x) = hk(x, q(x)) (k = 1, 2),

rh2(x) = h2(x, r(x)) (4.1)
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where q and r = s− q are defined as in (2.4).

Theorem 4.1. With the notation of Algorithm 1 and in (4.1), and for F̃ = F̃(d,B1,m, σ),
if Yh1 satisfies Assumption 3.11, then the inequality

cB1 ||f̂ − qh1 ||2PX,2
≤

(
2(2− α) inf

f∈F̃
||f − qh1 ||PX ,1

)
∧

(
CB1 inf

f∈F̃
||f − qh1 ||2PX ,2

)

+
4(2− α)√

n

(
B2

√
2 log

(
2

δ

)
+2B1

(
1 +

√
2((2d+ 5)m+ 1)(1 + log(12(m+ 1)

√
n))

))
holds for every δ ∈ (0, 1) with probability at least 1− δ.

Remark 4.2. The discussion in Padilla, Tansey, and Chen (2020) implies that the
rates following from these bounds cannot be improved in general, but as proved in (Chen,
2007, Example 3.2.2), the dimension of the feature space can play a role in a variety
of examples.

Analogous reasoning, using this time Theorems 3.5 and 3.6 and the observations in
Remark 3.12, lead to the following bound on the error of ĝ in Algorithm 1:

Theorem 4.2. With the notation of Algorithm 1 and in (4.1), for8 G = (F̃(d,B,m, σ))+,
the inequality

||ĝ − rh2 ||PX ,2≤
√

(6λ− 5) inf
g∈G
||g − rh2 ||PX ,2

+ (1 +
√

(6λ− 5))((1− α)−1||f − qh2 ||PX ,2+||((1− α)−1(yh2 − qh2)
+ −B)+||PX,Y ,2)

+B

(√
2/
√
n

)
×(

24
√
(log(2 · 3 · 7/δ) + ((2d+ 5)m+ 1)(1 + log(25 · 32(m+ 1)n))/((λ− 1)

√
n)

∧

√√
2 log(2/δ) + 23

(
1 +

√
2(d+ 3)(1 + log(23 · 3

√
n))

) )
holds with probability at least 1− δ, for every 1 < λ ≤ 13/12 and every f ∈ F .

More generally, we consider feed-forward neural networks with more than one layer
in what follows. We define Fd,o,m,n, to be the set of functions of the form Rd ∋ x 7→
ζd,ol+1(x,W, b) ∈ Ro, where:

ζd,o0 (x,W, b) = x

ζd,oi (x,W, b) = σ(Wiζ
d,o
i−1(x,W, b) + bi), ∀i ∈ {1, . . . , l}

ζd,ol+1(x,W, b) = Wl+1ζ
d,o
l (x,W, b) + bl+1

8with (H)+ =
{
(h)+ : h ∈ H

}
for any set of functions H.
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and W1 ∈ Rm×d,W2 . . . ,Wn ∈ Rm×m,Wl+1 ∈ Ro×m, b1, . . . , bl ∈ Rm, bl+1 ∈ Ro. The
function σ is called an activation function. We also choose the Softplus activation
function, i.e. σ(x) = log(1 + exp(x)).

In what follows, we assume a finite i.i.d sample of (X,Y ) given byDn := {(Xi, Yi)}1≤i≤n.

4.2 Learning the VaR

In this part, the goal is to find an approximation of q(X) = VaR(Y |X), at the confidence
level α, as a function of X, represented by a neural network from Fd,1,m,l, for given
m and l. More precisely, we aim to solve the following optimization problem (cf. (2.9)
and (2.5)):

q̃ ∈ arg min
q∈Fd,1,m,l

E[(Y − q(X))+ + (1− α)q(X)]

or, equivalently, find weights

(W̃ var, b̃var) ∈ argmin
W,b

E[(Y − ζd,1l+1(X,W, b))+ + (1− α)ζd,1l+1(X,W, b)]. (4.2)

Problem (4.2) is then solved numerically by applying a stochastic gradient descent
(Algorithm 3 or an accelerated version of it, noting that the gradients there are quickly
and exactly computed by automatic differentiation) to a finite-sample formulation of
the problem (cf. step 3 in Algorithm 1):

(Ŵ var, b̂var) ∈ argmin
W,b

1

n

n∑
i=1

[(Yi − ζd,1l+1(Xi,W, b))+ + (1− α)ζd,1l+1(Xi,W, b)]. (4.3)

This specification of Algorithm 1 regarding the VaR (see the step 3 there) is detailed
in Algorithm 4 (the corresponding treatment of ES is deferred to Section 4.3). Once
(4.3) has been solved numerically (a procedure to which we will refer to as training
in what follows), we obtain an approximation of VaR(Y |X), at the confidence level α,
given by q̂(X), where

q̂(x) := ζd,1l+1(x, Ŵ
var, b̂var) , x ∈ Rd

(see Algorithm 4).

name : VaRAlg
input : {(Xi, Yi)}ni=1, a partition B of {1 . . . n}, a quantile level α, a number of

epochs E ∈ N⋆, a learning rate η > 0, initial values for the network
parameters Ŵ and b̂, and neural network output function ζd,1l+1(x,W, b)

output: Trained parameters of VaR network

1 define ρvar(W, b,batch) =
1

|batch|
∑

i∈batch

[(Yi − ζd,1l+1(Xi,W, b))+ + (1− α)ζd,1l+1(Xi,W, b)]

2 (Ŵ var, b̂var)← SGDOpt({(Xi, Yi)}ni=1, B,E, η, Ŵ , b̂, ρvar)

Algorithm 4: Neural network regression for learning the VaR.

Given that the training is done for a single fixed confidence level α, we refer to
this approach as the single-α learning (or single-α for brevity in the numerics). Under
this approach, if one is interested in finding the conditional VaR for another confidence
level, one has to repeat the training procedure using the new confidence level in the
learning problem (4.3).
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4.3 Learning the ES using a two-step approach

Our next aim is to find an approximation of the ES(Y |X), at the confidence level α,
as a function of X that is represented by a neural network from Fd,1,m,l, for given m,
n. Assuming a representation, or approximation, q̌ of the VaR of Y given X at the
confidence level α, which we will call VaR candidate, the goal is to solve the following
problem (cf. (2.12)):

s̃ ∈ arg min
s∈Fd,1,m,l

E[((1− α)−1(Y − q̌(X))+ + q̌(X)− s(X))2]

for which we can write a finite-sample version in parameter space as follows (cf. the
step 4 in Algorithm 1):

(Ŵ es, b̂es) ∈ argmin
W,b

1

n

n∑
i=1

[((1− α)−1(Yi − q̌(Xi))
+ + q̌(Xi)− ζd,1l+1(Xi,W, b))2]. (4.4)

This specification of Algorithm 1 regarding the ES (see the step 4 there) is detailed in
the second part of Algorithm 5.

Alternatively, using a transfer learning trick, one can deduce an ES approximation
very quickly using a VaR candidate that is in neural network form. Namely, one can
look for an ES approximator using a neural network with the same architecture as the
one used for the VaR, set the weights of all hidden layers to those of the VaR network
and then freeze them. The training of the ES approximator then falls down to a linear
regression to determine the weights of the output layer, as detailed in the first part
of Algorithm 5. We show in Section 6 that such a scheme is enough to obtain good
approximations, while also being very fast (a fraction of a second in our experiments)
if one uses highly optimized linear algebra routines such as the ones implemented by
cuBLAS for Nvidia GPUs.

