Dorinel Bastide 
email: dorinel.2.bastide@bnpparibas.com.
  
Stéphane Crépey 
email: stephane.crepey@lpsm.paris
  
Samuel Drapeau 
email: sdrapeau@saif.sjtu.edu.cn.
  
Mekonnen Tadese 
email: mekonnenta@wldu.edu.et.
  
Derivatives Risks as Costs in a One-Period Network Model

We present a one-period XVA model encompassing bilateral and centrally cleared trading in a unified framework with explicit formulas for most quantities at hand. We illustrate possible uses of this framework for running stress test exercises on a financial network from a clearing member's perspective or for optimizing the porting of the portfolio of a defaulted clearing member.

Introduction

In the wake of the 2008-09 global financial crisis, clearing through central counterparties (CCPs) has become mandatory for standardized derivatives, other ones remaining under bilateral setup with higher capital requirements.

One role of the CCPs1 is to provide to their clearing members fully collateralized hedges of their market risk with their clients. But this comes at a cost to the clearing members, which pass it to their corporate clients in the form of XVA (cross-valuation adjustment) add-ons. Bearing in mind that the risks of a hedge are, by definition, of the same magnitudes as the ones of the originating position and that standardized derivatives usable as hedging assets have to be traded through CCPs, the XVA footprint of not only bilateral but also centrally cleared trading is significant and should be analyzed in detail, which is the topic of this paper. Crépey (2022, Section 6) provides a continuous-time XVA analysis in the realistic situation of a bank dealing with an arbitrary number of clients and CCPs. For the sake of tractability, this is mimicked here in a stylized one-period setup, fine-tuned to applications including risk assessment in the context of stress test exercises2 or optimizing the porting of the portfolio of defaulted clearing members.

The first type of application is motivated by the default in 2020 of Ronin Capital, a broker/dealer firm that had clearing exposures on both CCP services Fixed Income Clearing Corporation (FICC) GSD 3 segment (123 members) and CME Futures (56 members of which 24 common with FICC GSD). If all members are assumed to be only exposed to these CCPs and their cleared clients, we can illustrate these relationships by the network depicted in Figure 1. Any common member on those two CCPs needs to ensure conservative risk assessment that can be achieved in the proposed framework by accounting for common memberships on the two CCPs. If such common memberships are ignored, they can lead to lower loss estimates giving wrong risk view on potential losses.

Figure 1: Network consisting of two CCPs (in red), 123 members for CCP1 seen on the left hand side, and 56 members for CCP2 on the right hand side, with 24 common members displayed as the group of members in the middle of the two CCPs (155 members in total, in blue), and with 179 cleared clients (in green).

The second type of application is an illustration of the results of defaulted portfolio porting as it has been the case for the trader Einer Aas on NASDAQ OMX 4 that has defaulted on 2018 with loss spill-over effect on surviving members.

The paper is outlined as follows. Section 2 sets the stage. Section 3 develops the corresponding XVA analysis. Section 4 sets up an elliptical market and credit model amenable to efficient XVA computations. Section 5 introduces the case studies. Section 6 provides numerical results of stress test exercises. Section 7 shows how to optimize the porting of defaulted members portfolios. Section 8 concludes.

General Setup

We consider a finite set of market participants, also susceptible to serve as clearing members of CCPs. Derivative transactions can then be concluded between two individual participants, or between a set of participants 5 , pooled in the form of a CCP, and a clearing member of this CCP.

The trades of a clearing member bank with a CCP are partitioned between proprietary trades, which are in effect hedges of the bilateral trading exposure of the bank, and back-to-back hedges of so-called cleared client trades, through which non-member clients gain access to the clearing services of a CCP: see Figure 2. The contractual cash flows from cleared and bilateral clients to a reference clearing member, dubbed the bank hereafter, are promised in successive turns from the bank to the CCP (cash flows denoted by P and P on Figure 2), from the CCP to other clearing members, and from the latter to their own clients. As a consequence, the CCP is flat in terms of market risk, as is also each of the clearing members. CCPs are typically siloed into different services, each devoted to a specific class of derivatives. We first consider a setup with a single CCP service, the extension to several CCPs being done in Section 3.3.

Defaults Settlement Rule

As reasserted in the wake of the 2008-09 global financial crisis by the Volcker rule, a dealer bank should be hedged as much as possible, at least in terms of market risk 6 . Jump-to-default risk, on the other hand, is hardly hedgeable in practice. Instead it is mitigated through netting and collateralization. Namely, designated netting sets of transactions between two given counterparties (two individual participants or a participant and the CCP) are jointly collateralized, i.e. guaranteed against the default of one or/and the other party. The collateral (or guarantee) comprises a variation margin, which tracks the mark-to-market (counterparty-risk-free value) of the netting set between the two parties, and nonnegative amounts of initial margin posted by each party to the other, which provide a defense against the risk of slippage of the value of the netting set away from its (frozen) variation margin during its liquidation period. In the case of transactions with a CCP, there is an additional layer of collateral in the form of the (funded) default fund contributions of the clearing members, which is meant as a defense against extreme and systemic risk. For each participant, variation margin is rehypothecable and fungible across all its netting sets. Initial margin is segregated at the netting set level. Default fund contributions are segregated at the clearing member level.

5 two or more, in practice from a few units to a few hundreds. 6 cf. paragraph number 1851 in section 619 from The United States Congress (2010). The general rule regarding the settlement of contracts of a defaulted netting set, to be instantiated in practical setups on a case by case basis 7 , is that: Principle 2.1 If a counterparty in default is indebted toward the other beyond its posted margin, then this debt is only reimbursed at the level of this posted margin (assuming zero recovery rate of the defaulted party for simplicity in this paper); otherwise the debt between the two parties is fully settled.

Here debt is understood on a counterparty-risk-free basis.

Remark 2.1 One intuitively expects client default cash flows of the form C = (1 -R)(D -M ) + , where the"debt" D represents the pre-default value of the client derivative portfolio to the bank, M the margin posted by the client to the bank, and R the recovery rate of the client. Technically, such an (1 -R)(D -M ) + effectively arises as We emphasize that a counterparty credit default loss C = (1 -R)(D -M ) + (or simply (D -M ) + if R = 0) should not be taken as an assumption, but only arises as the result of a computation accounting for the cash flows of the portfolio and its hedge, derived in a specific market setup under the umbrella of the guiding principle 2.1 (or the corresponding extension to nonzero recovery, skipped for simplicity in this work). The exact outcome in fact depends on the refined specification of the setup at hand: see e.g. Assumption 3.2 below and the ensuing formulas (4) (in a single CCP setup) and (10) (under the multiple CCP extension) for the counterparty credit default loss C in the market setup of this work. Such formulas cannot be safely guessed, they should only be derived from first principles.

D -M + R(D -M ) + -(D -M ) -= (1 -R)(D -M ) + , where M + R(D -M ) + -(D -M ) -is

Remark 2.2

The above is of course a very crude description of default cash flows. Nonzero, possibly random, recoveries could be introduced at no harm from a theoretical viewpoint, as already pointed out above and done in the continuous-time setup of Crépey (2022, Section 3.3). Nonzero recoveries are of course more realistic. But, from a qualitative viewpoint that is our main objective in this work, they only soften the impacts of the defaults. Random recoveries are in line with the uncertainty about the actual level of recovery rates that are only observed a posteriori and can reflect the possibility of liquidating various forms of collateral, account for the output of liquidation procedures, legal resolutions, and other complex and unobservable features. For our purposes in this work, random recoveries could be used for emphasizing some extra dependencies via correlations with other random modeling features. This is all ignored hereafter for avoiding to blur the main features.

