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Abstract

Invariance times are stopping times τ such that local martingales with re-
spect to some reduced filtration and an equivalently changed probability measure,
stopped before τ , are local martingales with respect to the original model filtration
and probability measure. They arise naturally for modeling the default time of a
dealer bank, in the mathematical finance context of counterparty credit risk. As-
suming an invariance time endowed with an intensity and a positive Azéma super-
martingale, this work establishes a dictionary relating the semimartingale calculi
in the original and reduced stochastic bases, regarding conditional expectations,
martingales, stochastic integrals, random measure stochastic integrals, martingale
representation properties, semimartingale characteristics, Markov properties, tran-
sition semigroups and infinitesimal generators, and solutions of backward stochastic
differential equations.

Keywords: Progressive enlargement of filtration, invariance time, semimartingale cal-
culus, Markov process, backward stochastic differential equation, counterparty risk,
credit risk.
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1 Introduction

This paper is about a concept in progressive enlargement of filtrations called invariance
times introduced by Crépey and Song (2017b). Progressive enlargement of filtrations
refers to a situation where two filtrations are involved, a smaller and a bigger one, the
bigger one making a certain random time in the small one, τ , a stopping time. τ is called
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an invariance time when local martingales X in the small filtration, once stopped before
τ , so Xτ− := X1[0,τ) + Xτ−1[τ,+∞), are local martingales in the large one. However,
this is not necessarily required to hold under the original probability measure, but only
under a possibly modified one. In other words, there exists a measure change that
“compensates” the change of filtration. The basic situation, called immersion, is when
local martingales in the small filtration do not jump at τ and are local martingales in
the large one, for the original probability measure (so no measure change is required).
But immersion is tantamount to a certain form of independence between τ and the
small filtration (Bielecki, Jeanblanc, and Rutkowski, 2009, Lemma 3.2.1(ii)-(iii)). This
is too restrictive for applications to credit risk in finance, which is a lot about the
dependence between the market risk represented by the small filtration and the default
time τ (especially adverse dependence, dubbed “wrong way risk”). (Crépey and Song,
2016, 2017a) show that invariance times offer a much more flexible framework in this
regard.

The “stopping before τ” feature in the above resonates particularly well with a
particular application, namely the pricing of the implications for a bank of its own de-
fault time τ . Indeed, for the shareholders of the bank, only the pre-default cash flows
matter, hence the corresponding pricing equations are stopped before τ . These equa-
tions are known as the XVA equations, where X is a catch-up letter to be replaced by
C for credit, F for funding or K for capital, while VA stands for valuation adjustment
(Crépey, 2022, Eqns. (2.12), (2.13), and (2.17)). The setup of invariance times arises
as one which is together flexible enough in terms of credit-market dependence, whilst
being amenable to an elegant solution of the XVA equations, by reduction to simpler
equations stated with respect to a smaller filtration in which the default risk of the
bank only appears through its intensity. However, to perform this reduction rigorously,
one needs to relate the stochastic calculi in the small and the large filtrations, regarding
conditional expectations, martingales, stochastic integrals, random measure stochastic
integrals, martingale representation properties, semimartingale characteristics, Markov
properties, transition semigroups and infinitesimal generators, and (eventually) solu-
tions of backward stochastic differential equations (BSDEs). The elaboration of the
corresponding transfer properties is the contribution of this paper. Section 2 sets the
stage. The conditional expectations transfer formulas of Section 3 underlie most of
the subsequent developments of Sections 4–9 that, apart from this common base, are
quite independent from each other. Hence the reader can cherrypick freely among
these. The BSDE Section 10 puts more or less everything together. Section 11 con-
cludes. Our conditional expectations transfer formulas present a resemblance with
earlier formulas stated in terms of a singular measure change but no change of filtra-
tion (Collin-Dufresne, Goldstein, and Hugonnier, 2004, Theorem 1). The connection
between the two approaches is illustrated in the end of the paper.

1.1 Standing Notation and Terminology

The real line and half-line are denoted by R and R+; |·| denotes any Euclidean norm (in
the dimension of its argument), ·> means vector transposition; B(E) denotes the Borel
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σ algebra on a metrizable space E; λ is the Lebesgue measure on R+, δa represents a
Dirac measure at a point a.

Unless otherwise stated, a function (or process) is real valued; order relationships
between random variables (respectively processes) are meant almost surely (respectively
in the indistinguishable sense); a time interval is random (in particular, the graph of
a random time θ is simply written [θ]). We do not explicitly mention the domain of
definition of a function when it is implied by the measurability, e.g. we write “a B(R)
measurable function h (or h(x))” rather than “a B(R) measurable function h defined
on R”. For a function h(ω, x) defined on a product space Ω× E, we write h(x) (or ht
in the case of a stochastic process), without ω.

We use the terminology of the general theory of processes and of filtrations as
given in the books by Dellacherie and Meyer (1975) and He, Wang, and Yan (1992).
For any semimartingale, always taken in a càdlàg version in this work, X, and for any
predictable X integrable process L, the corresponding stochastic integral is denoted by∫ ·

0 LtdXt =
∫

(0,·] LtdXt = L �X, with the precedence convention KL �X = (KL) �X if K
is another predictable process such that KL is X integrable. The stochastic exponential
of a semimartingale X is denoted by E(X). By drift of a special semimartingale (i.e. a
semimartingale with locally integrable jumps), we mean the finite variation predictable
part of its canonical Doob-Meyer decomposition. Stochastic integrals of random func-
tions with respect to jump measures and their compensations are meant in the sense
of Jacod (1979), to which we also borrow the usage of including the optionality with
respect to a reference filtration in the definition of an integer valued random measure.
Random measure stochastic integrals and transform of measures by densities are re-
spectively denoted by “∗” and “·”. We denote by P(H) and O(H) the predictable and
optional σ fields with respect to a filtration H.

For any random time θ and càdlàg process X, ∆θX represents the jump of X at
θ. We use the convention that X0− = X0 (hence ∆0X = 0) and we write Xθ and Xθ−

for the processes X stopped at θ and before θ, i.e.

Xθ = X1[0,θ) +Xθ1[θ,+∞), X
θ− = X1[0,θ) +Xθ−1[θ,+∞). (1.1)

The process X is said to be stopped at θ, respectively before θ, if X = Xθ, respectively
X = Xθ−. We call compensator of a stopping time θ the compensator of 1[θ,∞). We
say that θ has an intensity γ if θ is (strictly) positive and that its compensator is given
as γ � λ, for some predictable process γ (vanishing beyond time θ). For any event A,
we denote by θA the stopping time 1Aθ + 1Ac∞.

2 Setup

We work on a space Ω equipped with a σ field A, a probability measure Q on A, and a
filtration G = (Gt)t∈R+ of sub-σ fields ofA satisfying the usual conditions. We are given
a positive (nonnecessarily finite) G stopping time τ and a subfiltration F = (Ft)t∈R+ of
G satisfying the usual conditions, with F optional and predictable projections denoted
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by o· and p·. We consider the progressive enlargement of filtrations setup1 defined by
the condition that

∀t ≥ 0 and B ∈ Gt, ∃B′ ∈ Ft such that B ∩ {t < τ} = B′ ∩ {t < τ}. (2.1)

Example 2.1 This holds in particular (but not only, see Section A) in the classical
progressive enlargement of filtration setup

Gt = Ft ∨ σ(τ ∧ t) ∨ σ({τ > t}), t ∈ R+,

i.e. when G is the smallest filtration larger than F making τ a stopping time.

Equivalently to (2.1)2, any G predictable (resp. optional) process L admits an F pre-
dictable (resp. optional) process L′3, dubbed F predictable (resp. optional) reduction
of L, such that 1(0,τ ]L = 1(0,τ ]L

′ (resp. 1[0,τ)L = 1[0,τ)L
′). In particular, for any G

stopping time θ, there exists an F stopping time θ′, dubbed F reduction of θ, such that
{θ < τ} = {θ′ < τ} ⊆ {θ = θ′}.

Given a positive constant T , we work henceforth under the following condition,
introduced with its first consequences in Crépey, Sabbagh, and Song (2020, Sections
4–6), and which is explored systematically in this work.

Condition (C). τ has a (G,Q) intensity, the Azéma supermartingale S = o(1[0,τ)) of
τ satisfies ST > 0 almost surely, and

there exists a probability measure P equivalent to Q on FT , called invariance

probability measure, such that, for any (F,P) local martingale P ,

P τ− is a (G,Q) local martingale on [0, T ].