In either case, the ensuing estimate of s is

ŝ(x) := ζd,1l+1(x, Ŵ
es, b̂es) , x ∈ Rd

(see Algorithm 5).
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name : ESAlg
input : {(Xi, Yi)}ni=1, a partition B of {1 . . . n}, a quantile level α, a number of

epochs E ∈ N⋆, a learning rate η > 0, initial values for the network
parameters Ŵ and b̂ and neural network output function ζd,1l+1(Xi,W, b)

output: Trained parameters of ES network Ŵ es and b̂es

1 // Learn the corresponding VaR

2 Ŵ var, b̂var ← VaRAlg({(Xi, Yi)}ni=1, B, α,E, η, Ŵ , b̂)
3 if linear regression then
4 // Remind (Wi, bi) denote the weight and bias of i-th layer

5

({Ŵ es
i }li=1, {b̂esi }li=1)← ({Ŵ var

i }li=1, {b̂vari }li=1)

(Ŵ es
l+1, b̂

es
l+1)← argminWl+1,bl+1

n∑
i=1

[
(1− α)

−1
(Yi − ζd,1l+1(Xi, Ŵ

var, b̂var))+

+ ζd,1l+1(Xi, Ŵ
var, b̂var)− ζd,1l+1

(
Xi, ({Ŵ var

i }li=1,Wl+1), ({b̂vari }li=1, bl+1)
)]2

6 else

7 define ρes(W, b,batch) = 1

|batch|

∑
i∈batch[((1− α)

−1
(Yi − ζd,1l+1(Xi, Ŵ

var, b̂var))+ +

ζd,1l+1(Xi, Ŵ
var, b̂var)− ζd,1l+1(Xi,W, b))2]

8 (Ŵ es, b̂es)← SGDOpt({(Xi, Yi)}ni=1, B,E, η, Ŵ var, b̂var, ρes)

9 end

Algorithm 5: Neural network regressions for learning the ES in two steps.

5 Multi-α learning for VaR

In this part we are interested in learning VaR(Y |X) for multiple confidence levels
α ∈ (0, 1) using a single empirical error minimization. This can help give insights
into the sensitivity of VaR(Y |X) with respect to the confidence level, or into the full
distribution of the law of Y givenX (e.g. approximated by a histogram representation).

Although one could also formulate multi-α learning versions for ES à la Section 5.3,
we have found numerically that it significantly degrades the learning and thus we stick
to the VaR in what follows. However, for multi-α ES, the transfer learning trick of
Section 4.3 is still a valuable alternative, whether it is done α by α, as each run of it is
very fast, or globally across α’s based on either of the multi-α VaR approaches below.

5.1 Related literature

The simultaneous learning of conditional quantiles for multiple confidence levels and
the problem of quantile crossing, i.e. the violation of the monotonicity with respect to
the confidence level, are early addressed in He (1997); Koenker (2004); Takeuchi, Le,
Sears, and Smola (2006). We refer the reader to Moon, Jeon, Lee, and Kim (2021) for
a review of more recent references. To deal with the quantile crossing problem, two
strategies for constraints can be considered.

The first strategy is to use hypothesis spaces of functions nondecreasing with re-
spect to the confidence level. Meinshausen and Ridgeway (2006) introduce quantile
regression forests. In this model the predicted quantile of a new point is based on the
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empirical percentile of the group (i.e. the terminal leaf of each tree) where this point
belongs, hence, the monotonicity of the quantile estimates is satisfied by construction.
Regarding neural networks, Hatalis, Lamadrid, Scheinberg, and Kishore (2017) propose
a specific initialization scheme for the weights of the output layer, which does not pre-
vent quantile crossings, but appears to reduce them significantly in their experiments.
Cannon (2018) considers the confidence level as an additional explanatory variable and
then explores a network such that the estimate is monotone with a defined covariate
(confidence level), imposing the non-crossing. Gasthaus, Benidis, Wang, Rangapuram,
Salinas, Flunkert, and Januschowski (2019) and Padilla, Tansey, and Chen (2020) use a
(deep) network with multiple outputs, constrained by design to be positive, which are
expected to approximate quantile increments. The latter resembles our multi-α(III)
approach in Section 12, especially when the increments are constrained to be positive.
Under our multi-α(III) approach, however, we sample the confidence level uniformly on
a given interval and we further interpolate linearly with respect to the confidence level
before insertion of the output of the neural network in the training loss (cf. (5.2)-(5.3)),
in order to have a conditional quantile function that is valid for all quantile levels in
the interval.

The second strategy is to consider explicitly the non-crossing constraints during the
learning phase of the model in form of either hard constraints (that the model must
strictly satisfy) or soft constraints (i.e. penalization). Once the non-crossing hard
constraints are employed, the model is usually learned using primal-dual optimization
algorithms. The latter are applicable in a wide class of models, e.g. support vector
regression (Takeuchi, Le, Sears, and Smola, 2006; Sangnier, Fercoq, and d’Alché Buc,
2016) and spline regression (Bondell, Reich, and Wang, 2010), but notably not in the
case of the family of (deep) neural networks, because of the computational cost and the
poor scalability of projected gradient descent. Therefore, the non-crossing constraints
are more preferably embedded in the training of neural networks via a penalty term,
based in (Moon, Jeon, Lee, and Kim, 2021) on a finite difference of the output of
the neural network (that approximates the value-at-risk) for two confidence levels.
In Section 5.3 we use a similar penalization strategy, where, instead of penalizing the
negative part of a finite difference, we penalize the negative part of the partial derivative
of the network with respect to the confidence level. The partial derivative gives more
information about the local behavior around training points and we can penalize its
negative part at every α that appears at the training stage, e.g. for several thousands
values of α in our numerics below, as opposed to penalizing negative increments at a
few fixed values of α in (Moon, Jeon, Lee, and Kim, 2021). Our approach also spares
one hyperparameter, namely the size of the discrete increment in confidence levels used
for the finite differences.

