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Abstract

Invariance times are stopping times 7 such that local martingales with respect to
some reduced filtration and an equivalently changed probability measure, stopped
before 7, are local martingales with respect to the original model filtration and
probability measure. They arise naturally for modeling the default time of a dealer
bank, in the mathematical finance context of counterparty credit risk. Assuming an
invariance time endowed with an intensity and a positive Azéma supermartingale,
this work establishes a dictionary relating the semimartingale calculi in the origi-
nal and reduced stochastic bases, regarding in particular conditional expectations,
martingales, stochastic integrals, random measure stochastic integrals, martingale
representation properties, semimartingale characteristics, Markov properties, tran-
sition semigroups and infinitesimal generators, and solutions of backward stochastic
differential equations.

Keywords: Progressive enlargement of filtration, invariance time, semimartingale cal-
culus, Markov process, backward stochastic differential equation, counterparty risk,
credit risk.

Mathematics Subject Classification: 60G07, 60G44.

1 Introduction

Invariance times were introduced in Crépey and Song (2017b) as stopping times 7 such
that local martingales with respect to a reduced filtration § and some equivalently
changed probability measure P, stopped before 7, are local martingales with respect to
the original model filtration & and probability measure Q. Seen from the smaller filtra-
tion §, these are the random times 7 for which the enlargement of filtration Jeulin-Yor

“stephane.crepey@lpsm.paris. This research has benefited from the support of the Chair Capital
Markets Tomorrow: Modeling and Computational Issues under the aegis of the Institut Furoplace
de Finance, a joint initiative of Laboratoire de Probabilités, Statistique et Modélisation (LPSM) /
Université Paris Cité and Crédit Agricole CIB. The author is grateful to Shigi Song for his contributions
to a preliminary version of this work.



formula can be compensated by the Girsanov formula of an equivalent change of prob-
ability measure. Crépey and Song (2017b), which is summarized in Section 2, focused
on a characterization of invariance times in terms of the integrability of a tentative Q
to P measure change density. The present paper establishes a dictionary of transfer
properties between the semimartingale calculi in the original and changed stochastic
bases, assuming an invariance time 7 endowed with an intensity and a positive Azéma
supermartingale:

e Theorem 3.1 extends the classical reduced-form credit risk pricing formulas be-
yond the basic progressive enlargement of filtration setup where the Azéma su-
permartingale of 7 has no martingale component;

e Theorem 4.1 establishes a bijection between the (&,Q) (resp. (&,Q) continuous
/ (6,Q) purely discontinuous) local martingales stopped before 7 and the (F,P)
(resp. (§,P) continuous / (§F,P) purely discontinuous) local martingales;

e Theorem 5.1 establishes the connection between stochastic integrals in the sense
of local martingales in (&,Q) and in (F,P);

e Theorem 6.1 establishes the connection between the (®,Q) and (§F,P) random
measures stochastic integrals;

e Theorem 7.1 establishes the correspondence between (weak or strong) (&, Q) and
(§,P) martingale representation properties;

e Theorem 8.1 yields the relationship between the (&, Q) local characteristics of a
® semimartingale X stopped before 7 and the (§,P) local characteristics of the
§ semimartingale X', called reduction of X, that coincides with X before 7;

e Theorems 9.1 and 9.2 state conditions under which Markov properties, transition
semigroups and infinitesimal generators can be transferred between (&,Q) and

(3,P);

e Theorems 10.1 and 10.2 show the equivalences, within various spaces of solutions,
between a nonstandard (&, Q) backward SDE (BSDE) stopped before 7 and a
reduced (§,P) BSDE with null terminal condition.

Theoretical interest apart, a concrete motivation for this work is the study of the so
called XVA equations, where VA stands for value adjustment and X is a catch-all letter
to be replaced by C for credit, F for funding, M for margin, or K for capital. These
are the value adjustment equations related to counterparty risk and its capital and
funding implications for a dealer bank. Given the misalignment of interest between the
shareholders and creditors of a bank, devising financial derivative entry prices from a
shareholder indifference point of view leads to XVA BSDEs stopped before the default
time 7 of the bank, such as the one mentioned in the last bullet point above: see
Example 10.1.



For a general reference on the theory of random times and enlargement of filtra-
tion with credit risk applications, see Aksamit and Jeanblanc (2017). As discussed in
Section A, the notion of invariance time is also related to various approaches that were
introduced in the mathematical finance literature for coping with defaultable cash flows
based on default intensities.

1.1 Standing Notation and Terminology

The real line and half-line are denoted by R and Ry; | - | denotes any Euclidean norm
(in the dimension of its argument), -' means vector transposition; B(E) denotes the
Borel o algebra on a metrizable space E; A is the Lebesgue measure on Ry ; §, denotes
a Dirac measure at a point a.

Unless otherwise stated, a function (or process) is real valued; order relationships
between random variables (respectively processes) are meant almost surely (respectively
in the indistinguishable sense); a time interval is random (in particular, the graph of
a random time 6 is simply written [f]). We do not explicitly mention the domain of
definition of a function when it is implied by the measurability, e.g. we write “a B(R)
measurable function h (or h(z))” rather than “a B(R) measurable function h defined
on R”. For a function h(w, z) defined on a product space 2 x E, we write h(zx) (or h;
in the case of a stochastic process), without w.

We use the terminology of the general theory of processes and of filtrations as given
in the books by Dellacherie and Meyer (1975) and He, Wang, and Yan (1992). For any
semimartingale X and for any predictable X integrable process L, the corresponding
stochastic integral is denoted by [ L;dX; = f(o,-] LidX; = L.X, with the precedence
convention KL .X = (KL).X if K is another predictable process such that KL is X
integrable. The stochastic exponential of a semimartingale X is denoted by £(X).

We work with semimartingales on a predictable set of interval type Z as defined
in He, Wang, and Yan (1992, Sect. VIIL.3). In particular, X is a local martingale on Z
(respectively Y = L. X on Z) means that

X% is a local martingale (respectively Y% = L. (X% holds)) (1.1)

for at least one, or equivalently any, nondecreasing sequence of stopping times (6,,)n>0
such that U[0,6,] = Z. The default case where Z = R, corresponds to the standard
notion of local martingale (respectively stochastic integral).

For any cadlag process X, for any random time 6, AyX represents the jump of X
at 6. We use the convention that Xo_ = Xy (hence AgX = 0) and we write X? and
X9 for the processes X stopped at § and before 6, i.e.

X = X1+ Xoljg 100y, X' = X1p0) + Xo-1jp100)- (1.2)

The process X is said to be stopped at 6, respectively before 8, if X = X?, respectively
X = X% . We call compensator of a stopping time # the compensator of Ljpoc)- We
say that 6 has an intensity -y if 6 is positive and if its compensator is given as . A, for



some predictable process 7 (vanishing beyond time 6). For any event A, we denote by
0 4 the stopping time 1 460 4 1 4c00.

Stochastic integrals of random functions with respect to jump measures and their
compensations are meant in the sense of Jacod (1979), to which we also borrow the
usage of including the optionality with respect to a reference filtration in the defini-
tion of an integer valued random measure. Random measure stochastic integrals and
transform of measures by densities are respectively denoted by “x” and “.”.