(2.2)

Unless explicitly stated, the reference probability measure is the original measure Q.
The conjunction of (2.1) and (2.2) corresponds to the notion of invariance time τ .

Hence all the results of Crépey and Song (2017b) are applicable in this work, sometimes
in a stronger version due to the additional assumptions embodied in the first line of
the condition (C). In particular:

Lemma 2.1 Under the condition (C),
(i) {S− > 0} = {pS > 0} = {S > 0} ⊇ [0, T ];
(ii) two F optional processes that coincide before τ coincide on [0, T ]; in particular,

1recalling from Crépey and Song (2017b, Section 2.1) that the proofs of the classical progressive
enlargement of filtration results in Jeulin and Yor (1978) or Chapitre 20 in Dellacherie and Meyer
(1992), although only stated and proved in the specific setup of Example 2.1, all work in the extended
setup (2.1).

2see Crépey and Song (2017b, Eqn. (2.1)).
3the notation ·′ common to the predictable and optional projections is typically not an issue in

practice (whenever useful we write explicitly “predictable” or “optional”).
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predictable and optional reductions are uniquely defined on [0, T ];
(iii) invariance probability measures P are uniquely determined on FT , with (F,Q)
density process

Q := E(
1
pS

� Q) on [0, T ], (2.3)

a positive F martingale on [0, T ].

Proof. (i) By Theorem 3.7 in Crépey and Song (2017b), in the case of an invariance
time τ endowed with a (G,Q) intensity, {S− > 0} = {pS > 0} = {S > 0}. Under the
additional assumption “ST > 0 a.s.” that is postulated in the condition (C), we can
add “ ⊇ [0, T ]” .
(ii) The first part is Lemma 2.3 in Crépey and Song (2017b), which readily implies the
second part.
(iii) By Theorem 3.2 in Crépey and Song (2017b) and (i).

As P is only used for computations in F on [0, T ], it only matters on FT . Hence, in
view of Lemma 2.1(iii), we can talk of “the invariance probability measure P” in our
setup. Moreover, by reduction, we may and do assume that the (G,Q) intensity of τ is
of the form γ1(0,τ ], for an F predictable process γ uniquely defined on [0, T ], by Lemma
2.1(ii). We write Γ =

∫ ·
0 γsds, so that Γτ is the (G,Q) compensator of τ .

3 Conditional Expectation Transfer Formulas

The (Gt,Q) and (Ft,P) conditional expectations are denoted by Et and E′t and we drop
the index t at time 0.

The following result, the unconditional version of which corresponds to Theorem
4.1 in Crépey, Sabbagh, and Song (2020), provides an extension of classical results (see
e.g. Bielecki, Jeanblanc, and Rutkowski (2009, Chapter 3)) beyond the basic immersion
setup where (F,P = Q) local martingales are (G,Q) local martingales without jump at
τ .

Theorem 3.1 For any constant t ∈ [0, T ], any [t, T ] valued F stopping time σ, any Fσ
measurable nonnegative random variable χ, any F predictable nonnegative process K,
and any F optional nondecreasing process A starting from 0, we have, on {t < τ},

Et[χ1{σ<τ}] = E′t[χe−(Γσ−Γt)], (3.1)

Et[Kτ1{τ≤T}] = E′t
[ ∫ T

t
Kse

−(Γs−Γt)γs ds
]
, (3.2)

Et[Aτ−T −A
τ−
t ] = 1{t<τ}E′t

[ ∫ T

t
e−(Γs−Γt) dAs

]
. (3.3)

Proof. Consider the F canonical Doob-Meyer decomposition S = Q−D of S, where Q
(with Q0 = S0 = 1) and D (with D0 = 0) are the F local martingale component and
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the F drift of S. By Lemma 2.2 5) in Crépey and Song (2017b) and Lemma 2.1(i), in
the present setup where τ is positive, so that S0 = 1, and Lemma 2.1(i) is satisfied, S
admits the multiplicative decomposition

S = QD on [0, T ], (3.4)

where Q is the F martingale (2.3) on [0, T ] and D = E(− 1
S−

� D) is an F predictable

nonincreasing process on [0, T ].
For any B ∈ Gt and B′ associated with B as in (2.1), we then have by definition

of Ss = Q(τ > s |Fs), s ≥ 0, and Fσ measurability of χ (using also the tower rule and
recalling the assumption ST > 0 in the condition (C)):

E
[
1{t<τ}E

(
χSσ/St

∣∣Ft)1B] = E
[
StE
(
1B′χSσ/St|Ft

)]
= E [χSσ1B′ ] = E

[
χ1{σ<τ}1B

]
.

Hence

1{t<τ}E
(
χSσ/St

∣∣Ft) = E
(
1{σ<τ}χ|Gt

)
. (3.5)

Then (3.4), under the assumption ST > 0 a.s., yields

E
(
χSσ/St

∣∣Ft) = E
(
χQσDσ/

(
QtDt

)∣∣∣Ft) = E′
[
χDσ/Dt

∣∣∣Ft], (3.6)

by Lemma 2.1(iii) and the conditional Bayes formula corresponding to the Q-to-P
density process Q on [0, T ]. Moreover, by Crépey and Song (2017b, Lemma A.1) and
Lemma 2.1(i), D is continuous and

D±1 = E(± 1

S−
�D) = e

± 1
S−

�D
,

1

S−
�D = γ′�λ (3.7)

hold on [0, T ]. Recalling that Γ = γ�λ, (3.5)–(3.7) yield (3.1).
For (3.2), we compute, on {t < τ},

Et[Kτ1{τ≤T}] = Et
[ ∫ T

t
Ks1{s≤τ}γs ds

]
=

∫ T

t
Et[Ks1{s<τ}γs] ds

=

∫ T

t
E′t[Kse

−(Γs−Γt)γs] ds = E′t
[ ∫ T

t
Kse

−(Γs−Γt)γs ds
]
,

where (3.1) was used for passing to the second line.
Regarding (3.3), an application of (3.2) yields (still on {t < τ})

Et[(Aτ− −At)1{τ≤T}] = E′t
[ ∫ T

t
(As −At)e−(Γs−Γt)γs ds

]
= −E′t[(AT −At)e−(ΓT−Γt)] + E′t

[ ∫ T

t
e−(Γs−Γt) dAs

]
.
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Using (3.1), we deduce

Et[(Aτ−T −At)] = Et[(AT −At)1{T<τ}] + Et[(Aτ− −At)1{τ≤T}]

= E′t[(AT −At)e−(ΓT−Γt)]− E′t[(AT −At)e−(ΓT−Γt)] + E′t
[ ∫ T

t
e−(Γs−Γt) dAs

]
= E′t

[ ∫ T

t
e−(Γs−Γt) dAs

]
.

See Section A for a discussion of two alternatives to the formula (3.2) that are known
from the mathematical finance literature.

4 Martingale Transfer Formulas

We denote by:

� MT (F,P), the set of (F,P) local martingales stopped at T ;

� Mτ−∧T (G,Q), the set of (G,Q) local martingales stopped at τ − ∧T , i.e. before
τ and at T ;

� Mc
T (F,P) andMd

T (F,P), respectivelyMc
τ∧T (G,Q), andMd

τ−∧T (G,Q), their re-
spective subsets of continuous local martingales and purely discontinuous local
martingales.

Lemma 4.1 For any M,N ∈Mτ−∧T (G,Q) , we have

[M,N ]′ = [M ′, N ′] on [0, T ], (4.1)

where the quadratic variations [M,N ] (with F optional reduction [M,N ]′) and [M ′, N ′]
are respectively meant in (G,Q) and (F,P).

Proof. As M and N are stopped before τ ,

[M,N ] = [M,N ]τ− = [M ′, N ′]τ−, (4.2)

where the quadratic variation [M ′, N ′] is meant at this stage in (G,Q). But since
(M ′)T and (N ′)T are F adapted and that P and Q are equivalent on FT , on [0, T ] this
quadratic variation [M ′, N ′] in (G,Q) is the same as the quadratic variation [M ′, N ′]
meant in (F,P). Hence on [0, T ] this quadratic variation and [M,N ]′ coincide before τ ,
so that they coincide on [0, T ], by Lemma 2.1(ii).

Theorem 4.1 The following bijections hold:

MT (F,P)
·τ−−→←−
(·′)T

Mτ−∧T (G,Q),

Mc
T (F,P)

·τ−→←−
(·′)T

Mc
τ∧T (G,Q),

Md
T (F,P)

·τ−−→←−
(·′)T

Md
τ−∧T (G,Q),

(4.3)
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where (·′)T denotes the F optional reduction operator composed with stopping at T .

