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Introduction 2 Introduction

Quantile regression is a classical statistical problem that has received attention since the 1750s. [START_REF] Koenker | Quantile regression: 40 years on[END_REF] notes that the least absolute criterion (or pinball loss function) for the median even preceded the least squares for the mean (introduced by Legendre in 1805).

Quantile regression is commonly done in the context of linear models, where the ensuing minimization problem can be cast as a linear program and subsequently solved by the simplex method. When several quantile levels are jointly considered, a flaw inherent to linear quantile regression is the problem of crossing quantile curves. Alternative approaches include nonlinear quantile regression based on interior point methods [START_REF] Koenker | An interior point algorithm for nonlinear quantile regression[END_REF] or nonparametric quantile regression often implemented by stochastic gradient descent methods [START_REF] Rodrigues | Beyond expectation: Deep joint mean and quantile regression for spatiotemporal problems[END_REF].

In harmony with the numerous financial applications, we also refer to quantile as value-at-risk (VaR) and to superquantile, i.e. the expected loss given the loss exceeds the VaR [START_REF] Rockafellar | Superquantiles and their applications to risk, random variables, and regression[END_REF], as expected shortfall (ES). [START_REF] Dimitriadis | A joint quantile and expected shortfall regression framework[END_REF] developed an asymptotic convergence analysis, establishing the consistency and asymptotic normality, under somewhat strong semiparametric assumptions and regularity conditions, of a joint linear regression estimator for the value-at-risk and expected shortfall based on their joint elicitability properties (Fissler and Ziegel, 2016;[START_REF] Fissler | Expected shortfall is jointly elicitable with value at risk-implications for backtesting[END_REF], implemented numerically using the Nelder-Mead optimization algorithm. Closer to our proposals, Padilla, Tansey, and Chen (2020) consider quantile regression with ReLU networks, including a discussion on minimax rates for quantile functions with Hölder-related regularity conditions, and providing qualitative non-asymptotic estimates for such networks, of which our corresponding results can be considered quantitative versions. [START_REF] Shen | Deep quantile regression: Mitigating the curse of dimensionality through composition[END_REF] consider a different approach to the non-asymptotic analysis, assuming that the target quantile function has a compositional structure in terms of Hölder-continuous functions. The authors derive Vapnik-Chervonenkis (VC)-based error bounds that only depend on the dimension of the composed functions, as opposed to the one of the inputs usually in the literature, and are therefore less impacted by the curse of dimensionality.

The contribution of the present paper is the non-asymptotic convergence analysis of a learning algorithm for VaR and ES using a two-step approach, possibly for multiple quantile levels at the same time, in a nonparametric setup. We also provide practical learning schemes to learn the conditional VaR and ES using neural networks as the function approximators. Our two-step methodology enables the reuse of the VaR neural network's hidden layers in the training of the neural network approximating the ES, allowing to learn the latter using a simple linear regression against a learned regression basis, hence quickly deducing a conditional ES predictor from the conditional VaR one. We also address the problem of learning multiple quantiles at the same time and propose methods to deal with the well-known quantile crossing issue [START_REF] He | Quantile curves without crossing[END_REF][START_REF] Koenker | Quantile regression for longitudinal data[END_REF][START_REF] Takeuchi | Nonparametric quantile estimation[END_REF]. We provide an a posteriori error estimation method in order to compute errors against ground-truth values of the conditional VaR and ES, without the need to approximate the latter with a slow nested Monte Carlo procedure. For the purpose of assessing our proposed schemes, we provide numerical experiments in a Gaussian toy model, and a financial case-study where the goal is to learn a dynamic initial margin in a multi-factor model.

The paper is organized as follows. Section 2 presents our base learning algorithm. Relying on the general results of the companion paper [START_REF] Barrera | Confidence intervals for nonparametric regression[END_REF], Section 3), Section 3 performs the corresponding convergence analysis. Section 4 discusses specializations of this scheme and its errors to the case of inference via neural networks. We introduce multi-quantile extensions of the above in Section 5. Sections 6 and 7 discuss numerical experiments. Appendix A gathers classical elicitability results underlying different possible VaR and ES learning algorithms (including the one in Section 2, but also a joint representation à la Fissler and Ziegel (2016) ;[START_REF] Fissler | Expected shortfall is jointly elicitable with value at risk-implications for backtesting[END_REF], shown less efficient numerically in the paper's github). Appendix B discusses the role of data transformations in the scheme proposed and their consequences on the respective error bounds.

We denote by (Ω, A, P) a probability space, which admits all the random variables appearing below (the existence of (Ω, A, P) can be verified a posteriori), with corresponding expectation operator denoted by E [ • ], and we denote by R the Borel sigma algebra on R.

A Learning Algorithm for VaR and ES

Let S be a Polish space with Borel sigma algebra S. From now on (X, Y ) : Ω → S × R is a fixed random vector in S × R 1 , with Y ∈ L 1 P . We will utilize the usual notation P X , P (X,Y ) for the laws of X and (X, Y ): for every Borel sets A ⊂ S, A ′ ⊂ S × R

P X (A) = P [X ∈ A] , P (X,Y ) (A ′ ) = P (X, Y ) ∈ A ′ .
We fix a conditional distribution function µ : S × R → [0, 1] of Y given X (Kallenberg, 2006, Theorem 5.3 p.84), and we assume that the function S × R → R defined by (x, y) → µ(x, (-∞, y]) is (S ⊗ R)/R (i.e. Borel)-measurable. 2 With these conventions, we will use implicitly the corresponding version

P [Y ∈ •|X] := µ(X, •)
of the conditional probability of Y given X. In particular, we will use the conditional (2.1)

We will finally assume, without loss of generality, that F Y |X(ω) (•) is integrable for every ω ∈ Ω. 3 In what follows, for a function F : R → R and y 0 ∈ R F (y 0 -) := lim y↑y 0 F (y).

(2.2)

Definition 2.1. The conditional value-at-risk (VaR) and expected shortfall (ES) of Y given X at the confidence level α ∈ (0, 1) are (cf.

(A.2)) VaR(Y |X) := VaR(F Y |X ) = inf F -1 Y |X ([α, 1]) = inf{y ∈ R; F Y |X (y) ≥ α}, ES(Y |X) := 1 1 -F Y |X (VaR(Y |X)-) [VaR(Y |X),∞)
y F Y |X (dy).

(2.3) 1 i.e. an A/(S ⊗ R) measurable function.

2 This the case if for instance S = R d and (X, Y ) admits a density with respect to Lebesgue measure.

3 Since Y ∈ L 1 P , we have that

∞ > E [|Y |] = E [E [|Y ||X]] = E R |y|F Y |X (dy) ,
thus F Y |X(ω) is integrable for P-a.e. ω: it suffices to change the version of X to guarantee integrability for every ω.

Lemma 2.1. The functions ω → VaR(Y |X(ω)) and ω → ES(Y |X(ω)) are σ(X)measurable.

Proof. Given t ∈ R, {VaR(Y |X) < t} = ∪ n∈N {F Y |X (t -1/n) ≥ α},
which is a countable union of σ(X)-measurable sets (F Y |X (y) is σ(X)-measurable for every fixed y). This shows the claim for VaR(Y |X). As for the σ(X)-measurability of ES(Y |X), notice that the function es : S × R → R defined by

es(v, x) = 1 1 -µ(x, (-∞, v)) y1 [v,∞) (y) µ(x, dy)
is Borel-measurable (on the set where µ(x, (-∞, v)) < 1) and that

ES(Y |X) = es(X, VaR(Y |X)).
Then, from the Doob-Dynkin lemma:

Corollary 2.2. There exist Borel measurable functions q : S → R and s : S → R such that

q(X) = VaR(Y |X), s(X) = ES(Y |X), P-a.s.. (2.4)
Assuming S = R d , the goal of the article is to present and analyze algorithms for approximating (P X -versions of) the functions q(•) and/or s(•) in (2.4), efficient in high dimension d, based on i.i.d. samples of (X, Y ) ∈ R d × R and on suitable hypothesis spaces (including families of functions represented in terms of neural nets which are used in the experimental part of the paper)

F = {f : R d → R} , G = {g : R d → R} , H = {h = (f, g) : R d → R 2 }
for q(•), s(•), and (q(•), s(•)), respectively.

VaR and ES as optimization problems

Given α ∈ (0, 1) and an increasing, continuously differentiable function ι : R → R, let ρ ι : R 2 → R be the loss function defined by

ρ ι (y, v) = (1 -α) -1 (ι(y) -ι(v)) + + ι(v).
(2.5)

Given a twice continuously differentiable function ς : [0, ∞) → R with ς ′′ positive, let ϱ ς (y, v, z) := ς ′ (z) z -(1 -α) -1 (y -v) + -ς(z),
(2.6) e.g.

ϱ • 2 (y, v, z) =z 2 -2(1 -α) -1 (y -v) + z (2.7) =(z -(1 -α) -1 (y -v) + ) 2 -((1 -α) -1 (y -v) + ) 2 .
Given functions ι, ς : R → R with ι ′ nonnegative (possibly zero) and continuous, ς ′ negative and ς ′′ non-vanishing, let ρ ι,ς : R × R × R → R defined by

ρ ι,ς (y, v, z) =(1 -α) -1 (ι(y) -ι(v)) + + ι(v) +ς ′ (z) z -v -(1 -α) -1 (y -v) + -ς(z).
(2.8)

To provide suitable representations of the functions q(•) and s(•) of (2.4) in the context of convex optimization, we will work under the following assumption.

Assumption 2.2. F Y |X (defined by (2.1) for a given α) satisfies Assumption A.4, P-a.s., and if ρ ι , ϱ ς , ρ ι,ς , q(•) and s(•) are respectively as in (2.5), (2.6), (2.8), (2.4), then ρ ι (Y, q(X)), ϱ ς (Y, q(X), s(X) -q(X)) and ρ ι,ς (Y, q(X), s(X)) are P-integrable.

Our methods rely on the following elicitability (i.e. minimizing) properties of VaR(Y |X) and ES(Y |X) of the functions q(•) and s(•) . We use implicitly in the statement the convention E [h(X, Y )] = ∞ whenever h(X, Y ) is not P-integrable. We also use the notation L(S) [resp. L + (S)] for the space of Borel measurable functions S → R [resp.

S → R + ].
Theorem 2.3. Under Assumption 2.2:

q(•) ∈ arg min f ∈L(S) E [ρ ι (Y, f (X))] ,
(2.9)

s(•) -q(•) ∈ arg min g∈L + (S) E [ϱ ς (Y, q(X), g(X))] ,
(2.10)

(q(•), s(•)) ∈ arg min (f,g)∈L(S)×L(S) E [ρ ι,ς (Y, f (X), g(X))] .
(2.11)

Even more s(X) = q(X) + (1 -α) -1 E (Y -q(X)) + |X , P-a.s.
(2.12) (this does not depend on the assumptions on ρ ι , ϱ ς , ρ ι,ς . For the P-integrability of q(X) see the last paragraph in Appendix B).

Proof. All these statements are a straightforward consequence of the fact that, if

h(X, Y ) is P-integrable, then E [h(X, Y )|X] = R h(X, y)F Y |X (dy), P-a.s.,
together with the characterizations of VaR and ES in Lemmas A.1, A.2 and A.3.

To illustrate for q(•): using Lemma A.1 and the above identity, we obtain that

E [ρ ι (Y, q(X))|X] ≤ E [ρ ι (Y, f (X))|X] , P-a.s.,
for every f ∈ L(S). This implies (2.9) by integrating with respect to P. The other statements can be proved in a similar fashion.

Remark 2.3. If (Y -q(X)) + ∈ L 2 P , then the representation (2.12) is also a consequence of the characterization (2.10). To see this notice that, by the Pythagorean theorem and the nonnegativity of (Y -q(X)) + , any r ∈ L + (S) satisfying4 r(•) ∈ arg min

g∈L + (S) E ((1 -α) -1 (Y -q(X)) + -g(X)) 2
(2.13)

has the property that r(X) = E (1 -α) -1 (Y -q(X)) + |X , P-a.s..
In view of (2.7), it follows that the minimization criteria (2.10) and (2.13) are exactly the same, leading in particular to

s(X) -q(X) = r(X) = (1 -α) -1 E (Y -q(X)) + |X , P-a.s.,
as claimed by (2.12).

Remark 2.4. The minimizers in (2.9)-(2.11) do not need to be unique: notice for instance that the proof of (2.9) (illustrated above) shows that any function

q 1 : S → R satisfying F Y |X (q 1 (X)) = α is a minimizer of f → E [ρ ι (Y, f (X))],
and that there are infinitely many such functions if F -1 Y |X (α) is an interval of positive length on a set with positive P X -measure.

The algorithm

The functional representations in (2.9)-(2.13) give immediately rise to equally many approximation algorithms for conditional VaR and/or ES. In all cases, the numerical recipe is simply that of replacing the minimization problems in (2.9)-(2.13) by empirical versions: instead of L(S), L + (S) and L(S) × L(S) we use convenient hypotheses spaces F ⊂ L(S), G ⊂ L + (S), and H ⊂ L(S) × L(S); instead of integration with respect to P we use a Monte Carlo approximation based on (properly truncated) i.i.d. samples of (X, Y ).