Principle 2.1 also applies to a netting set of transactions between a clearing member and a CCP. However, in our stylized setup, a CCP is nothing but the collection of its clearing members. Our CCP has no resources of its own (in particular, it cannot post any default fund contribution, or "skin-in-the-game"8 ). As long as it is nondefault, i.e. as long as at least one of its clearing members is non-default, our CCP can only handle the losses triggered by the defaults of some of its clearing members by redirecting these losses on the surviving ones. This participation of the surviving members to the losses triggered by the defaults of the other members corresponds in our framework to the usage by the CCP of their default fund contributions, both funded (as already introduced above) and unfunded. As will be detailed in equations below, the funded default fund contributions are used for covering losses triggered by the defaults of clearing members over their margins. The unfunded default fund contributions correspond to additional refills that can be required by the CCP, often up to some cap in principle, without bounds in our model, in case the funded default fund contributions of the surviving members are not enough.

XVA Framework

In a nutshell, the main XVAs are the CVA, the FVA/MVA, and the KVA, where: i. the CVA is the expected cost for the bank of the default risk of its clients;

ii. the FVA/MVA is the expected cost for the bank of its own default risk or, more precisely, of the implications of this risk in terms of rehypothecable/segregated collateral funding spreads for the bank;

iii. the KVA is the cost for the bank of having to remunerate its shareholders at some hurdle rate for their capital at risk, capital which is required by the regulator as a provision against the residual risk left uncovered by i. and ii. (as default risk cannot be hedged by the bank).

Going into details, assume that at time 0 all the banking participants, including the reference clearing member bank9 , with no prior endowments, enter transactions with their clients and hedge their positions, both bilaterally between them and through the CCP. As seen above, the CCP and each bank are flat in terms of market risk. However, as market participants are assumed to be defaultable with zero recovery, in order to account for counterparty credit risk and its funding and capital consequences, the reference bank (and each clearing member bank alike) requires from its corporate clients a pricing rebate (considering conventionally the bank as the "buyer") with respect to the mark-to-market (counterparty-risk-free) valuation of the deals. The corporate clients of the bank are assumed to absorb the ensuing prices via their corporate business, which is their primary motivation for these deals.

A reference probability measure R ⋆ , relevant for grounding both stress test exercises and risk management analysis such as economic capital calculation, with corresponding expectation operator denoted by E ⋆ , is used for the linear valuation of cash flows, using the risk-free asset as our numéraire everywhere. This choice of a numéraire simplifies equations by removing all terms related to the (assumed risk-free) remuneration of all cash and collateral accounts. The funding issue is then refocused on the risky funding side of the problem, i.e. funding costs in what follows really means excess funding costs with respect to a theoretical situation where the bank could equally borrow and lend at the risk-free rate.

More precisely, as suitable for XVA calculations (Albanese, Crépey, Hoskinson, and Saadeddine, 2021, Remark 2.3): given a physical probability measure defined on the full model σ algebra A and equivalent to a given risk-neutral measure on the financial sub σ algebra B of A, we take R ⋆ equal to the risk-neutral measure on B and equal to the physical probability measure conditionally on B10 .

Following the general XVA guidelines of Crépey (2022, Section 1), the XVA pricing rebate required by the reference clearing member bank from its corporate clients, dubbed funds transfer price (FTP), comes in two parts: first, the expected counterparty default losses and funding expenditures of the bank, an amount that flows into the bank liabilities and which we refer to as contra-asset valuation (CA = CVA + FVA + MVA as we will see); second, a cost of capital risk premium (KVA), which instead is lossabsorbing 11 and is also used by the management of the bank as retained earnings for remunerating the shareholders of the bank for their capital at risk within the bank. All in one, the bank buys the deals from its clients at the (aggregated) price (MtM -FTP), where MtM is their counterparty-risk-free value and FTP = CA Expected costs + KVA

Risk premium

.

(1)

Let EC denote an economic capital of the bank corresponding to the minimum level of capital at risk that the bank should hold from a regulatory (i.e. solvency) perspective. If KVA < EC, then the bank shareholders need to provide the missing amount (EC -KVA) of capital at risk, so that the actual level of capital at risk of the bank is max(EC, KVA),

while shareholder capital at risk reduces to max(EC, KVA) -KVA = (EC -KVA) + .

(2)

3 Theoretical XVA Analysis

In this section we detail each term in the equations above, in the realistic setup of a bank involved into an arbitrary combination of bilateral and centrally cleared portfolios, in a tractable one-period setup with period length T . In the one-period XVA model of Albanese, Crépey, Hoskinson, and Saadeddine (2021, Section 3), there were no CCPs and the bank was assumed to have access to a "fully collateralized back-to-back hedge of its market risk", ensuring by definition and for free to the bank a cash-flow (P -MtM) at time 1, irrespective of the default status of the bank and its client. There, P denoted the contractual cash flows from the (assumed unique) client to the bank and MtM was the corresponding counterparty-risk-free value. In the present paper we reveal the mechanism of such a "fully collateralized hedge of the market risk" of the bank, which can be achieved through central clearing, but at a certain cost that we analyze. All proofs are deferred to Section A.

Cash Flows

Given disjoint sets of indices I ∋ 0, C, and B for the clearing members (including the reference bank labeled by 0) and for the respective cleared and bilateral netting sets of the bank with its (individual) counterparties, we denote by:

• J 0 , shortened as J, and J i , i ∈ I \ {0}, the survival indicator random variables of the bank and of the other clearing members at time 1; γ = R ⋆ (J = 0), the default probability of the bank;

• J = max i J i , the survival indicator random variable of the CCP (i.e. of at least one clearing member),

• P i , MtM i = E ⋆ P i , and IM i , i ∈ I, the contractual cash flows, variation margin, and initial margin from the clearing member i to the CCP corresponding to the cleared clients account of the member i;

• P i , MtM i = E ⋆ P i , and IM i , i ∈ I, the contractual cash flows, variation margin, and initial margin from the clearing member i to the CCP corresponding to the proprietary (also dubbed house) account of the clearing member i;

• DF i , i ∈ I, the funded default fund contribution posted by the clearing member i to the CCP;

• J b , b ∈ B, the survival indicator random variable of the counterparty of the bilateral netting set b of the reference bank; P b , VM b , and IM b , the associated contractual cash flows, variation margin, and initial margin from the corresponding counterparty to the bank; and IM b , the initial margin from the bank to this counterparty;

• J c , c ∈ C, the survival indicator random variable of the client of the cleared trading netting set c of the bank, and P c , MtM c = E ⋆ P c 12 , and IM c , the associated contractual cash flows, variation margin, and initial margin from the corresponding client to the bank 13 ;

• L, the loss of the CCP, i.e. the loss triggered by the defaults of its clearing members beyond their posted collateral 14 , which is borne by the surviving members (if any) 15 ;

• µ = Jµ, the proportion of these losses allocated to the reference clearing member bank (based on remaining survivors).