Proof. By the converse part in Crépey and Song (2017b, Lemma 2.2 4)) combined with
Lemma 2.1(i)-(ii), for any M ∈Mτ−∧T (G,Q), the process S−�M ′+ [S,M ′] is an (F,Q)
local martingale on [0, T ]. This in turn implies that (M ′)T ∈MT (F,P), by Theorem 3.7
in Crépey and Song (2017b) and Lemma 2.1(i). Hence, onMτ−∧T (G,Q), the operator
(·′)T takes its values in the space MT (F,P). Conversely, for any P ∈ MT (F,P), the
condition (C) yields P τ− ∈ Mτ−∧T (G,Q), i.e. on MT (F,P) the map ·τ− takes its
values in the space Mτ−∧T (G,Q).

To establish the first bijection in (4.3) it remains to show that ((M ′)T )τ− = M
and ((P τ−)′)T = P in the above. As M is stopped before τ and at T , the first identity
is trivially true. Regarding the second one, (P τ−)′ = P holds before τ, hence on [0, T ],
by Lemma 2.1(ii). Hence ((P τ−)′)T = P holds on R+ (as P is stopped at T ).

The second bijection in (4.3) follows by the same steps, noting that the reduction
of a continuous process X is continuous on [0, T ], by Lemma 2.1(ii) applied to the jump
process of X.

To prove the third bijection, following He, Wang, and Yan (1992, Theorem 7.34),
assuming M ∈ Mτ−∧T (G,Q), we take a (G,Q) continuous local martingale X and
we consider the bracket [M,X]. By Lemma 4.1, on [0, T ], [M ′, X ′] is the F optional
reduction of [M,X]. Consequently, using also Lemma 2.1(ii), [M,X]τ− = 0 on [0, T ] if
and only if [M ′, X ′] = 0 on [0, T ]. The lemma then follows from the first and second
bijections in (4.3).

5 Transfer of Stochastic Integrals in the Sense of Local
Martingales

Lemma 5.1 Let (θn)n≥0 be a nondecreasing sequence of G stopping times tending to
infinity. There exists a nondecreasing sequence (σn)n≥0 of F stopping times such that
σn tends to infinity and

θn ∧ T ∧ τ = σn ∧ T ∧ τ.

Proof. We compute, using (3.1) at t = 0 for passing to the second line,

E′[1{θ′n<T}e
−ΓT ] ≤ E′[1{θ′n<T}e

−Γθ′n ]

= E[1{θ′n<T}1{θ′n<τ}] = E[1{θn<T}1{θn<τ}]→ 0 as n→∞.

This implies that P[θ′n < T ]→ 0. Hence Q[θ′n < T ]→ 0, as P is equivalent to Q on FT .
The sequence σn = (θ′n){θ′n<T}, n ≥ 0, satisfies all the desired properties.

Lemma 5.2 Let A be a G adapted nondecreasing càdlàg process. The process Aτ− is
(G,Q) locally integrable on [0, T ] if and only if A′ is (F,P) locally integrable on [0, T ].
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Proof. First note from (Song, 2016, Lemma 6.10) (with ST > 0 a.s. under the condition
(C)) that A′ is a nondecreasing process on [0, T ]. Let (θn)n≥0 be a nondecreasing
sequence of G stopping times tending to infinity. Let (σn)n≥0 be associated with (θn)n≥0

as in Lemma 5.1. We compute

E[

∫ θn∧T

0
1{s<τ}e

ΓsdAs ] = E[

∫ θn∧T∧τ

0
1{s<τ}e

ΓsdAs ]

= E[

∫ σn∧T∧τ

0
1{s<τ}e

ΓsdA′s ] = E[

∫ σn∧T

0
1{s<τ}e

ΓsdA′s ] = E′[A′σn∧T ],

by (3.3) (used at t = 0). As Γ is continuous, the factor eΓs can be handled by another
layer of localization. This implies the result.

Theorem 5.1 Let W be a (G,Q) local martingale stopped before τ and L be a G
predictable process. The process L is W integrable on [0, T ] in the sense of (G,Q)
local martingales if and only if L′ is W ′ integrable on [0, T ] in the sense of (F,P) local
martingales. If so, then (with “� in (F,P)”, resp. “� in (G,Q)”, in reference to the
stochastic integrals in (F,P) and (G,Q))(

L′ �W ′ in (F,P)
)τ−

= (L �W in (G,Q)) holds on [0, T ].

Proof. In view of He, Wang, and Yan (1992, Definition 9.1), we only need to check

the local integrability of the processes
√∫ t

0 L
2
sd[W,W ]s and

√∫ t
0 (L′)2

sd[W ′,W ′]s under

respectively (G,Q) and (F,P). But, on [0, T ], [W ′,W ′] is the F optional reduction of
[W,W ], by Lemma 4.1. Hence the local integrabilities above are equivalent, because of
Lemma 5.2.

To prove the identity between the stochastic integrals when they exist, we first note
that the identity holds for any L in the class of G predictable bounded step processes.
By monotone class theorem, this is then extended to the class of G predictable bounded
processes L. By stochastic dominated convergence, i.e. Theorem 9.30 in He, Wang,
and Yan (1992), this is extended further to all G predictable processes L which are W
integrable under (G,Q).

6 Transfer of Random Measures Stochastic Integrals

Given a Polish space E endowed with its Borel σ algebra B(E), we recall from He,
Wang, and Yan (1992, Theorem 11.13) that, for any (optional) integer valued random
measure π, there exists an E valued optional process β and an optional thin set, of the
form ∪n∈N[θn] for some sequence of stopping times (θn)n≥0, such that

π =
∑
s

δ(s,βs)1{s∈∪n∈N[θn]} (6.1)
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(where δ(s,βs) is the Dirac measure at (s, βs)). By definition, for any nonnegative
A× B(R+)× B(E) measurable function Ψ,

Ψ ∗ π =
∑
s<·

Ψs(βs)1{s∈∪n∈N[θn]} =
∑
θn<·

Ψ(θn, βθn)1{θn<∞}. (6.2)

Lemma 6.1 The G optional integer valued random measure π on R+ × E admits an
F optional reduction, i.e. an F optional integer valued random measure π′ on R+ × E
such that 1[0,τ).π = 1[0,τ)·π′.

Proof. We have, for any nonnegative A× B(R+)× B(E) measurable function Ψ,

Ψ ∗ (1[0,τ).π) =
∑
s<·

1{s<τ}Ψs(β
′
s)1{s∈∪n∈N[θn]}

=
∑
s<·

1{s<τ}Ψs(β
′
s)1{s∈∪n[θ′n]} = Ψ ∗ (1[0,τ)·π′),

where π′ =
∑

s<· δ(s,β′s)
1{s∈∪n[θ′n]} defines an F optional integer valued random mea-

sure, by He, Wang, and Yan (1992, Theorem 11.13).

In the remainder of the paper, we fix the space E and a G optional integer valued
random measure π, with the related notation in the above. We introduce the spaces
of random functions P̂(F) = P(F) × B(E) and P̂(G) = P(G) × B(E). We denote the
(F,P) compensator of µ = π′ by ν.

Lemma 6.2 The (G,Q) compensator of 1[0,τ)·µ is 1[0,τ ] · ν on [0, T ].

Proof. By Lemma 5.2, for any Ψ ∈ P̂(G) such that the process |Ψ| ∗ π is (G,Q)
integrable on [0, T ], the processes |Ψ′| ∗ µ and |Ψ′| ∗ ν are (F,P) locally integrable on
[0, T ]. It follows that the process

P = Ψ′ ∗ µ−Ψ′ ∗ ν

is an (F,P) local martingale on [0, T ] (cf. He, Wang, and Yan (1992, p. 301)). By the
condition (C), the stopped process

P τ− = 1[0,τ)Ψ
′ ∗ µ− 1[0,τ)Ψ

′ ∗ ν = 1[0,τ)Ψ ∗ µ− 1[0,τ ]Ψ ∗ ν

is a (G,Q) local martingale on [0, T ], where 1[0,τ)Ψ ∗ ν = 1[0,τ ]Ψ ∗ ν because τ avoids
the predictable stopping times. As 1[0,τ ].ν is a G predictable random measure, this
proves the lemma.