After some preliminary empirical investigations reported in the paper's GitHub, the best turned out to be the simplest, i.e. the two-step algorithm that first uses (2.9) to obtain an approximation q(•) of the (conditional) VaR, and then uses (2.12) together with the interpretation of the conditional expectation as a least-squares minimization problem, i.e. (2.13), to learn ES, using the approximation q(•) obtained before. This two-step algorithm will be our main focus in what follows. Its pseudo-code is provided as Algorithm 1. The restrictions on F and ι, the transformation h 1 , h 2 and the truncations T B defined by T B y = max{min{y, B}, -B}, (y, B) ∈ R × [0, ∞), permit a fitting of the algorithm within the framework of the bounds developed in [START_REF] Barrera | Confidence intervals for nonparametric regression[END_REF]. They may also have practical advantages, as discussed in Appendix B.

1 Parameters:

• The loss ρ given by (2.5) with ι(z) = z.

• Constants (B 1 , B 2 , B 3 ) ∈ (0, ∞) 3 with B 1 ≤ B 2 . • A function h 1 : S × R → [-B 2 , B 2 ] such that, for P X -a.e. x ∈ S, h 1,x (•) := h 1 (x, •) is increasing in a set I x with P [Y ∈ I x |X = x] = 1.
• A conditionally affine function h 2 (x, y) = τ (x)y + ν(x) with τ (x) > 0 for P X a.e. x ∈ S.

• A set F of Borel measurable functions S → [-B 1 , B 1 ]. • A set G of Borel measurable functions S → [0, B 3 ]. 2 Input: An i.i.d. sample D = {(X k , Y k )} n k=1 , of (X, Y ). 3 Compute f ∈ arg min f ∈F n k=1 ρ(h 1 (X k , Y k ), f (X k )). q(x) =h -1 1,x • f (x) 4 Compute ĝ ∈ arg min g∈G n k=1 g(X k ) -T B 3 ((1 -α) -1 (h 2 (X k , Y k ) -h 2 (X k , q(X k )) + ) 2 r(x) :=(ĝ(x) -ν(x))/τ (x) Return(( VaR(Y |•), ES(Y |•)) = (q(•), q(•) + r(•)))
Algorithm 1: Estimates of conditional VaR and ES by regression in two steps with tilted loss (cf. (2.5)) for VaR and quadratic loss for ES.

Convergence Analysis of the Learning Algorithm

In what follows, we will be using the assumption h k (x, y) = y (k = 1, 2) for the data transformations in Algorithm 1. Our results, therefore, leave open the error induced by the operations (h k (X, •)) -1 used for the final estimates.

We will use the notation

D = {(X j , Y j )} n j=1 (3.1)
for an i.i.d. sample of (X, Y ) (with n given).

Using also the notation (2.5), (2.6), (2.8), we will denote, for (f, g) ∈ L(S) × L + (S)

ρι (f ) := E [ρ ι (Y, f (X))] , ρι (f ) := 1 n n k=1 ρ ι (Y k , f (X k )) ρς (f, g) := E [ϱ ς (Y, f (X), g(X))] , ρς (f, g) := 1 n n k=1 ϱ ς (Y k , f (X k ), g(X k )) ρι,ς (f, g) = E [ρ ι,ς (Y, f (X), f (X) + g(X))] , ρι,ς (f, g) = 1 n n k=1 ρ ι,ς (Y k , f (X k ), f (X k ) + g(X k )). (3.2)
Throughout this section,

F ⊂ L(S), G ⊂ L + (S), H ⊂ L(S) × L + (S)
will be fixed hypothesis spaces. Associated to these and to the loss functions in (3.2) there are the following quantities of interest,

q ∈ arg min f ∈F ρι (f ), q ∈ arg min f ∈F ρι (f ) (3.3)
and given f ∈ L(S),

r f ∈ arg min g∈G ρς (f, g), rf ∈ arg min g∈G ρς (f, g).
(3.4) Thus (3.3) defines respectively the best mean and empirical hypothesis for VaR within F, and (3.4) defines the best mean and empirical hypotheses for ES -VaR within G conditioned to the hypothesis f for VaR (f may not belong to F). Similarly, we define the best mean and empirical joint hypotheses for (VaR, ES-VaR) respectively by ( q, r) ∈ arg min h=(f,g)∈H ρι,ς (f, g), (q, r) ∈ arg min h=(f,g)∈H ρι,ς (f, g).

The approximation error of the estimator of VaR

Algorithm 1 is based on the following assumption:

Assumption 3.1. The function ι : R → R in (2.5) is the identity function. We therefore omit ι and write

ρ(y, v) = (1 -α) -1 (y -v) + + v,
as well as ρ(•) and ρ(•) instead of ρ ι (•, •), ρι (•) and ρι (•).

Assumption 3.1 implies the convexity of ρ(y, •) (for all y), which we exploit in several manners. In a sense, Assumption 3.1 is only an apparent restriction: notice that for any (y, v) ∈ R 2 ρ ι (y, v) = ρ(ι(y), ι(v)), which allows us to transport any conclusion under Assumption 3.1 to the respective conclusion for generic ι, by "transferring" the hypotheses related to (y, v) to hypotheses related to (ι(y), ι(v)).

The following assumption is a conditional version of Assumption A.4: Assumption 3.2. There exist functions a, b : S → R such that

F Y |X (a(X)) < α ≤ F Y |X (b(X)), (3.5)
on a set Ω 0 of P-measure one and such that

F Y |X(ω) (•) is absolutely continuous in [a(X(ω)), b(X(ω))] for every ω ∈ Ω 0 .
Notice that, under this assumption, a(X) ≤ q(X) ≤ b(X) except on a set of measure zero.

Assumption 3.3. (for a generic family F 1 ⊂ L(S)) Assumption 3.2 holds, and

F 1 ⊂ L(S) is such that 1. For every f ∈ F 1 , a(X) ≤ f (X) ≤ b(X), except on a set Ω 0 of P-measure zero. 2. There exists c F 1 > 0 such that, for every f ∈ F 1 , F ′ Y |X (f (X)) ≥ c F 1 , P-a.s..
Assumption 3.3 is needed to succeed in applying Taylor expansions towards the estimation of errors in our analysis.

Lemma 3.1. Given F ⊂ L(S), and under Assumption 3.1, define q by (3.3), let F 0 ⊂ F, and consider

F * 0 := {tf + (1 -t)q : (t, f ) ∈ [0, 1] × F 0 }, F * := {tf + (1 -t)q : (t, f ) ∈ [0, 1] × F }, If F 1 ≡ F * satisfies Assumption 3.3 and if C F * 0 := sup f ∈F * 0 {||F ′ Y |X (f (X))|| P,∞ }, (3.6)
then the inequalities

c F * || q -q|| 2 P X ,2 ≤2(1 -α)(ρ( q) -ρ(q)) ≤(2(2 -α) inf f ∈F ||f -q|| P X ,1 ) ∧ (C F * 0 inf f ∈F 0 ||f -q|| 2 P X ,2 ) (3.7) hold.
Proof. For any f ∈ F, consider the function [0, 1] → R defined by

t → V f (t) := ρ(q + t(f -q)),
which has a minimum at t = 0.

We use the definition of F Y |X (•) and differentiation under the integral sign to obtain, for every t ∈ [0, 1]

V ′′ f (t) = ∂ 2 ∂t 2 E R ρ(y, q(X) + t(f (X) -q(X)))F Y |X (dy) = ∂ ∂t E (f (X) -q(X))((1 -α) -1 (F Y |X (q(X) + t(f (X) -q(X))) -1) + 1) = E (f (X) -q(X)) 2 F ′ Y |X (q(X) + t(f (X) -q(X)))/(1 -α) ≥ c F * 1 -α E (f (X) -q(X)) 2 . (3.8)
This shows in particular that V f is twice continuously differentiable (from the right at t = 0) and convex. Applying Taylor's theorem and the fact that V ′ f (0) = 0 we arrive at

c F * 2(1 -α) ||f -q|| 2 P X ,2 ≤ ρ(f ) -ρ(q). (3.9)
Since this is valid for any f ∈ F, it is valid for f = q. This gives

c F * 2(1 -α) || q -q|| 2 P X ,2 ≤ ρ( q) -ρ(q). (3.10)
The upper bound

ρ( q) -ρ(q) ≤ C F * 0 2(1 -α) inf f ∈F 0 ||f -q|| 2 P X ,2
(3.11) follows from the inequality ρ( q) -ρ(q) ≤ ρ(f ) -ρ(q) (valid for any f ∈ F 0 ) and an obvious modification of the previous argument starting from (3.8).

Finally, the upper bound

ρ( q) -ρ(q) ≤ 2 -α 1 -α inf f ∈F ||f -q|| P X ,1 (3.12)
follows via an elementary estimation using

|a + -b + |≤ |a -b| (3.13)
and the triangle inequality, together (again) with the inequality ρ( q)-ρ(q) ≤ ρ(f )-ρ(q), valid for every f ∈ F. The conclusion follows from (3.10), (3.11) and (3.12).

Remark 3.4. Notice that as F 0 gets larger, C F * 0 in (3.6) increases and inf f ∈F 0 ||f -q|| P X ,2 decreases: by making the bound (3.7) depend of F 0 ⊂ F we leave open the room for a trade-off between these quantities. Remark 3.5. If we strengthen Assumption 3.3 by requiring that for some (c, C) ∈ (0, ∞) × (0, ∞), and except on a set of P-measure zero

c ≤ F ′ Y |X (y) ≤ C, for every y ∈ [a(X), b(X)], (3.14)
then the conclusion of Lemma 3.1 holds with (c F * , C F * 0 ) replaced by (c, C) under the sole assumption that, for every f ∈ F,5 

[f (X), q(X)] ∪ [q(X), f (X)] ⊂ [a(X), b(X)], except on a set of P-measure zero.

(3.15)

As will be illustrated in Examples 3.6 and 3.7, these observations allow weakening the dependence on F in the estimate (3.7).

Example 3.6. Assume (3.14) and, given δ > 0, assume that F is such that (3.15) holds and

inf f ∈F ||f -q|| P X ,2 < δ.
Denoting by q δ the solution to the left-hand side of (3.3), an application of Remark 3.5 gives that

c|| q δ -q|| 2 P X ,2 ≤ δ(2(2 -α) ∧ Cδ) ≤ Cδ 2 ,
leading to the estimate

|| q δ -q|| P X ,2 ≤ C c 1/2 δ. (3.16)
Example 3.7. To give a concrete instance of the previous example, assume that, for some A ≤ B, q(X) ∈ [A, B] , P X -a.s.

(see also Remark A.3), assume that (3.5) and (3.14) hold with a(X) ≡ A and b(X) ≡ B, and assume that there exists a finite or countable partition {S j } j ⊂ S of S such that, for all j,

||q|| T V S j := sup (x,x ′ )∈S j ×S j |q(x) -q(x ′ )|< δ
(for instance if q is continous, as S is a Polish space). Then (3.16) holds with

F = {x → j a j 1 S j (x) : a j ∈ [A, B], ∀j}.
Partitions {S j } j as above can be available with only partial information on q on cases of interests: consider for example the case in which S is compact and q is uniformly Lipschitz with a known Lipschitz constant.

A confidence interval for the estimator of VaR

Let us now give an upper bound for the error in probability associated to the empirical estimator q of q. For this, we need to introduce the following measures of complexity applicable to the families of hypotheses used along our schemes: Definition 3.8. If S is a Polish space, H ⊂ L(S), and X 1:n is a random sequence in S, the empirical Rademacher complexity R emp (H, X 1:n ) and the Rademacher complexity

R ave (H, X 1:n ) of H at X 1:n are defined as R emp (H, X 1:n ) = E sup h∈H n k=1 U k h(X k ) X 1:n , R ave (H, X 1:n ) = E [R emp (H, X 1:n )]
where

U 1:n is an i.i.d. Rademacher sequence P [U k = 1] = P [U k = -1] = 1/2 indepen- dent of X 1:n .
The Rademacher complexities have the following property, which we will use later and whose proof is an easy exercise: if

co(H) := m m k=1 t k h k : h 1:m ∈ H m , t 1:m ∈ [0, 1] m , k t k = 1 (3.17)
is the convex hull of H, and if

cobal(H) = co(H ∪ -H) (3.18)
is the balanced convex hull of H, then

R emp (co(H), X 1:n ) = R emp (H, X 1:n ), R emp (cobal(H), X 1:n ) ≤ 2R emp (H, X 1:n ).
Definition 3.9. If S, H and X 1:n are as in Definition 3.8, and if r ≥ 0, the covering number of H with respect to the empirical L 1 -norm at X 1:n , N 1 (H, X 1:n , r), is defined as

N 1 (H, X 1:n , r) := min m ∈ N : ∃ g 1:m ∈ L m (S) : sup h∈H min l n k=1 |h(X k ) -g l (X k )|< nr ; (3.19) with the convention inf ∅ = ∞. A sequence g 1:m satisfying the condition in (3.19) is called an r-covering of H with respect to the empirical L 1 -norm at X 1:n .
In what follows, (X, Y ) 1:n is the sample (3.1) used to compute q and

ρ(F) := {(x, y) → ρ(y, f (x)) : f ∈ F},
is the family of instantaneous losses associated to F.