Moreover, in case i = 0 (so regarding the reference clearing member bank), we typically skip the index i (as in J 0 = J).

Assumption 3.1 i (P i + P i ) = 0 (the CCP is flat in terms of market risk), c P c = P 0 (by definition of cleared trades and of their mirroring trades), and b P b = P 0 (the reference bank is flat in terms of market risk). Assumption 3.1 yields the clearing conditions regarding the contractually promised cash flows, which applies to each banking participant (written there for the reference bank) and to the CCP.

Moreover, in line with Principle 2.1 that monitors the default cash flows:

Assumption 3.2 On the CCP survival event {J = 1}, the CCP receives from each clearing member i

J i (P i + P i ) + (1 -J i ) P i ∧ (MtM i + IM i ) + P i ∧ (MtM i + IM i )+ (P i -(MtM i + IM i )) + + (P i -(MtM i + IM i )) + ∧ DF i .
12 reflecting the fact that members of CCPs are fully collateralized.

13 note that a bank does not post any initial margin on its cleared client netting sets. 14 variation margin, initial margin, and (funded) default fund contributions.

15 see the last paragraph of Section 2.1.

On the bank survival event {J = 1} (⊆ {J = 1}), the bank receives on each cleared netting set c and bilateral netting set b

J c P c + (1 -J c ) P c ∧ (MtM c + IM c ) and J b P b + (1 -J b ) P b ∧ (VM b + IM b ) ,
whereas it pays to the CCP

c P c + b P b = c J c P c + (1 -J c ) P c + b J b P b + (1 -J b ) P b .
We need one more condition, regarding the funding side of the problem: Assumption 3.3 At time 0 the amounts CA and KVA sourced from the corporate clients of the bank are deposited on reserve capital and capital at risk accounts of the bank. The bank can use the amounts CA and max(EC, KVA)16 on its reserve capital and capital at risk accounts for its variation margin borrowing purposes. Funds needed beyond CA + max(EC, KVA) for variation margin posting purposes are borrowed by the bank at its credit spread γ above OIS. Instead, the bank must borrow entirely the amounts to post as initial margin and funded default fund contributions, but this can be achieved at some blended funding spread γ ≤ γ.

The rationale for funding variation margin but not initial margin from CA + max(EC, KVA) is set out before Equation ( 15) in [START_REF] Albanese | Credit, funding, margin, and capital valuation adjustments for bilateral portfolios[END_REF]. The motivation for the assumption γ ≤ γ is provided in Albanese, Armenti, and Crépey (2020, Section 5), along with numerical experiments suggesting that γ can be several times lower than γ. (3) Lemma 3.2 On the bank survival event {J = 1}, the counterparty default losses C and the funding expenses F of the bank are given by

C = b (1 -J b )(P b -VM b -IM b ) + + c (1 -J c )(P c -MtM c -IM c ) + + µL, (4) 
where

L = i (1 -J i ) (P i -MtM i -IM i ) + + (P i -MtM i -IM i ) + -DF i + , (5) 
and

F = γ IM + IM + DF + + γ b IM b + γ b (MtM b -VM b ) -CA -max(EC, KVA) + . (6)

Valuation

Let E denote the expectation with respect to the bank survival measure R associated with R ⋆ , i.e., for any random variable Y,

EY = (1 -γ) -1 E ⋆ (JY). (7) 
(expectation of Y conditional on the survival of the bank). As (readily) seen in Albanese, Crépey, Hoskinson, and Saadeddine (2021, Section 3):

Lemma 3.3 For any random variable Y and constant Y , we have

Y = E ⋆ (JY + (1 -J)Y ) ⇐⇒ Y = EY.
Under a cost-of-capital XVA approach, the bank charges its future losses to its corporate clients at a CA level making ℓ = J(C + F -CA), the trading loss of the shareholders of the bank, R ⋆ centered. In addition, given a target hurdle rate h assumed in [0, 1] (and typically of the order of 10%), the management of the bank ensures to the bank shareholders dividends at the height of h times their capital at risk (EC -KVA) + (cf. ( 2)), where we model EC as ES(ℓ), the expected shortfall of the trading loss ℓ 17 computed under the bank survival measure R at a quantile level 18 α (e.g. α = 99% and α = 99.75% in our experiments), i.e., under the dual representation of the expected shortfall 19 :

EC = sup E[ℓχ] ; χ measurable, 0 ≤ χ ≤ (1 -α) -1 , and E[χ] = 1 , (8) 
which for atomless ℓ coincides 20 with E[ℓ|ℓ ≥ VaR(ℓ)], where VaR is the R value-at-risk (lower quantile) at the level α. Note that, in view of ( 8), an expected shortfall of a centered random variable is nonnegative.

The definitions of the XVA metrics corresponding to the above specifications are given in Table 1. Hence in view of ( 4) and ( 6):

CA = E ⋆ J C + F + (1 -J)CA , (9) 
i.e. E ⋆ J C + F -CA) = 0, as desired 21 . The terminal cash flows of the form (1 -J) × . . . in Table 1 expressions and in ( 9) are thus consistent with the desired shareholder centric perspective. They can also be interpreted as the amounts of reserve capital and risk margin lost by the bank shareholders, hence valued as such by CA, as their property is transferred to the liquidator of the bank if the bank defaults.

Due to these terminal cash flows, the above definition is in fact a fix-point system of equations. The split of the underlying CA equation ( 9) into the collection of equations 17 assumed R integrable. 18 under normal distribution assumptions, such ES at percentile level 99.75% allows reaching similar loss level as with a VaR (quantile) risk metric at the level 99.9%. In practice, regulatory and economic capital indeed aims at capturing extreme losses that can occur once every 1000 years, cf. paragraph 5.1 from Basel Committee on Banking Supervision (2005) for the detailed instructions.

19 see e.g. Kaina and Rüschendorf (2009, Theorem 4.1). 

E ⋆ J b (1 -J b )(P b -VM b -IM b ) + +(1 -J)BCVA credit valuation adjustment for bilateral exposures CCVA E ⋆ J c (1 -J c )(P c -MtM c -IM c ) + +µL + (1 -J)CCVA
credit valuation adjustment for clearing activity exposures

MVA BMVA + CMVA margin valuation adjustment BMVA E ⋆ J γ b IM b + (1 -J)BMVA margin valuation adjustment for bilateral exposures CMVA E ⋆ J γ IM + IM + DF + (1 -J)CMVA margin valuation adjustment for clearing activity exposures FVA E ⋆ Jγ b (MtM b -VM b ) -CA -max(EC, KVA) + + (1 -J)FVA

funding valuation adjustment

Table 1: XVA definitions, cf. Section 2.2 (with C, F and L given by Lemma 3.2).

in Table 1 is motivated by both interpretation and numerical considerations. From an interpretation viewpoint, it is useful to provide the more granular view on the costs of the bank provided by the split of the global CA amount between, on the one hand, bilateral and centrally cleared trading default risk components BCVA and CCVA and, on the other hand, bilateral and centrally cleared trading funding risk components BMVA and CMVA for segregated initial margin, whereas the FVA cost of funding variation margin is holistic in nature (can only be apprehended at the level of the bank balance-sheet as a whole), via the feedback impact of CA + max(EC, KVA) into the FVA. From a numerical viewpoint, the collection of smaller problems in Table 1 may be easier to address than the global equation ( 9). Each of the smaller problems can also be handled by a dedicated desk of the bank, namely the CVA desk, for the BCVA and CCVA, and the Treasury of the bank, for the BMVA, CMVA and the FVA.