5.2 Extension of the bounds to multi-α learning

The various proofs and bounds presented in this paper for a fixed α ∈ [0, 1] can be ex-
tended to the multi-α learning framework where α is now a random variable supported
on I = [α, α] ⊂ (0, 1) (with Lebesgue sigma-algebra I) treated as a covariate alongside
X: see Table 1 for the changes that need to be done in order to have similar results
in this new framework. The implementation of this approach using neural networks is
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Single-α Multi-α

D = {(Xj , Yj)}nj=1 is an i.i.d sample of (X,Y ) D = {(αj , Xj , Yj)}nj=1 is an i.i.d sample of (α,X, Y )

S ⊗R I ⊗ S ⊗R

ρ(y, v) = (1− α)
−1

(y − v)+ + v ρ(α, y, v) = (1− α)
−1

(y − v)+ + v

ρ̃(f) = E[ρ(Y, f(X))] ρ̃(f) = E[ρ(α, Y, f(α,X))]

F ⊂ ℓ(S) F ⊂ ℓ([α, α]× S)

q̃ ∈ argminf∈F E[ρ(Y, f(X))] q̃ ∈ argminf∈F E[ρ(α, Y, f(α,X))]

q̂ ∈ argminf∈F
1
n

∑n
k=1 ρ(Yk, f(Xk)) q̂ ∈ argminf∈F

1
n

∑n
k=1 ρ(αk, Yk, f(αk, Xk))

ρ̃(q̃)− ρ̃(q) ≥ cF∗
2(1−α)∥q̃ − q∥2PX ,2 ρ̃(q̃)− ρ̃(q) ≥ cF∗

2 E[ (q̃(α,X)−q(α,X))2

1−α ]

≥ cF∗
2(1−α)∥q̃ − q∥2P(α,X),2

ρ̃(q̃)− ρ̃(q) ≤
CF∗

0

2(1−α)∥q̃ − q∥2PX ,2 ρ̃(q̃)− ρ̃(q) ≤
CF∗

0

2 E[ (q̃(α,X)−q(α,X))2

1−α ]

≤
CF∗

0

2(1−α)∥q̃ − q∥2P(α,X),2

ρ̃(q̃)− ρ̃(q) ≤ 2−α
1−α inff∈F∥f − q∥2PX ,1 ρ̃(q̃)− ρ̃(q) ≤ inff∈F E[

(
2−α
1−α

)
|f(α,X)− q(α,X)|]

≤ 2−α
1−α inff∈F∥f − q∥2P(α,X),1

ρ(F)(n)1:n = {(Xk, Yk)k∈1:n 7→ ρ(F)(n)1:n = {(αk, Xk, Yk)k∈1:n 7→

(ρ(Yk, f(Xk))/n)k∈1:n, f ∈ F} (ρ(αk, Yk, f(Xk))/n)k∈1:n, f ∈ F}

Table 1: Main changes required to adapt the previous results and proofs from a single-
quantile to a multi-quantile regression setup.

discussed in Section 5.3.

Hereafter we randomize α and assume α ∼ U([α, α]). We then consider a finite i.i.d
sample α1, . . . , αn of α, independent of Dn.

5.3 Multi-α learning using neural networks

Learning with a continuum of α’s The finite-sample training problem for this
approach can be stated as follows:

(Ŵ vars, b̂vars) ∈ argmin
W,b

1

n

n∑
i=1

[(Yi−ζd+1,1
l+1 ([αi, Xi],W, b))++(1−αi)ζ

d+1,1
l+1 ([αi, Xi],W, b)],

where [a, x] is the vector obtained by concatenating the vector x to the real a. One can
also approximately impose the non-crossing of the quantiles by penalizing the sample
average of the negative part of the partial derivative ∂

∂αζ
d+1,1
l+1 ([α,X],W, b):

(5.1)
(Ŵ vars, b̂vars) ∈ argmin

W,b

1

n

n∑
i=1

[(Yi − ζd+1,1
l+1 ([αi, Xi],W, b))+

+ (1− αi)ζ
d+1,1
l+1 ([αi, Xi],W, b) + λ(

∂

∂α
ζd+1,1
l+1 ([αi, Xi],W, b))−],

30



where λ > 0 determines the strength of the penalization. An approximation for
VaR(Y |X) for any α ∈ (α, α) is then given by ζd+1,1

l+1 ([α,X], Ŵ vars, b̂vars). Notice that
one can compute the derivative in (5.1) fast in closed-form given our neural network

parametrization, as ∂
∂αζ

d+1,1
l+1 ([α,X],W, b) = Wl+1

∂
∂αζ

d+1,1
n ([α,X],W, b), where

∂

∂α
ζd+1,1
0 ([α,X],W, b) = [1, 0d] and, for i = 1, . . . , l,

∂

∂α
ζd+1,1
i ([α,X],W, b) = (Wi

∂

∂α
ζd+1,1
i−1 ([α,X],W, b))⊙ σ′(Wiζ

d+1,1
i−1 ([α,X],W, b) + bi−1).

Here ⊙ is an element-wise product and σ′ is the derivative of σ (applied element-wise).

Given the computations of ζd+1,1
l+1 ([α,X],W, b) and ∂

∂αζ
d+1,1
l+1 ([α,X],W, b) share many

common sub-expressions, the recursions can be done at the same time, i.e. at each i ∈
{0, . . . , l+1}, compute ζd+1,1

i ([α,X],W, b) and then reuse the common sub-expressions

to compute also ∂
∂αζ

d+1,1
i ([α,X],W, b). In the numerics, we refer to this approach with

multi-α(I) if we use a non-zero λ, and multi-α(II) otherwise: see Algorithm 6. The
ensuing approximation of VaR(Y |X) at the (random) confidence level α, is given by
q̂α(X), where

q̂a(x) := ζd+1,1
l+1 (a, x, Ŵ vars, b̂vars) , a ∈ [α, α], x ∈ Rd

(see Algorithm 6).

name : MultiContinousVaRAlg
input : {(Xi, Yi)}ni=1, a partition B of {1 . . . n}, a quantile upper bound level α, and

lower bound level α, a number of epochs E ∈ N⋆, a learning rate η > 0, a

regularisation parameter λ ≥ 0, initial values for the network parameters Ŵ
and b̂ and neural network output function ζd+1,1

l+1 ([a, x],W, b)

output: Trained parameters of multi-VaR network Ŵ and b̂
1 // Sample quantile levels α
2 αi ∼ Uniform(α, α) for i = 1 . . . n
3 // Define a loss function

4 if non-crossing quantile regularisation then
5 // multi-α(I)

6 define ρvars(W, b,batch) =
1

|batch|
∑

i∈batch

[(Yi − ζd+1,1
l+1 ([αi, Xi],W, b))+ + (1−

αi)ζ
d+1,1
l+1 ([αi, Xi],W, b) + λ(

∂

∂α
ζd+1,1
l+1 ([αi, Xi],W, b))−]

7 where ∂
∂αζ

d+1,1
l+1 ([αi, Xi],W, b))+] can be quickly computed as in Section 5.3

8 else
9 // multi-α(II)

10 define ρvars(W, b,batch) =
1

|batch|
∑

i∈batch

[(Yi − ζd+1,1
l+1 ([αi, Xi],W, b))+ + (1− αi)ζ

d+1,1
l+1 ([αi, Xi],W, b)]

11 end

12 (Ŵ vars, b̂vars)← SGDOpt({(Xi, Yi)}ni=1, B,E, η, Ŵ , b̂, ρvars)

Algorithm 6: Learning multi continuous VaR.

31



Learning via a discrete set of α’s and linear interpolation Another approach
for multi-α learning is to use a finite set of confidence levels α(1) < · · · < α(K) in [α, α]
in conjunction via linear interpolation. More precisely, we solve

(Ŵ vars, b̂vars) ∈ argmin
W,b

1

n

n∑
i=1

[(
Yi − Σ(αi, ζ

d,K
l+1 (Xi,W, b))

)+
+ (1− αi)Σ(ζ

d,K
l+1 (αi, Xi,W, b))

]
,

(5.2)
where, for y = (y0, · · · , yK−1)

⊤ and a ∈ R,

Σ(a, y) = y0 +
K−1∑
j=1

1α(j)≤a

(α(j+1) ∧ a− α(j))

α(j+1) − α(j)
yj . (5.3)

In (5.3), [ζd,Kl+1 (x,W, b)]0 is a predictor of the value-at-risk of lowest grid level α(1),

whereas, for each j ≥ 1, [ζd,Kl+1 (x,W, b)]j is a predictor of the increment between the

value-at-risks of levels α(j) and α(j+1).