We denote by P($) and O($) the predictable and optional o fields with respect
to a filtration $).

2 Invariance Times Revisited

In this section we recall the main results of Crépey and Song (2017b) regarding their
conditions (B) and (A) and we present the stronger condition (C), introduced with its
first consequences in Crépey, Sabbagh, and Song (2020, Sections 4-6), and which is
explored systematically in this work.

We work on a space ) equipped with a o field A, a probability measure Q on A,
and a filtration & = (&;);cr, of sub-o fields of A satisfying the usual conditions.

2.1 Condition (B)
Let there be given a & stopping time 7 and a subfiltration § = (F¢):er, of & satisfying

the usual conditions and the following:

Condition (B) For any & predictable process L, there exists an § predictable process
L/, called the § predictable reduction of L, such that 1(g L = 1o L. ®
Equivalently (cf. Crépey and Song (2017b, Eq. (2.1))):

Vt >0and B € &;, 3B’ € §; such that BN{t <7} =B"n{t <7} (2.1)

This holds in particular (but not only, see Section A) in the classical progressive
enlargement of filtration setup, where

S, =F Vo(rAt)Va({T >t}), t € Ry,

i.e. when & is the smallest filtration larger than § making 7 a stopping time.

Let © and P denote the § optional and predictable projections. In particular,
S =91jp,7)) is the § Azéma supermartingale of 7, with canonical Doob-Meyer decom-
position S = Q — D, where Q (with Qp = Sp) and D (with Dy = 0) are the § local
martingale component and the § drift of S. We recall that

S;— >0 holds on {0 < 7 < 0o} (2.2)
(cf. Yor (1978, Lemme 0 page 62)).

Lemma 2.2 in Crépey and Song (2017b) Under the condition (B):



1) For any & stopping time 6, there exists an § stopping time 0, which we call the §
reduction of 0, such that {6 <7} ={0' <7} C{0=20"}.

2) Given a metrizable space E, any P(®) x B(E) measurable function ¥(w,z) admits
a P(§) x B(E) measurable function ¥}(w,x), called predictable reduction of ¥, such
that 1o ¥ = 1oV everywhere; Any O(®) x B(E) measurable function ¥(w, z)
admits an O(F) x B(E) measurable function V}(w,z), called optional reduction of
W, such that 1o )W = 1}y ¥ everywhere.

3) Let M be a (&,Q) local martingale stopped before T. For any § optional reduction
M’ of M, M" is an § semimartingale on {S_ > 0} and

S_.M' +[S,M'] is an (§,Q) local martingale on {S— > 0}. (2.3)

Conversely, for any § semimartingale K on {S_ > 0} such that S_ . K + [S, K] is
an (§,Q) local martingale on {S— > 0}, K™~ is a (8,Q) local martingale on Ry .

4) The Azéma supermartingale S of T admits the multiplicative decomposition

S =S509D on {S > 0}, (2.4)

where Q@ = E(3 . Q) is an (§,Q) local martingale on {¥S > 0} and D = E(—<- . D) is

an § predictable nonincreasing process on {¥'S > 0}. 1

Lemma 2.3 in Crépey and Song (2017b) Under the condition (B), assuming
St > 0 for some positive constant T, then

two § optional processes that coincide before T coincide on [0,T). (2.5)

In particular, § optional (and predictable) reductions are uniquely defined on [0,T]. B

Lemma A.1 in Crépey and Song (2017b) If 7 has a (&,Q) intensity v, then D is
continuous and

1 £ 1
E(5—D) = 5P D=4l (2.6)

hold on {S— > 0}.

Moreover, supposing St > 0 so that reductions are uniquely defined on [0, 7],
Song (2016, Lemmas 6.4, 6.5 and 6.10) implies that the § optional reduction of a
cadlag process is cadlag on [0, T; the § optional reduction of a & optional nondecreas-
ing process is an § optional nondecreasing process on [0,7]; the § optional reduction
of a & semimartingale is an § semimartingale on [0, 7).



2.2 Condition (A)

In addition to 7, §, and & satisfying the condition (B) as above, let there be given a
positive constant 7" which is fixed throughout the paper. Letters of the families “Q”
and “P” are used for (§,Q) and (§,P) local martingales, respectively, where P refers
to the following:

Condition (A) There exists a probability measure P equivalent to Q on Fr, called
invariance probability measure, such that, for any (§,P) local martingale P, P™~ is a
(6,Q) local martingale on [0,77]. ®

If so, then we call 7 an invariance time and P an invariance probability measure.

The most standard circumstance ensuring the condition (A) is a basic immersion
setup where (§, Q) local martingales are (&, Q) local martingales without jump at 7,
in which case 7 is an invariance time with P = Q (i.e. a strict pseudo-stopping time in
the terminology of Jeanblanc and Li (2020, Definition 2.1)), for every positive constant
T. More generally:

Theorem 3.2 in Crépey and Song (2017b) The condition (A) holds if and only if
5(]1{p5>0}% . Q) is a positive (§,Q) true martingale on [0, T]. In this case, a probability
measure P on A is an invariance probability measure if and only if the § density process
of P coincides with

1
E(Lps>0)5+Q)nr (2.7)

on {fS >0} N[0,7T]. In particular, P defined by

ar
dQ

is an invariance probability measure. B

1
8(1{15>0}%-Q)T on A

Moreover:
Theorem 3.7 in Crépey and Song (2017b) If 7 has a (&,Q) intensity, then, under
the condition (A),

{S_.>0}={’5>0} ={S>0}. (2.8)
In addition, for any invariance probability measure P,

A process P is an (§,P) local martingale on {S— > 0} N[0, T
if and only if (2.9)
S_.P+][S,P] is an (F,Q) local martingale on {S— >0} N[0,7]. n



2.3 Condition (C)

In order to enjoy all of the above properties, we work henceforth under the following
standing assumption (given the positive constant T" already present in the condition

(A)):

Condition (C). The condition (A) is satisfied, Sz > 0 holds almost surely, and 7 has
a (6,Q) intensity. m

In particular, we then have {¥S > 0} D [0,7], by (2.2). By virtue of the statement
encapsulating (2.7), invariance probability measures P are then uniquely determined
on Fr, on which they only matter anyway (because, in practice, P is only used for
computations in § on [0,7]). As a consequence, we can then talk of “the invariance
probability measure P.”

By reduction in our setup, we may and do assume that the (&, Q) intensity of 7
is of the form 1 g ;}, for an § predictable process v uniquely defined on [0,T7], and we
write I' = fo vsds, so that I'" is the (&, Q) compensator of 7.

Given our focus on the time interval [0, 7] hereafter, we may and do assume that
optional (respectively predictable) reductions are stopped at T (respectively vanish on
(T, 0)), without loss of generality.

3 Conditional Expectation Transfer Formulas

The (&4, Q) and (¢, P) conditional expectations are denoted by E; and E; and we drop
the index t at time 0.

The following result, the unconditional version of which corresponds to Theorem
4.1 in Crépey, Sabbagh, and Song (2020), provides an extension of classical results (see
e.g. Bielecki, Jeanblanc, and Rutkowski (2009, Chapter 3)) beyond the basic immersion
setup where (§,P = Q) local martingales are (&, Q) local martingales without jump at
T.