Passing in the above equations to the bank survival measure R based on Lemma 3.3 shows that the corresponding fixed point problem is in fact well-posed and yields explicit formulas for all the quantities at hand. Theorem 3.1 The explicit XVA formulas of Table 2 hold and we have

J(C -CVA) = J c (1 -J c )(P c -MtM c -IM c ) + + µL -CCVA + b (1 -J b )(P b -VM b -IM b ) + -BCVA .
In particular, all the XVA (and also EC) numbers are nonnegative 22 .

Remark 3.1 The reason why funding disappears from the bank trading loss, i.e. J(C + F -CA) = J(C -CVA), is because, in a one-period setup, the collateral borrowing requirements (3) of the bank are simply constants. Hence funding triggers no risk to the bank, but only a deterministic cost. In the dynamic setup of Albanese, Armenti, and Crépey (2020), funding generates both costs and risk.

Extension to Several CCPs or CCP Services

In the realistic case where the reference bank is a clearing member of several services of one or several CCPs, we index all the CCP related quantities in the above by an additional index ccp in a finite set disjoint from I ∪ C ∪ B. Then, with CA = CCVA + CMVA + BCVA + BMVA + FVA as before:

Proposition 3.1 The counterparty default loss C across several counterparties and several CCPs is given by

C = ccp,c (1 -J c )(P ccp c -MtM ccp c -IM ccp c ) + + ccp µ ccp L ccp + b (1 -J b )(P b -VM b -IM b ) + , (10) 
where

L ccp = i (1 -J i ) (P ccp i -MtM ccp i -IM ccp i ) + + (P ccp i -MtM ccp i -IM ccp i ) + -DF ccp i + .
(11)

The funding expenses F across several CCPs and several counterparties are given by

F = γ ccp IM ccp + IM ccp + DF ccp + + γ b IM b + γ b (MtM b -VM b ) -CA -max(EC, KVA) + . ( 12 
)
The only XVA definitions and explicit formulas that change with respect to Tables 1 and2 (on top of C and F generalized as above) are the ones for CCVA and CMVA, the way detailed in Tables 3 and4. Moreover,

J(C -CVA) = J ccp,c (1 -J c )(P ccp c -MtM ccp c -IM ccp c ) + + ccp µ ccp L ccp -CCVA + b (1 -J b )(P b -VM b -IM b ) + -BCVA .
22 cf. Crépey (2022, Sections 1 and 7.1).

XVA

Explicit formula

CCVA E c (1 -J c )(P c -MtM c -IM c ) + + µL CMVA γ IM + IM + DF BCVA E b (1 -J b )(P b -VM b -IM b ) + BMVA γ b IM b EC ES J(C -CVA) FVA γ 1 + γ b (MtM b -VM b ) -(CCVA + CMVA + BCVA + BMVA) -EC + KVA h 1 + h EC
Table 2: XVA explicit formulas (with C, F and L given by Lemma 3.2).

XVA Expression

Full name and description CCVA (1

E ⋆ J ccp,c (1 -J c )(P ccp c -MtM ccp c -IM ccp c ) + + ccp µ ccp L ccp + (1 -J)CCVA
-J c )(P ccp c -MtM ccp c -IM ccp c ) + + ccp µ ccp L ccp CMVA ccp γ IM ccp + IM ccp + DF ccp
Table 4: CCVA and CMVA explicit formulas with several CCPs (also, C and F are now given by Proposition 3.1, as also L ccp ).

Before passing to the case studies, we specify the calculation of economic capital under the member survival measure.

Lemma 3.4 If R(ℓ = VaR(ℓ)) = 0, where ℓ = J(C -CVA), then EC = E ⋆ C -CVA C -CVA ≥ VaR(ℓ), J = 1 . ( 13 
)

Market and Credit Model

We introduce a market and credit model, written under R ⋆ , with parameters that can capture dependence between portfolio changes, joint defaults and possible averse exacerbated changes of the portfolio due to their owner default known as wrong-way risk.

For any j ∈ I ∪ B ∪ C, denoting by F j the marginal cdf of a financial participant j's default time τ j , ∆P j := P j -MtM j , S ν c the Student-t cdf with degree of freedom ν c , nom j a (signed) nominal of the portfolio of the market participant j, σ j its annualized relative volatility, and ∆ l a positive liquidation period accounting for the time taken by the CCP to novate or liquidate 23 defaulted portfolios, we define

       τ j = F -1 j (S ν c (X j )) , ∆P j nom j σ j √ ∆ l = Y j , (14) 
where

     X j = √ ρ cr T -ρ wwr j X j + 1 -ρ cr -ρ wwr j T j Y j = ρ mkt E + ρ wwr j X i + 1 -ρ mkt -ρ wwr j E j . (15) 
Here ρ cr , ρ mkt and the ρ wwr j are positive credit/credit, market/market and credit/market correlation coefficients, while T , T j , E, E j and X j are i.i.d. random variables following Student-t distributions with degree of freedom 3 such that:

• T represents the common systemic factor for default times across members,

• E represents the common systemic factor for portfolio variations across members,

• X j is the common factor co-driving portfolio variations and default time of market participant j,

• T j is the idiosyncratic factor for market participant j's default time,

• E j is the idiosyncratic factor for market participant j's portfolio variations.

Remark 4.1 In practice, margin computations rely on historical estimates based on several market stressed periods. Our approach, instead, aims at reflecting extreme market shocks with fat tailed Student-t distributions of degree of freedom ν = 3, and volatility level within a reasonable range of [20%, 40%]. Our static formulation depicts stationary increments of the defaulted portfolios' value over the liquidation period.

In view of the above, the setup is well defined if and only if 24

ρ wwr j < min 1 -ρ cr , 1 -ρ mkt . ( 16 
)
23 cf. Section 7.

24 otherwise, the model for both default time and portfolio variation factors is undefined due to their idiosyncratic coefficient term 1 -ρ cr -ρ wwr j and 1 -ρ mkt -ρ wwr j . Also we discard the limit cases where ρ wwr j = 1 -ρ cr or ρ wwr j = 1 -ρ mkt as they lead to a zero contribution of the idiosyncratic factors, which would be unrealistic.

The "minus" sign in front of the common credit-market factor -ρ wwr j for the default time component in (15) ensures that the corresponding common factor accelerates defaults, whilst increasing the market exposure due to the + ρ wwr j factor in the second part of (15). In our static setup with extra latent variables for defaults, we do not have such explicit formulas. However, Monte Carlo simulation is quite efficient and required anyway for stress test exercises that aim at identifying scenarios leading to extreme losses with adequate description such as the identification of defaulted members and their corresponding losses.

Hereafter, we describe two possible applications of our XVA framework which will be illustrated by numerical case studies in the above model. To these ends, two networks will be defined to serve the numerical illustrations, one rather educational on the use of the XVA metrics and the other one reflecting the more realistic situation depicted by Figure 1.