Notice that one can impose the monotonicity by design by adding a positive ac-
tivation function σ to each neuron in the output layer of ζd+1,K

l+1 , except for the first
neuron, e.g. by replacing

yj with σ(yj), for all j ∈ 1, . . . ,K − 1,

in (5.3). However we haven’t found doing so to be satisfactory numerically and thus
we keep the formulation in (5.3) as is. In the numerics, we refer to this approach as
multi-α(III).

The ensuing approximation of VaR(Y |X) at the (random) confidence level α is
given by q̂α(X), where

q̂a(x) := Σ(a, ζd,Kl+1 (x, Ŵ
vars, b̂vars)) , a ∈ [α, α], x ∈ Rd

(see Algorithm 7).

We now test the proposed procedures on a Gaussian toy-example and a dynamic
initial margin (DIM) case-study. Any minimization of loss functions over Fd,D,m,n or
similar sets of neural networks is done using the Adam algorithm of Kingma and Ba
(2014) over the parameters W and b along with mini-batching: see Algorithm 8 (to be
compared with Algorithm 3).
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name : MultiDiscreteVaRAlg// multi-α(III)
input : {(Xi, Yi)}ni=1, a partition B of {1 . . . n}, an increasing quantile level sequence

α(1) < · · · < α(K), a number of epochs E ∈ N⋆, a learning rate η > 0, initial
values for the network parameters Ŵ and b̂, neural network output function
ζd,Kl+1 (x,W, b)

output: Trained parameters of multi-VaR network Ŵ and b̂
1 // Sample quantile levels α
2 αi ∼ Uniform(α, α) for i = 1 . . . n
3 // Define a loss function

4 define Σ(y, a) = y0 +
∑K−1

j=1 1α(j)≤a
(α(j+1)∧a−α(j))

α(j+1)−α(j) yj

5 define ρvars(W, b,batch) =
1

|batch|
∑

i∈batch

[(
Yi − Σ(ζd,Kl+1 (Xi,W, b), αi)

)+
+ (1− αi)Σ(ζ

d,K
l+1 (Xi,W, b), αi)

]
6 (Ŵ vars, b̂vars)← SGDOpt({(Xi, Yi)}ni=1, B,E, η, Ŵ , b̂, ρvars)

Algorithm 7: Learning multi discrete VaR.

name : SGDOpt // Adam variant

input : {(Xi, Yi)}ni=1, a partition B of {1 . . . n}, a number of epochs E ∈ N⋆, a

learning rate η > 0, initial weight (matrix) Ŵ and bias (vector) b̂
parameters, and a loss function ρ = ρ(W, b,batch)

output: Trained parameters Ŵ and b̂
1 // Set exponential decay rates for the first and second moment estimates

and a small number

2 β1 ← 0.9; β2 ← 0.999; ϵ← 1e− 8
3 t← 1; m0 ← 0; v0 ← 0
4 for epoch = 1, . . . , E do // loop over epochs

5 for batch ∈ B do // loop over batches

6 gt ← ∇(W,b)ρ(Ŵ , b̂,batch) ; // Get gradient of parameter

7 mt ← β1mt−1 + (1− β1)gt ; // Update biased first moment estimate

8 vt ← β2vt−1 + (1− β2) (gt)
2
; // Update biased second moment estimate

9 m← mt

1−(β1)t
; // Compute bias-corrected first moment estimate

10 v ← vt
1−(β2)t

; // Compute bias-corrected second moment estimate

11 (Ŵ , b̂)← (Ŵ , b̂)− η√
v+ϵ

m ; // Update parameters

12 t← t+ 1

13 end

14 end

Algorithm 8: Adam algorithm learning neural network parameters.

All neural networks have 3 hidden layers, and twice their input dimensionality as
the number of neurons per hidden layer. In both examples below, for the multi-α(I) and
multi-α(II) learning approaches, we use the bounds (1−α, 1−α) = (10−4, 0.15). For the

multi-α(III) approach, we use a uniform interpolation grid 1−α(k) = 10−3+k 0.15−10−3

20 ,
with k ∈ {0, . . . , 20}.
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6 Conditionally Gaussian Toy Model

In our toy example, we apply the above algorithms to the data generating process
(X,Y ) such that X is a standard multivariate normal vector and, conditional on X, Y
is normally distributed. Namely,

X ∼ N (0, Id), for some d ∈ N⋆, and (Y |X) ∼ N (P (X), Q(X)2),

where P and Q are multivariate polynomials of degree 2, i.e. for some coefficients λ and
µ we have P (x) = λ0 +

∑d
i=1 λixi +

∑
1≤i<j≤d λi,jxixj and Q(x) = µ0 +

∑d
i=1 µixi +∑

1≤i<j≤d µi,jxixj , for every x = (x1, . . . , xd) ∈ Rd.
Then, denoting by Φ the cdf of the standard normal distribution and by φ its pdf,

we have:
q(X) = VaR(Y |X) = P (X) + |Q(X)|Φ−1(α)

s(X) = ES(Y |X) = P (X) + (1− α)−1|Q(X)|φ(Φ−1(α)),

which will serve us as ground-truth values.

6.1 Numerical Results

We use a dimension of d = 25 for the state space of X, leading to 1 + d+ d(d+1)
2 = 351

monomials in the multivariate polynomials P and Q. The coefficients λ and µ of
those monomials are drawn independently from a standard normal distribution. For
this example, we use 219 = 524288 training points and the same number of testing
points for computing the errors. For the Adam algorithm, we used 2000 epochs, mini-
batching with batches of size 215 = 32768, a learning rate γ = 0.01, and the rest of the
parameters kept at their default values in Kingma and Ba (2014).

Tables 2, as also 6, 7 and 8 below in the DIM case, suggest that the multi-α
approaches are competitive compared to the single-α approach by yielding acceptable
errors for confidence levels below 99%, while requiring only one single training, as
opposed to the single-α approach which requires one training per target confidence level.
For very extreme confidence levels, like 99.9%, the multi-α(III) approach outperforms
all the other approaches. This can be explained by the fact that, even if the target
confidence level is hard to reach given a limited training set, the lower confidence
levels in the interpolation grid contribute to inferring the VaR for the target confidence
level. Table 3 confirms that one can rely on the twin-simulation trick of Section 3.5
to draw mostly similar conclusions as in Table 2, without the need to have access to
the goundtruth estimators. Note that we computed upper-bounds of 95% confidence
intervals for (3.39), instead of the estimates directly in order to be conservative and
take into account the potentially high variance in the indicator functions that need
to be simulated in order to estimate (3.39). Table 4 demonstrates the effectiveness of
the penalization term (for λ simply set to 1) in the multi-α(I) approach to mitigate
the quantiles crossing problem. Table 4 also shows that the other multi-α learning
approaches, even without directly penalizing the crossing of the quantiles, behave better
than a single-α learning in terms of the crossing of the quantiles.