Theorem 3.1 For any constant t € [0,T], [t,T] valued § stopping time o, and Ty
measurable nonnegative random wvariable x, for any § predictable nonnegative process
K, for any § optional nondecreasing process A starting from 0, we have, on {t < T},

Et[X]l{U<T}] = E;[Xei(rgipt)h (31)
T
B A ppery) =B [ Ko T, ds], (32)
t
T
E[A7 — A7) = L By / e dAy). (3.3)
t

Proof. For any B € &, and B’ associated with B as in (2.1), we have by definition
of S and §, measurability of x (using also the tower rule and recalling the assumption
S > 0 which is part of the condition (C)):



E [ll{t<T}E(xSa/St\%t)llB] = E [SiE(xSo/Si1p|3:)] =E[XSolp]| =E [XL{y<r}15] .

Hence

L B(XSo/St|3t) = E(Lip<rx|:). (3.4)

Then (2.4), under the assumption St > 0, yields

E(xS,/S:|3) = E(Xsog(—si.o)gapls Q)o/ (S06 (~g-D)E(-Q))[5:)
- (3.5)
= B [\E(—g-D)a/E(— D) 3]

by (2.7). In view of (2.6), we obtain (3.1).
For (3.2), we compute, on {t < 7},

T T
By (K ey = Eof / K Ljyeryrs ds] = / By (KoL gyeryys] ds
t t

T T
:/ EQ[KSG—(FS—H)%] ds — IE;[/ Kse—(l“s—l“t)% ds],
t t

where (3.1) was used for passing to the second line.
Regarding (3.3), an application of (3.2) yields (still on {t < 7})

T
Edl(Ar_ — A ery] = E)| / (Ay — AT dy
t

T
— _E)[(Ag — A)e T T 4B / (T T ga,).

t

Using (3.1), we deduce
Bel(A7 — A)] = Ee[(Ar — AL rery] + Ee[(Ar— — Al <my]

T
= Bi[(Ar — Ar)e™TT 7] — Bj[(Ar — Ap)e” T T0] + EQ[/ e~ s=T) gA,)
t
T
= Eg[/ eIl gA,) w
t

See Section A for the discussion of two alternatives to the formula (3.2) that are known
from the mathematical finance literature.

4 Martingale Transfer Formulas

We denote by



o M7 (F,P), the set of (F,P) local martingales stopped at T,

e M, _ar(®,Q), the set of (&,Q) local martingales stopped at 7 — AT, i.e. before
7 and at T,

o M5(F,P) and MEL(F, P), respectively MS, (6, Q), and M?_, (&, Q), their re-
spective subsets of continuous local martingales and purely discontinuous local
martingales.

Theorem 4.1 The following bijections hold:

T

MT(%’JP)) (:> MT*/\T(ﬁuQ))
MG(3.B) =2 M5xp(8.Q). (4.1)

T

M%(S, IP)) (:> Mﬁ—/\T(®aQ)7

where -’ denotes the § optional reduction operator.

Proof. On M,_,r(®,Q) the map -’ takes its values in the space My (F,P) because,
for any M € M,._,7(®,Q), the process S_.M’ + [S, M'] is an (F, Q) local martingale
on {S_ > 0}, by (2.3), so that M' € Mp(F,P), by (2.9). Conversely, on Mp(F,P) the
map -7~ takes its values in the space M,_,7(®,Q) because, for any P € My (§,P),
P € M;_ar(6,Q), by the condition (A) which is contained in (C).

To establish the first bijection in (4.1) it remains to show that (M’)™™ = M and
(P™)" = P in the above. As M is stopped before 7, the first identity is trivially true.
Regarding the second one, (P7~)" = P holds before 7, hence on [0,T], by (2.5), hence
on R, as both processes (P™~)" and P are stopped at T.

The second bijection in (4.1) follows by the same steps, noting that the reduction
of a continuous process X is continuous on [0, 7], by (2.5) applied to the jump process
of X.

To prove the third bijection, following He, Wang, and Yan (1992, Theorem 7.34),
assuming M € M,_ r(,Q), we take a (6,Q) continuous local martingale X and we
consider the bracket [M, X|. Computing the quadratic variations, we obtain

M, X]=[M,X""|=[M X'~

on [0, T'], which shows that [M’, X'] is the § optional reduction of [M, X]. Consequently,
according to (2.5), [M,X] =0 on [0,7 AT) if and only if [M’, X’] = 0 on [0,T]. The
lemma then follows from the first and second bijections in (4.1). n



5 Transfer of Stochastic Integrals in the Sense of Local
Martingales

Lemma 5.1 Let (6,)n>0 be a nondecreasing sequence of & stopping times tending to
infinity. There exists a nondecreasing sequence (op)n>0 of § stopping times such that
on tends to infinity and

O NTANT =0, AT NT.

Proof. We compute, using (3.1) at ¢t = 0 for passing to the second line,
_ —I',
E'Lig,<rye " 7] < E[lgg crye %]
= E[l{g, <1310, <r}] = E[L{g, <11 1{0,<r}] = 0 as n — oo.

This implies that P[6], < T] — 0. Hence Q[f, < T] — 0, as P is equivalent to Q on Fr.
The sequence o,, = (6,) {0, <13, 1 > 0, satisfies all the desired properties. B

Lemma 5.2 Let A be a & adapted nondecreasing cadlag process. The process AT~ is
(6,Q) locally integrable on [0,T] if and only if A" is (F,P) locally integrable on [0,T].

Proof. Recall that A’ is a nondecreasing process (cf. the last paragraph in Section 2.1).
Let (0,)n>0 be a nondecreasing sequence of & stopping times tending to infinity. Let
(0n)n>0 be associated with (6,,)n>0 as in Lemma 5.1. We compute

O NT O NT AT
E[/O 1{s<'r}€FSdAS ] = E[/O ]1{s<T}eF5dAS ]

on NT AT onNT
] A T R A T ]
0 0
by (3.3) (used at t = 0). This implies the result. m

Theorem 5.1 Let W be a (6,Q) local martingale stopped before T and let L be a &
predictable process. The process L is W integrable in the sense of (8,Q) local martin-
gales if and only if L' is W' integrable on [0,T] in the sense of (§,P) local martingales
(recall that we assume L' =0 on (T, 0)). If so, then

(LW in(3,P)" =L.W in(8,Q) on [0,T).
Proof. In view of He, Wang, and Yan (1992, Definition 9.1), we only need to check

the local integrability of the processes \/f(f L2d[W, W] and \/fg(L’)gd[W’, W']s under
respectively (®,Q) and (F,P). But these local integrabilities are equivalent because of
Lemma 5.2.