Lemma 3.2. Under the hypotheses of Lemma 3.1, and given δ ∈ (0, 1), the bound

c F * ||q -q|| 2 P X ,2 ≤ 2(2 -α) inf f ∈F ||f -q|| P X ,1 ∧ C F * 0 inf f ∈F 0 ||f -q|| 2 P X ,2 +(1 -α) 2 5 n 1/2 sup f ∈F ||ρ(Y, f (X))|| P,∞ log 2 δ 1/2 + 2 n 1/2 R ave (ρ(F), (X, Y ) 1:n ) (3.20)
holds with probability at least 1 -δ. The right-hand side of (3.20) can be further upper bounded via the inequalities, valid for every r > 0

R ave (ρ(F), D) ≤((2 -α)/(1 -α))R ave (F, X 1:n ) ≤((2 -α)/(1 -α))(r + √ n sup f ∈F ||f (X)|| P,∞ E 2 log(N 1 (F, X 1:n , r/n)) ). R ave (ρ(F), D) ≤r + √ n sup f ∈F ||ρ(Y, f (X))|| P,∞ E 2 log(N 1 (ρ(F), D, r/n)) ≤r + √ n sup f ∈F ||ρ(Y, f (X))|| P,∞ E 2 log(N 1 (F, X 1:n , (1 -α)r/(2 -α)n)) . (3.21) Remark 3.10. If max{||Y || P,∞ , sup f ∈F ||f (X)|| P,∞ } ≤ B then, clearly, sup f ∈F ||ρ(Y, f (X))|| P,∞ ≤ 2 -α 1 -α B.
Proof. (of Lemma 3.2) According to (3.9), for every f ∈ F

c F * ||f -q|| 2 P X ,2 ≤ 2(1 -α)(ρ(f ) -ρ(q)), implying in particular that c F * ||q -q|| 2 P X ,2 ≤ 2(1 -α)((ρ(q) -ρ( q)) + (ρ( q) -ρ(q))) The term 2(1 -α)(ρ( q) -ρ(q)
) is upper bounded in (3.7). To upper bound ρ(q) -ρ( q) in probability we apply the Rademacher bound Barrera (2022, (3.38)

) taking Z k = (X k , Y k ) ∼ (X 1 , Y 1 ) i.i.d. and the diagonal family ρ(F) (n) 1:n = {((x k , y k )) k∈1:n → (ρ(f )(x k , y k )/n) k∈1:n : f ∈ F}
to obtain the inequality (see also Barrera (2022, eqns. (2.25)

, (2.26)) ρ(q) -ρ( q) ≤2((1/ √ n) sup f ∈F ||ρ(Y, f (X))|| P,∞ 2 log(2/δ) + (2/n)R ave (ρ(F), D)) =(2 3 /n) 1/2 sup f ∈F ||ρ(Y, f (X))|| P,∞ (log(2/δ)) 1/2 + (2/n) 1/2 R ave (ρ(F), D) (3.22)
with probability at least 1 -δ. We deduce (3.20) combining (3.22) with the above.

To prove the first inequality in (3.21), note that by Talagrand contraction lemma (Mohri, Rostamizadeh, and Talwalkar (2018, Lemma 4.2 

p.78)), since u → (1 -α) -1 u + is (1 -α) -1 -Lipschitz, then for any (x, y) 1:n ⊂ (S × R) n R emp (ρ(F), (x, y) 1:n ) ≤R emp ({(1 -α) -1 (y -f ) + : f ∈ F}, (x, y) 1:n ) + R emp (F, x 1:n ) ≤(1 -α) -1 R emp ({(y -f ) : f ∈ F}, (x, y) 1:n ) + R emp (F, x 1:n ) ≤(1 -α) -1 R emp ({y}, y 1:n ) + 2 -α 1 -α R emp (F, x 1:n ) = 2 -α 1 -α R emp (F, x 1:n ),
which implies the first inequality in (3.21) by integration with respect to the law of D.

The second and third inequalities in (3.21) are a direct consequence of Barrera (2022, eqn. (3.47)) and the argument in Barrera (2022, eqn. (3.53)). The fourth follows easily from the fact that if

F ′ ⊂ L(S) is a (1 -α)r/(2 -α) covering of F with respect to the empirical L 1 -norm at x 1:n , then {(x, y) → y -f (x)|f ∈ F ′ } is an r-covering of ρ(F)
with respect to the empirical L 1 -norm at (x, y) 1:n (this can be proved using (3.13)).

Let us now introduce the following hypothesis, which covers the estimation error of f in Algorithm 1.

Assumption 3.11. For given 0 < B 1 ≤ B 2 , ||Y || P,∞ ≤ B 2 . In addition, VaR(Y |X) takes values in (-B 1 , B 1 ] and y → F Y |X(ω) [(-∞, y]] is P-a.e. differentiable, with derivative uniformly bounded away from 0 and ∞ in [-B 1 , B 1 ]. That is, F Y |X (-B 1 ) < α ≤ F Y |X (B 1 ), P-a.s.,
and there exist 0

< c B 1 ≤ C B 1 < ∞ such that c B 1 ≤ F ′ Y |X (y) ≤ C B 1 , P-a.s., for every y ∈ [-B 1 , B 1 ].
Using Assumption 3.11, the following result follows easily from Lemma 3.2:

Theorem 3.3. Under Assumption 3.11, let

F ′ ⊂ F ⊂ co(F ′ ) ⊂ L(S) (3.23)
where F is a family of functions uniformly bounded by B 1 (see also (3.17)). Then the inequality

c B 1 ||q -q|| 2 P X ,2 ≤ 2(2 -α) inf f ∈F ||f -q|| P X ,1 ∧ C B 1 inf f ∈F ||f -q|| 2 P X ,2 +(2 2 (2 -α)/ √ n) B 2 2 log (2/δ) + 2B 1 1 + E 2 log(N 1 (F ′ , X 1:n , B 1 / √ n)) (3.24)
holds for every δ ∈ (0, 1) with probability at least 1 -δ.

Proof. As discussed in Remark 3.5, it is easy to see that the hypotheses of Lemma 3.1 hold for c

F * = c B 1 and C F * = C B 1 in this case.
The inequalities in (3.21) and Barrera (2022, Remark 3.4) for Barrera (2022, eqn. (2.3))) give that for every δ > 0

(H ′ 1:n , H 1:n ) = (diag(F ′ ) 1:n , diag(F) 1:n ) (see
R ave (ρ(F), (X, Y ) 1:n ) ≤((2 -α)/(1 -α)) δ + √ n sup f ∈F ||f (X)|| P,∞ E 2 log(N 1 (F ′ , X 1:n , r/n)) . (3.25) Taking δ = B 1 √ n
and using (3.25) we obtain

R ave (ρ(F), (X, Y ) 1:n ) ≤ ((2 -α)/(1 -α))B 1 √ n(1 + E 2 log(N 1 (F ′ , X 1:n , B 1 / √ n)) ).
This inequality, when used to estimate the right-hand side of (3.20), gives the right hand side of (3.24).

Remark 3.12. As the proof shows, we obtain the same conclusion if F and F ′ are simply assumed to satisfy

R ave (F, X 1:n ) ≤ R ave (F ′ , X 1:n ),
in particular for F ⊂ (co(F ′ )) + by a novel application of Talagrand's contraction lemma. Notice also that a slightly bigger upper bound is obtained in place of (3.24) (some terms are multiplied by 2) if we replace (3.23) by the less restrictive condition

F ′ ⊂ F ⊂ cobal(F ′ ) (cobal(F) is defined in (3.18)).

A Rademacher confidence interval for the estimator of ES -VaR

In what follows, we will focus on the estimator rq of r = s -q obtained under the following assumption corresponding to the scheme for approximating r in Algorithm 1.

Assumption 3.13. Assume that ϱ ς ≡ ϱ (B) in (3.4) (see below) is given by the square loss with truncation on the response

ϱ (B) (y, v, z) =(z -T B ((1 -α) -1 (y -v) + )) 2 (3.26)
for B > 0, and that G is a family of functions S → [0, B].

As seen in Remark 2.3, the choice (3.26) corresponds to an approximation scheme (with an additional truncation) for the case ς(z) = z 2 . We will also consider the family ϱ

(B) f (G) defined (for f fixed) by ϱ (B) f (G) := {(x, y) → ϱ (B) f (g)(x, y) := ϱ (B) (y, f (x), g(x))|g ∈ G}. Let us denote by r f (f ∈ L + (S)) any function satisfying r f (X) = E (1 -α) -1 (Y -f (X)) + |X , P-a.s.,
and let r (B) f : S → [0, B] be one of its truncated companions, defined by

r (B) f (X) = E T B ((1 -α) -1 (Y -f (X)) + )|X , P-a.s..
For every (f, g) ∈ L(S) × L + (S), we will define

h (f,g) (X, Y ) := ϱ (B) (Y, f (X), g(X)) -ϱ (B) (Y, f (X), r (B) f (X))
, which is the same as the function in Barrera (2022, Section 4 eqn.(4.5)) for the case in consideration.

Lemma 3.4. For every (f, f ′ , B) ∈ L + (S) × L + (S) × (0, ∞] and every p ≥ 1, the inequalities

||r f -r (B) f || P X ,p ≤||((1 -α) -1 (y -f ) + -B) + || P X ,p ||r (B) f -r (B) f ′ || P X ,p ≤(1 -α) -1 ||f -f ′ || P X ,p hold (with r (∞) f ≡ r f ).
Proof. The first inequality is a direct consequence of Jensen's inequality:

E [|E [(W -T B W )|X] | p ] ≤ E [|W -T B W | p ] = E ((|W |-B) + ) p ,
valid for p ≥ 1 and any integrable random variable W . As for the second, notice first that for every (a, b,

B) ∈ R × R × [0, ∞],
|T B a -T B b|≤ |a -b|.

(3.27)

Combining (3.27) with (3.13) and with Jensen's inequality we get, for every p ≥ 1:

||r (B) f -r (B) f ′ || p P X ,p = E |E T B ((1 -α) -1 (Y -f (X)) + ) -T B ((1 -α) -1 (Y -f ′ (X)) + )|X | p ≤ E E |T B ((1 -α) -1 (Y -f (X)) + ) -T B ((1 -α) -1 (Y -f ′ (X)) + )| p |X ≤ (1 -α) -p ||f -f ′ || p P X ,p .
Theorem 3.5. Under Assumption 3.13, given f ∈ L(S) and given

G ′ ⊂ G ⊂ co(G ′ ) ⊂ L + (S)
where G is a family of functions uniformly bounded by B, the inequality

||r f -r|| P X ,2 ≤ inf g∈G ||g -r|| P X ,2 + 2((1 -α) -1 ||f -q|| P X ,2 +||((1 -α) -1 (y -q) + -B) + || P X,Y ,2 ) + B (2/ √ n) 2 log(2/δ) + 8 1 + E 2 log(N 1 (G ′ , X 1:n , B/ √ n)) 1/2
.

(3.28)

holds for every δ ∈ (0, 1), with probability at least 1 -δ (and Remark 3.12 also applies).

Proof. In this proof, ||•|| denotes either the L 2 P X seminorm on L + (S) or the L 2 P X,Y seminorm on L(S × R), the appropriate choice will be always clear (any other norm will be made explicit).

For f ∈ F, the triangle inequality gives

||r f -r||≤||r f -r (B) f ||+||r (B) f -r (B) q ||+||r (B) q -r|| ≤||r f -r (B) f ||+(1 -α) -1 ||f -q||+||((1 -α) -1 (y -q) + -B) + ||, (3.29) by Lemma 3.4. Now, if (X ′ , Y ′
) is an independent copy of (X, Y ), then by the argument leading to Barrera (2022, Section 4, eqn. (4.15))6 

||r f -r (B) f || 2 -inf g∈G ||g -r (B) f || 2 =E ϱ (B) (Y ′ , f (X ′ ), rf (X ′ )) -ϱ (B) (Y ′ , f (X ′ ), r f (X ′ ))|D ≤ sup g∈G 1 n n k=1 (E ϱ (B) (Y, f (X), g(X)) -ϱ (B) (Y k , f (X k ), g(X k ))) + sup g∈G 1 n n k=1 (ϱ (B) (Y k , f (X k ), g(X k )) -E ϱ (B) (Y, f (X), g(X)) ) .
We conclude as in the argument for Barrera (2022, eqn. (3.38)) that the inequality

||r f -r (B) f || 2 -inf g∈G ||g -r (B) f || 2 ≤(2/ √ n)(sup g∈G ||ϱ (B) f (g)(X, Y )|| P,∞ 2 log(2/δ) + (2/ √ n)R ave (ϱ (B) f (G), (X, Y ) 1:n )) (3.30)
holds for every δ ∈ (0, 1) with probability at least 1 -δ. In virtue again of the triangle inequality and the inequality

a 2 + b 2 ≤ |a|+|b|,
(3.30) and Lemma 3.4 imply that

||r f -r (B) f ||≤ inf g∈G ||g -r|| + (1 -α) -1 ||f -q||+||((1 -α) -1 (Y -q(X)) + -B) + || + ((2/ √ n)(sup g∈G ||ϱ (B) f (g)(X, Y )|| P,∞ 2 log(2/δ) + (2/ √ n)R ave (ϱ (B) f (G), (X, Y ) 1:n ))) 1/2 .
(3.31)

A combination of (3.29) and (3.31) leads to

||r f -r||≤ inf g∈G ||g -r|| + 2((1 -α) -1 ||f -q||+||((1 -α) -1 (y -q) + -B) + ||) + ((2/ √ n)(sup g∈G ||ϱ (B) f (g)(X, Y )|| P,∞ 2 log(2/δ) + (2/ √ n)R ave (ϱ (B) f (G), (X, Y ) 1:n ))) 1/2 .
(3.32)

Let us now upper bound the Rademacher complexity in (3.32). Since the function

u → u 2 , u ∈ [0, 2B]
is Lipschitz with Lipschitz constant 4B, Talagrand's contraction lemma gives

R ave (ϱ (B) f (G), (X, Y ) 1:n ) ≤ 4BR ave (G, X 1:n ) = 4BR ave (G ′ , X 1:n ). (3.33)
An application of Barrera (2022, (3.47)) together with (3.33) gives the inequality

R ave (ϱ (B) f (G), (X, Y ) 1:n ) ≤ 4B(r + B √ nE 2 log(N 1 (G ′ , X 1:n , r/n)) )
for every r > 0, which in turns implies that (taking

r = B √ n) R ave (ϱ (B) f (G), (X, Y ) 1:n ) ≤ 4B 2 √ n 1 + E 2 log(N 1 (G ′ , X 1:n , B/ √ n)) (3.34)
(3.28) follows by a combination of (3.32), (3.34), and the bound

sup g∈G ||ϱ (B) f (g)(X, Y )|| P,∞ ≤ B 2 .