In the numerical applications that follow, all members play in turn the role of the reference bank in the theoretical XVA framework of Sections 2-3. The CVA and KVA computations require a Monte-Carlo routine run under R ⋆ in combination with a rejection technique in order to yield simulations under the survival measures associated with different clearing members. For obtaining confidence intervals regarding the expected shortfalls that are embedded in the KVA computations, the simulations are split into several batches, from which the mean of the (partial) EC estimates yields the final EC estimate, while their standard deviation is used to define a confidence interval.

Case studies setup

In the examples that follow, market participants are identified by a number and can then be included in one of several of the considered CCPs. We restrict ourselves to cleared client trades, so that the nonvanishing XVA metrics reduce to the CCVA, the CMVA, and the KVA.

Single CCP Setup and initial XVA costs

We consider a single CCP service with 20 members labeled by i ∈ 0 . . . n = 19, only trading for cleared clients (i.e. without bilateral or centrally cleared proprietary trading). Each member faces one client. The ensuing financial network is depicted by Figure 3. All clients are assumed to be risk-free. For any member i, its posted IM to the CCP is calculated based on the idea of a VM call not fulfilled over a time period ∆ s < ∆ l at a confidence level α ∈ (1/2, 1), using a VaR metric25 applied to the non-coverage of VM call taken also to follow a scaled Student-t distribution S ν with ν degrees of freedom, with cdf S ν :

IM i = VaR nom i σ i ∆ s S ν = |nom i | σ i ∆ s S ν -1 (α). ( 17 
)
The default fund is calculated at the CCP level as

Cover2 = SLOIM (0) + SLOIM (1) , (18) 
for the two largest stressed losses over IM (SLOIM i ) among members, identified with subscripts (0) and ( 1), where SLOIM is calculated as the value-at-risk VaR ′ at a confidence level α ′ > α of the loss over IM, i.e.

SLOIM i = VaR ′ nom i σ i ∆ s S ν -IM i = |nom i | σ i ∆ s S ν -1 (α ′ ) -S ν -1 (α) . ( 19 
)
The total amount ( 18) is then allocated between the clearing members to define their (funded) default fund contributions as

DF i = SLOIM i j SLOIM j Cover2.
The nom j 's of other clearing members are not observable by a given one. However, following [START_REF] Murphy | Dear prudence, won't you come out to play? approaches to the analysis of central counterparty default fund adequacy[END_REF] and [START_REF] Lipton | Systemic risks in central counterparty clearing house networks[END_REF], nom (i) denoting the i-th largest absolute nominal amount for i ∈ 0 . . . n = 19, a parameterization of the form

nom (i) = βe -β ′ (i+1) , β, β ′ > 0 (20)
can be fit to the total default fund held by the CCP26 and the sum of its five largest default fund contributions27 , made public each quarter for most of the CCPs. The parameters β and β ′ are inferred from the default fund data are used to depict a similar pattern on the nominal sizes28 . The participants and portfolios parameter inputs are detailed in Table 7, where id is the identifier of the CM, DP stands for the one year probability of default of the member expressed in percentage points, size represents the overall portfolio size of the member detained within the CCP, and vol is the annual volatility used for the portfolio variations.

The portfolios listed in the Table 7 relate to the members towards the CCP (which are mirroring the ones between the members and their clients). The sizes sum up to 0, in line with the CCP clearing condition (first identity in Assumption 3.1, here without proprietary trades).

The parameters of the XVA costs calculations are summarized in Table 5. Note that the chosen period length of T = 5 years covers the bulk (if not the final maturity) of most realistic CCP portfolios. from calculated metric for both CCVA and KVA. All the XVA numbers decrease with the member size.

To assess the average behavior w.r.t. ρ cr , ρ mkt and ρ wwr of the CCVA and KVA, we vary these correlations between 5% and 95%, with 5% step and display in Figures 4 and5 the corresponding metrics, aggregated over all clearing members successively considered as the reference bank. For such tests, the default correlation ρ cr and ρ mkt are both set to 4% when they are not changed between 5% and 95%. This is to allow for runs with ρ wwr i = 95% satisfying the condition ( 16). The KVA depicts an increase w.r.t. ρ cr but also w.r.t. ρ wwr and very limited change w.r.t. ρ mkt . The correlation ρ wwr has more impact than ρ cr and ρ mkt (right panels in Figures 4 and5). As seen on the left panels of Figures 4 and5 very marginal changes for the aggregated CCVA w.r.t. ρ cr and ρ mkt , but a significant positive impact of ρ wwr . This is understandable for the sensitivity to ρ cr and ρ mkt as, apart for modulations of the measure with respect to which each individual CCVA is assessed, the CCVA aggregated over clearing members is essentially an expectation of the CCP loss L (cf. the first line of Table 2 ). The individual CCVAs (as per the first line of Table 2 ) of each clearing member, however, may depend on ρ cr and ρ mkt (on top of ρ wwr ) in a strong and nontrivial manner, via the allocation coefficient µ. Total KVA overall members 

Two CCPs Network Setup

We now consider the case of Figure 1 where there are two CCPs with some common members and stress test is considered from the perspective of one of these common members. The motivation for this case is to provide a realistic example mimicking in a simplified way the trading firm Ronin Capital, which had memberships on both FICC GSD30 segment, hereafter denominated by CCP1, and CME Futures segment, hereafter denominated by CCP2, in March 2020. It is well known that a VaR type risk measure is not sub-additive, in particular for credit portfolios as illustrated in Example 5.4 in [START_REF] Acerbi | On the coherence of expected shortfall[END_REF][START_REF] Acerbi | On the coherence of expected shortfall[END_REF]Example 2.25 in McNeil, Frey, and[START_REF] Mcneil | Quantitative Risk Management: Concepts, Techniques and Tools[END_REF] for a portfolio of defaultable bonds, so that for a common member adding VaR estimates of trading losses on two CCPs separately can lead to underestimated levels with respect to the actual VaR of the global exposition of the member. As such, stress test exercises accounting for common memberships could reveal a larger value-at-risk compared to the exercise where stress tests are conducted separately on each CCP.

To perform the analysis, the following setup is considered: and 56 members on CCP2, out of which 24 are common to both CCPs,

• all clients are assumed default free,

• both CCPs use configuration as per Table 5,

• the sizes of the positions are assumed exponentially distributed in the sense that from the most exposed member to the least one, absolute value of positions decrease exponentially with the form in (20) as depicted by Figures 6 and7 respectively,

• the proportion of the default fund detained by the 5 biggest members is 25% for CCP1 and 61% for CCP2 32 ,

• the size of the default fund of CCP1 is assumed to be twice the one of the default fund of CCP2.

All data used are either public sources or have been anonymized. Similar configuration as given in Table 5 is used, apart from the number of Monte-Carlo simulations reduced to 2M for memory capacity reasons.

The clearing conditions are ensured by setting the sum of the portfolio sizes nom i to zero on each CCP. The situation of member 3, exposed to both CCPs, as the defaulting member, corresponds roughly to the situation of Ronin Capital in 2018. In particular, an annual probability of default of 0.1% corresponds roughly to a BBB rating, that was assigned to Ronin Capital in 2018 for its issuances 33 . Institutions shall assess, through appropriate scenario analysis and stress testing, whether the level of own funds held against exposures to a CCP, including potential future credit exposures, exposures from default fund contributions and, where the institution is acting as a clearing member, exposures resulting from contractual arrangements as laid down in Article 304, adequately relates to the inherent risks of those exposures.