To prove the identity between the stochastic integrals when they exist, we first note
that the identity holds for any L in the class of & predictable bounded step processes.
By monotone class theorem, this is then extended to the class of & predictable bounded
processes L. By stochastic dominated convergence, i.e. Theorem 9.30 in He, Wang,
and Yan (1992), this is extended further to all & predictable processes L which are W
integrable under (6&,Q). n

10



6 Transfer of Random Measures Stochastic Integrals

Given a Polish space E endowed with its Borel o algebra B(E), we recall from He,
Wang, and Yan (1992, Theorem 11.13) that, for any (optional) integer valued random
measure 7, there exists an F valued optional process 3 and an optional thin set, of the
form Uy,en[fy,] for some sequence of stopping times (6,,),>0, such that

™= 8050 L seUnenlbnl}- (6.1)

Hence, for any nonnegative A x B(R,) x B(E) measurable function ¥,

Uk = Z \I/ ﬁs ]l{seuneN [On]} — Z \II n’ﬁg )]1{9"<OO} (62)

Lemma 6.1 The & optional integer valued random measure m on Ry X E admits an
§ optional reduction, i.e. an § optional integer valued random measure ™ on Ry x E
such that g 7y.m = T -7’

Proof. We have, for any nonnegative A x B(Ry) x B(E) measurable function ¥,

Uk (Lo m) = D Dacry Vs(BT (scUpenftn]}

s<-

= Z ]l{s<’r}‘;[j ]l{séu 0.1y = U ( [0, T)'ﬂj)a

where 7' = 3" _. 05,8 Liseu, o1y defines an § optional integer valued random mea-
sure, by He, Wang, and Yan (1992, Theorem 11.13). B

In the remainder of the paper, we fix the space E, a & optional integer valued
random measure 7, and the related notation as in the above. We introduce the spaces
of random functions P(F) = P(3) x B(E) and P(&) = P(&) x B(E). We denote the
(§,P) compensator of = 7’ by v.

Lemma 6.2 The (8,Q) compensator of 1o )t is 1o - v on [0,T7.

Proof. By Lemma 5.2, for any ¥ € P(®) such that the process |U| * 7 is (&,Q)
integrable, the processes |V’|* pu and |¥'| x v are (F,P) locally integrable (recalling that
U’ =0 on (T,00) by assumption). It follows that the process

P=Vsxpy—-Vxv

is an (§,P) local martingale (cf. He, Wang, and Yan (1992, p. 301)). By the condition
(A), the stopped process

PT_ = ]1[077.)\11/ * U — ]1[077.)\11/ XV = ]1[0’7—)\1/ * U — 11[077.}\1/ * UV

is a (6,Q) local martingale, where LoV *v = 1jg V¥ * v because 7 avoids the
predictable stopping times. As 1}y ). is a & predictable random measure, this proves
the lemma. B

11



Theorem 6.1 For any ¥ € 7/5(Q5), W is (Ljg,r)ept — Ljg 7ev) stochastically integrable in
(6,Q) on [0,T) if and only if ¥’ is (u— v) stochastically integrable in (F,P) on [0,T].
If so, then

(U x(p—v) in(3,P) =WUx (Lio,7)-1t — Lo 7-v) in (6,Q) on [0,T].

Proof. In view of He, Wang, and Yan (1992, Definition 11.16), the integrability rela-
tionship between ¥ and ¥’ is the consequence of Lemma 5.2.
To prove the identity between the corresponding integrals when they exist, we
note that
(W' (=) and W (Lo ry.pu— L -.v)

are (8,Q) purely discontinous local martingales. By virtue of He, Wang, and Yan
(1992, Theorem 7.42 and Definition 11.16), they are then equal because they have the
same jumps, namely

AW (n—v))" = (P'(t, B) Lireu,cnlon)) — /{t} . W, (e)v(ds,de))Liery
X

= (We(Be) L teu,enion]} —/ Wy(e)v(ds,de))Lycry
{t}xE

= A (U # (L)t — Lo 7v)),

as Ly ).v = 1 ;).v (because 7 avoids the & predictable stopping times). &

7 Transfer of Martingale Representation Properties

We consider martingale representations with respect to martingales and compensated
jump measures as in Jacod (1979), which corresponds to the notion of weak represen-
tation in He, Wang, and Yan (1992). As in He, Wang, and Yan (1992), when no jump
measure is involved, we talk of strong representation.

Let W be a d variate (&,Q) local martingale stopped before 7. We assume the
random measure 7 stopped before 7, in the sense that Unen[fn] C (0,7). We write
B =W' u =7 Let pand v denote the (&,Q) compensator of 7 and the (F,P)
compensator of u, so that p =1y --v, by Lemma 6.2.

Lemma 7.1 Given (P(&))*? and 73((’5) measurable integrands L and ¥, if
M=L.W+¥x(m—p) (7.1)

holds in (&,Q) on [0,T], then M" = L' B+ V' x (u — v) holds in (§,P) on [0,T].
Conversely, given (P(F))*? and P(F) measurable integrands K and ®, if

P=K.B+®x*(u—v) (7.2)
holds in (§,P) on [0,T], then PT~ = K. B™™ + @ x (19 ry-p — Ljg --¥) holds in (&,Q)
on [0,T].
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Proof. This is the consequence of Theorems 5.1 and 6.1. B

Remark 7.1 In the representation (7.1), the integrands L and ¥ corresponding to a
given process M are unique modulo d[W, W] (with d[W, W]s-a.e. in the multivariate
sense of Jacod and Shiryaev (2003)) and p negligible sets, respectively. Likewise, in
the representation (7.2), the integrands K and ® corresponding to a given process P
are unique modulo d[B, B] (with d[B, B]s-a.e. in the multivariate sense of Jacod and
Shiryaev (2003)) and v negligible sets. B

As an immediate consequence of Lemma, 7.1:

Theorem 7.1 The space M,_a7(&,Q) admits a weak representation by W and 7 if
and only if the space My (F,P) admits a weak representation by B=W" and p=='". 1

Applying Theorem 7.1 with p = 0, one obtains the strong martingale representation
transfer property.

See Gapeev, Jeanblanc, and Wu (2021, 2022) for other transfers of martingale rep-
resentation properties, in respective Brownian and marked point process enlargement
of filtration setups (progressive but also initial as already before in Fontana (2018))
satisfying Jacod’s equivalence hypothesis, i.e. the existence of positive conditional den-
sity for 7 with respect to §, as opposed to a semimartingale progressive enlargement
of filtration setup under the condition (C) in this work. See also Jeanblanc and Song
(2015) or (until 7) Choulli, Daveloose, and Vanmaele (2020) and Choulli and Alharbi
(2022) (also after 7) for rather general transfers of martingale representation proper-
ties in a progressive enlargement of filtration setup. From a technical viewpoint our
setup stopped before 7 (as dictated by the motivating application of Example 10.1) is
elementary once the underlying Theorems 5.1 and 6.1 are in place.

Remark 7.2 Of course we cannot say anything beyond 7, but the motivating appli-
cation of Example 10.1 never requires to go beyond 7.

8 Semimartingale Characteristic Triplets Transfer Formula

Let there be given a semimartingale X stopped before 7 (i.e. such that X = X"7)
in some filtration §) under a probability measure M, with jump measure 7. The
characteristic triplet of X is composed of:

pXOM the drift part of the truncated semimartingale X — (x]l{‘x|>1})*7rx ;

oM — (X¢, X, the angle bracket of the continuous martingale part of X
(the diffusion part of X);

M = (7X)PAM the predictable dual projection of 7%

(called in He, Wang, and Yan (1992) the Lévy system of X, i.e. the
extension to a semimartingale setup of the notion of a Lévy measure).
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The following results show that the (§, P) characteristic triplet of the optional reduction
X' of a (&,Q) semimartingale stopped before 7, X is the predictable reduction of the
(&, Q) characteristic triplet of X. Moreover, if the (8, Q) semimartingale X is special,
then so is X’ and the (§,P) drift of X’ is the predictable reduction of the (&,Q) drift
of X.