Theorem 6.1 For any Ψ ∈ P̂(G), Ψ is (1[0,τ)�µ− 1[0,τ ]�ν) stochastically integrable in
(G,Q) on [0, T ] if and only if Ψ′ is (µ− ν) stochastically integrable in (F,P) on [0, T ].
If so, then(

Ψ′ ∗ (µ− ν) in (F,P)
)τ−

=
(
Ψ ∗ (1[0,τ).µ− 1[0,τ ].ν) in (G,Q)

)
holds on [0, T ].
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Proof. In view of He, Wang, and Yan (1992, Definition 11.16), the integrability rela-
tionship between Ψ and Ψ′ is the consequence of Lemma 5.2. To prove the identity
between the corresponding integrals when they exist, we note that

(Ψ′ ∗ (µ− ν))τ− and Ψ ∗ (1[0,τ).µ− 1[0,τ ].ν)

are (G,Q) purely discontinous local martingales. By virtue of He, Wang, and Yan
(1992, Theorem 7.42 and Definition 11.16), they are then equal because they have the
same jumps, namely

∆t(Ψ
′ ∗ (µ− ν))τ− =

(
Ψ′t(β

′
t)1{t∈∪n∈N[θ′n]} −

∫
{t}×E

Ψ′s(e)ν(ds, de)
)
1{t<τ}

=
(
Ψt(βt)1{t∈∪n∈N[θn]} −

∫
{t}×E

Ψs(e)ν(ds, de)
)
1{t<τ}

= ∆t

(
Ψ ∗ (1[0,τ).µ− 1[0,τ ].ν)

)
,

as 1[0,τ).ν = 1[0,τ ].ν (because τ avoids the predictable stopping times).

7 Transfer of Martingale Representation Properties

We consider martingale representations with respect to martingales and compensated
jump measures as in Jacod (1979), which corresponds to the notion of weak represen-
tation in He, Wang, and Yan (1992). As in He, Wang, and Yan (1992), when no jump
measure is involved, we talk of strong representation.

Let W be a d variate (G,Q) local martingale stopped before τ and at T . We
assume the random measure π of Section 6 stopped before τ and at T , in the sense
that ∪n∈N[θn] ⊆ (0, τ) ∩ (0, T ]. We write B = (W ′)T , µ = (π′)T . Let ρ and ν denote
the (G,Q) compensator of π and the (F,P) compensator of µ, so that ρ = 1[0,τ ]·ν, by
Lemma 6.2.

Lemma 7.1 Given (P(G))×d and P̂(G) measurable integrands L and Ψ, if

M = L �W + Ψ ∗ (π − ρ) (7.1)

holds in (G,Q), then (M ′)T = L′ �B + Ψ′ ∗ (µ− ν) holds in (F,P).
Conversely, given (P(F))×d and P̂(F) measurable integrands K and Φ, if

P = K �B + Φ ∗ (µ− ν) (7.2)

holds in (F,P), then P τ− = K �Bτ− + Φ ∗ (1[0,τ)·µ− 1[0,τ ]·ν) holds in (G,Q) on [0, T ].

Proof. This is the consequence of Theorems 5.1 and 6.1.

Remark 7.1 In the representation (7.1), the integrands L and Ψ corresponding to a
given process M are unique modulo d[W,W ] (with d[W,W ]s-a.e. in the multivariate
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sense of Jacod and Shiryaev (2003)) and ρ negligible sets, respectively. Likewise, in
the representation (7.2), the integrands K and Φ corresponding to a given process P
are unique modulo d[B,B] (with d[B,B]s-a.e. in the multivariate sense of Jacod and
Shiryaev (2003)) and ν negligible sets.

As an immediate consequence of Lemma 7.1:

Theorem 7.1 The space Mτ−∧T (G,Q) admits a weak representation by W and π if
and only if the space MT (F,P) admits a weak representation by B = W ′ and µ = π′.

Applying Theorem 7.1 with µ ≡ 0, one obtains the strong martingale representation
transfer property.

We refer the reader to Gapeev, Jeanblanc, and Wu (2021, 2022) for other trans-
fers of martingale representation properties, in respective Brownian and marked point
process enlargement of filtration setups (progressive but also initial as already before
in Fontana (2018)) satisfying Jacod’s equivalence hypothesis, i.e. the existence of a
positive F conditional density for τ , as opposed to a semimartingale progressive en-
largement of filtration setup under the condition (C) in this work. See also Jeanblanc
and Song (2015) or (until τ) Choulli, Daveloose, and Vanmaele (2020) and (also after
τ) Choulli and Alharbi (2022) for rather general transfers of martingale representation
properties in a progressive enlargement of filtration setup. From a technical viewpoint,
our setup stopped before τ is elementary once the underlying Theorems 5.1 and 6.1 are
in place. Of course one cannot say anything beyond τ in our setup, but our motivating
application of Example 10.1 never requires to go beyond τ .

8 Semimartingale Characteristic Triplets Transfer Formula

Let there be given a semimartingale X stopped before τ in some filtration H under
a probability measure M, with jump measure πX . The characteristic triplet of X is
composed of:

bX,H,M, the drift part of the truncated semimartingale X − (x1{|x|>1})∗π
X ;

aX,H,M = 〈Xc, Xc〉, the angle bracket of the continuous martingale part of X

(i.e. the diffusion part of X);

cX,H,M = (πX)p,H,M, the predictable dual projection of πX ,

called in He, Wang, and Yan (1992) the Lévy system of X (i.e. the

extension to a semimartingale setup of the notion of a Lévy measure).

The following results show (essentially) that the (F,P) characteristic triplet of
the optional reduction X ′ of a (G,Q) semimartingale stopped before τ , X, is the
predictable reduction of the (G,Q) characteristic triplet of X. Moreover, if the (G,Q)
semimartingale X is special, then so is X ′ and the (F,P) drift of X ′ is the predictable
reduction of the (G,Q) drift of X.
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Theorem 8.1 Let X = Xτ− be a (G,Q) semimartingale stopped before τ and at T .
We have(

bX,G,Q, aX,G,Q, cX,G,Q
)

=
(

(b(X
′)T ,F,P)τ , (a(X′)T ,F,P)τ ,1[0,τ ].c

(X′)T ,F,P
)
. (8.1)

Proof. First note that (X ′)T is an (F,Q) semimartingale, by Song (2016, Lemma 6.5)
(with ST > 0 a.s. under the condition (C)), hence an (F,P) semimartingale as well,

which justifies the writings in the right hand side of (8.1). Denoting by π(X′)T the

(F,P) jump measure of (X ′)T , we have 1[0,τ).π
X = 1[0,τ).π

(X′)T . So

X−(x1{|x|>1})∗π
X =

(
(X ′)T − (x1{|x|>1})∗π

(X′)T
)τ−

= (P c)τ−+(P d)τ−+(b(X
′)T ,F,P)τ−,

(8.2)
where P is the (F,P) canonical Doob–Meyer local martingale component of the (F,P)

special semimartingale (X ′)T − (x1{|x|>1})∗π
(X′)T , with continuous and purely discon-

tinuous parts P c and P d. By the condition (C), P τ− is a (G,Q) local martingale.
Therefore, we conclude from (8.2) that

bX,G,Q = (b(X
′)T ,F,P)τ− = (b(X

′)T ,F,P)τ

(as ∆τ b
(X′)T ,F,P = 0, because τ is totally inaccessible.) Now, applying Lemma 6.2 with

E = R, we also conclude

cX,G,Q = (πX)p,G,Q = (1[0,τ).π
X)p,G,Q = 1[0,τ ].(π

(X′)T )p,F,P = 1[0,τ ].c
(X′)T ,F,P.

Finally, according to the second and third bijections in (4.3), we have

(P c)τ− ∈Mc
τ∧T (G,Q), (P d)τ− ∈Md

τ−∧T (G,Q).

Hence we conclude from (8.2) that Xc = (P c)τ− is the continuous local martingale part
of X in (G,Q) and therefore

aX,G,Q = [Xc, Xc] = [(P c)τ−, (P c)τ−] = [P c, P c]τ = (a(X′)T ,F,P)τ .

Corollary 8.1 Suppose that a (G,Q) semimartingale X = Xτ− is special on [0, T ].

Then (X ′)T is an (F,P) special semimartingale. Denoting by βX,G,Q and β(X′)T ,F,P the
(G,Q) drift of X and the (F,P) drift of (X ′)T , we have

βX,G,Q = (β(X′)T ,F,P)τ . (8.3)

Proof. As (X ′)T is already known to be an (F,P) semimartingale and because a special
semimartingale means one with locally integrable jumps, the special feature of (X ′)T

follows from Lemma 5.2. Note that, by (He, Wang, and Yan, 1992, Lemma 7.16 and

Theorem 11.24), the function |x|1{|x|>1} is c(X′)T ,F,P integrable on [0, T ]. Consequently

β(X′)T ,F,P = b(X
′)T ,F,P + (x1{|x|>1})∗c

(X′)T ,F,P.