For the ES learning in the Gaussian toy-example, for brevity, we denote by “LR
using M VaR” an ES learning using linear regression only for the output layer, as
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α 0.999 0.995 0.99

multi-α(I) 0.151 (0.004) 0.060 (0.002) 0.039 (0.001)
multi-α(II) 0.161 (0.004) 0.065 (0.002) 0.042 (0.002)
multi-α(III) 0.061 (0.002) 0.051 (0.002) 0.043 (0.001)
Single-α 0.612 (0.043) 0.062 (0.001) 0.044 (0.001)

α 0.98 0.95 0.9

multi-α(I) 0.029 (0.001) 0.023 (0.001) 0.018 (0.001)
multi-α(II) 0.031 (0.001) 0.024 (0.001) 0.019 (0.001)
multi-α(III) 0.037 (0.001) 0.029 (0.001) 0.025 (0.001)
Single-α 0.032 (0.001) 0.021 (0.001) 0.016 (0.001)

Table 2: Means (standard deviations) of RMSE errors of learned conditional VaR
estimators against groundtruth values in the Gaussian toy-example across 32 runs.
Errors are normalized by dividing by the standard deviation of the groundtruth VaR.

α 0.999 0.995 0.99

multi-α(I) 0.00020 (0.000010) 0.00021 (0.000009) 0.00027 (0.000008)
multi-α(II) 0.00023 (0.000013) 0.00024 (0.000013) 0.00029 (0.000013)
multi-α(III) 0.00003 (0.000002) 0.00008 (0.000003) 0.00024 (0.000008)
Single-α 0.00008 (0.000003) 0.00020 (0.000007) 0.00035 (0.000008)

α 0.98 0.95 0.9

multi-α(I) 0.00046 (0.000009) 0.00157 (0.000020) 0.00379 (0.000060)
multi-α(II) 0.00046 (0.000009) 0.00157 (0.000030) 0.00398 (0.000086)
multi-α(III) 0.00057 (0.000015) 0.00171 (0.000030) 0.00428 (0.000066)
Single-α 0.00066 (0.000008) 0.00171 (0.000029) 0.00343 (0.000069)

Table 3: Means (standard deviations) across 32 runs of the upper-bounds of 95%
confidence intervals of L2 p-value error estimates, i.e. as defined in (3.39), of learned
conditional VaR estimators in the Gaussian toy-example.

described in Section 4.3, and a VaR learned using the method M as the candidate
VaR. For example, LR using single-α VaR refers to the linear regression approach
for learning the ES, by using a VaR that is learned with the single-α approach as the
VaR candidate. To demonstrate the effectiveness of this linear regression approach, we
also introduce an ES that is learned by neural regression, by using a neural network
in (4.4), without freezing any weights and using the groundtruth VaR as the VaR
candidate. Table 5 shows that our linear regression approach for the ES outperforms
the neural regression, no matter which approach is used for learning the embedded
VaR candidate. The relative performance of the different linear regression approaches
in Table 5 is explained by the relative performance of the VaR learning approaches,
given that the VaR learning error contributes to the ES learning error.
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E q0.999(X) < q0.995(X) q0.995(X) < q0.99(X) q0.99(X) < q0.98(X)

multi-α(I) 0.000004 (0.000001) 0.000005 (0.000002) 0.000008 (0.000003)
multi-α(II) 0.000016 (0.000008) 0.000017 (0.000007) 0.000020 (0.000008)
multi-α(III) 0.000461 (0.000107) 0.000164 (0.000037) 0.002765 (0.000619)
Single-α 0.111117 (0.003184) 0.251983 (0.006574) 0.213348 (0.005818)

E q0.98(X) < q0.97(X) q0.97(X) < q0.96(X) q0.96(X) < q0.95(X)

multi-α(I) 0.000022 (0.000007) 0.000073 (0.000017) 0.000367 (0.000059)
multi-α(II) 0.000032 (0.000008) 0.000080 (0.000012) 0.000405 (0.000096)
multi-α(III) 0.016378 (0.003258) 0.159370 (0.011163) 0.011956 (0.002695)
Single-α 0.272327 (0.005291) 0.316263 (0.006022) 0.336678 (0.004992)

Table 4: Empirical estimates (and corresponding standard deviations) of P(E), for the
events E listed in the first row, for learned conditional VaR estimators in the Gaussian
toy-example across 32 runs.

α 0.999 0.995 0.99

NNR using true VaR 0.408 (0.013) 0.106 (0.002) 0.076 (0.002)
LR using single-α VaR 0.536 (0.037) 0.062 (0.001) 0.045 (0.001)
LR using multi-α(I) VaR 1.900 (0.166) 0.068 (0.004) 0.037 (0.002)
LR using multi-α(II) VaR 2.382 (0.174) 0.082 (0.006) 0.041 (0.002)
LR using multi-α(III) VaR 0.126 (0.005) 0.057 (0.002) 0.050 (0.002)

α 0.98 0.95 0.9

NNR using true VaR 0.054 (0.001) 0.041 (0.001) 0.034 (0.001)
LR using single-α VaR 0.034 (0.001) 0.025 (0.001) 0.021 (0.001)
LR using multi-α(I) VaR 0.031 (0.001) 0.025 (0.001) 0.022 (0.001)
LR using multi-α(II) VaR 0.032 (0.001) 0.026 (0.001) 0.023 (0.001)
LR using multi-α(III) VaR 0.043 (0.002) 0.036 (0.001) 0.030 (0.001)

Table 5: Means (standard deviations) of RMSE errors of learned conditional ES esti-
mators against groundtruth values in the Gaussian toy-example across 32 runs. Errors
are normalized by dividing by the stdev of the groundtruth ES.

7 Dynamic Initial Margin Case Study

A financial application of the quantile learning framework is the learning of a path-wise,
dynamic initial margin (DIM) in the context of XVA computations (see e.g. Albanese,
Crépey, Hoskinson, and Saadeddine (2021, Section 5)). Let there be given respectively
Rd valued and real valued stochastic proceesses X = (Xt)t≥0 and MtM = (MtMt)t≥0,
where X is Markov and Xt represents the state of the market at time t (e.g. diffused
market risk factors), whereas MtMt represents the mark-to-market (price) of the port-
folio of the bank at time t—cumulative price including the cash flows cumulated up to
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time t, such that MtMt+δ−MtMt is σ(Xs, t ≤ s ≤ t+δ) measurable. We ignore risk-free
discounting in the notation (while preserving it in the numerical experiments). The
initial margin of the bank at time t at the confidence level α, denoted by IMt, defined
as

IMt := VaR (MtMt+δ −MtMt |Xt ) . (7.1)

Hence, having simulated paths of X and MtM, one can estimate the initial margin at
each simulation grid time t > 0, i.e. the DIM process, using quantile learning at each
t.