Theorem 8.1 Let X be a (6,Q) semimartingale stopped before 7. Let X' be the
optional reduction of X, an (§,Q) (hence (F,P)) semimartingale as recalled in the last
paragraph of Section 2.1, with (§,P) jump measure denoted by X' We have

(p¥02, 0¥ 00 XOQ) — (NI (@I W FF) on [0, (8.1)
Proof. We have the identity ]1[0,7.).7TX = ]1[0’7_).7TX, on [0,7]. So,

X @l oo™ = (X' = @ on)en™ ) = (PP 40X ) (82)

n [0,7], where P is the (F,P) canonical Doob—Meyer martingale component of the
(§,P) special semimartingale X' — (m]l{|x‘>1})*7rX/ on [0, T], with continuous and purely
discontinuous parts P¢ and P¢. By the condition (A), P7~ is a (&, Q) local martingale
on [0,T]. Therefore, from the formula (8.2), we conclude that

pX8.Q _ (bX’,SJP’)T— - (bX'v&P)T on [0,T]

(as ALY SE — 0, because 7 is totally inaccessible.) Now, applying Lemma 6.2 with
E =R, we also conclude

7®»Q / ’
CX’®’@ = 7I'Xp = (]1[077_).7[_X)p,@§,@ = ]l[oﬂ.(ﬂ'X )p,S’,IP’ = ]l[OVT].CX ’S’P.
Finally, according to the second and third bijections in (4.1), we have
(PC)T_ € M7C'/\T(Q57Q)7 (Pd)T_ € Mi*/\T(®7Q)'

Hence we conclude from (8.2) that X¢ = (P°¢)"~ is the continuous martingale part of
X in (6,Q) and therefore

aX,Qﬁ,Q _ [XC,XC} _ [(PC)T—, (Pc)r—] _ [Pc7pc]fr _ (aX/,S,]P))T' i

Corollary 8.1 Suppose that a (&,Q) semimartingale X = X"~ is special on [0,T].
Then X' is an (§,P) special semimartingale on [0, T). Denoting by 55%Q and X' 5P
the (&,Q) drift of X and the (§,P) drift of X', we have

BHEC = (BXFE)T on [0,T). (8:3)

Proof. As X' is already known to be an (§,P) semimartingale and because special
semimartingale means one with locally integrable jumps, the special feature of X’
follows from Lemma 5.2. Note that, by He, Wang, and Yan (1992, Lemma 7.16 and
Theorem 11.24), the function |z[1{j;~1y is X8 integrable on [0, T]. Consequently

FXSE = pXTE ()™ 5 on (0,71,
The analogous (8, Q) relationship holds for X. Hence (8.3) follows from (8.1). n
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9 Markov Transfer Formulas

In this section we study the transfer of Markov properties between (&,Q) and (F,P).
The reader is referred to Sharpe (1988, proof of Proposition (60.2)) regarding the
definition of the semigroup generated by a Markov family.

We suppose that the filtration & is generated by a (®,Q) quasi-left continuous
strong Markov semimartingale X with state space R?. We denote by an index -!
everything related to the Markov process X translated by time ¢. We assume that 7 is
a terminal time of X, i.e. (see e.g. Blumenthal and Getoor (2007, (3.7) Remark p.108))

r=rl4tifr >t (9.1)

We assume further that the (&, Q) intensity process of 7 takes the form v(X.)1 5, for
some B(R?) measurable function ~. Let

Ms = 6118]1{s<7'} - efo 'Y(Xu)du]l{s<7}‘

Lemma 9.1 M is a multiplicative functional of X, i.e., My = M;M7__ | and is a (&,Q)
local martingale. The multiplicative functional M defines a probability transition func-
tion (ﬁ)teﬂh'

Proof. The first part can be checked by definition of M. For the second part, we check
by the Doléans-Dade exponential formula that

M= 5(—]1[7.700) + FT).

The last part follows from Sharpe (1988, (65.3), proof of Proposition(56.5)), Sharpe
(1988, Hypothesis (62.9)) and Sharpe (1988, Theorem (62.19)). B

Theorem 9.1 The reduction X' of X is an (F,PP) strong Markov process with the
transition semigroup (Tt)ee(o,1)-

Proof. For A € §s, h Borel bounded and 0 < s < s+t < T, we have

E[]lAh(Xt+s)efg+5 7<Xu)du]l{t+s<7’}]
E[]lAef{ YXdug A h(XF)elo v XDdug
E[Laelo "Xdug, Tih(X,)),

which is rewritten in terms of X’ through the first expectation transfer formula in (3.1)
as

E' [l ah(X{y,)] = ELATh(XY)].
This proves that X' is an (§,P) Markov process with the transition semigroup (7;)¢cr, -
If we rewrite the above computation for s replaced by an § stopping time o, we prove
that X’ is an (§,P) strong Markov process on [0,77]. &

The next question is how to determine the generator of the semigroup (7;):cr. -

We suppose that the Markov process X is of the form X = (Y, Z), with Y stopped
before 7 and Z constant (0, say) before 7.
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Example 9.1 We may consider for X the following dynamic copula models of portfolio
credit risk, with any of the modeled default times in the role of 7 in this paper:

e The dynamic Marshall-Olkin copula (DMO) model, shown in Crépey and Song
(2016, Theorem 9.2) to satisfy the condition (C), for P = Q in the embedded con-
dition (A) (case of a strict pseudo-stopping time in the terminology of Jeanblanc
and Li (2020, Definition 2.1));

e The dynamic Gaussian copula (DGC) model, shown in Crépey and Song (2017a)
to satisfy the condition (C) with P # Q, provided the correlation coefficient
0 > 0 in the model is small enough. In particular, the condition (C) holds in the
univariate DGC model (there is then no correlation g involved) of Section A.

Suppose X is a (&,Q) Markov process which is the solution of the following
martingale problem:

t
v(Xy) — / Lu(Xs)ds is a (&,Q) local martingale for all v € D(L),
0

where L is the generator of X, with domain D(L) C the set of the B(R?) measurable
bounded functions. Let = {u=u(y);u(y, 2) :=u(y) is in D(L)} and let L  be the
operator on D’ defined by, for ueD,

L'u(y) = Li(y,0). (9.2)

Theorem 9.2 We suppose that (D', L") satisfies the conditions of Ethier and Kurtz
(1986, Theorem 4.1 of Chapter 4, p.182). Then X' = (Y',0), Y’ is an (§,P) strong
Markov process on [0,T], and the generator of Y' is an extension of (D', L').

Proof. Clearly, X’ = (Y’,0). Hence, Theorem 9.1 implies that Y’ is an (§,P) strong
Markov process on [0,T]. For u € T/,

fo Lu(Xs)ds =u(Yy) — fo Lu(Xs)ds
is a (8,Q) local martingale. As Y is stopped before T,

AT
u(Yy) — Lu(Xs)ds is a (6,Q) local martingale stopped before 7.