In practice, stress test exercises aim at assessing the capacity of financial institutions to absorb financial and economic shocks. In regular exercises, such as the ones conducted by the European Banking Authority, the shocks are usually considered under so called central and baseline macro-economic scenarios corresponding to a median quantile and adverse scenario usually taken as a 90 th percentile reflecting severe yet plausible scenario that can occur once every 10 years 35 . Additionally, extreme scenarios 34 see dedicated definition p.12 in Board of Governors of the Federal Reserve System (2012) and articles 97, 98 p. 37 in European Central Bank (2018) for official regulatory definitions.

35 such confidence levels are suggested by the Federal Reserve outlining p.10 in Board of Governors of the Federal Reserve System (2013) the various recession periods of the United States listed in their Table 1 p. 14. The 2021 instructions in European Bank Authority (2021) also indicate p.72 that stressed market risk factors are based on shocks specified in European Systemic Risk Board (2013), citing Dordu, Edge, and Schwindt (2017, p. 29), with the US recessions periods as stressful economic episodes.

can be considered for measuring the capital adequacy 36 for absorbing extremely severe losses around confidence level at 99.9%. From a clearing member perspective, this requires to have the capacity of scanning certain points of its trading loss distribution. In our framework, this boils down to identifying particular levels of the distribution of the trading loss ℓ = J(C -CCVA -BCVA) of the reference clearing member bank, where the different terms are detailed in Proposition 3.1.

The other type of stress test exercises, referenced as reverse stress test 37 [START_REF] Eichhorn | Macro-financial scenario for the 2020 EU-wide banking sector stress test. European Banking Authority[END_REF], consists in identifying the probability of reaching a given loss level as well as describing the scenario configuration such as projected defaults and loss magnitude leading to such loss levels. The distribution must span a sufficient large spectrum of losses, including the ones targeted by the exercise, but it also has to be sufficiently rich numerically to allow identifying combinations of events leading to such losses.

Confidence intervals of corresponding extreme scenario probabilities should complement the analysis to ensure the reliability of the used model and numerical methods.

Regulators have the ability to challenge financial institutions on these elements and demand for improvements 38 .

Scenarios identification for reverse stress test

We now briefly explain how to identify and exploit the scenarios leading to contribute the most to economic capital, in the spirit of [START_REF] Albanese | Quantitative reverse stress testing, bottom-up[END_REF]. We denote by M the number of Monte-Carlo scenario for which J = 1, i.e. survival of the reference bank. Its trading loss C -CVA for a simulation m is given by C m -CVA, where m ∈ 1 . . . M enumerates the simulated scenarios for which the reference member bank ends up in survival state.

To get an estimate of the economic capital based on expected shortfall, relying on Acerbi and Tasche (2002, Definition 2.6 and Proposition 4.1), we calculate, for a high confidence level α ∈ ( 1 2 , 1) and [x] denoting the integer part of any real x,

ES (C -CVA) := 1 M -[αM ] M m=[αM ]+1 C (m) -CVA , (21) 
where the C (m) -CVA's are the simulated trading losses of the reference bank ranked in increasing order.

To obtain the contribution of any simulated scenario m (with C m ≥ C ([αM ]) ) to the economic capital estimated by ( 21), we compute

ES -m (C -CVA) := 1 M -1 -[α(M -1)] M -[αM ] ES (C -CVA) -(C m -CVA) . ( 22 
)
36 cf. paragraph 5.1 p.11 from Basel Committee on Banking Supervision (2005).

37 see also dedicated definition on p.12 in Board of Governors of the Federal Reserve System (2012) and articles 97, 98 p. 37 in European Central Bank (2018) for official regulatory definitions.

38 this may entail re-assessment of the Pillar 2 guidance additional capital requirement set in the annual Supervisory Review and Evaluation Process reported by Banks, cf. European Central Bank (2021) for a brief definition and use and Basel Committee on Banking Supervision (2019b) for more extensive details as well as Board of Governors of the Federal Reserve System (2020) for similar requirements.

The contribution δ m ES (C -CVA) of scenario m to ES (C -CVA) is then given by:

δ m ES (C -CVA) = ES (C -CVA) -ES -m (C -CVA) . (23) 
To illustrate the various flavors of stress test exercises that can be conducted by a CCP member, we report numerical results for the two network examples introduced in Section 5. We start with a reverse stress test exercise on example covered by Table 7. For this first illustration, a specific extreme loss is targeted and the corresponding probability of loss reaching at least such target level is estimated. We then consider the example illustrated by Figure 1 where projected loss levels for specific confidence levels are indicated for the members with common memberships on the two CCPs.

Numerical Results

In Table 9, we report, for the example summarized in Table 7, the 99.9 th percentile trading loss levels, referenced as extreme quantile, with corresponding (asymmetric) confidence intervals based on the approach proposed in Meeker, Hahn, and Escobar (2017, Section G.2). This is done for every clearing member successively playing the role of the reference bank in the setup of Sections 2-3. We also compute the probabilities of reaching a loss equal to 1.5 times the obtained extreme quantile level, referenced as RST scenario, with corresponding confidence levels 39 .

Our description of the scenarios leading to such losses includes the identified defaulted members, the generated losses and the allocated loss coefficient of the reference clearing member (CM1 in this example). Table 8 provides the description of the 20 worst scenarios, contributing the most to the EC estimation for the second biggest member, that is CM1 40 . Most of these scenarios are driven by significant losses stemming from CM0's default, reflecting the highly concentrated position of CM0. We observe that several scenarios illustrate the cases where more than one clearing member default such as 2 nd to 5 th scenarios for which not only CM0 generates most of the loss but other defaulting members generate significant losses yet of less magnitude compared to CM0.

From CM1 viewpoint (i.e. with CM1 in the role of the reference clearing member), 18 scenarios entail significant losses over the collateral posted by the defaulted CM0 (positive first entries in the last column of Table 8). CM0 bears a very large concentrated position compared to other members. Even if CM0 has more IM and DF requirements than others, this is still not enough: this example highlights that employed DF allocation rules in this example dilute the DF collateral requirements for concentrated positions. It also illustrates that scenarios with multiple defaults do not 39 the calculation of the latter confidence intervals of the probability of being above a quantile relies on the same numerical approach based on batches used for KVA calculations. Also, the batch approach leads to reasonably tight confidence intervals for the RST scenario probabilities.

40 its theoretical number of scenarios above the RST loss level should be 4153, i.e. the number of MC simulations of 10M multiplied by CM1's survival probability over 5 years and by CM1's RST loss level probability estimated in Table 9 as 0.0428%, which is of course far too many to report. Nonetheless a focus on the 20 worst ones already illustrates the type of information that can be exploited for such exercises. , 2, 5, 9, 11, 14 300.22, 0, 92.28, 36.03, 20.83, 0 3 12.16 5 0.29 cm0, 2, 5, 14, 15 335.56, 0, 112.91, 0, 9.67 4 11.82 7 0.33 cm0, 3, 5, 7, 8, 9, 14 394.96, 0, 0, 0, 0, 0.65 , 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 16, 17 81.53, 0, 32.12, 22.44, 17.66, 0, 0, 9.95, 6.19, 4.84, 2.63 , 2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 16, 18 51.85, 0, 27.98, 25.76, 20.82, 0, 0, 8.41, 4.26, 5.33, 3.21 necessarily lead to extreme losses, due to the fact that members with medium or small positions have large default fund contributions stemming from others' concentrated positions.