A Vapnik-Chervonenkis confidence interval for the estimator of ES -VaR

We will proceed now to prove the following error bound for ||r f -r|| P X ,2 (see (2.13) and (3.4)):

Theorem 3.6. Under Assumption 3.13, given f ∈ L + (S) and G ⊂ L + (S), the inequality

||r f -r|| P X ,2 ≤ (6 λ -5) inf g∈G ||g -r|| P X ,2 + (1 + (6 λ -5))((1 -α) -1 ||f -q|| P X ,2 +||((1 -α) -1 (y -q) + -B) + || P X,Y ,2 ) + (2 7 • 3) 1/2 B((1/((λ -1)n)) (log(42) + log (1/δ) + log (E [N 1 (G, X 1:n , B/(24 n))])) ) 1/2 (3.35)
holds for every δ ∈ (0, 1) with probability at least 1 -δ, provided that

1 < λ ≤ 13/12. (3.36)
Proof. In this case we depart from the estimate (3.29) and we then estimate ||r f -r (B) f || via Barrera (2022, Theorem 4.2) , which depends on the functions

A :S n × (1, ∞) × (1, ∞) × (0, ∞) → (0, ∞] a :(1, ∞) × (1, ∞) × (0, ∞) → (0, ∞] ϵ n :(1, ∞) × (1, ∞) → (0, ∞) b :(1, ∞) × (1, ∞) → (0, ∞)
given by

A(x 1:n , c, λ, ϵ) :=2(c + 1)(2c + 3)N 1 T B G, x 1:n , 1 2 5 1 B 1 λ(c -1) + 1 (1 - 1 c )ϵ , a(c, λ, ϵ) :=E [A(X 1:n , c, λ, ϵ)] , ϵ n (c, λ) :=8B 2 (-(λ -1) + (λ -1) 2 + c(c + 1)λ 2 /n) b(c, λ) := 1 2 5 B 2 1 ( 1 3 (1 -1 c )(1 -1 λ ) + (2λ -1)) 2 (1 - 1 c ) 3 (1 - 1 λ ).
Indeed we arrive, by an argument as the one leading to (3.32), at the estimate

||r f -r||≤ (6 λ -5) inf g∈G ||g -r|| +(1 + (6 λ -5))((1 -α) -1 ||f -q||+||((1 -α) -1 (y -q) + -B) + ||) + 6 ϵ n (c, λ) ∨ ( 1 nb(c, λ) (log a(c, λ, ϵ n (c, λ)) + log(2/δ))) 1/2
(3.37) with probability at least 1 -δ. Restricting λ to the range (3.36) and using the analysis leading to Barrera (2022, (4.41)), we deduce from (3.37) that

||r f -r||≤ (6 λ -5) inf g∈G ||g -r|| +(1 + (6 λ -5))((1 -α) -1 ||f -q||+||((1 -α) -1 (y -q) + -B) + ||) +(2 7 • 3) 1/2 B((1/((λ -1)n)) (log(42) + log (1/δ) + log (E [N 1 (G, X 1:n , B/(24 n))])) ) 1/2
holds with probability at least 1 -δ.

Rademacher vs VC: from "small" to "big" data To give a crude comparison between Theorems 3.5 and 3.6, first note that, since √ 6λ -5 ≈ 1 (under (3.36)), it is reasonable to limit the discussion to a comparison between the terms in the third line of the inequalities (3.28) and (3.35).

The ratio between these two terms is lower bounded (crudely) by

(2 3 • 3) -1/2 ((λ -1) √ n) 1/2 (log (42E [N 1 (G, X 1:n , B/(24 n))] /δ)) -1/2 , which shows that (3.28) is worse (bigger) than (3.35) provided that √ n ≥ 2 3 • 3 λ -1 log (42E [N 1 (G, X 1:n , B/(24 n))] /δ) ≥2 5 • 3 2 (log(42) + log(1/δ)), (3.38) 
where in the last inequality we used the upper bound for λ in (3.36).

The first inequality in (3.38) is an exact (but crude) criterion on the sample size indicating an interval where (3.35) is preferable to (3.28). The inequality between the first and the third terms in (3.38) can be understood as an "heuristic" criterion for this preference, indicating in particular the heuristic boundary

n ≥ (2 5 • 3 2 • log(42)) 2
between "small-medium" and "big" data, where we pass from the Rademacher to the VC regime.

A Posteriori Monte Carlo Validation of VaR and ES learners

Assuming one has access to the generative process of the data, as it is the case in most quantitative finance problems, one can in fact estimate distances of any guesses to the groundtruth (conditional) VaR and ES without directly computing the latter, using a simple twin-simulation trick.

Proposition 3.7. Let q and š be two Borel functions of x (tentative approximations q(X) and š(X) of q(X) = VaR(Y |X) and s(X) = ES(Y |X) at the confidence level α). Introducing two conditionally independent copies 7 Y (1) and Y (2) of Y given X and denoting Y (1) ∧ Y (2) = min{Y (1) , Y (2) }, we have

∥P[Y ≥ q(X)|X] -1 + α∥ P,2 = (3.39) (1 -α)(1 -α -2P(Y > q(X))) + P[Y (1) ∧ Y (2) > q(X)], ∥š(X) -s(X)∥ P,2 = ∥š(X) -q(X) -E[(1 -α) -1 (Y -q(X)) + |X]∥ P,2 +ϵ, (3.40)
where

∥š(X) -q(X) -E[(1 -α) -1 (Y -q(X)) + |X]∥ 2 P,2 = ∥š(X) -q(X)∥ 2 P,2 + 1 (1 -α) 2 E[(Y (1) -q(X)) + (Y (2) -q(X)) + ] - 2 1 -α E[(š(X) -q(X))(Y -q(X)) + ] (3.41)
and, assuming that

F ′ Y |X (Y ) ≥ c holds P-a.s for some c > 0, 0 ≤ ϵ ≤ 1 c (1 + (1 -α) -1 )∥P[Y ≥ q(X)|X] -1 + α∥ P,2 , (3.42)
which is in turn given by (3.39).

Proof. We have

∥P[Y ≥ q(X)|X]-1+α∥ P,2 = E[P[Y ≥ q(X)|X] 2 ] + (1 -α) 2 -2(1 -α)P[Y ≥ q(X)],
where

E[P[Y ≥ q(X)|X] 2 ] = E[P[Y (1) ≥ q(X)|X]P[Y (2) ≥ q(X)|X]] = P[Y (1) ∧ Y (2) ≥ q(X)].
Thus (3.39) follows. For the ES, note that with ρ(y, v)

= (1 -α) -1 (y -v) + + v so that E[ρ(Y, q(X))|X] = s(X): ∥š(X) -s(X)∥ 2 P,2 = ∥E[Z|X]∥ 2 P,2 ,
where Z := š(X) -ρ(Y, q(X)) satisfies by the conditional Jensen inequality:

∥E[Z|X]∥ 2 P,2 = E[(E[Z|X]) 2 ] ≤ EE[Z 2 |X]) = E[Z 2 ] = ∥š(X) -ρ(Y, q(X))∥ 2 P,2 .
An application of the triangular inequality yields ∥š(X) -ρ(Y, q(X))∥ P,2 ≤ ∥š(X) -ρ(Y, q(X))∥ P,2 +∥ρ(Y, q(X)) -ρ(Y, q(X))∥ P,2 .

One then uses the (1 + (1 -α) -1 )-Lipschitz regularity of ρ with respect to its second argument and the assumed 1 c -Lipschitz regularity of F -1 Y |X to deduce (3.40) from the above, for ϵ satisfying (3.42). Using the twin-simulation trick again, we get (3.41).

The expectations and probabilities in (3.39) and (3.41) can then be estimated via a simply dedoubled (twin) Monte Carlo simulation (see Algorithm 2), as opposed to a plain nested Monte Carlo that would be required to explicitly attempt to approximate conditional expectations. Moreover the accuracy of the twin Monte-Carlo estimates can be controlled by computing confidence intervals. Noting that 1 -α = P[Y ≥ q(X)|X] holds almost P surely, the distance in (3.39) can be interpreted as a distance in p-values between the quantile estimate q(X) and the true quantile q(X), as opposed to a distance directly between values of conditional quantile estimators. If the approximation q is sufficiently good, i.e. if this distance is sufficiently small (as compared to 1 -α), then (3.41) can be used as a proxy for ∥š(X) -s(X)∥ 2 P,2 : see Algorithm 2. Note however that, because of the (1 -α) -1 factor in (3.42), the inequality in (3.42) becomes crude when α gets close to 1.

name : TwinVal input : out-of-sample {(X i , Y (1) i , Y (2) i )} n i=1 with Y (1)
i , Y

(2) i independent copies of Y given X = X i , a confidence level α, corresponding estimates q and š of q and s, tolerance levels δ var and δ es output: Quality of q and š 1 Compute (ϵ var

) 2 = 1 n n i=1 ((1 -α)(1 -α -21 Y (1) i >q(Xi) ) + 1 Y (1) ∧Y (2) i >q(Xi)) 2 if ϵ var > δ var then 3 Reply already q is bad 4 else 5 Compute (ϵ es ) 2 = 1 n n i=1 (š(X i ) -q(X i )) 2 + 1 (1-α) 2 (Y (1) i -q(X i )) + (Y (2) i - q(X i )) + -2 1-α (š(X i ) -q(X i ))(Y (1) i -q(X i )) + ] 6 if ϵ es > δ es then 7
Reply q is good but š is bad

8 else 9
Reply q and š are good In the case where the twin Monte Carlo estimates for the right-hand-sides in (3.39) and (3.41), after having been confirmed to be accurate by drawing enough samples, are not good enough, one can improve the numerical optimization, in first attempt, and then act on the hypothesis space. For instance, in the case of the next section of the paper where hypothesis spaces of neural networks are used, one can improve the corresponding stochastic gradient descent (e.g. switching from Algorithm 3 to Algorithm 8) by changing the optimizer and/or its hyperparameters, in first attempt, and then try to train with more layers/units or better architectures. We apply the previous developments to the estimation of errors from Algorithm 1 when one-hidden-layer neural networks with bounded weights are used to define the hypothesis spaces. We consider the following families of functions: 

F(d, B, m, σ) = {R d ∋x → c 0 + m k=1 c k σ(a k • x + b k )∈ R | (a 1:m , b 1:m ) ∈ (R d ) m × R m , c 0:m ∈ R m+1 with m k=0 |c k |≤ B}.
It is clear that F(d, B, m, σ) is totally bounded by B. Notice also that for all

m ∈ N ⋆ F(d, B, 1, σ) ⊂ F(d, B, m, σ) ⊂ co( F(d, B, 1, σ)) = cobal( F(d, B, 1, σ)),
where co(•) and cobal(•) are defined in (3.17) and (3.18).

We have from Barrera (2022, Example 3.2) for all 0 < r < B 2 : log(N 1 ( F(d, B, m, σ), X 1:n , r)) ≤ ((2d + 5)m + 1)(1 + log(12) + log(B/r) + log(m + 1))

This estimate can be combined with Theorem 3.3 to give an error estimate for Algorithm 1. In the context of this algorithm, we simplify the notation by writing

Y h k (ω) = h k (X(ω), Y (ω)), q h k (x) = h k (x, q(x)) (k = 1, 2), r h 2 (x) = h 2 (x, r(x)) (4.1)
where q and r = s -q are defined as in (2.4).

Theorem 4.1. With the notation of Algorithm 1 and in (4.1), and for F = F(d, B 1 , m, σ), if Y h 1 satisfies Assumption 3.11, then the inequality

c B 1 || f -q h 1 || 2 P X ,2 ≤ 2(2 -α) inf f ∈ F ||f -q h 1 || P X ,1 ∧ C B 1 inf f ∈ F ||f -q h 1 || 2 P X ,2 + 4(2 -α) √ n B 2 2 log 2 δ +2B 1 1 + 2((2d + 5)m + 1)(1 + log(12(m + 1) √ n))
holds for every δ ∈ (0, 1) with probability at least 1 -δ.