Estimating IMt using a nested Monte Carlo Alternatively, given t > 0, one can
consider a brute force nested Monte Carlo scheme based on nouter i.i.d samples

(X
(1)
t ,MtM

(1)
t ), . . . , (X

(nouter)
t ,MtM

(nouter)
t )

of (Xt,MtMt) and, for each i ∈ {1, . . . , nouter}, K i.i.d sub-samples

{MtM
(i,1),[1]
t+δ , . . . ,MtM

(i,ninner),[1]
t+δ }, . . . , {MtM

(i,1),[K]
t+δ , . . . ,MtM

(i,ninner),[K]
t+δ }

of MtMt+δ conditional onXt = X
(i)
t . We can then use these sub-simulations to estimate

the conditional quantile in (7.1), for each realization X
(ν)
t of Xt. For GPU memory

limitation reasons, and in order to avoid having to store simulations on the global
memory, we chose to do so via one stochastic approximation algorithm per (conditional
on) each outer simulation node. More precisely, for every i ∈ {1, . . . , nouter}, we define
iteratively over k ∈ {1, . . . ,K}:

IM
(i),[k+1]
t := IM

(i),[k]
t + γ(prop(i),[k] − 1 + α)

where γ is a positive learning rate (see below) and

prop(i),[k] :=
1

ninner

ninner∑
j=1

1{MtM
(i,j),[k]
t+δ −MtM

(i)
t ≥IM

(i),[k]
t },

One then iterates over k, simultaneously for all i in parallel, until convergence in order
to obtain an approximation of IMt at each outer realization of Xt. This corresponds
to a value-at-risk stochastic approximation algorithm, namely the batched version of
(Barrera, Crépey, Diallo, Fort, Gobet, and Stazhynski, 2019, Algorithm 0), run con-
ditionally on each outer simulation node at time t (cf. (Barrera, Crépey, Diallo, Fort,
Gobet, and Stazhynski, 2019, Section 5.3.1)). To speed-up the convergence, we take
γ to be of the order of the conditional standard deviation of MtMt+δ −MtMt, itself
estimated via the same nested Monte Carlo procedure, and we use a Gaussian VaR as

the initial value (i.e. IM
(0),[k]
t ), computed using conditional expectation and standard

deviation estimates using the inner samples at the first iteration. ninner = 1024 samples
for the sub-simulations and K = 256 iterations are then enough to achieve an error in
p-value, as computed using (3.39), of roughly 0.5(1− α) in our experiments.
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7.1 Numerical Results

We consider a portfolio composed of 100 interest rate swaps with randomly drawn char-
acteristics and final maturity 10 years, assessed in the market model of Abbas-Turki,
Crépey, and Saadeddine (2022, Appendix B), i.e. a multi-factor market model with
10 short-rate processes representing 10 economies and 9 cross-currency rate processes.
Given that swap coupons can depend on short-rates at previous fixing dates, we also
include in the regression basis the same short-rates but observed at the latest previous
fixing date, which leads in total to a dimensionality of d = 29 for the state vector
Xt at a given time t > 0, with 100 time steps uniformly spread between time 0 and
the final maturity of the portfolio equal to 10 years. We use 222 = 4194304 simu-
lated paths (generated in 25 seconds using the code developed in Abbas-Turki, Crépey,
and Saadeddine (2022, Appendix B)) for training and 214 simulated paths, indepen-
dent of the former, for evaluating the nested Monte Carlo benchmark and computing
the errors. We leverage the transfer learning trick used in Abbas-Turki, Crépey, and
Saadeddine (2022, Appendix B), which consists in doing the training starting from the
latest time-step and then proceeding backwards by reusing the solution obtained at
each successive time-step tk+1 as an initialization for the learning to be done at time
tk. This allows us to use only 16 training epochs. As in the Gaussian toy-example, we
use mini-batching. The batch size is taken to be 217 = 131072, we use a learning rate
of 0.001, and the rest of the Adam parameters are kept at their default values.

To illustrate that the quantile learning approach allows one to learn an entire
stochastic process (dynamic initial margin), we plot the mean and 5-th/95-th per-
centiles of the learned IM process at each time-step for the different quantile learning
schemes in Figure 1. The sawtooth-like behaviour in the paths of (IMt)t≥0 that is
visible in the plots in Figure 1 is expected, due to the recurring cash-flows inherent to
interest rate swaps (Andersen, Pykhtin, and Sokol, 2017).

Tables 6, 7 and 8 (using the nested Monte Carlo as a benchmark) confirms the
conclusions of Table 2 regarding the competitiveness of the multi-α approaches.
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Figure 1: Mean and 5-th/95-th percentiles of both the learned and the nested Monte
Carlo IM at different time steps and for different values of α and learning approaches.
The learning approach used for the plots in each row is indicated on the right, and each
column corresponds to one value of α which is indicated at the top of each column.
Statistics are computed using out-of-sample trajectories of the diffused risk-factors, and
the time steps are on the x-axis.
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α 0.999 0.995 0.99 0.98 0.95 0.9

multi-α(I) 0.265 0.160 0.109 0.065 0.058 0.056
multi-α(II) 0.261 0.155 0.107 0.066 0.057 0.056
multi-α(III) 0.128 0.185 0.102 0.133 0.116 0.074
Single-α 0.134 0.074 0.070 0.056 0.066 0.065

Table 6: RMSE errors of learned IMt estimators against nested Monte Carlo estimators,
for t = 2.5years. Errors are normalized by dividing by the standard deviation of the
nested Monte Carlo benchmark.

α 0.999 0.995 0.99 0.98 0.95 0.9

multi-α(I) 0.204 0.166 0.131 0.072 0.061 0.069
multi-α(II) 0.212 0.162 0.127 0.072 0.062 0.069
multi-α(III) 0.150 0.123 0.067 0.065 0.066 0.068
Single-α 0.165 0.095 0.070 0.057 0.060 0.066

Table 7: RMSE errors of learned IMt estimators against nested Monte Carlo estimators,
for t = 5years. Errors are normalized by dividing by the stdev of the nested Monte
Carlo benchmark.

α 0.999 0.995 0.99 0.98 0.95 0.9

multi-α(I) 0.292 0.119 0.122 0.095 0.073 0.072
multi-α(II) 0.296 0.118 0.118 0.091 0.071 0.070
multi-α(III) 0.157 0.118 0.090 0.089 0.079 0.086
Single-α 0.119 0.088 0.082 0.068 0.061 0.061

Table 8: RMSE errors of learned IMt estimators against nested Monte Carlo estimators,
for t = 7.5years. Errors are normalized by dividing by the stdev of the nested Monte
Carlo benchmark.

Conclusion

The numerical experiments of Sections 6 and 7 suggest that learning multiple quantiles
(multi-α(I), multi-α(II) or multi-α(III)), although counter-intuitive at first, can help
better target extreme quantiles than a standard single quantile learning approach. This
can be explained by the fact that multiple quantile approaches leverage the information
given by nearby quantiles and thus are better at extrapolating at the extremes. The
multi-α(I) approach is remarkably good at ensuring, via soft-constraints on the deriva-
tive with respect to the quantile level, monotonicity (avoiding quantile crossings), in
cases where consistency among different quantile levels is desired. Our experiments
also show that one can successfully use these quantile estimation methods in an XVA
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or dynamic risk calculation setting, where the computation times may be greatly accel-
erated by replacing nested Monte Carlo estimations by quantile and expected-shortfall
learnings.

A Value-at-Risk and Expected Shortfall Representations

In this appendix we recall various elicitability results underlying our VaR and ES
learning algorithms.