In Table 10, we report, for the example illustrated by Figure 1 with 2 CCPs, the trading loss levels (value-at-risks) at confidence levels 90% and 99.9%, for the 24 common members on the two CCPs. The corresponding numbers in the case where the two CCPs would be considered separately is reported in the columns VII and IX. For members with very low size on one of the two CCPs compared to the other, considering the common memberships or not does not affect the loss estimates, as expected 41 . For other members, however, at 90% confidence levels, the value-at-risks are significantly higher (compare columns VII and VIII in Table 10) when the common membership are considered compared to the stand-alone value-at-risks calculation conducted on each CCP and summed, especially for the first ten members. On the contrary, at the confidence level 99.9%, the sum of the stand-alone value-at-risks is well above the value-at-risk when common memberships are taken into consideration (columns IX and X in Table 10). These two situations illustrate that a regulator and the board (top management) of the bank could equally and rightfully criticise a simplistic standalone approach, too aggressive in some cases (making it unacceptable by the regulator) and over-conservative in others (making it unacceptable by the board).

Optimizing the Porting of Defaulted Client Portfolios

In case a clearing member defaults, the CCP tentatively novates part of the CCP portfolio of the defaulted member through auctions among the surviving clearing members (Default Risk Management Working Group, 2016; Basel Committee on Banking Super-41 as the CCP with the very low size compared to the other should have marginal impact. Table 9: Stress test (ST) extreme quantile, 1.5× ST extreme quantile and RST probability to breach 1.5 times the 99.9 th quantile loss level, for each member, based on 10M simulations (in parentheses: corresponding 95% confidence intervals).

vision, 2019a), and it liquidates the residual on the market. A natural baseline is that the CCP novates (auctions among surviving members) client trades and their mirroring client account positions, collectively dubbed client positions for brevity hereafter, whereas house account positions are liquidated.

The liquidation side of the procedure cannot be handled in our modeling setup, which does not embed the fundamentals of price formation (our MtM processes are assumed to be exogenously given). On the other hand, an XVA-based procedure can be used for rendering what would be the output of an idealized, efficient auction, assuming a large number of clearing members (Oleschak et al., 2019, Section 3.3). Namely, supposing that the reference clearing member, labeled by 0 in Sections 2-3, defaults at time 0, i.e. just after that all portfolios have been settled, for each surviving member CM * successively envisioned as a potential taker of the defaulted (client) positions of CM0, one computes the incremental (∆) XVAs of porting the defaulted positions to CM * , for each surviving member (CM * included 42 ). The corresponding incremental XVA numbers are then summed over metrics and survivors, resulting in the funds transfer price (FTP * ) of porting defaulted client positions to CM * . The effective taker is then the surviving member for which the ensuing FTP * is the smallest 43 . See Albanese, Chataigner, and Crépey (2020, Section 5.2) for more details on such "XVA Pareto optimally driven" novation procedures.

In what follows, based on the example of Table 7 (which only involves client po-42 note that all members are impacted by additional margin to fund due to the re-calibration of their DF by the CCP, whereas only the member taker of the portfolio sees in addition its IM adjusted.

43 or, indifferently in case of multiple minima, one of the minimizing FTP * members. Taking the first case with a single default, we first assume the scenario whereby CM0 defaults at time 0. Table 11 summarizes the total ∆XVA * aggregated over survivors, across members * from 1 to 19, in increasing order of the FTP * indicated in the last column. Based on the results of Table 11, CM1 appears to be the potential taker leading to the least overall FTP costs across all surviving members. This is understandable as this member's portfolio size (184 in Table 7) nets the most the defaulted member's portfolio size (-242), with volatility and credit default probability similar to 44 the ones of the defaulted member.

As CM1 concentrates more risks due in particular to non-perfect offset 45 between its prior positions and the defaulting one, there is an increase of its IM reflected through an increase of CMVA. But the new risk of CM1 is less than the sum of the former risks of CM0 and CM1, hence the ∆CCVA aggregated across surviving members is reduced. This only happens when CM1 takes over the defaulting portfolio, other potential takers leading to an overall increase of the CCVA. As for the KVA, there is a reduction effect for CM1 when CM1 is the taker (see the term in parentheses in Table 11), and an overall decrease in the total KVA (aggregated over all surviving members), which is also the case for most members. Having CM1 as the taker allows to obtain the most 44 in particular, not significantly higher than.

45 By offset we refer to risk reduction when taking over some additional position. The effect of correlation is such that an opposite sign in portfolio size does not imply an equal offset of the risk of the aggregated positions. For instance, even with opposite sizes and same volatilities but for ρ mkt ∈ (0, 1/2), the member ends up with more risk.

∆CMVA ∆CCVA ∆KVA 0.0593 0.0251 0.3557

Table 12: Standard deviation across surviving members * of the ∆XVA * for the example with 1 CCP and 20 members, assuming an instant default of CM0 at time 0.

significant decrease in ∆KVA.

As expected, among the three XVA components, KVA is the main determinant of the optimal taker: see Table 12.

Once the CCP has re-allocated all defaulted client positions, the resulting financial network formerly depicted in Figure 3 becomes the network with 19 members shown in Figure 8. The thick lines represent the new portfolio exposures for CM1 and the pale dashed lines show the defaulted CM0 positions.

Conclusion

We have proposed a fully integrated risk management framework that can be used for stress test analysis, including reverse stress test in line with regulatory requirements, or for optimizing the porting of defaulted portfolios, in a setup encompassing all the trades (bilateral as centrally cleared and their hedges) of a reference bank. The framework includes dependence between financial participants portfolios, joint defaults, and a configurable wrong-way risk feature. This is done in a numerically tractable static setup (although already quite demanding on large financial networks)46 . A possible improvement would be to incorporate regulatory constraints such as minimum regulatory capital requirements and liquidity leverage ratios. More fundamentally, in this paper, we tackle the derivatives risk problem from a pure counterparty credit risk viewpoint: if members, clients and counterparties are all default free, then in view of Proposition 3.1 all considered XVAs are zero, so that our setup becomes trivial. Another dimension to the problem is liquidity [START_REF] Amini | Systemic risk in networks with a central node[END_REF][START_REF] Faruqui | Clearing risks in otc derivatives markets: the ccp-bank nexus[END_REF]. Depending on the considered applications47 , credit or liquidity is the main force at hand. A challenging research project would be to integrate both in a common setup. A.2 Proof of Lemma 3.2

A Proofs

In view of Lemma 3.1 and Assumption 3.3, the (risky) funding expenses of the bank correspond to the formula (6) for F. Regarding C, On the CCP survival event {J = 1}, the CCP receives, by Assumption 3.2, i J i (P i + P i ) + (1 -J i ) P i ∧ (MtM i + IM i ) + P i ∧ (MtM i + IM i )+

(P i -(MtM i + IM i )) + + (P i -(MtM i + IM i )) + ∧ DF i . (24) 
By the CCP clearing condition in Assumption 3.1, 0 = i (P i + P i ) = i J i (P i + P i ) + (1 -J i )(P i + P i ) .