Remark 4.2. The discussion in Padilla, Tansey, and Chen (2020) implies that the rates following from these bounds cannot be improved in general, but as proved in [START_REF] Chen | Large sample sieve estimation of semi-nonparametric models[END_REF], Example 3.2.2), the dimension of the feature space can play a role in a variety of examples.

Analogous reasoning, using this time Theorems 3.5 and 3.6 and the observations in Remark 3.12, lead to the following bound on the error of ĝ in Algorithm 1: Theorem 4.2. With the notation of Algorithm 1 and in (4.1), for8 G = ( F(d, B, m, σ)) + , the inequality

||ĝ -r h 2 || P X ,2 ≤ (6 λ -5) inf g∈G ||g -r h 2 || P X ,2 + (1 + (6 λ -5))((1 -α) -1 ||f -q h 2 || P X ,2 +||((1 -α) -1 (y h 2 -q h 2 ) + -B) + || P X,Y ,2 ) + B 2/ √ n × 2 4 (log(2 • 3 • 7/δ) + ((2d + 5)m + 1)(1 + log(2 5 • 3 2 (m + 1)n))/((λ -1) √ n) ∧ 2 log(2/δ) + 2 3 1 + 2(d + 3)(1 + log(2 3 • 3 √ n))
holds with probability at least 1 -δ, for every 1 < λ ≤ 13/12 and every f ∈ F.

More generally, we consider feed-forward neural networks with more than one layer in what follows. We define F d,o,m,n , to be the set of functions of the form

R d ∋ x → ζ d,o l+1 (x, W, b) ∈ R o
, where:

ζ d,o 0 (x, W, b) = x ζ d,o i (x, W, b) = σ(W i ζ d,o i-1 (x, W, b) + b i ), ∀i ∈ {1, . . . , l} ζ d,o l+1 (x, W, b) = W l+1 ζ d,o l (x, W, b) + b l+1 and W 1 ∈ R m×d , W 2 . . . , W n ∈ R m×m , W l+1 ∈ R o×m , b 1 , . . . , b l ∈ R m , b l+1 ∈ R o .
The function σ is called an activation function. We also choose the Softplus activation function, i.e. σ(x) = log(1 + exp(x)).

In what follows, we assume a finite i.i.d sample of (X, Y ) given by D n := {(X i , Y i )} 1≤i≤n .

Learning the VaR

In this part, the goal is to find an approximation of q(X) = VaR(Y |X), at the confidence level α, as a function of X, represented by a neural network from F d,1,m,l , for given m and l. More precisely, we aim to solve the following optimization problem (cf. (2.9) and (2.5)): q ∈ arg min

q∈F d,1,m,l E[(Y -q(X)) + + (1 -α)q(X)]
or, equivalently, find weights

( W var , bvar ) ∈ arg min W,b E[(Y -ζ d,1 l+1 (X, W, b)) + + (1 -α)ζ d,1 l+1 (X, W, b)]. (4.2)
Problem (4.2) is then solved numerically by applying a stochastic gradient descent (Algorithm 3 or an accelerated version of it, noting that the gradients there are quickly and exactly computed by automatic differentiation) to a finite-sample formulation of the problem (cf. step 3 in Algorithm 1):

( W var , b var ) ∈ arg min W,b 1 n n i=1 [(Y i -ζ d,1 l+1 (X i , W, b)) + + (1 -α)ζ d,1 l+1 (X i , W, b)]. (4.3) 
This specification of Algorithm 1 regarding the VaR (see the step 3 there) is detailed in Algorithm 4 (the corresponding treatment of ES is deferred to Section 4.3). Once (4.3) has been solved numerically (a procedure to which we will refer to as training in what follows), we obtain an approximation of VaR(Y |X), at the confidence level α, given by q(X), where q(x)

:= ζ d,1 l+1 (x, W var , b var ) , x ∈ R d (see Algorithm 4). name : VaRAlg input : {(X i , Y i )} n i=1
, a partition B of {1 . . . n}, a quantile level α, a number of epochs E ∈ N ⋆ , a learning rate η > 0, initial values for the network parameters W and b, and neural network output function

ζ d,1 l+1 (x, W, b) output: Trained parameters of VaR network 1 define ρ var (W, b, batch) = 1 |batch| i∈batch [(Y i -ζ d,1 l+1 (X i , W, b)) + + (1 -α)ζ d,1 l+1 (X i , W, b)]

Learning the ES using a two-step approach

Our next aim is to find an approximation of the ES(Y |X), at the confidence level α, as a function of X that is represented by a neural network from F d,1,m,l , for given m, n. Assuming a representation, or approximation, q of the VaR of Y given X at the confidence level α, which we will call VaR candidate, the goal is to solve the following problem (cf. (2.12)):

s ∈ arg min

s∈F d,1,m,l E[((1 -α) -1 (Y -q(X)) + + q(X) -s(X)) 2 ]
for which we can write a finite-sample version in parameter space as follows (cf. the step 4 in Algorithm 1):

( W es , b es ) ∈ arg min W,b 1 n n i=1 [((1 -α) -1 (Y i -q(X i )) + + q(X i ) -ζ d,1 l+1 (X i , W, b)) 2 ]. (4.4)
This specification of Algorithm 1 regarding the ES (see the step 4 there) is detailed in the second part of Algorithm 5. Alternatively, using a transfer learning trick, one can deduce an ES approximation very quickly using a VaR candidate that is in neural network form. Namely, one can look for an ES approximator using a neural network with the same architecture as the one used for the VaR, set the weights of all hidden layers to those of the VaR network and then freeze them. The training of the ES approximator then falls down to a linear regression to determine the weights of the output layer, as detailed in the first part of Algorithm 5. We show in Section 6 that such a scheme is enough to obtain good approximations, while also being very fast (a fraction of a second in our experiments) if one uses highly optimized linear algebra routines such as the ones implemented by cuBLAS for Nvidia GPUs.

In either case, the ensuing estimate of s is 

s(x) := ζ d,1 l+1 (x, W es , b es ) , x ∈ R d (see Algorithm 5). name : ESAlg input : {(X i , Y i )} n i=1 ,
({ W es i } l i=1 , { b es i } l i=1 ) ← ({ W var i } l i=1 , { b var i } l i=1 ) ( W es l+1 , b es l+1 ) ← argmin W l+1 ,b l+1 n i=1 (1 -α) -1 (Y i -ζ d,1 l+1 (X i , W var , b var )) + + ζ d,1 l+1 (X i , W var , b var ) -ζ d,1 l+1 X i , ({ W var i } l i=1 , W l+1 ), ({ b var i } l i=1 , b l+1 ) 2 6 else 7 define ρ es (W, b, batch) = 1 |batch| i∈batch [((1 -α) -1 (Y i -ζ d,1 l+1 (X i , W var , b var )) + + ζ d,1 l+1 (X i , W var , b var ) -ζ d,1 l+1 (X i , W, b)) 2 ] 8 ( W es , b es ) ← SGDOpt({(X i , Y i )} n i=1 , B, E, η, W var , b var , ρ es ) 9 end
Algorithm 5: Neural network regressions for learning the ES in two steps.

Multi-α learning for VaR

In this part we are interested in learning VaR(Y |X) for multiple confidence levels α ∈ (0, 1) using a single empirical error minimization. This can help give insights into the sensitivity of VaR(Y |X) with respect to the confidence level, or into the full distribution of the law of Y given X (e.g. approximated by a histogram representation).

Although one could also formulate multi-α learning versions for ES à la Section 5.3, we have found numerically that it significantly degrades the learning and thus we stick to the VaR in what follows. However, for multi-α ES, the transfer learning trick of Section 4.3 is still a valuable alternative, whether it is done α by α, as each run of it is very fast, or globally across α's based on either of the multi-α VaR approaches below.

Related literature

The simultaneous learning of conditional quantiles for multiple confidence levels and the problem of quantile crossing, i.e. the violation of the monotonicity with respect to the confidence level, are early addressed in [START_REF] He | Quantile curves without crossing[END_REF]; [START_REF] Koenker | Quantile regression for longitudinal data[END_REF][START_REF] Takeuchi | Nonparametric quantile estimation[END_REF]. We refer the reader to [START_REF] Moon | Learning multiple quantiles with neural networks[END_REF] for a review of more recent references. To deal with the quantile crossing problem, two strategies for constraints can be considered.

The first strategy is to use hypothesis spaces of functions nondecreasing with respect to the confidence level. [START_REF] Meinshausen | Quantile regression forests[END_REF] introduce quantile regression forests. In this model the predicted quantile of a new point is based on the empirical percentile of the group (i.e. the terminal leaf of each tree) where this point belongs, hence, the monotonicity of the quantile estimates is satisfied by construction. Regarding neural networks, [START_REF] Hatalis | Smooth pinball neural network for probabilistic forecasting of wind power[END_REF] propose a specific initialization scheme for the weights of the output layer, which does not prevent quantile crossings, but appears to reduce them significantly in their experiments. [START_REF] Cannon | Non-crossing nonlinear regression quantiles by monotone composite quantile regression neural network, with application to rainfall extremes[END_REF] considers the confidence level as an additional explanatory variable and then explores a network such that the estimate is monotone with a defined covariate (confidence level), imposing the non-crossing. [START_REF] Gasthaus | Probabilistic forecasting with spline quantile function rnns[END_REF] and Padilla, Tansey, and Chen (2020) use a (deep) network with multiple outputs, constrained by design to be positive, which are expected to approximate quantile increments. The latter resembles our multi-α(III) approach in Section 12, especially when the increments are constrained to be positive. Under our multi-α(III) approach, however, we sample the confidence level uniformly on a given interval and we further interpolate linearly with respect to the confidence level before insertion of the output of the neural network in the training loss (cf. (5.2)-( 5.3)), in order to have a conditional quantile function that is valid for all quantile levels in the interval.

The second strategy is to consider explicitly the non-crossing constraints during the learning phase of the model in form of either hard constraints (that the model must strictly satisfy) or soft constraints (i.e. penalization). Once the non-crossing hard constraints are employed, the model is usually learned using primal-dual optimization algorithms. The latter are applicable in a wide class of models, e.g. support vector regression [START_REF] Takeuchi | Nonparametric quantile estimation[END_REF][START_REF] Sangnier | Joint quantile regression in vector-valued RKHSs[END_REF] and spline regression [START_REF] Bondell | Noncrossing quantile regression curve estimation[END_REF], but notably not in the case of the family of (deep) neural networks, because of the computational cost and the poor scalability of projected gradient descent. Therefore, the non-crossing constraints are more preferably embedded in the training of neural networks via a penalty term, based in [START_REF] Moon | Learning multiple quantiles with neural networks[END_REF] on a finite difference of the output of the neural network (that approximates the value-at-risk) for two confidence levels. In Section 5.3 we use a similar penalization strategy, where, instead of penalizing the negative part of a finite difference, we penalize the negative part of the partial derivative of the network with respect to the confidence level. The partial derivative gives more information about the local behavior around training points and we can penalize its negative part at every α that appears at the training stage, e.g. for several thousands values of α in our numerics below, as opposed to penalizing negative increments at a few fixed values of α in [START_REF] Moon | Learning multiple quantiles with neural networks[END_REF]. Our approach also spares one hyperparameter, namely the size of the discrete increment in confidence levels used for the finite differences.

Extension of the bounds to multi-α learning

The various proofs and bounds presented in this paper for a fixed α ∈ [0, 1] can be extended to the multi-α learning framework where α is now a random variable supported on I = [α, α] ⊂ (0, 1) (with Lebesgue sigma-algebra I) treated as a covariate alongside X: see Table 1 for the changes that need to be done in order to have similar results in this new framework. The implementation of this approach using neural networks is

Single-α Multi-α D = {(X j , Y j )} n j=1 is an i.i.d sample of (X, Y ) D = {(α j , X j , Y j )} n j=1 is an i.i.d sample of (α, X, Y ) S ⊗ R I ⊗ S ⊗ R ρ(y, v) = (1 -α) -1 (y -v) + + v ρ(α, y, v) = (1 -α) -1 (y -v) + + v ρ(f ) = E[ρ(Y, f (X))] ρ(f ) = E[ρ(α, Y, f (α, X))] F ⊂ ℓ(S) F ⊂ ℓ([α, α] × S) q ∈ argmin f ∈F E[ρ(Y, f (X))] q ∈ argmin f ∈F E[ρ(α, Y, f (α, X))] q ∈ argmin f ∈F 1 n n k=1 ρ(Y k , f (X k )) q ∈ argmin f ∈F 1 n n k=1 ρ(α k , Y k , f (α k , X k )) ρ(q) -ρ(q) ≥ c F * 2(1-α) ∥q -q∥ 2 P X ,2 ρ(q) -ρ(q) ≥ c F * 2 E[ (q(α,X)-q(α,X)) 2 1-α ] ≥ c F * 2(1-α) ∥q -q∥ 2 P (α,X) ,2 ρ(q) -ρ(q) ≤ C F * 0 2(1-α) ∥q -q∥ 2 P X ,2 ρ(q) -ρ(q) ≤ C F * 0 2 E[ (q(α,X)-q(α,X)) 2 1-α ] ≤ C F * 0 2(1-α) ∥q -q∥ 2 P (α,X) ,2 ρ(q) -ρ(q) ≤ 2-α 1-α inf f ∈F ∥f -q∥ 2 P X ,1 ρ(q) -ρ(q) ≤ inf f ∈F E[ 2-α 1-α |f (α, X) -q(α, X)|] ≤ 2-α 1-α inf f ∈F ∥f -q∥ 2 P (α,X) ,1 ρ(F) (n) 1:n = {(X k , Y k ) k∈1:n → ρ(F) (n) 1:n = {(α k , X k , Y k ) k∈1:n → (ρ(Y k , f (X k ))/n) k∈1:n , f ∈ F} (ρ(α k , Y k , f (X k ))/n) k∈1:n , f ∈ F}
Table 1: Main changes required to adapt the previous results and proofs from a singlequantile to a multi-quantile regression setup.

discussed in Section 5.3. Hereafter we randomize α and assume α ∼ U([α, α]). We then consider a finite i.i.d sample α 1 , . . . , α n of α, independent of D n .