A cumulative distribution function (cdf) F : R → [0, 1] is by definition (Stieltjes)
integrable if ∫

R
|y|F (dy) <∞. (A.1)

If Y is a random variable with distribution function F (i.e. P[Y ≤ t] = F (t), t ∈ R),
then (A.1) holds if and only if Y is P-integrable (the left-hand side of (A.1) is then
E [|Y |]).

Definition A.1. Let F : R→ [0, 1] be an integrable cdf and let α ∈ (0, 1). The value-
at-risk (VaR) and expected shortfall (ES) of F at the confidence level α are defined
respectively by

VaR(F ) := inf F−1([α, 1]) , ES(F ) =
1

1− F (VaR(F )−)

∫
[VaR(F ),∞)

y F (dy). (A.2)

(see (2.2) for the definition of F (y0−)). If Y is an integrable random variable on the
probability space (Ω,A,P), we write

VaR(Y ) := VaR(FY ), ES(Y ) := ES(FY )

where FY (t) = P [Y ≤ t] is the distribution function of Y .

Remark A.2. If Y is an integrable random variable, then it is easy to see that

VaR(Y ) = inf{t : P [Y ≤ t] ≥ α}, ES(Y ) = E [Y |Y ≥ VaR(Y )] (A.3)

(the conditional expectation is with respect to P). In particular,

VaR(Y ) ≤ ES(Y ), (A.4)

with equality if and only if

P [Y ≤ VaR(Y )] = 1. (A.5)

The versions of (A.3), (A.4) and (A.5) for abstract distribution functions F are clear
mutatis mutandis.
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Remark A.3. It is necessary to assume that our random variables are bounded (pos-
sibly after transformation as explained in Sections 2.2 and Appendix B) in order to
obtain nonasymptotic bounds in the errors induced by the methods to approximate VaR
and ES presented here (see for instance (3.20)).

This entails no loss of generality for VaR. To see why, let Y be any integrable ran-
dom variable defined on (Ω,A,P), let I ⊂ R be a (possibly infinite) interval supporting
Y (P [Y ∈ I] = 1), let −∞ < a < b < ∞, and let h : I → (a, b) be any increasing
bijective, Borel measurable function. Then by monotonicity

VaR(h(Y )) = h(VaR(Y )),

which allows reducing the approximation of VaR(Y ) to the bounded case: to approxi-
mate VaR(Y ), approximate VaR(h(Y )) and compose with h−1. The error bounds pro-
vided in this paper, which apply to VaR(h(Y )), can then be translated into error bounds
on the approximation of VaR(Y ) using ad hoc analytic properties of h.

As for ES, notice that for such h

ES(h(Y ))1{h(Y )≥VaR(h(Y ))} = E
[
h(Y )|1{h(Y )≥VaR(h(Y ))}

]
= E

[
h(Y )|1{Y≥VaR(Y )}

]
.

From this it follows that if h is in addition convex [concave] on I ∩ [VaR(Y ),∞), then9

ES(Y ) ≤ [≥]h−1(ES(h(Y ))). (A.6)

The inequality (A.6) for convex [concave] h shows that h−1(ES(h(Y ))) is a conservative
[risky] estimate of ES(Y ). Notice that such conservative ES estimates are only available
when Y is assumed upper bounded, for there is no convex, increasing and bounded
bijection with domain [a,∞). Note also that if h is an increasing affine transformation,
then ES(h(Y )) = h(ES(Y )).

It is convenient for what follows to present the discussion in terms of distribution
functions. We start by noticing that if F has an α-quantile, namely if

F (y) = α for some y,

then VaR(F ) is the minimum of such y’s. In this case (and this case only)

F (VaR(F )) = α. (A.7)

By the intermediate value theorem, such y exists in [a, b] if

9If Z is an integrable random variable on (Ω,A,P) and A0 ⊂ A is a sigma-algebra, then for every
convex, bijective and bimeasurable function h : R → R,

h−1(E [h(Z)|A0]) ≥ E
[
h−1(h(Z))|A0

]
= E [Z|A0] .

If A0 = σ(1{Y ≥a}) and the invertible, bimeasurable function h : R → R is convex in the interval J = I∩
[a,∞) where P [Y ∈ I] = 1, then h0 = h1I∩[a,∞)+h11R\(I∩[a,∞)) is convex, invertible and bimeasurable
in R for an appropriate h1 : R → R, and E [h(Y )|A0] = E [h0(Y )|A0] = E [h0(Y )|Y ≥ a]1{Y ≥a}. Even
more, E [h0(Y )|Y ≥ a] = E [h(Y )|Y ≥ a] because h0|I∩[a,∞)= h|I∩[a,∞). The argument for concave h
is similar.
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Assumption A.4. There exists an interval [a, b] where F is continuous and

F (a) < α ≤ F (b).

The following operator will allow us to characterize VaR and ES as minimizers of
a suitable functional.

Definition A.5. Given a Polish space S, a (Borel measurable) function h : S×R→ R
and a distribution function F , we define (h ∗ F ) : S → R by

(h ∗ F )(x) =

∫
R
h(x, y)F (dy)

provided that h(x, ·) is F -integrable for all x. When necessary, we will write (h∗F )(·) =
h(·, y) ∗ F (dy).

Recall (2.5) and (2.6). Our methods are built over the following results of Rock-
afellar and Uryasev (2000)10, whose easy proof we give for the sake of completeness:

Lemma A.1. If F is an integrable distribution function satisfying Assumption A.4,
then the set of minimizers of the function (ρι ∗ F )|[a,b] is the set of α-quantiles of F
within [a, b], and given c > 0,

ES(F ) =
1

c
min
v

(ρc· ∗ F )|[a,b](v), (A.8)

where c· denotes the function y 7→ cy.

Proof. Since ι is increasing and continuous, and since F is absolutely continous in
[a, b], the identity

(ρι ∗ F )′(v) =
d

dv

(
(1− α)−1

∫ ∞

v
(ι(y)− ι(v))F (dy) + ι(v)

)
=ι′(v)(1− (1− α)−1(1− F (v))).

holds for v ∈ [a, b]. It follows in particular that the (continuously differentiable) func-
tion (ρι ∗ F )|[a,b] has critical points in the set of α-quantiles of F within [a, b]. Since F
is increasing, these critical points are the minimizers of ρι ∗ F .

With this, (A.8) is a straigthforward consequence of the definition (A.2) of ES(F )
together with (A.7): given any α-quantile q of F within [a, b], and since F is constant
in [VaR(F ), q),

ES(F ) =(1− α)−1
∫ ∞

q
yF (dy) = (1− α)−1

∫
R
(y − q)+F (dy) + q

=
1

c
(ρc· ∗ F )|[a,b](q) =

1

c
min
v

(ρc· ∗ F )|[a,b](v),

where for the last equality we used the first part already proved.

10where we only added ι for the sake of data transformation to boundedness.
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Notice that the estimation of ES via (A.8) implies the estimation of an integral
with respect to F . It is desirable, in order to propose distribution-free methods for the
estimation of ES, to have characterizations of this risk measure as a minimizer (rather
than a minimum). The following theorem presents the first one, which works given a
corresponding α-quantile:

Lemma A.2. If F is an integrable distribution function and if q is an α-quantile of
F , then ES(F )− q ∈ [0,∞) is the unique minimizer of ϱς(y, q, ·) ∗ F (dy)|[0,∞).