0
On [0,7), Lu(X;) = Lu(Ys,0) = L'u(Ys), by (9.2). Hence,
tAT—
u(Yy)™ — / L'u(Ys)ds is a (6,Q) local martingale stopped before 7.
0
Passing to the reduction, we obtain that

w(Y)) / L'u(Y!)ds is an (F,P) local martingale on [0, T.

Therefore, Y’ is the solution of the martingale problem of £’. The result then follows
from Ethier and Kurtz (1986, Theorem 4.1 of Chapter 4, p.182). n
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10 BSDE Transfer Properties

In this section, 7 satisfying the condition (C) on [0,7] as before, we reduce a (&,Q)
backward stochastic differential equation (BSDE) stopped before 7 and at T to a sim-
pler (§,P) BSDE stopped at T.

We suppose E Euclidean and (E, B(E)) endowed with a o finite measure m inte-
grating (1 A |e|?) on E. We consider the space Lg of the B(E) measurable functions u
endowed with the topology of convergence in measure induced by m.

Given a P(&) x B(R) x B(R?) x B(Lg) measurable function g = g;(z,1,v), we
can define, by monotone class theorem, a P(F) x B(R) x B(RY) x B(Lg) reduction
g = gi(z,1,7) of g such that 1(y 19 = 19 ,9"- Let A be a & finite variation (cadlag)
process.

Adopting the setup of Section 7, we consider the (&,Q) BSDE for a & adapted
process Z, a (P(&))*4 measurable process L integrable against B~ in (&, Q) on [0, T,
and a P(&) measurable function ¥ stochastically integrable against (1o -y-u — 1o V)
in (6,Q) on [0,T1], such that, in (6,Q),

fOT/\T ’gS(ZS—a L87 \I/s)‘ds < oo and
fd Liser|dAg| is (&, Q) locally integrable on [0, 77,

27 4 [ (94(Zo, L, Wy)ds + dATT) (10.1)
=L.B]" +Vx(Lpryp—1Lpqv), teRy,

Z vanishes on [T AT, +00).

We also consider the (§,P) BSDE for an § adapted process U, a (P(%))*? measurable
process K integrable against B in (§,P) on [0,7], and a P(§) measurable function ®
stochastically integrable against (x — v) in (§,P) on [0, 7], such that, in (§F,P),

fOT ‘g;(Us—; Ks, ¢s)’d3 < o0 a.nd
fd |dA”| is (F,P) locally integrable on [0, 7],

10.2
UL + [ (gh(Us—, Ky, ®g)ds + dAL) = K . By + ® % (u — vy, t € Ry, 102

| U vanishes on [T, +00).

Note that the (&, Q) BSDE (10.1) is stopped at 7— AT, whereas the (§, P) BSDE (10.2)
is stopped at 7.

Example 10.1 Given a bank with default time 7, a & stopping time 6 representing
the default time of a client of the bank, and a nonnegative & optional process G
representing the liability of the client to the bank, then the process A = [ Gdp(ds)
represents the counterparty credit exposure of the bank to its client. In this case

|dA5’ = Gstsg(ds), AT / ]l{s<7-}G 59 dS / G/59/ dS
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The coefficient g represents the risky funding costs of the bank entailed by its credit
riskiness. For the reason explained in the next-to-last paragraph of Section 1, all cash
flows are stopped before the bank default time 7. This results in a BSDE of the form
(10.1) for the valuation of counterparty risk (CVA) and of its funding implications to
the bank (FVA). The cost of capital (KVA) also obeys an equation of the form (10.1):
see Crépey (2022, Eqns (2.12), (2.13), and (2.17)).

10.1 Transfer of Local Martingale Solutions

The result that follows states the equivalence between the (&,Q) BSDE (10.1) and
the (§,P) BSDE (10.2) considered within the above-introduced spaces of solutions for
the triples (Z, L, ¥) and (U, K, ®), called local martingale solutions henceforth (as the
right-hand sides in the second lines of (10.1) and (10.2) are then respectively (&,Q)
and (§,P) local martingales).

Theorem 10.1 The (6,Q) BSDE (10.1) and the (§,P) BSDE (10.2) are equivalent
in their respective spaces of local martingale solutions. Specifically, if (Z, L, V) solves
(10.1), then (U, K, ®) = (Z, L, V)" solves (10.2). Conversely, if (U, K, ®) solves (10.2),
then (Z,L, V) = (119 U, 1o K, 1p®P) solves (10.1).

Proof. Through the correspondence stated in the theorem between the involved pro-
cesses:

e The equivalence between the Lebesgue integrability conditions (first lines) in
(10.1) and (10.2) follows from Lemma 5.2;

e The equivalence between the martingale conditions (second lines) in (10.1) and
(10.2) follows from Theorems 5.1 and 6.1;

e The terminal condition for U in (10.2) obviously implies the one for Z = 11y U
in (10.1), whereas the terminal condition in (10.1) implies Z71 7.} = 0, hence
by taking the §r conditional expectation:

0 = E[Zrlirory|87] = E[Z7 1 (p <y |S7] = Z7ST,

yielding Ur = Z, = 0 (as St is positive under the condition (C)). u

10.2 Transfer of Square Integrable Solutions

We now consider the (&,Q) BSDE (10.1) and the (F,P) BSDE (10.2) within suitable
spaces of square integrable solutions.

We assume that the compensator v of p = 7’ is given as (;(e)m(de)dt, where
is a nonnegative and bounded integrand in P(F). We write, for any ¢t > 0 and B(E)
measurable function u,

uf? = /E u(e)*C(e)m(de).

We write Y;* = sup,cpoq |Vs|-

18



Lemma 10.1 For any real valued cadlag § adapted process V', respectively nonnegative
§ predictable process X, we have

T .
BV + [ el d(v] = BB (103)
T S T
IE[ / eJy mug Xsds] - E’[ / X, ds] (10.4)
0 0

Proof. The formula (3.3) used at ¢ = 0 yields:
o For A= [, eJo yudug(y*)2,

T
B[ [ el d(v] = BIVOR - BV

e For A= fo elo mdux ds,

T T
E| / el oy Xods| = | / X, ds|. u
0 0
Considering the (&,Q) BSDE (10.1) for (Z, L, V) and the reduced (§,P) BSDE
(10.2) for (U, K, @), with local martingale solutions (if any) such that
(U7 K, (I)) = (Zv L, \II),a (Z7 L, \I/) = (]I[O,T)U7 ]I[O,T]K7 ]1[0,7’]¢) (105)
(cf. Theorem 10.1), we define

T
12, L, )| = E|1Zo]* + /0 el 1ty yd(2°)?]
T S
+IE[/O eJo “’“d“]l{5<7} (|L$|2 + |\Ils|§)ds},

T
(0K D)2 =B R+ B[ [ (5L + 0.f2) ds).

We consider the respective subspaces of square integrable solutions of the (&, Q)
BSDE (10.1) and of the (§,P?) BSDE (10.2) defined by || - |2 < +00 and Z = 0 on
[T AT, +00), respectively || - ||, < 400 and U = 0 on [T, +00), dubbed | - ||2 and || - ||5
solutions hereafter.