Multi-α learning using neural networks

Learning with a continuum of α's The finite-sample training problem for this approach can be stated as follows:

( W vars , b vars ) ∈ arg min W,b 1 n n i=1 [(Y i -ζ d+1,1 l+1 ([α i , X i ], W, b)) + +(1-α i )ζ d+1,1 l+1 ([α i , X i ], W, b)],
where [a, x] is the vector obtained by concatenating the vector x to the real a. One can also approximately impose the non-crossing of the quantiles by penalizing the sample average of the negative part of the partial derivative ∂ ∂α ζ d+1,1 l+1 ([α, X], W, b):

(5.1)

( W vars , b vars ) ∈ arg min W,b 1 n n i=1 [(Y i -ζ d+1,1 l+1 ([α i , X i ], W, b)) + + (1 -α i )ζ d+1,1 l+1 ([α i , X i ], W, b) + λ( ∂ ∂α ζ d+1,1 l+1 ([α i , X i ], W, b)) -],
where λ > 0 determines the strength of the penalization. An approximation for VaR(Y |X) for any α ∈ (α, α) is then given by ζ d+1,1 l+1 ([α, X], W vars , b vars ). Notice that one can compute the derivative in (5.1) fast in closed-form given our neural network parametrization, as

∂ ∂α ζ d+1,1 l+1 ([α, X], W, b) = W l+1 ∂ ∂α ζ d+1,1 n ([α, X], W, b), where ∂ ∂α ζ d+1,1 0 ([α, X], W, b) = [1, 0 d ] and, for i = 1, . . . , l, ∂ ∂α ζ d+1,1 i ([α, X], W, b) = (W i ∂ ∂α ζ d+1,1 i-1 ([α, X], W, b)) ⊙ σ ′ (W i ζ d+1,1 i-1 ([α, X], W, b) + b i-1 ).
Here ⊙ is an element-wise product and σ ′ is the derivative of σ (applied element-wise).

Given the computations of

ζ d+1,1 l+1 ([α, X], W, b) and ∂ ∂α ζ d+1,1 l+1 ([α, X], W, b
) share many common sub-expressions, the recursions can be done at the same time, i.e. at each i ∈ {0, . . . , l + 1}, compute ζ d+1,1 i ([α, X], W, b) and then reuse the common sub-expressions to compute also

∂ ∂α ζ d+1,1 i ([α, X], W, b).
In the numerics, we refer to this approach with multi-α(I) if we use a non-zero λ, and multi-α(II) otherwise: see Algorithm 6. The ensuing approximation of VaR(Y |X) at the (random) confidence level α, is given by q α (X), where 

q a (x) := ζ d+1,1 l+1 (a, x, W vars , b vars ) , a ∈ [α, α], x ∈ R d (see Algorithm 6). name : MultiContinousVaRAlg input : {(X i , Y i )} n i=1 ,
6 define ρ vars (W, b, batch) = 1 |batch| i∈batch [(Y i -ζ d+1,1 l+1 ([α i , X i ], W, b)) + + (1 - α i )ζ d+1,1 l+1 ([α i , X i ], W, b) + λ( ∂ ∂α ζ d+1,1 l+1 ([α i , X i ], W, b)) -] 7 where ∂ ∂α ζ d+1,1 l+1 ([α i , X i ], W, b)) + ] can be quickly computed as in Section 5.3 8 else 9 // multi-α(II) 10 define ρ vars (W, b, batch) = 1 |batch| i∈batch [(Y i -ζ d+1,1 l+1 ([α i , X i ], W, b)) + + (1 -α i )ζ d+1,1 l+1 ([α i , X i ], W, b)]
Learning via a discrete set of α's and linear interpolation Another approach for multi-α learning is to use a finite set of confidence levels α

(1) < • • • < α (K) in [α, α]
in conjunction via linear interpolation. More precisely, we solve

( W vars , b vars ) ∈ arg min W,b 1 n n i=1 Y i -Σ(α i , ζ d,K l+1 (X i , W, b)) + + (1 -α i )Σ(ζ d,K l+1 (α i , X i , W, b)) ,
(5.2) where, for y = (y 0 ,

• • • , y K-1 ) ⊤ and a ∈ R, Σ(a, y) = y 0 + K-1 j=1 1 α (j) ≤a (α (j+1) ∧ a -α (j) ) α (j+1) -α (j) y j .
(5.3)

In (5.3), [ζ d,K l+1 (x, W, b)] 0 is a predictor of the value-at-risk of lowest grid level α (1) , whereas, for each j ≥ 1, [ζ d,K l+1 (x, W, b)
] j is a predictor of the increment between the value-at-risks of levels α (j) and α (j+1) .

Notice that one can impose the monotonicity by design by adding a positive activation function σ to each neuron in the output layer of ζ d+1,K l+1 , except for the first neuron, e.g. by replacing y j with σ(y j ), for all j ∈ 1, . . . , K -1, in (5.3). However we haven't found doing so to be satisfactory numerically and thus we keep the formulation in (5.3) as is. In the numerics, we refer to this approach as multi-α(III).

The ensuing approximation of VaR(Y |X) at the (random) confidence level α is given by q α (X), where

q a (x) := Σ(a, ζ d,K l+1 (x, W vars , b vars )) , a ∈ [α, α], x ∈ R d (see Algorithm 7).
We now test the proposed procedures on a Gaussian toy-example and a dynamic initial margin (DIM) case-study. Any minimization of loss functions over F d,D,m,n or similar sets of neural networks is done using the Adam algorithm of [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] over the parameters W and b along with mini-batching: see Algorithm 8 (to be compared with Algorithm 3).

Conditionally Gaussian Toy Model

In our toy example, we apply the above algorithms to the data generating process (X, Y ) such that X is a standard multivariate normal vector and, conditional on X, Y is normally distributed. Namely, X ∼ N (0, I d ), for some d ∈ N ⋆ , and (Y |X) ∼ N (P (X), Q(X) 2 ), where P and Q are multivariate polynomials of degree 2, i.e. for some coefficients λ and µ we have

P (x) = λ 0 + d i=1 λ i x i + 1≤i<j≤d λ i,j x i x j and Q(x) = µ 0 + d i=1 µ i x i + 1≤i<j≤d µ i,j x i x j , for every x = (x 1 , . . . , x d ) ∈ R d .
Then, denoting by Φ the cdf of the standard normal distribution and by φ its pdf, we have:

q(X) = VaR(Y |X) = P (X) + |Q(X)|Φ -1 (α) s(X) = ES(Y |X) = P (X) + (1 -α) -1 |Q(X)|φ(Φ -1 (α)),
which will serve us as ground-truth values.

Numerical Results

We use a dimension of d = 25 for the state space of X, leading to 1 + d + d(d+1)

2

= 351 monomials in the multivariate polynomials P and Q. The coefficients λ and µ of those monomials are drawn independently from a standard normal distribution. For this example, we use 2 19 = 524288 training points and the same number of testing points for computing the errors. For the Adam algorithm, we used 2000 epochs, minibatching with batches of size 2 15 = 32768, a learning rate γ = 0.01, and the rest of the parameters kept at their default values in [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF].

Tables 2, as also 6, 7 and 8 below in the DIM case, suggest that the multi-α approaches are competitive compared to the single-α approach by yielding acceptable errors for confidence levels below 99%, while requiring only one single training, as opposed to the single-α approach which requires one training per target confidence level. For very extreme confidence levels, like 99.9%, the multi-α(III) approach outperforms all the other approaches. This can be explained by the fact that, even if the target confidence level is hard to reach given a limited training set, the lower confidence levels in the interpolation grid contribute to inferring the VaR for the target confidence level. Table 3 confirms that one can rely on the twin-simulation trick of Section 3.5 to draw mostly similar conclusions as in Table 2, without the need to have access to the goundtruth estimators. Note that we computed upper-bounds of 95% confidence intervals for (3.39), instead of the estimates directly in order to be conservative and take into account the potentially high variance in the indicator functions that need to be simulated in order to estimate (3.39). Table 4 demonstrates the effectiveness of the penalization term (for λ simply set to 1) in the multi-α(I) approach to mitigate the quantiles crossing problem. Table 4 also shows that the other multi-α learning approaches, even without directly penalizing the crossing of the quantiles, behave better than a single-α learning in terms of the crossing of the quantiles.

For the ES learning in the Gaussian toy-example, for brevity, we denote by "LR using M VaR" an ES learning using linear regression only for the output layer, as described in Section 4.3, and a VaR learned using the method M as the candidate VaR. For example, LR using single-α VaR refers to the linear regression approach for learning the ES, by using a VaR that is learned with the single-α approach as the VaR candidate. To demonstrate the effectiveness of this linear regression approach, we also introduce an ES that is learned by neural regression, by using a neural network in (4.4), without freezing any weights and using the groundtruth VaR as the VaR candidate. Table 5 shows that our linear regression approach for the ES outperforms the neural regression, no matter which approach is used for learning the embedded VaR candidate. The relative performance of the different linear regression approaches in Table 5 is explained by the relative performance of the VaR learning approaches, given that the VaR learning error contributes to the ES learning error. E q 0.999 (X) < q 0.995 (X) q 0.995 (X) < q 0.99 (X) q 0.99 (X) < q 0.98 (X) multi-α(I) 0.000004 (0.000001) 0.000005 (0.000002) 0.000008 (0.000003) multi-α(II) 0.000016 (0.000008) 0.000017 (0.000007) 0.000020 (0.000008) multi-α(III) 0.000461 (0.000107) 0.000164 (0.000037) 0.002765 (0.000619) Single-α 0.111117 (0.003184) 0.251983 (0.006574) 0.213348 (0.005818) E q 0.98 (X) < q 0.97 (X) q 0.97 (X) < q 0.96 (X) q 0.96 (X) < q 0.95 (X) 

Dynamic Initial Margin Case Study

A financial application of the quantile learning framework is the learning of a path-wise, dynamic initial margin (DIM) in the context of XVA computations (see e.g. Albanese, Crépey, Hoskinson, and Saadeddine (2021, Section 5)). Let there be given respectively R d valued and real valued stochastic proceesses X = (X t ) t≥0 and MtM = (MtM t ) t≥0 , where X is Markov and X t represents the state of the market at time t (e.g. diffused market risk factors), whereas MtM t represents the mark-to-market (price) of the portfolio of the bank at time t-cumulative price including the cash flows cumulated up to time t, such that MtM t+δ -MtM t is σ(X s , t ≤ s ≤ t+δ) measurable. We ignore risk-free discounting in the notation (while preserving it in the numerical experiments). The initial margin of the bank at time t at the confidence level α, denoted by IM 

t . We can then use these sub-simulations to estimate the conditional quantile in (7.1), for each realization X (ν) t of X t . For GPU memory limitation reasons, and in order to avoid having to store simulations on the global memory, we chose to do so via one stochastic approximation algorithm per (conditional on) each outer simulation node. More precisely, for every i ∈ {1, . . . , n outer }, we define iteratively over k ∈ {1, . . . , K}:

IM (i),[k+1] t := IM (i),[k] t + γ(prop (i),[k] -1 + α)
where γ is a positive learning rate (see below) and

prop (i),[k] := 1 n inner n inner j=1 1 {MtM (i,j),[k] t+δ -MtM (i) t ≥IM (i),[k] t } ,
One then iterates over k, simultaneously for all i in parallel, until convergence in order to obtain an approximation of IM t at each outer realization of X t . This corresponds to a value-at-risk stochastic approximation algorithm, namely the batched version of [START_REF] Barrera | Stochastic approximation schemes for economic capital and risk margin computations[END_REF], Algorithm 0), run conditionally on each outer simulation node at time t (cf. (Barrera, Crépey, Diallo, Fort, Gobet, and Stazhynski, 2019, Section 5.3.1)). To speed-up the convergence, we take γ to be of the order of the conditional standard deviation of MtM t+δ -MtM t , itself estimated via the same nested Monte Carlo procedure, and we use a Gaussian VaR as the initial value (i.e. IM (0),[k] t ), computed using conditional expectation and standard deviation estimates using the inner samples at the first iteration. n inner = 1024 samples for the sub-simulations and K = 256 iterations are then enough to achieve an error in p-value, as computed using (3.39), of roughly 0.5(1 -α) in our experiments. 