The analogous (G,Q) relationship holds for X. Hence (8.3) follows from (8.1).
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9 Markov Transfer Formulas

In this section we study the transfer of Markov properties between (G,Q) and (F,P).
The reader is referred to Sharpe (1988, proof of Proposition (60.2)) regarding the
definition of the semigroup generated by a Markov family.

We suppose that the filtration G is generated by a (G,Q) quasi-left continuous
strong Markov semimartingale X with state space Rd. We denote by an index ·(t)
everything related to the Markov process X translated by time t. We assume that
τ is a terminal time of X, i.e. (see e.g. Blumenthal and Getoor (2007, (3.7) Remark
p.108)4) τ = τ (t) + t if τ > t5. We assume further that the (G,Q) intensity process of
τ takes the form γ(X·)1(0,τ ], for some B(Rd) measurable function γ ≥ 0. Let

Ms = eΓs1{s<τ} = e
∫ s
0 γ(Xu)du1{s<τ}.

Lemma 9.1 M is a multiplicative functional of X, i.e. Mt = MsM
(s)
t−s holds for any

t ≥ s ≥ 0, and a (G,Q) local martingale. The multiplicative functional M defines a
probability transition function (Tt)t∈R+.

Proof. The first part can be checked by definition of M. For the second part, we check
by the Doléans-Dade exponential formula that

M = E(−1[τ,∞) + Γτ ).

The last part follows from Sharpe (1988, (65.3), proof of Proposition(56.5)), Sharpe
(1988, Hypothesis (62.9)) and Sharpe (1988, Theorem (62.19)).

Theorem 9.1 The reduction X ′ of X is an (F,P) strong Markov process on [0, T ],
with the transition semigroup (Tt)t∈[0,T ].

Proof. For A ∈ Fs, h Borel bounded and 0 < s < s+ t ≤ T , we have

E[1Ah(Xt+s)e
∫ t+s
0 γ(Xu)du1{t+s<τ}]

= E[1Ae
∫ s
0 γ(Xu)du1{s<τ}h(X

(s)
t )e

∫ t
0 γ(X

(s)
u )du1{t<τ (s)}]

= E[1Ae
∫ s
0 γ(Xu)du1{s<τ}Tth(Xs)],

which is rewritten in terms of X ′ through the first expectation transfer formula (3.1)
as

E′[1Ah(X ′t+s)] = E′[1A(Tth)(X ′s)].

This proves thatX ′ is an (F,P) Markov process with the transition semigroup (Tt)t∈[0,T ].
If we rewrite the above computation for s replaced by an F stopping time σ, we prove

4or Definition 1.3 page 98 in the original 1968 edition of their book.
5or “τ = τ ◦ θt + t” in the classical notation where θ is the translation operator associated with the

Markov process X (but we already use θ to denote a stopping time in this paper).
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that X ′ is an (F,P) strong Markov process on [0, T ].

The next question is how to determine the generator of the semigroup (Tt)t∈[0,T ].
We suppose that the Markov process X is of the form X = (Y,Z), for some process Y
stopped before τ and some process Z constant (= 0, say) before τ , the role of which is
to store some information, encoded into the jump of Z at τ , about what happens at τ ;

Example 9.1 We may consider for X the following dynamic copula models of portfolio
credit risk, with any of the portfolio default times in the role of τ in this paper:
(i) the dynamic Marshall-Olkin copula (DMO) model, shown in Crépey and Song
(2016, Theorem 9.2) to satisfy the condition (C) for P = Q there (case of a strict
pseudo-stopping time in the terminology of Jeanblanc and Li (2020, Definition 2.1));
(ii) the dynamic Gaussian copula (DGC) model, shown in Crépey and Song (2017a) to
satisfy the condition (C) with P 6= Q, provided the correlation coefficient % > 0 in the
model is small enough. In particular, the condition (C) holds in the univariate DGC
model (there is then no correlation % involved) of Section A below.

Suppose further that X solves the following (G,Q) martingale problem:

v(Xt)−
∫ t

0
Lv(Xs)ds is a (G,Q) local martingale for all v ∈ D(L),

where L is the generator of X, with domain D(L) ⊆ the set of the B(Rd) measurable
bounded functions. For u ≡ u(y) we define û ≡ û(y, z) by û(y, z) = u(y). Let D′ =
{u ≡ u(y); û ∈ D(L)} and let L′ be the operator on D′ defined by

(L′u)(y) = (Lû)(y, 0), u ∈ D′. (9.1)

Theorem 9.2 We suppose that (D′,L′) satisfies the conditions of Ethier and Kurtz
(1986, Theorem 4.1 of Chapter 4, p.182). Then X ′ = (Y ′, 0), Y ′ is an (F,P) strong
Markov process on [0, T ], and the generator of Y ′ is an extension of (D′,L′).
Proof. Clearly, X ′ = (Y ′, 0). Hence, Theorem 9.1 implies that Y ′ is an (F,P) strong
Markov process on [0, T ]. For u ∈ D′,

û(Xt)−
∫ t

0 Lû(Xs)ds = u(Yt)−
∫ t

0 Lû(Ys, 0)ds

is a (G,Q) local martingale. As Y is stopped before τ ,

u(Yt)
τ− −

∫ t∧τ

0
Lû(Ys, 0)ds is a (G,Q) local martingale stopped before τ.

The first bijection in (4.3) then implies that

u((Y ′)Tt )−
∫ t

0
L′u((Y ′)Ts )ds is an (F,P) local martingale on [0, T ].

Therefore, Y ′ is the solution of the (F,P) martingale problem associated with L′ on
[0, T ]. The result then follows from Ethier and Kurtz (1986, Theorem 4.1 of Chapter
4, p.182).
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10 BSDE Transfer Properties

In this section, τ satisfying the condition (C) on [0, T ] as before, we reduce a (G,Q)
backward stochastic differential equation (BSDE) stopped before τ and at T to a sim-
pler (F,P) BSDE stopped at T .

We suppose E Euclidean and (E,B(E)) endowed with a σ finite measure m inte-
grating (1 ∧ |e|2) on E. We consider the space L0 of the B(E) measurable functions u
endowed with the topology of convergence in measure induced by m.

Given a P(G) × B(R) × B(Rd) × B(L0) measurable function g = gt(z, l, ψ), we
can define, by monotone class theorem, a P(F) × B(R) × B(Rd) × B(L0) reduction
g′ = g′t(z, l, ψ) of g such that 1(0,τ ]g = 1(0,τ ]g

′. Let A be a G finite variation (càdlàg)
process.

Adopting the setup of Section 7, we consider the (G,Q) BSDE with data (g,A)
and solution sought for as a triplet (Z,L,Ψ), where Z is a G adapted process, L is a
(P(G))×d measurable process integrable against Bτ− in (G,Q), and Ψ is a P̂(G) mea-
surable function stochastically integrable against (1[0,τ)·µ−1[0,τ ]·ν) in (G,Q), satisfying
in (G,Q) 

∫ τ∧T
0 |gs(Zs−, Ls,Ψs)|ds <∞ and∫ ·

0 1{s<τ}|dAs| is (G,Q) locally integrable on [0, T ],

Zτ−∧Tt +
∫ t∧τ∧T

0

(
gs(Zs−, Ls,Ψs)ds+ dAτ−s

)
= L �Bτ−

t + Ψ ∗ (1[0,τ)·µ− 1[0,τ ]·ν)t, t ∈ R+,

Z vanishes on [τ ∧ T,+∞).

(10.1)

We also consider the (F,P) BSDE with data (g′, A′) and solution sought for as a triplet
(U,K,Φ), where U is an F adapted process, K is a (P(F))×d measurable process inte-
grable against B in (F,P) on [0, T ], and Φ is a P̂(F) measurable function stochastically
integrable against (µ− ν) in (F,P) on [0, T ], satisfying in (F,P)

∫ T
0 |g

′
s(Us−,Ks,Φs)|ds <∞ and∫ ·

0 |dA
′
s| is (F,P) locally integrable on [0, T ],

UTt +
∫ t∧T

0

(
g′s(Us−,Ks,Φs)ds+ dA′s

)
= K �Bt + Φ ∗ (µ− ν)t, t ∈ R+,

UT vanishes on [T,+∞) (i.e. UT = 0).

(10.2)

Note that the (G,Q) BSDE (10.1) is stopped at τ − ∧T (in particular, the terminal
condition ZT = 0 only holds on {T < τ}), whereas the (F,P) BSDE (10.2) is stopped
at T.