Theorem 10.2 Given local martingale solutions (Z, L, ¥) to the (&,Q) BSDE (10.1)
and (U, K, ®) to the reduced (§,P) BSDE (10.2), we have

I(Z, L, 9)|l2 = [|(U, K, ®)]. (10.6)

The (6,Q) BSDE (10.1) considered in terms of || - ||2 solutions and the (F,P) BSDE
(10.2) considered in terms of || - || solutions are equivalent through the correspondence
(10.5).
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Proof. Given respective local martingale solutions (Z, L, ¥) and (U, K, ®) to (10.1)
and (10.2), then related through (10.5) as seen in Theorem 10.1, Lemma 10.1 applied
toV =U and X = |K.|?> + |®.|? proves (10.6).

Given the equivalence of Theorem 10.1 between (10.1) and (10.2) in the sense of
local martingale solutions, their equivalence in the sense of square integrable solutions
follows from the transfer of norms formula (10.6). n

10.3 Application

Assuming fOT |dA’| integrable under P and a (weak) martingale representation of the
form studied in Theorem 7.1, we define the process R and its (§,P) martingale part P
given as

TAt T
Rt:IE’[/ dA, | 5] andPt:E’[/ dAL|T), t e Ry,
t 0

Let fs(u,k,¢) = ¢\(Rs— +u, KF +k, ®F + ¢), where K and ® are the integrands in
the representation (7.2) of P (cf. Remark 7.1).

Proposition 10.1 Suppose that fOT |dAL| is P square integrable and

(i) the functions u — fi(u,k, @) are continuous. Moreover, f is monotonous with
respect to u, i.e.

(ft(ula k7¢) - ft(u27k7¢))(u1 - Ug) < C(ul - ’LL2)2;

(i1) E fOT ‘Sl‘lp | fi(u,0,0) — £:(0,0,0)|dt < oo holds for every positive c;
ul<c

(iii) f is Lipschitz continuous with respect to k and ¢, i.e.
|ft(u’ kla¢l) - ft(ua k27¢2)’ S C(|k1 - k2| + ‘qsl - ¢2|t)7

(iv) B [ £(0,0,0)[dt < +oo.

Then the (6,Q) BSDE (10.1) and the (§,P) BSDE (10.2) have unique || - ||2 and || - [,
solutions, respectively, and these solutions are related through (10.5).

Proof. Note that fOT |dA}| being P square integrable implies that E'[(R*)3] < oo.
Through the correspondence

U=R+V, KV =K'+ K", oV =" + oV,

the (§,P) BSDE (10.2) for (U, KY,®Y) is equivalent (in both senses of (F,P) local
martingale solutions and || - ||5 solutions) to the following (&, P) BSDE for (V, K, ®V):

Jo 1 fs(Vee, KY @Y |ds < o0,
VI + [ £ (Ve KY @Y )ds = KV o By + @Y * (u — )y, (10.7)

Vr =0.
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Under the assumptions of the proposition, the (§,P) BSDE (10.7) for (V, KV, ®V) sat-
isfies the assumptions of Kruse and Popier (2016, Theorem 1). Hence it has a unique
|| - |5 solution. So has in turn the BSDE (10.2). The result then follows by an applica-
tion of Theorem 10.2. 1

Remark 10.1 Kruse and Popier (2016, Theorem 1) is only derived in the case a Pois-
son measure 7, but one can readily check that all their computations performed under
square integrable assumptions are still valid in our more general integer valued random
measure setup. Also, in view of Bouchard, Possamai, Tan, and Zhou (2018), Kruse and
Popier (2016)’s condition of a quasi-left continuous filtration is in fact not needed.

The reader is referred to Crépey (2022, Lemma B.1, Proposition B.1 and Theorem 6.1)
and Crépey, Sabbagh, and Song (2020, Section 6) for variations on the above results,
in the respective cases where f only depends on u (in the notation of Proposition 10.1
above) and no martingale representation property needs to be assumed, or where f
is assumed to be Lipschitz but also exhibits a dependence on a conditional expected
shortfall of a future increment of the martingale part of the solution.

Remark 10.2 Earlier occurrences of such results are Crépey and Song (2015, 2016),
with the difference that these earlier works were about BSDEs stopped at a random
time. The more recent papers, instead, with the motivation recalled in the next-to-last
paragraph of Section 1 of the present paper, are about BSDEs stopped before a random
time: compare e.g. stopping at ¥ in the second line (Crépey and Song, 2015, Eqn (2.1))
versus stopping before 7 in the second part of (10.1).

Analogous techniques could be used to simplify (&, Q) optimal stopping or stochas-
tic control problems into reduced (§,P) reformulations: cf., in the case of BSDEs or
control problems stopped at time 7 (as opposed to stopped before 7 in our setup),
Kharroubi and Lim (2014) and Jiao, Kharroubi, and Pham (2013) (assuming that a
driving (§, Q) Brownian motion, stopped at 7, is a (&,Q) martingale), Aksamit, Li,
and Rutkowski (2021) (who provide some comparative comments with our approach in
their Remark 8.2), or Alsheyab and Choulli (2021).

A Intensity Based Pricing Formulas, Survival Measure
and Invariance Times

This section puts Theorem 3.1 (specifically, the formula (3.2)) in perspective with
Duffie, Schroder, and Skiadas (1996, Proposition 1) and Collin-Dufresne, Goldstein,
and Hugonnier (2004, Theorem 1). This is done in the setup of a specific Markov model
where the issues at stake can be understood based on Feynman-Kac representations.
For other renewed views on the seminal formulas of Duffie, Schroder, and Skiadas
(1996), see Jeanblanc and Li (2020).
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A.1 The Univariate Dynamic Gaussian Copula Model

We consider the following single-name version of the dynamic Gaussian copula model
of Crépey and Song (2017a). Let

T = \I/(/O+OO s(s)dBs), (A1)

where ¥ is a continuously differentiable increasing function from R to (0,4+c0), < is a
Borel function on Ry such that f0+°° §%(u)du = 1, and B is an (F, Q) Brownian motion,
with § taken as the augmented natural filtration of B. The full model filtration & is
given as the augmented filtration of the progressive enlargement of § by 7. Hence, the
random time 7 is an §o, measurable & stopping time 7.

By Theorem 2.2, Lemma 3.2, and Remark 4.1 in Crépey and Song (2017a), the
condition (C) holds in this setup, for some probability measure P distinct from Q but

equivalent to it on §7, on which P is uniquely determined through (2.7). Let

t —+o00
he =1, mi = / o(8)dBs, ky = (hem ML), V2(t) = / 2(s)ds,  (A2)
0 t

and assume v positive for all ¢t. By application of results in Ethier and Kurtz (1986),
one can show that the process (m, k) is (&, Q) Markov.

Remark A.1 The reason why we introduce (7 A t) on top of the indicator h; in k; is
because of a dependence of the post-T behavior of the model on the value of 7 itself.
The state augmentation by (7 A t) takes care of this path-dependence. B

By definition (A.1) of 7, we have

\Ilil (t) — my
v(t)

where ® denotes the standard normal cdf. The process on the right hand side of (A.3)
has infinite variation. This shows that the reference filtration § is not immersed into
the full model filtration &. This lack of immersion makes it more interesting from
the point of view of the different approaches that we want to compare. This is our
motivation for working in this particular model in this section.