Proof. In this case,

d

dz
(ϱς(y, q, z) ∗ F (dy)) = ς ′′(z)

(
z − (1− α)−1

∫
R
(y − q)+ F (dy)

)
,

which changes from negative to positive at z = ES(F ) − q because ς ′′(z) > 0: this
follows as in the proof of (A.8).

Inspired by Corollary 5.5 in Fissler and Ziegel (2016), we finally present the following
“joint” loss, which is basically a combination of (2.5) and (2.6), for the elicitability of
(VaR,ES) based on the loss function (2.8).

Lemma A.3. For every integrable cdf F satisfying Assumption A.4, (F−1(α)∩ [a, b])×
{ES(F )} is the set of minimizers of the function

ρι,ς(y, ·, ·) ∗ F (dy) : [a, b]× R→ R. (A.9)

Proof. The derivative of (A.9) with respect to v is

(ι′(v)− ς ′(z))(1− (1− α)−1(1− F (v))) (A.10)

which equals zero if and only if v ∈ F−1(α) by the assumptions on ι′ and ς ′.
By a similar calculation and using ς ′′ ̸= 0, the derivative of (A.9) with respect to z

is zero if and only if

z = v + (1− α)−1

∫
R
(y − v)+F (dy),

which, as justified in the proof of Lemma A.2, gives z = ES(F ) if v ∈ F−1(α).
It follows that (F−1(α)∩ [a, b])×{ES(F )} is the set of critical points of (A.9). The

fact that these critical points are indeed minimizers of (A.9) follows by an argument
akin to the proof of Lemma A.1 (consider z = ES(Y ) fixed and the expression (A.10)
for the derivative with respect to v).

B The Role of Data Transformations and Truncations

The functions hk(x, y) (k = 1, 2) in Algorithm 1 serve at least two purposes: to uni-
formly bound and normalize the data, in particular to make it fit to the theory of
(Barrera, 2022), and to open the room for profiting from a priori information about
the conditional distributions of Y given X.
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Let us discuss the functions involved in the estimation of ES: the reason for re-
stricting ourselves to conditionally affine transformations

h(x, y) = τ(x)y + ν(x) (a(x) > 0) (B.1)

is that, as explained in Remark A.3, only these satisfy (in general) the equation

ES(h(X,Y )|X) = h(X,ES(Y |X)), (B.2)

thus allowing us to compute ES(Y |X) by solving the right hand side of (B.2) for X
fixed (which corresponds to the definition of r̂ in Algorithm 1).

Notice that, conditionally affine transformations (B.1) are the ones used for “cen-
tering and normalizing”: typically, one would use h2(x, y) = (y − µ̂(x))/σ̂(x) where
µ̂(x) and σ̂2(x) are estimates of the conditional mean and variance of Y given that
X = x.

It may be convenient to say some additional words about this traditional normal-
ization: if Z ∈ L1

P has α-quantiles, then integrating the inequality

VaR(Z)1{Z≥VaR} ≤ Z1{Z≥VaR(Z)} (B.3)

and applying Hölder’s inequality we obtain the following: for every p ∈ [1,∞] (p′ =
p/(p− 1))

VaR(Z)(1− α) ≤ ||Z||P,p(1− α)1/p
′
. (B.4)

Now, if FZ(t) := P [Z ≤ t] is continuous and strictly increasing in [VaR(Z),VaR(Z)+δ)
(for some δ > 0) then

−VaRα(Z) = VaR(1−α)(−Z)

where VaRβ(·) indicates the corresponding VaR at level β (Definition 2.1), and the
previous argument with −Z in place of Z and 1− α in place of α leads to

−VaR(Z)α ≤ ||Z||P,pα1/p′ . (B.5)

Interpreting (B.3), (B.5) in a conditional context and going back to our conventions we
obtain that if p > 1 and FY |X is continuous and increasing in [VaR(Y |X),VaR(Y |X)+
δ(X)) then

−α−1 ≤ (VaR(Y |X))p

E [|Y |p|X]
≤ (1− α)−1 (B.6)

which combined with the identity11

ES(Y |X) = (1− α)−1
∫ 1

α
VaRβ(Y |X) dβ (B.7)

11The equality (B.7) is known as Acerbi’s formula. It was generalized to the case of noncontinuous
distributions in (Acerbi and Tasche, 2002, Proposition 3.2). For the case in consideration a quick proof
follows by the change of variable y = F−1

Y |X(β) = VaRβ(FY |X) in (2.3).
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gives that

−p′(1− α1/p′)(1− α)−1 ≤ ES(Y |X)

(E [|Y |p|X])1/p
≤ p′(1− α)−1/p. (B.8)

provided that FY |X is strictly increasing and continuous in [VaR(Y |X),∞).
The inequalities (B.4), (B.6) and (B.8) carry at least two important messages: first,

the integrability properties of Y are inherited by VaR(Y |X) and ES(Y |X) (E [|Y |p] =∫
||Y ||pPx,p

PX(dx)); and second, the (conditional) moments of Y control the value of

these risk measures. It follows in particular that if x 7→ M̂p(x) > 0 is (say) an estimate
of x 7→Mp(x) := ||Y ||Px,p and C > 0 is a constant such that

P
[
Mp(X) ≤ CM̂p(X)

]
= 1, (B.9)

then the specification in Algorithm 1 given by

h1(x, y) = h(y/M̂p(x))

where h(y) is a continuous and increasing bounded function equal to the identity if

|y|≤ C(α ∧ (1− α))−1/p,

permits to assume that

B1 = C(α ∧ (1− α))−1/p,

giving (by the definition of h) that

q̂(x) = M̂p(x)f̂(x).

As for the computation of ES−VaR, choosing the conditionally affine transformation

h2(x, y) = y/M̂p(x)

permits to fix the bound

C(p′(1− α)−1/p + α−1/p). (B.10)

for the hypotheses G and to truncate by any B3 larger than or equal to (B.10) when
carrying the regression in Step 4.

Following this line of reasoning, notice that the truncation by B3 gives rise to a
“tail error” of the form

E
[
((|W |−B3)

+)2
]
, (B.11)

where W = (1 − α)−1(h2(X,Y ) − h2(X, q(X)))+ is the random variable whose con-
ditional expectation (given X) we are trying to estimate. To justify our belief in the
necessity of a priori controls on tail bounds on W (or W |X) for the estimation of ES
(e.g. upper bounds to (B.11)), consider the following:
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Claim. For every strictly increasing, integrable distribution function F and every
(C, δ) ∈ R × (0,∞), there exists an increasing and integrable distribution function G
coinciding with F in (−∞, C] and such that ES(F ) + δ < ES(G)12.

According to this claim, no inference can be made in general about ES(F ) only
from information on F (y) up to some upper bound y ≤ C <∞. Being this is the only
kind of information available through finite observations Y1(ω), . . . , Yn(ω) of Y ∼ F ,
it is not possible in general to infer statistical bounds on the approximation error for
estimations of ES(F ) which are based only on finite samples of F .13
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