Example 10.1 Given a bank with default time τ , a G stopping time θ representing
the default time of a client of the bank, and a nonnegative G optional process G
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representing the liability of the client to the bank, then the process A =
∫ ·

0 Gsδθ(ds)
represents the counterparty credit exposure of the bank to its client. In this case

|dAs| = Gsδθ(ds), A
τ− =

∫ ·
0
1{s<τ}Gsδθ(ds), A

′ =

∫ ·
0
G′sδθ′(ds).

The coefficient g represents the risky funding costs of the bank entailed by its own
credit riskiness. For the reason explained in the second paragraph of Section 1, all cash
flows are stopped before the bank default time τ . This results in a BSDE of the form
(10.1) for the valuation of counterparty risk (CVA) and of its funding implications to
the bank (FVA). The cost of capital (KVA) also obeys an equation of the form (10.1):
see Crépey (2022, Eqns. (2.12), (2.13), and (2.17)).

10.1 Transfer of Local Martingale Solutions

The result that follows states the equivalence between the (G,Q) BSDE (10.1) and
the (F,P) BSDE (10.2) considered within the above-introduced spaces of solutions for
the triplets (Z,L,Ψ) and (U,K,Φ), called local martingale solutions henceforth (in
reference to the fact that the right-hand sides in the second lines of (10.1) and (10.2)
are then respectively (G,Q) and (F,P) local martingales).

Theorem 10.1 The (G,Q) BSDE (10.1) and the (F,P) BSDE (10.2) are equivalent
in their respective spaces of local martingale solutions. Specifically, if (Z,L,Ψ) solves
(10.1) in (G,Q), then (U,K,Φ) = (Z,L,Ψ)′ solves (10.2) in (F,P). Conversely, if
(U,K,Φ) solves (10.2) in (F,P), then (Z,L,Ψ) = (1[0,τ)U,1[0,τ ]K,1[0,τ ]Φ) solves (10.1)
in (G,Q).

Proof. Through the correspondence stated in the theorem between the involved pro-
cesses:

� The equivalence between the Lebesgue integrability conditions (first lines) in
(10.1) and (10.2) follows from Lemma 5.2;

� The equivalence between the martingale conditions (second lines) in (10.1) and
(10.2) follows from Theorems 5.1 and 6.1;

� The terminal condition for U in (10.2) obviously implies the one for Z = 1[0,τ)U
in (10.1), whereas the terminal condition in (10.1) implies ZT1{T<τ} = 0, hence
by taking the FT conditional expectation:

0 = E[ZT1{T<τ}|FT ] = E[Z ′T1{T<τ}|FT ] = Z ′TST ,

yielding UT = Z ′T = 0 (as ST is positive under the condition (C)).
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10.2 Transfer of Square Integrable Solutions

We now consider the (G,Q) BSDE (10.1) and the (F,P) BSDE (10.2) within suitable
spaces of square integrable solutions.

We assume that the compensator ν of µ = π′ is given as ζt(e)m(de)dt, where ζ
is a nonnegative and bounded integrand in P(F). We write, for any t ≥ 0 and B(E)
measurable function u,

|u|2t =

∫
E
u(e)2ζt(e)m(de).

Let also Y ∗t = sups∈[0,t] |Ys|, for any càdlàg process Y .

Lemma 10.1 For any real valued càdlàg F adapted process V , respectively nonnegative
F predictable process X, we have

E
∣∣∣V 2

0 +

∫ T

0
e
∫ s
0 γudu1{s<τ}d(V ∗)2

s

]
= E′[(V ∗)2

T ]; (10.3)

E
[ ∫ T

0
e
∫ s
0 γudu1{s<τ} Xsds

]
= E′

[ ∫ T

0
Xs ds

]
. (10.4)

Proof. The formula (3.3) used at t = 0 yields:

� For A =
∫ ·

0 e
∫ s
0 γudud(V ∗)2

s,

E
[ ∫ T

0
e
∫ s
0 γudu1{s<τ}d(V ∗)2

s

]
= E′[(V ∗)2

T ]− E′[V 2
0 ];

� For A =
∫ ·

0 e
∫ s
0 γuduXs ds,

E
[ ∫ T

0
e
∫ s
0 γudu1{s<τ} Xsds

]
= E′

[ ∫ T

0
Xs ds

]
.

Considering the (G,Q) BSDE (10.1) for (Z,L,Ψ) and the reduced (F,P) BSDE
(10.2) for (U,K,Φ), with local martingale solutions (if any) such that

(U,K,Φ) = (Z,L,Ψ)′, (Z,L,Ψ) = (1[0,τ)U,1[0,τ ]K,1[0,τ ]Φ) (10.5)

(cf. Theorem 10.1), we define

‖(Z,L,Ψ)‖22 = E
[
|Z0|2 +

∫ T

0
e
∫ s
0 γudu1{s<τ}d(Z∗)2

s

]
+ E

[ ∫ T

0
e
∫ s
0 γudu1{s<τ}

(
|Ls|2 + |Ψs|2s

)
ds
]
,

(‖(U,K,Φ)‖′2)2 = E′[(U∗)2
T ] + E′

[ ∫ T

0

(
|Ks|2 + |Φs|2s

)
ds
]
.

We consider the respective subspaces of square integrable solutions of the (G,Q)
BSDE (10.1) and of the (F,P) BSDE (10.2) defined by ‖ · ‖2 < +∞ and Z = 0 on
[τ ∧ T,+∞), respectively ‖ · ‖′2 < +∞ and UT = 0 on [T,+∞) (i.e. UT = 0), dubbed
‖ · ‖2 and ‖ · ‖′2 solutions hereafter.
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Theorem 10.2 Given local martingale solutions (Z,L,Ψ) to the (G,Q) BSDE (10.1)
and (U,K,Φ) to the reduced (F,P) BSDE (10.2), we have

‖(Z,L,Ψ)‖2 = ‖(U,K,Φ)‖′2. (10.6)

The (G,Q) BSDE (10.1) considered in terms of ‖ · ‖2 solutions and the (F,P) BSDE
(10.2) considered in terms of ‖ · ‖′2 solutions are equivalent through the correspondence
(10.5).

Proof. Given respective local martingale solutions (Z,L,Ψ) and (U,K,Φ) to (10.1)
and (10.2), then related through (10.5) as seen in Theorem 10.1, Lemma 10.1 applied
to V = U and X = |K·|2 + |Φ·|2· proves the transfer of norms formula (10.6). Given the
equivalence of Theorem 10.1 between (10.1) and (10.2) in the sense of local martingale
solutions, their equivalence in the sense of square integrable solutions follows from
(10.6).

10.3 Application

Assuming
∫ T

0 |dA
′
s| integrable under P and a (weak) martingale representation of the

form studied in Theorem 7.1, we define the processes R and P given as

Rt = E′
[ ∫ T

t∧T
tdA′s |Ft

]
and Pt = E′

[ ∫ T

0
dA′s |Ft

]
, t ∈ R+.

Let fs(v, k, φ) = g′s(Rs−+ v,KP
s + k,ΦP

s +φ), where KP and ΦP are the integrands in
the representation (7.2) of the (F,P) martingale P (cf. Remark 7.1).

Proposition 10.1 Suppose that
∫ T

0 |dA
′
s| is P square integrable and

(i) the functions R 3 v 7→ ft(v, k, φ) ∈ R are continuous, for each (k, φ) ∈ Rd × L0.
Moreover, f is monotonous with respect to v, i.e.

(ft(v1, k, φ)− ft(v2, k, φ))(v1 − v2) ≤ C(v1 − v2)2;

(ii) E′
∫ T

0 sup
|v|≤c
|ft(v, 0, 0)− ft(0, 0, 0)|dt <∞ holds for every positive c;

(iii) f is Lipschitz continuous with respect to k and φ, i.e.

|ft(v, k1, φ1)− ft(v, k2, φ2)| ≤ C(|k1 − k2|+ |φ1 − φ2|t);

(iv) E′
∫ T

0 |ft(0, 0, 0)|2dt < +∞.

Then the (G,Q) BSDE (10.1) and the (F,P) BSDE (10.2) have unique ‖ · ‖2 and ‖ · ‖′2
solutions, respectively, and these solutions are related through (10.5).
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Proof. Note that
∫ T

0 |dA
′
s| being P square integrable implies that E′

[
(R∗)2

T

]
< ∞.