Theorems 2.2 and 2.4 in Crépey and Song (2017a) show the existence of processes
of the form

Q1 > t|31) = ®( ), teRy, (A.3)

B = B(t,mu, ki) and v = v (£, mu, ki) = velo7), t € Ry, (A.4)
for continuous functions  and ~ with linear growth in m, such that

dWy = dBy — Bdt is a (8,Q) Brownian motion and

. . . (A.5)
the process v is the (&, Q) intensity of 7.

The proof of the following result is deferred to Section A.3.
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Proposition A.1 Let a process m* satisfy
dmj = <(t)(dW + B(t,my, (0,t))dt), 0<t<T, (A.6)

starting from m{ = 0, for some Brownian motion W* with respect to some stochastic
basis (&*,Q*). Denoting the Q* expectation by E*, we have, for any bounded Borel
function G(t,m),

T . .
E[1(;eryG(r,me)] =E*| /0 e Jo s O s (4 (0, )Gt mi)dt]. (AT)

A.2 Discussion

From (A.2) and (A.4)—(A.5), it holds that
dmt == §(t) (th + ﬁ(t, my, k‘t)dt), te R+, (A8)

which, for t > 7 (so that k; = (1,7)), diverges from the specification (A.6). Hence the
pair (m, W) is not an eligible choice for (m*, W*) in Proposition A.1. As a consequence,
we expect a contrario from Proposition A.1 that

T t
E[H{T<T}G(T, m.)| = E[/o e Jo V(s (0:9))ds (4 (O,t))G(t,mt)dt} (A.9)

does not hold in general (but only in special cases, including obviously G = 0).
Indeed, let

T
Vi = E[/ e i v(wmaOu)diy (s m (0,5))G(s, m)ds ‘ (’St}, teRy,
t

so that Vp is equal to the right hand side in (A.9). By an application of Duffie, Schroder,
and Skiadas (1996, Proposition 1) with X = r = 0 and h. = ~(-,m.,(0,-)) on [0,7]
there (noting that any process coinciding with the (&, Q) intensity of 7 before 7 can
be used as a process h in their setup), we have

E[lrG(T,m.)| = Vo —E(V; — V;_). (A.10)

In a basic immersed setup, E(V; — V;_) vanishes and (A.9) actually holds: See the
comments before Section 3 in Duffie, Schroder, and Skiadas (1996), page 1379 in Collin-
Dufresne, Goldstein, and Hugonnier (2004), or following (3.22), (H.3) and Proposition
6.1 in Bielecki and Rutkowski (2001)). But, in general, E(V; — V;_) is nonnull and
intractable.

Instead, an eligible choice in Proposition A.1 consists in using m* =m , W* = W,
and Q* = the survival measure S with (&,Q) density process

AT
efO ’Y(u:mu’(ovu))du]l{7_>_/\T}
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(assuming eJo " (e, (0.0)) du integrable under Q). As noted in Collin-Dufresne, Gold-
stein, and Hugonnier (2004, Lemma 1(i)), 17 4oy = 0 holds S almost surely on [0, T7.
The “survival measure” idea and terminology were first introduced in Schoénbucher
(1999, 2004). One can then fix the discrepancy in (A.9) (in a progressive enlargement
of filtration setup without immersion) by singularly changing the probability measure
Q to Q* = S, while sticking to the original model filtration & (or, more precisely, re-
sorting under Q* = S to the S augmentation & of &, obtained by adding to &g all the
S null sets A € A such that A C {7 < T'}). This specification of the formula (A.7)
corresponds to Collin-Dufresne, Goldstein, and Hugonnier (2004, Theorem 1).
Another eligible choice for (m*, W*) in Proposition A.1 consists in using

m* =m and dW; = dB; — B(t, my, (0,1))dt.

As it follows from Lemma 3.5 and Section 4.4 in Crépey and Song (2017a), this process
W*is a (6* = §,Q* = P) Brownian motion. The corresponding formula (A.7) is then
none other than our formula (3.2) (for ¢ = 0). This approach fixes the discrepancy
in (A.9) (in a non-immersed setup) by reducing the filtration from & to a smaller §,
while changing the probability measure “as little as possible”, i.e. equivalently on Fr
(in a basic immersive setup, an invariance time approach would not change Q at all,
whereas Collin-Dufresne, Goldstein, and Hugonnier (2004)’s measure change would still
be singular).

Note that Collin-Dufresne, Goldstein, and Hugonnier (2004)’s (m*, W*, &*,Q*) =
(m, W, ®,S) approach only provides a transfer of conditional expectation formulas (even
the semimartingale property may be lost after their singular measure change). By
contrast, the approach (m*, W*, &* Q*) = (m, B—(-,m.,(0,:).X),§,P) of this paper
results in a transfer of semimartingale calculus as a whole. One concrete motivation
for this work is the solution of BSDEs stopped before their terminal time. As Section
10 illustrates, in order to deal with these, conditional expectation formulas are not
enough: the entire semimartingale calculus of this paper is required.

A.3 Proof of Proposition A.1

By the (&, Q) Markov property of the process (m, k), noting that 7 is the hitting time
of 1 by the h component of the process k, we have

E[]I{T<T}G(T’ mT) | 615] = E[]I{T<T}G(T7 mT) ’ (mt? kt)] =

(A1)
v(t,mt, kt) = Up, (t,mt), t e [0, TN T],

for suitable Borel bounded functions v(t,m, k) and up(t,m) = v(t,m,k = (h,t)). As
a martingale, the process up, (t,m¢), t € [0,7 = 7 AT}, has a vanishing drift. Hence,
by an application of the Ité formula to this process, using (A.5), the pair function
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u = (ug(t,m),ui(t,m)) formally solves

wo(T,m) =uy(T,m) =0, m € R,
ui(t,m) =G(t,m), t<T,méeR,

c(t)? (A.12)
8tu0(ta m) + g(t)ﬁ(t’ m, (Oa t))a’mUO(t) m) + TamQUO(tv m)

+y(t,m,0) [u1(t,m) — ug(t,m)] =0, t <T,m € R,

Remark A.2 At least, the above holds assuming u regular enough for applicability
of the It6 formula. Given the discussion format of this appendix, we content ourselves
with the above formal argument, without introducing weak solutions of (A.12).

Note that the system of equations (A.12) reduces to u; = 1o G and to the
following equation for wug:

up(T,m) =0, m € R,

Orup(t, m) + <(t)B(t,m,0)0nuo(t, m) + g(g)QﬁgﬂUO(t, m) (A.13)

—(t,m,0)up(t,m) +~v(t,m,0)G(t,m) =0, t <T,m € R.

Putting together (A.11) and the Feynman-Kac representation of the solution ug of
(A.13) at the origin yields

E[]I{T<T}G(T, m-,—)] = UO(O, 0)

T
:E*[ / e Jo i 0N s (¢ i (0,4)) G (t, mi)d ],
0

for any process m* as stated in the proposition, which is therefore proven.
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