Conclusion

The numerical experiments of Sections 6 and 7 suggest that learning multiple quantiles (multi-α(I), multi-α(II) or multi-α(III)), although counter-intuitive at first, can help better target extreme quantiles than a standard single quantile learning approach. This can be explained by the fact that multiple quantile approaches leverage the information given by nearby quantiles and thus are better at extrapolating at the extremes. The multi-α(I) approach is remarkably good at ensuring, via soft-constraints on the derivative with respect to the quantile level, monotonicity (avoiding quantile crossings), in cases where consistency among different quantile levels is desired. Our experiments also show that one can successfully use these quantile estimation methods in an XVA Remark A.3. It is necessary to assume that our random variables are bounded (possibly after transformation as explained in Sections 2.2 and Appendix B) in order to obtain nonasymptotic bounds in the errors induced by the methods to approximate VaR and ES presented here (see for instance (3.20)). This entails no loss of generality for VaR. To see why, let Y be any integrable random variable defined on (Ω, A, P), let I ⊂ R be a If Z is an integrable random variable on (Ω, A, P) and A0 ⊂ A is a sigma-algebra, then for every convex, bijective and bimeasurable function h : R → R, where W = (1 -α) -1 (h 2 (X, Y ) -h 2 (X, q(X))) + is the random variable whose conditional expectation (given X) we are trying to estimate. To justify our belief in the necessity of a priori controls on tail bounds on W (or W |X) for the estimation of ES (e.g. upper bounds to (B.11)), consider the following:

h -1 (E [h(Z)|A0]) ≥ E h -1 (h(Z))|A0 = E [Z|A0] .

  (cumulative) distribution (function) of Y given X, F Y |X (y) := P [Y ≤ y | X] := µ(X, (-∞, y]).

  Twin Monte Carlo validation for VaR and ES.

  name : SGDOpt input : {(X i , Y i )} n i=1 , a partition B of {1 . . . n}, a number of epochs E ∈ N ⋆ , a learning rate η > 0, initial weight (matrix) W and bias (vector) b parameters, and a loss function ρ = ρ(W, b, batch) output: Trained parameters W and b 1 for epoch = 1, . . . , E do // loop over epochs 2 for batch ∈ B do // loop over batches 3 W ← W -η∇ W ρ( W , b, batch) 4 b ← b -η∇ b ρ( W , b, batch) Stochastic gradient descent in a neural net hypothesis space. 4 Learning Using Neural Networks 4.1 Error bound of the single-α learning algorithm with one-layer neural networks

Definition 4. 1 .

 1 Let σ : R → [0, 1] be a nondecreasing measurable function that is applied element-wise when supplied with a vector as input and let (d, M, B) ∈ N × N × (0, ∞). Denote by F(d, B, m, σ) ⊂ L R d the family of neural networks on S = R d with m (or less) units, one hidden layer, activation function σ and Lasso regularization bound B, defined as follows

  a partition B of {1 . . . n}, a quantile level α, a number of epochs E ∈ N ⋆ , a learning rate η > 0, initial values for the network parameters W and b and neural network output function ζ d,1 l+1 (X i , W, b) output: Trained parameters of ES network W es and b es 1 // Learn the corresponding VaR 2 W var , b var ← VaRAlg({(X i , Y i )} n i=1 , B, α, E, η, W , b) 3 if linear regression then 4 // Remind (W i , b i ) denote the weight and bias of i-th layer 5

  a partition B of {1 . . . n}, a quantile upper bound level α, and lower bound level α, a number of epochs E ∈ N ⋆ , a learning rate η > 0, a regularisation parameter λ ≥ 0, initial values for the network parameters W and b and neural network output function ζ d+1,1 l+1 ([a, x], W, b) output: Trained parameters of multi-VaR network W and b 1 // Sample quantile levels α 2 α i ∼ Uniform(α, α) for i = 1 . . . n 3 // Define a loss function 4 if non-crossing quantile regularisation then 5 // multi-α(I)
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 1 Figure 1: Mean and 5-th/95-th percentiles of both the learned and the nested Monte Carlo IM at different time steps and for different values of α and learning approaches.The learning approach used for the plots in each row is indicated on the right, and each column corresponds to one value of α which is indicated at the top of each column. Statistics are computed using out-of-sample trajectories of the diffused risk-factors, and the time steps are on the x-axis.

  (possibly infinite) interval supporting Y (P [Y ∈ I] = 1), let -∞ < a < b < ∞, and let h : I → (a, b) be any increasing bijective, Borel measurable function. Then by monotonicityVaR(h(Y )) = h(VaR(Y )),which allows reducing the approximation of VaR(Y ) to the bounded case: to approximate VaR(Y ), approximate VaR(h(Y )) and compose with h -1 . The error bounds provided in this paper, which apply to VaR(h(Y )), can then be translated into error bounds on the approximation of VaR(Y ) using ad hoc analytic properties of h.As for ES, notice that for such hES(h(Y ))1 {h(Y )≥VaR(h(Y ))} = E h(Y )|1 {h(Y )≥VaR(h(Y ))} = E h(Y )|1 {Y ≥VaR(Y )} . From this it follows that if h is in addition convex [concave] on I ∩ [VaR(Y ), ∞), then 9 ES(Y ) ≤ [≥]h -1 (ES(h(Y ))). (A.6) The inequality (A.6) for convex [concave] h shows that h -1 (ES(h(Y ))) isa conservative [risky] estimate of ES(Y ). Notice that such conservative ES estimates are only available when Y is assumed upper bounded, for there is no convex, increasing and bounded bijection with domain [a, ∞). Note also that if h is an increasing affine transformation, then ES(h(Y )) = h(ES(Y )). It is convenient for what follows to present the discussion in terms of distribution functions. We start by noticing that if F has an α-quantile, namely if F (y) = α for some y, then VaR(F ) is the minimum of such y's. In this case (and this case only) F (VaR(F )) = α. (A.7) By the intermediate value theorem, such y exists in [a, b] if 9

If

  A0 = σ(1 {Y ≥a} ) and the invertible, bimeasurable function h : R → R is convex in the interval J = I ∩ [a, ∞) where P [Y ∈ I] = 1, then h0 = h1 I∩[a,∞) +h11 R\(I∩[a,∞)) is convex, invertible and bimeasurable in R for an appropriate h1 : R → R, andE [h(Y )|A0] = E [h0(Y )|A0] = E [h0(Y )|Y ≥ a] 1 {Y ≥a} . Even more, E [h0(Y )|Y ≥ a] = E [h(Y )|Y ≥ a] because h0| I∩[a,∞) = h| I∩[a,∞) . The argument for concave h is similar.Let us discuss the functions involved in the estimation of ES: the reason for restricting ourselves to conditionally affine transformationsh(x, y) = τ (x)y + ν(x) (a(x) > 0) (B.1)is that, as explained in Remark A.3, only these satisfy (in general) the equationES(h(X, Y )|X) = h(X, ES(Y |X)), (B.2)thus allowing us to compute ES(Y |X) by solving the right hand side of (B.2) for X fixed (which corresponds to the definition of r in Algorithm 1). Notice that, conditionally affine transformations (B.1) are the ones used for "centering and normalizing": typically, one would use h 2 (x, y) = (y -μ(x))/σ(x) where μ(x) and σ2 (x) are estimates of the conditional mean and variance of Y given that X = x.It may be convenient to say some additional words about this traditional normalization: if Z ∈ L 1 P has α-quantiles, then integrating the inequalityVaR(Z)1 {Z≥VaR} ≤ Z1 {Z≥VaR(Z)} (B.3)and applying Hölder's inequality we obtain the following: for everyp ∈ [1, ∞] (p ′ = p/(p -1)) VaR(Z)(1 -α) ≤ ||Z|| P,p (1 -α) 1/p ′ . (B.4) Now, if F Z (t) := P [Z ≤ t]is continuous and strictly increasing in [VaR(Z), VaR(Z)+δ) (for some δ > 0) then -VaR α (Z) = VaR (1-α) (-Z) where VaR β (•) indicates the corresponding VaR at level β (Definition 2.1), and the previous argument with -Z in place of Z and 1 -α in place of α leads to -VaR(Z)α ≤ ||Z|| P,p α 1/p ′ . (B.5) Interpreting (B.3), (B.5) in a conditional context and going back to our conventions we obtain that if p > 1 andF Y |X is continuous and increasing in [VaR(Y |X), VaR(Y |X) + δ(X)) then -α -1 ≤ (VaR(Y |X)) p E [|Y | p |X] ≤ (1 -α) (1 -α 1/p ′ )(1 -α) -1 ≤ ES(Y |X) (E [|Y | p |X]) 1/p ≤ p ′ (1 -α) -1/p . (B.8) provided that F Y |X isstrictly increasing and continuous in [VaR(Y |X), ∞). The inequalities (B.4), (B.6) and (B.8) carry at least two important messages: first, the integrability properties of Y are inherited by VaR(Y |X) and ES(Y |X) (E [|Y | p ] = ||Y || p Px,p P X (dx)); and second, the (conditional) moments of Y control the value of these risk measures. It follows in particular that if x → Mp (x) > 0 is (say) an estimate of x → M p (x) := ||Y || Px,p and C > 0 is a constant such that P M p (X) ≤ C Mp (X) = 1, (B.9)then the specification in Algorithm 1 given byh 1 (x, y) = h(y/ Mp (x))where h(y) is a continuous and increasing bounded function equal to the identity if|y|≤ C(α ∧ (1 -α)) -1/p , permits to assume that B 1 = C(α ∧ (1 -α)) -1/p ,giving (by the definition of h) that q(x) = Mp (x) f (x).As for the computation of ES-VaR, choosing the conditionally affine transformation h 2 (x, y) = y/ Mp (x) permits to fix the bound C(p ′ (1 -α) -1/p + α -1/p ). (B.10) for the hypotheses G and to truncate by any B 3 larger than or equal to (B.10) when carrying the regression in Step 4. Following this line of reasoning, notice that the truncation by B 3 gives rise to a "tail error" of the form E ((|W |-B 3 ) + ) 2 , (B.11)

Table 2 :

 2 Means (standard deviations) of RMSE errors of learned conditional VaR estimators against groundtruth values in the Gaussian toy-example across 32 runs. Errors are normalized by dividing by the standard deviation of the groundtruth VaR.

	α		0.999	0.995	0.99
	multi-α(I)	0.151 (0.004) 0.060 (0.002) 0.039 (0.001)
	multi-α(II)	0.161 (0.004) 0.065 (0.002) 0.042 (0.002)
	multi-α(III) 0.061 (0.002) 0.051 (0.002) 0.043 (0.001)
	Single-α	0.612 (0.043) 0.062 (0.001) 0.044 (0.001)
	α		0.98	0.95	0.9
	multi-α(I)	0.029 (0.001) 0.023 (0.001) 0.018 (0.001)
	multi-α(II)	0.031 (0.001) 0.024 (0.001) 0.019 (0.001)
	multi-α(III) 0.037 (0.001) 0.029 (0.001) 0.025 (0.001)
	Single-α	0.032 (0.001) 0.021 (0.001) 0.016 (0.001)
	α		0.999	0.995	0.99
	multi-α(I)	0.00020 (0.000010)	0.00021 (0.000009)	0.00027 (0.000008)
	multi-α(II)	0.00023 (0.000013)	0.00024 (0.000013)	0.00029 (0.000013)
	multi-α(III) 0.00003 (0.000002) 0.00008 (0.000003) 0.00024 (0.000008)
	Single-α	0.00008 (0.000003)	0.00020 (0.000007)	0.00035 (0.000008)
	α		0.98	0.95	0.9
	multi-α(I)	0.00046 (0.000009) 0.00157 (0.000020)	0.00379 (0.000060)
	multi-α(II) 0.00046 (0.000009) 0.00157 (0.000030)	0.00398 (0.000086)
	multi-α(III)	0.00057 (0.000015)	0.00171 (0.000030)	0.00428 (0.000066)
	Single-α	0.00066 (0.000008)	0.00171 (0.000029) 0.00343 (0.000069)

Table 3 :

 3 Means (standard deviations) across 32 runs of the upper-bounds of 95% confidence intervals of L 2 p-value error estimates, i.e. as defined in (3.39), of learned conditional VaR estimators in the Gaussian toy-example.

Table 4 :

 4 Empirical estimates (and corresponding standard deviations) of P(E), for the events E listed in the first row, for learned conditional VaR estimators in the Gaussian toy-example across 32 runs.

	multi-α(I)	0.000022 (0.000007) 0.000073 (0.000017) 0.000367 (0.000059)
	multi-α(II)	0.000032 (0.000008)	0.000080 (0.000012)	0.000405 (0.000096)
	multi-α(III)	0.016378 (0.003258)	0.159370 (0.011163)	0.011956 (0.002695)
	Single-α	0.272327 (0.005291)	0.316263 (0.006022)	0.336678 (0.004992)
	α			0.999	0.995	0.99
	NNR using true VaR	0.408 (0.013) 0.106 (0.002) 0.076 (0.002)
	LR using single-α VaR	0.536 (0.037) 0.062 (0.001) 0.045 (0.001)
	LR using multi-α(I) VaR	1.900 (0.166) 0.068 (0.004) 0.037 (0.002)
	LR using multi-α(II) VaR	2.382 (0.174) 0.082 (0.006) 0.041 (0.002)
	LR using multi-α(III) VaR 0.126 (0.005) 0.057 (0.002) 0.050 (0.002)
	α			0.98	0.95	0.9
	NNR using true VaR	0.054 (0.001) 0.041 (0.001) 0.034 (0.001)
	LR using single-α VaR	0.034 (0.001) 0.025 (0.001) 0.021 (0.001)
	LR using multi-α(I) VaR	0.031 (0.001) 0.025 (0.001) 0.022 (0.001)
	LR using multi-α(II) VaR	0.032 (0.001) 0.026 (0.001) 0.023 (0.001)
	LR using multi-α(III) VaR 0.043 (0.002) 0.036 (0.001) 0.030 (0.001)

Table 5 :

 5 Means (standard deviations) of RMSE errors of learned conditional ES estimators against groundtruth values in the Gaussian toy-example across 32 runs. Errors are normalized by dividing by the stdev of the groundtruth ES.

  t , defined as IM t := VaR (MtM t+δ -MtM t |X t ) .