Through the correspondence

U = R+ V, KU = KP +KV , ΦU = ΦP + ΦV ,

the (F,P) BSDE (10.2) for (U,KU ,ΦU ) is equivalent (in both senses of (F,P) local
martingale solutions and ‖ · ‖′2 solutions) to the following (F,P) BSDE for (V,KV ,ΦV ):

∫ T
0 |fs(Vs−,K

V
s ,Φ

V
s )|ds <∞,

V T
t +

∫ t∧T
0 fs(Vs−,K

V
s ,Φ

V
s )ds = KV �Bt + ΦV ∗ (µ− ν)t,

VT = 0.

(10.7)

Under the assumptions of the proposition, the (F,P) BSDE (10.7) for (V,KV ,ΦV ) sat-
isfies the assumptions of Kruse and Popier (2016, Theorem 1). Hence it has a unique
‖ · ‖′2 solution. So has in turn the BSDE (10.2). The result then follows by an applica-
tion of Theorem 10.2.

Remark 10.1 Kruse and Popier (2016, Theorem 1) is only derived in the case a Pois-
son measure π, but one can readily check that all their computations and results derived
under square integrable assumptions are still valid in our more general integer valued
random measure setup. Also, in view of Bouchard, Possamäı, Tan, and Zhou (2018),
Kruse and Popier (2016)’s condition of a quasi-left continuous filtration is in fact not
needed.

The reader is referred to Crépey (2022, Lemma B.1, Proposition B.1 and Theorem 6.1)
and Crépey, Sabbagh, and Song (2020, Section 6) for variations on the above results,
in the respective cases where f only depends on v (in the notation of Proposition 10.1
above) and no martingale representation property needs to be assumed, or where f is
assumed to be Lipschitz (versus monotonous in Proposition 10.1) but also exhibits a
dependence on a conditional expected shortfall of a future increment of the martingale
part of the solution.

Remark 10.2 Earlier occurrences of such results are Crépey and Song (2015, 2016),
with the difference that these earlier works were about BSDEs stopped at a random
time. The more recent papers, instead, with the motivation recalled in the second
paragraph of Section 1, are about BSDEs stopped before a random time: compare e.g.
stopping at ϑ in the second line of (Crépey and Song, 2015, Eqn. (2.1)) versus stopping
before τ in the second part of (10.1).

Analogous techniques could be used to simplify (G,Q) optimal stopping or stochas-
tic control problems into reduced (F,P) reformulations: cf., in the case of BSDEs or
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control problems stopped at time τ (as opposed to stopped before τ in our setup, and
without the flexibility induced by our measure change from Q to a possibly different
P), Kharroubi and Lim (2014) and Jiao, Kharroubi, and Pham (2013) (assuming that
a driving (F,Q) Brownian motion, stopped at τ , is a (G,Q) martingale), Aksamit, Li,
and Rutkowski (2021) (who provide some comparative comments with our approach in
their Remark 8.2), or Alsheyab and Choulli (2021).

11 Conclusion

The present paper provides new developments on the concept of invariance times τ
introduced in Crépey and Song (2017b). More precisely, this paper provides more
complete results under stronger (practical) assumptions, summarized as the condition
(C), whereas Crépey and Song (2017b) was mainly about the conditions (B) and (A)
corresponding respectively to the Eqns. (2.1) and its combination with (2.2) in the
above. The condition (C) was first introduced, along with its first consequences, in
Crépey, Sabbagh, and Song (2020, Section 4): it is explored systematically in this
work. Whereas Crépey and Song (2017b) was in quest of generality and “minimal
conditions”, this paper aims at identifying a “comfort zone”, provided by the condition
(C) as the paper demonstrates, where all the standard apparatus of semimartingale
calculus is equivalently available in both a larger stochastic basis (G,Q) and a smaller
one (making τ a stopping time) (F,P). But many problems reformulated under the
reduced basis are simpler than their original formulation under the full stochastic basis,
whence the benefit of the approach.

Specifically, assuming the condition (C) of an invariance time τ endowed with an
intensity and a positive Azéma supermartingale as detailed in Section 2, the present
paper establishes a dictionary of transfer properties between the semimartingale calculi
in the original and changed stochastic bases (G,Q) and (F,P):

� Theorem 3.1 extends the classical reduced-form credit risk pricing formulas be-
yond the basic progressive enlargement of filtration setup where the Azéma su-
permartingale of τ has no martingale component;

� Theorem 4.1 establishes a bijection between the (G,Q) (resp. (G,Q) continuous
/ (G,Q) purely discontinuous) local martingales stopped before τ and the (F,P)
(resp. (F,P) continuous / (F,P) purely discontinuous) local martingales;

� Theorem 5.1 establishes the connection between stochastic integrals in the sense
of local martingales in (G,Q) and in (F,P);

� Theorem 6.1 establishes the connection between the (G,Q) and (F,P) random
measures stochastic integrals;

� Theorem 7.1 establishes the correspondence between (weak or strong) (G,Q) and
(F,P) martingale representation properties;
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� Theorem 8.1 yields the relationship between the (G,Q) local characteristics of a
G semimartingale X stopped before τ and the (F,P) local characteristics of the
F semimartingale X ′, called reduction of X, that coincides with X before τ ;

� Theorems 9.1 and 9.2 state conditions under which Markov properties, transition
semigroups and infinitesimal generators can be transferred between (G,Q) and
(F,P);

� Theorems 10.1 and 10.2 show the equivalences, within various spaces of solutions,
between a nonstandard (G,Q) backward SDE (BSDE) stopped before τ and a
reduced (F,P) BSDE with null terminal condition.

As illustrated in Section A, the notion of invariance time is also related to various
approaches that were introduced in the mathematical finance literature for coping with
defaultable cash flows based on default intensities. These different approaches could
perhaps be related via the generalized Girsanov formulas of Kunita (1976) and Yoeurp
(1985). We leave this for further research.

A Intensity Based Pricing Formulas, Survival Measure
and Invariance Times

This section puts Theorem 3.1 (specifically, the formula (3.2)) in perspective with
Duffie, Schroder, and Skiadas (1996, Proposition 1) and Collin-Dufresne, Goldstein,
and Hugonnier (2004, Theorem 1). This is done in the setup of the Markov model
corresponding to the univariate case in Example 9.1(ii), where the issues at stake can
be understood based on Feynman-Kac representations. See Jeanblanc and Li (2020) for
other renewed views on the seminal formulas of Duffie, Schroder, and Skiadas (1996).

A.1 The Univariate Dynamic Gaussian Copula Model

We consider the following single-name version of the dynamic Gaussian copula model
of Crépey and Song (2017a). Let

τ = Ψ
( ∫ +∞

0
ς(s)dBs

)
, (A.1)

where Ψ is a continuously differentiable increasing function from R to (0,+∞), ς is a
Borel function on R+ such that

∫ +∞
0 ς2(u)du = 1, and B is an (F,Q) Brownian motion,

with F taken as the augmented natural filtration of B. The full model filtration G is
given as the augmented filtration of the progressive enlargement of F by τ . Hence, the
random time τ is an F∞ measurable G stopping time.

By Theorem 2.2, Lemma 3.2, and Remark 4.1 in Crépey and Song (2017a), the
condition (C) holds in this setup, for some probability measure P distinct from Q but
equivalent to it on FT , on which P is uniquely determined through (2.3). Let

ht = 1{t≥τ}, mt =

∫ t

0
ς(s)dBs, kt = (ht, τ ∧ t), ν2(t) =

∫ +∞

t
ς2(s)ds, (A.2)
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and assume ν positive for all t. By application of results in Ethier and Kurtz (1986),
one can show that the process (m, k) is (G,Q) Markov.

Remark A.1 The reason why we introduce (τ ∧ t) on top of the indicator ht in kt is
because of a dependence of the post-τ behavior of the model on the value of τ itself.
The state augmentation by (τ ∧ t) takes care of this path-dependence.

By definition of S and (A.1) of τ , we have

St = Q(τ > t |Ft) = Φ
(Ψ−1(t)−mt

ν(t)

)
, t ∈ R+, (A.3)

where Φ denotes the standard normal cdf. The process on the right hand side of (A.3)
has infinite variation. This shows that the reference filtration F is not immersed into
the full model filtration G. This lack of immersion makes it more interesting from
the point of view of the different approaches that we want to compare. This is our
motivation for working in this particular model in this part.

Theorems 2.2 and 2.4 in Crépey and Song (2017a) show the existence of processes
of the form

βt = β(t,mt, kt) and γt = γ (t,mt, kt) = γt1(0,τ ], t ∈ R+, (A.4)

for continuous functions β and γ with linear growth in m, such that

dWt = dBt − βtdt is a (G,Q) Brownian motion and

the process γ is the (G,Q) intensity of τ .
(A.5)

The proof of the following result is deferred to Section A.3.

Proposition A.1 Let a process m? satisfy

dm?
t = ς(t)

(
dW ?

t + β(t,m?
t , (0, t))dt

)
, 0 ≤ t ≤ T, (A.6)

starting from m?
0 = 0, for some Brownian motion W ? with respect to some stochastic

basis (G?,Q?). Denoting the Q? expectation by E?, we have, for any bounded Borel
function G(t,m),

E
[
1{τ≤T}G(τ,mτ )

]
= E?

[ ∫ T

0
e−

∫ t
0 γ(s,m?s ,(0,s))dsγ(t,m?

t , (0, t))G(t,m?
t )dt

]
. (A.7)

A.2 Discussion

From (A.2) and (A.4)-(A.5), it holds that

dmt = ς(t)
(
dWt + β(t,mt, kt)dt

)
, t ∈ R+, (A.8)
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which, for t ≥ τ (so that kt = (1, τ)), diverges from the specification (A.6). Hence the
quadruplet (m,W,G,Q) is not an eligible choice for (m?,W ?,G?,Q?) in Proposition
A.1. As a consequence, we expect a contrario from Proposition A.1 that

E
[
1{τ<T}G(τ,mτ )

]
6= E

[ ∫ T

0
e−

∫ t
0 γ(s,ms,(0,s))dsγ(t,mt, (0, t))G(t,mt)dt

]
(A.9)

(except in special cases, including obviously G = 0). In fact, let

Vt = E
[ ∫ T

t
e−

∫ s
t γ(u,mu,(0,u))duγ(s,ms, (0, s))G(s,ms)ds

∣∣∣Gt

]
, t ∈ R+,

so that V0 is equal to the right hand side in (A.9). By an application of Duffie, Schroder,
and Skiadas (1996, Proposition 1) with X = r = 0 and h· = γ(·,m·, (0, ·)) on [0, T ]
there (noting that any process coinciding with the (G,Q) intensity of τ before τ can
be used as a process h in their setup), we have

E
[
1{τ<T}G(τ,mτ )

]
= V0 − E(Vτ − Vτ−). (A.10)

In a basic immersed setup, E(Vτ−Vτ−) vanishes and equality actually holds in (A.9) for
any G: see the comments before Section 3 in Duffie, Schroder, and Skiadas (1996), page
1379 in Collin-Dufresne, Goldstein, and Hugonnier (2004), or following (3.22), (H.3)
and Proposition 6.1 in Bielecki and Rutkowski (2001)). But beyond this immersion case,
E(Vτ − Vτ−) is typically nonnull and intractable, whence inequality in (A.9) (except in
special cases such as G = 0).

Instead, an eligible choice in Proposition A.1 consists in using m∗ = m , W ∗ = W
as per (A.5), Q∗ = the so called survival measure S with (G,Q) density process

e
∫ ·∧T
0 γ(u,mu,(0,u))du1{τ>·∧T}

(assuming e
∫ τ∧T
0 γ(u,mu,(0,u))du integrable under Q), and G∗ = the S augmentation Ḡ of

G, obtained by adding to each Gt all the S null sets A ∈ A such that A ⊆ {τ ≤ T}.
Indeed, as noted in Collin-Dufresne, Goldstein, and Hugonnier (2004, Lemma 1(i)),
1[τ,+∞) = 0 holds S almost surely on [0, T ], hence (A.6) holds in this setup, while
Collin-Dufresne, Goldstein, and Hugonnier (2004, Lemma 1(ii)) shows that W ∗ = W is
a (G?,Q?) = (Ḡ,S) Brownian motion. The corresponding specification of the formula
(A.7) corresponds to Collin-Dufresne, Goldstein, and Hugonnier (2004, Theorem 1).
This “survival measure” idea and terminology were first introduced in Schönbucher
(1999, 2004). One can thus fix the discrepancy in (A.9) (in a progressive enlargement
of filtration setup without immersion) by singularly changing the probability measure
Q to Q∗ = S, while sticking to the original model filtration G (or, more precisely,
resorting to its S augmentation Ḡ).

Another eligible choice for (m?,W ?,G?,Q?) in Proposition A.1 is

m∗ = m, dW ∗t = dBt − β(t,mt, (0, t))dt, G∗ = F, Q∗ = P.
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Indeed, as it follows from Lemma 3.5 and Section 4.4 in Crépey and Song (2017a), this
process W ∗ is an (F,P) Brownian motion. Hence, just like (m,B−β(·,m·, k·) �λ, Ḡ,S)
in the previous specification, (m,B − β(·,m·, (0, ·)) � λ,F,P) satisfies all the conditions
required on (m∗,W ∗,G∗,Q∗) in Proposition A.1. The formula (A.7) corresponding to
this second legit specification for (m∗,W ∗,G∗,Q∗) is none other than our formula (3.2)
(for t = 0).

The approach (m∗,W ∗,G∗,Q∗) = (m,B − β(·,m·, (0, ·)) � λ,F,P) of this paper
thus fixes the discrepancy in (A.9) (in a non-immersed setup) by reducing the fil-
tration from G to a smaller F, while changing the probability measure “as little as
possible”, i.e. equivalently on FT . Collin-Dufresne, Goldstein, and Hugonnier (2004)’s
choice (m∗,W ∗,G∗,Q∗) = (m,B− β(·,m·, k·) �λ, Ḡ,S) does the opposite, touching the
filtration as little as possible but changing the measure singularly (in a basic immer-
sive setup, an invariance time approach would not change Q at all, whereas Collin-
Dufresne, Goldstein, and Hugonnier (2004)’s measure change would still be singular).
But Collin-Dufresne, Goldstein, and Hugonnier (2004) only provide a transfer of condi-
tional expectation formulas. The present paper demonstrates how the invariance times
approach, instead, results in a transfer of semimartingale calculus as a whole. One con-
crete motivation for this work is the solution of BSDEs stopped before their terminal
time. As Section 10 illustrates, in order to deal with these, conditional expectation
formulas are not enough: the entire semimartingale calculus of this paper is required.

A.3 Proof of Proposition A.1

By the (G,Q) Markov property of the process (m, k), noting that τ is the hitting time
of 1 by the h component of the process k, we have

E
[
1{τ≤T}G(τ,mτ ) |Gt

]
= E

[
1{τ<T}G(τ,mτ ) | (mt, kt)

]
=

v(t,mt, kt) = uht(t,mt), t ∈ [0, τ ∧ T ],
(A.11)

for suitable Borel bounded functions v(t,m, k) and uh(t,m) = v(t,m, k = (h, t)). As a
(G,Q) martingale, the process uht(t,mt), t ∈ [0, τ ∧ T ], has a vanishing (G,Q) drift.
Hence, by an application of the Itô formula to this process, using (A.5), the pair function
u = (u0(t,m), u1(t,m)) formally solves u1 = G, u0(T, ·) = 0 and

∂tu0(t,m) + ς(t)β(t,m, (0, t))∂mu0(t,m) +
ς(t)2

2
∂2
m2u0(t,m)

+ γ(t,m, 0)
[
G(t,m)− u0(t,m)

]
= 0, t < T,m ∈ R.

(A.12)

Remark A.2 At least, the above holds assuming u regular enough for applicability
of the Itô formula. Given the discussion nature of this appendix, we content ourselves
with the above formal argument, without introducing weak solutions of (A.12).
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Putting together (A.11) and the Feynman-Kac representation of the solution u0 of
(A.12) at the origin yields

E
[
1{τ≤T}G(τ,mτ )

]
= u0(0, 0)

= E?
[ ∫ T

0
e−

∫ t
0 γ(s,m?s ,(0,s))dsγ(t,m?

t , (0, t))G(t,m?
t )dt

]
,

for any process m? as stated in the proposition, which is therefore proven.
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Math. 714. Springer.

Jacod, J. and A. N. Shiryaev (2003). Limit Theorems for Stochastic Processes (2nd
ed.). Springer.

Jeanblanc, M. and L. Li (2020). Characteristics and constructions of default times.
SIAM Journal on Financial Mathematics 11 (3), 720–749.

27



Jeanblanc, M. and S. Song (2015). Martingale representation property in progressively
enlarged filtrations. Stochastic Processes and their Applications 125 (11), 4242–4271.

Jeulin, T. and M. Yor (1978). Grossissements de filtrations et semi-martingales: for-
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