					(7.1)
	Hence, having simulated paths of X and MtM, one can estimate the initial margin at
	each simulation grid time t > 0, i.e. the DIM process, using quantile learning at each
	t.			
	Estimating IM t using a nested Monte Carlo Alternatively, given t > 0, one can
	consider a brute force nested Monte Carlo scheme based on n outer i.i.d samples
		(X t , MtM (1) (1) t ), . . . , (X t (nouter)	, MtM (nouter) t	)
	of (X {MtM (i,1),[1] t+δ	, . . . , MtM (i,n inner ),[1] t+δ	}, . . . , {MtM (i,1),[K] t+δ	(i,n inner ),[K] , . . . , MtM t+δ

t , MtM t ) and, for each i ∈ {1, . . . , n outer }, K i.i.d sub-samples } of MtM t+δ conditional on X t = X

Table 6 :

 6 RMSE errors of learned IM t estimators against nested Monte Carlo estimators, for t = 2.5years. Errors are normalized by dividing by the standard deviation of the nested Monte Carlo benchmark.

	α	0.999 0.995	0.99	0.98	0.95	0.9
	multi-α(I)	0.265 0.160 0.109 0.065 0.058 0.056
	multi-α(II)	0.261 0.155 0.107 0.066 0.057 0.056
	multi-α(III) 0.128 0.185 0.102 0.133 0.116 0.074
	Single-α	0.134 0.074 0.070 0.056 0.066 0.065
	α	0.999 0.995	0.99	0.98	0.95	0.9
	multi-α(I)	0.204 0.166 0.131 0.072 0.061 0.069
	multi-α(II)	0.212 0.162 0.127 0.072 0.062 0.069
	multi-α(III) 0.150 0.123 0.067 0.065 0.066 0.068
	Single-α	0.165 0.095 0.070 0.057 0.060 0.066

Table 7 :

 7 RMSE errors of learned IM t estimators against nested Monte Carlo estimators, for t = 5years. Errors are normalized by dividing by the stdev of the nested Monte Carlo benchmark.

	α	0.999 0.995	0.99	0.98	0.95	0.9
	multi-α(I)	0.292 0.119 0.122 0.095 0.073 0.072
	multi-α(II)	0.296 0.118 0.118 0.091 0.071 0.070
	multi-α(III) 0.157 0.118 0.090 0.089 0.079 0.086
	Single-α	0.119 0.088 0.082 0.068 0.061 0.061

Table 8 :

 8 RMSE errors of learned IM t estimators against nested Monte Carlo estimators, for t = 7.5years. Errors are normalized by dividing by the stdev of the nested Monte Carlo benchmark.

The existence of such r follows again fromKallenberg (2006, Lemma 1.13 p.7).

[u, v] ∪[v, u] is just the closed segment of the real line determined by (u, v) ∈ R 2 . Notice that (3.15) is exactly the same as 1. in Assumption 3.3 for F1 = F * .

Taking Z ′ 1:n = (X, Y ) ′ 1:n ∼ (X, Y ) i.i.d., independent of (X, Y )1:n and λ = 1.

i.e. for any bounded Borel functions φ and ψ, we haveE[φ(Y (1) )|X] = E[φ(Y (2) )|X] = E[φ(Y )|X] and E[φ(Y (1) )ψ(Y (2) )|X] = E[φ(Y (1) )|X]E[ψ(Y (2) )|X].

with (H) + = (h) + : h ∈ H for any set of functions H.

( W var , b var ) ← SGDOpt({(X i , Y i )} n i=1 , B, E, η, W , b, ρ var )Algorithm 4: Neural network regression for learning the VaR.Given that the training is done for a single fixed confidence level α, we refer to this approach as the single-α learning (or single-α for brevity in the numerics). Under this approach, if one is interested in finding the conditional VaR for another confidence level, one has to repeat the training procedure using the new confidence level in the learning problem (4.3).

( W vars , b vars ) ← SGDOpt({(X i , Y i )} n i=1 , B, E, η, W , b, ρ vars )Algorithm 6: Learning multi continuous VaR.

The equality (B.7) is known as Acerbi's formula. It was generalized to the case of noncontinuous distributions in(Acerbi and Tasche, 2002, Proposition 3.2). For the case in consideration a quick proof follows by the change of variable y= F -1 Y |X (β) = VaR β (F Y |X ) in (2.3).

This can be proved easily via the following observation: assume without loss of generality that VaR(F ) < C, consider a random variable Y with the distribution F and random variables

This is also an obstruction to obtaining in general, from finite samples of (X, Y ), a function satisfying (B.9): we have seen that this implies bounds for ES in the case of continuous distributions.

The research of H.-D. Nguyen is funded by a CIFRE grant from Natixis.

are available on https://github.

name : MultiDiscreteVaRAlg// multi-α(III) input : {(X i , Y i )} n i=1 , a partition B of {1 . . . n}, an increasing quantile level sequence α (1) < • • • < α (K) , a number of epochs E ∈ N ⋆ , a learning rate η > 0, initial values for the network parameters W and b, neural network output function ζ d,K l+1 (x, W, b) output: Trained parameters of multi-VaR network W and b 1 // Sample quantile levels α 2 α i ∼ Uniform(α, α) for i = 1 . . . n 3 // Define a loss function 4 define Σ(y, a) = y 0 + K-1 j=1 1 α (j) ≤a (α (j+1) ∧a-α (j) )

Algorithm 7: Learning multi discrete VaR.

name : SGDOpt // Adam variant input : {(X i , Y i )} n i=1 , a partition B of {1 . . . n}, a number of epochs E ∈ N ⋆ , a learning rate η > 0, initial weight (matrix) W and bias (vector) b parameters, and a loss function ρ = ρ(W, b, batch) output: Trained parameters W and b 1 // Set exponential decay rates for the first and second moment estimates and a small number 2 β 1 ← 0.9; β 2 ← 0.999; ϵ ← 1e -8 Algorithm 8: Adam algorithm learning neural network parameters.

All neural networks have 3 hidden layers, and twice their input dimensionality as the number of neurons per hidden layer. In both examples below, for the multi-α(I) and multi-α(II) learning approaches, we use the bounds (1-α, 1-α) = (10 -4 , 0.15). For the multi-α(III) approach, we use a uniform interpolation grid 1-α (k) = 10 -3 +k 0.15-10 -3 20 , with k ∈ {0, . . . , 20}.

Numerical Results

We consider a portfolio composed of 100 interest rate swaps with randomly drawn characteristics and final maturity 10 years, assessed in the market model of Abbas-Turki, Crépey, and Saadeddine (2022, Appendix B), i.e. a multi-factor market model with 10 short-rate processes representing 10 economies and 9 cross-currency rate processes. Given that swap coupons can depend on short-rates at previous fixing dates, we also include in the regression basis the same short-rates but observed at the latest previous fixing date, which leads in total to a dimensionality of d = 29 for the state vector X t at a given time t > 0, with 100 time steps uniformly spread between time 0 and the final maturity of the portfolio equal to 10 years. We use 2 22 = 4194304 simulated paths (generated in 25 seconds using the code developed in Abbas-Turki, Crépey, and Saadeddine (2022, Appendix B)) for training and 2 14 simulated paths, independent of the former, for evaluating the nested Monte Carlo benchmark and computing the errors. We leverage the transfer learning trick used in Abbas-Turki, Crépey, and Saadeddine (2022, Appendix B), which consists in doing the training starting from the latest time-step and then proceeding backwards by reusing the solution obtained at each successive time-step t k+1 as an initialization for the learning to be done at time t k . This allows us to use only 16 training epochs. As in the Gaussian toy-example, we use mini-batching. The batch size is taken to be 2 17 = 131072, we use a learning rate of 0.001, and the rest of the Adam parameters are kept at their default values.

To illustrate that the quantile learning approach allows one to learn an entire stochastic process (dynamic initial margin), we plot the mean and 5-th/95-th percentiles of the learned IM process at each time-step for the different quantile learning schemes in Figure 1. The sawtooth-like behaviour in the paths of (IM t ) t≥0 that is visible in the plots in Figure 1 is expected, due to the recurring cash-flows inherent to interest rate swaps [START_REF] Andersen | Rethinking the margin period of risk[END_REF].

Tables 6, 7 and 8 (using the nested Monte Carlo as a benchmark) confirms the conclusions of Table 2 regarding the competitiveness of the multi-α approaches.

or dynamic risk calculation setting, where the computation times may be greatly accelerated by replacing nested Monte Carlo estimations by quantile and expected-shortfall learnings.

A Value-at-Risk and Expected Shortfall Representations

In this appendix we recall various elicitability results underlying our VaR and ES learning algorithms.

A cumulative distribution function (cdf) Definition A.1. Let F : R → [0, 1] be an integrable cdf and let α ∈ (0, 1). The valueat-risk (VaR) and expected shortfall (ES) of F at the confidence level α are defined respectively by

2) for the definition of F (y 0 -)). If Y is an integrable random variable on the probability space (Ω, A, P), we write

where

Remark A.2. If Y is an integrable random variable, then it is easy to see that

(the conditional expectation is with respect to P). In particular,

with equality if and only if

The versions of (A.3), (A.4) and (A.5) for abstract distribution functions F are clear mutatis mutandis.

Assumption A.4. There exists an interval [a, b] where F is continuous and

The following operator will allow us to characterize VaR and ES as minimizers of a suitable functional.

Definition A.5. Given a Polish space S, a (Borel measurable) function h : S × R → R and a distribution function F , we define (h * F ) : S → R by

When necessary, we will write

Recall (2.5) and (2.6). Our methods are built over the following results of Rockafellar and Uryasev (2000) 10 , whose easy proof we give for the sake of completeness:

where c• denotes the function y → cy.

Proof. Since ι is increasing and continuous, and since F is absolutely continous in [a, b], the identity

Since F is increasing, these critical points are the minimizers of ρ ι * F . With this, (A.8) is a straigthforward consequence of the definition (A.2) of ES(F ) together with (A.7): given any α-quantile q of F within [a, b], and since

where for the last equality we used the first part already proved.

10 where we only added ι for the sake of data transformation to boundedness.
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Notice that the estimation of ES via (A.8) implies the estimation of an integral with respect to F . It is desirable, in order to propose distribution-free methods for the estimation of ES, to have characterizations of this risk measure as a minimizer (rather than a minimum). The following theorem presents the first one, which works given a corresponding α-quantile: Lemma A.2. If F is an integrable distribution function and if q is an α-quantile of F , then ES(F ) -q ∈ [0, ∞) is the unique minimizer of ϱ ς (y, q, •) * F (dy)| [0,∞) .

Proof. In this case,

which changes from negative to positive at z = ES(F ) -q because ς ′′ (z) > 0: this follows as in the proof of (A.8).

Inspired by Corollary 5.5 in Fissler and Ziegel (2016), we finally present the following "joint" loss, which is basically a combination of (2.5) and (2.6), for the elicitability of (VaR, ES) based on the loss function (2.8).

(A.9)

Proof. The derivative of (A.9) with respect to v is

which equals zero if and only if v ∈ F -1 (α) by the assumptions on ι ′ and ς ′ . By a similar calculation and using ς ′′ ̸ = 0, the derivative of (A.9) with respect to z is zero if and only if

is the set of critical points of (A.9). The fact that these critical points are indeed minimizers of (A.9) follows by an argument akin to the proof of Lemma A.1 (consider z = ES(Y ) fixed and the expression (A.10) for the derivative with respect to v).

B The Role of Data Transformations and Truncations

The functions h k (x, y) (k = 1, 2) in Algorithm 1 serve at least two purposes: to uniformly bound and normalize the data, in particular to make it fit to the theory of [START_REF] Barrera | Confidence intervals for nonparametric regression[END_REF], and to open the room for profiting from a priori information about the conditional distributions of Y given X.

Claim. For every strictly increasing, integrable distribution function F and every (C, δ) ∈ R × (0, ∞), there exists an increasing and integrable distribution function G coinciding with F in (-∞, C] and such that ES(F ) + δ < ES(G) 12 .

According to this claim, no inference can be made in general about ES(F ) only from information on F (y) up to some upper bound y ≤ C < ∞. Being this is the only kind of information available through finite observations Y 1 (ω), . . . , Y n (ω) of Y ∼ F , it is not possible in general to infer statistical bounds on the approximation error for estimations of ES(F ) which are based only on finite samples of F . 13