Hence (24) is equal to

- i (1 -J i ) (P i -MtM i -IM i ) + + (P i -MtM i -IM i ) + -DF i + = -L,
by definition (5) of L.

On the bank survival event {J = 1} (⊆ {J = 1}), by the respective Assumptions

Figure 2 :

 2 Figure 2: Promised cash flows between market participants. The reference clearing member bank is on the left.

  what the bank obtains from the client and D what the bank pays on the hedge of the portfolio. In the special case where case R = 0, what the bank obtains from the client simplifies to M -(D -M ) -= D ∧ M , in line with Principle 2.1, and the above expression to D -D ∧ M = (D -M ) + . 7 cf. e.g. Assumption 3.2 below.

Lemma 3. 1

 1 The borrowing needs of the bank for reusable and segregated collateral amount to, respectively, b (MtM b -VM b ) -CA -max(EC, KVA) + and IM + IM + DF + b IM b .

  credit valuation adjustment for clearing activity exposures CMVA E ⋆ J ccp γ IM ccp + IM ccp + DF ccp + (1 -J)CMVA margin valuation adjustment for clearing activity exposures

Remark 4. 2

 2 Our model of latent variables (X, Y ) has a (multivariate) elliptical distribution, i.e. (X, Y ) = AZ, where, with N = |I ∪ B ∪ C| the number of market participants in the financial network,Z = T , E, T 1 , X 1 , E 1 , . . . , T N , X N , E N ⊤ and Ais the matrix implicit in (15)McNeil, Frey, and Embrechts (2015, Chapter 6). Andersen and Dickinson (2019) introduce a dynamic model locally elliptical in the sense of elliptical on each next time step given the information at the beginning of the time step. Under simplifying assumptions including their equation (32) and Assumption 2, they obtain (in our notation) explicit CMVA and approximate CCVA formulas. In their case, defaults are triggered by ∆P j (in our notation) falling below a Merton-like threshold.
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 3 Figure 3: Financial network composed of 1 CCP, its 20 members (labeled by B) and one client per member

Figure 4 :

 4 Figure 4: CCVA and KVA w.r.t. credit factors correlation and credit and portfolio variation factors correlation.

Figure 5 :

 5 Figure 5: CCVA and KVA w.r.t. market factors correlation and credit and portfolio variation factors correlation.• all members have only clearing client positions 31 , with 123 members on CCP1 and 56 members on CCP2, out of which 24 are common to both CCPs,

Figure 6 :Figure 7 :

 67 Figure 6: Decreasing absolute nom i per member for CCP1

A. 1 Figure 8 :

 18 Figure8: The 1-CCP, former 20-member financial network with 19 members post CM0 default. Defaulted CM0, labeled "B0" in the presented network, is represented as pale dashed node with pale dashed links to reflect former exposures to its client and toward the CCP. The optimal porting of CM0 portfolio with CM1, labeled "B1", is outlined with bold links to reflect the new exposures for CM1.

  

Table 3 :

 3 CCVA and CMVA definitions with several CCPs (also, C and F are now given by Proposition 3.1, as also L ccp ).

	XVA	Explicit formula
	CCVA E	
	ccp,c	

Table 5 :

 5 XVAs calculation configurationFor each member, the CCVA, CMVA and KVA costs are calculated and reported in Table6. For KVA, two calculations have been performed, one based on ES at 99 th percentile level and another one based on 99.75 th percentile level. The amount in square bracket is the corresponding quantile level from which average is calculated and numbers in parenthesis represent the 95% confidence interval in relative difference

	One-period length T

Table 6 :

 6 Initial

XVA costs: estimates, [value-at-risk underlying the KVA estimate] and (95% confidence level errors).

Table 7 :

 7 Member characteristics and portfolio parameters, ordered by decreasing member size.

	, there are

Table 8 :

 8 Economic Capital 20 worst scenarios details for member 1 in decreasing order of total loss where column with header µ indicates allocated coefficient loss to member 1 and n is the number of defaults within the scenario.

	, 1.62, 0

Table 11 :

 11 Total ∆XVA * aggregated over survivors corresponding to the different surviving CM * , i.e. for * other than 0, assuming an instant default of CM0 at time 0. In parenthesis, the contributions to ∆XVA * of CM * itself. sitions), we analyze from this perspective a first scenario of a single default on the CCP.

See Gregory (2014) and[START_REF] Gregory | The xVA challenge: counterparty credit risk, funding, collateral and capital[END_REF] for general CCP and XVA references, as well as[START_REF] Menkveld | The economics of central clearing[END_REF] for a CCP survey.

as required by The European Parliament and the Council of the European Union (2013, Article

302).3 Government Securities Division.4 Optionsmäklarna/Helsinki Stock Exchange.

such additional protection layer, though quite common in practice, is of marginal magnitude compared to the other protection layers. By omitting skin-in-the-game component, the obtained results are conservative in terms of risk management and the various formulations are simplified.

cf. Figure 2.

these two conditions uniquely characterize R ⋆ (Artzner, Eisele, and Schmidt, 2020, Proposition 2.1).

hence, not a liability.

where max(EC, KVA) -KVA = (EC -KVA) + is provided by the bank shareholders, cf. (2).

under the member survival measure.

item referenced as 4.3.15 in Bank of International Settlements and OICV-IOSCO (2021), Value of pre-funded default resources (excluding initial and retained variation margin) held for each clearing service in total, post-haircut. in the quantitative disclosure documents.

item referenced as 18.4.2 in Bank of International Settlements and OICV-IOSCO (2021):For each segregated default fund with 25 or more members; Percentage of participant contributions to the default fund contributed by largest five clearing members in aggregate.; or item referenced 18.4.1 for CCP services with less than 25 members

as if the default fund amounts are proportional to the portfolio sizes.

such confidence level at 97% for SLOIM in DF calibration allows for a ratio of default fund over initial margin of about 10% in our calculations, a ratio (of this level or less) often observed in practice.

Government Securities Division

The dynamic extension considered inCrépey (2022, Section 6) is only workable at a much higher computational burden, using the simulation and learning techniques of Abbas-Turki,[START_REF] Abbas-Turki | Pathwise CVA regressions with oversimulated defaults[END_REF].

see e.g. the beginning of Section 7.

Acknowledgments: We thank Paul Besson, Head of Quantitative research, Euronext, and Mohamed Selmi, Head of Market Risk, LCH SA, for useful discussions. This work benefited from the support of the grant When Credit Meets Liquidity: The Clearing Member Default Resolution Issue, under the aegis of the Europlace Institute of Finance, France. The research of S. Crépey benefited from the support of the Chair Stress Test, RISK Management and Financial Steering, led by the French École polytechnique and its Foundation and sponsored by BNP Paribas.

3.2 and 3.1, the bank receives from its clients and counterparties 

Subtracting ( 25) from ( 26), we obtain

On top of this comes the participation µL of the bank to the CCP default losses, which yields the formula (4) for C.

A.3 Proof of Theorem 3.1

By the result recalled after (8), EC is nonnegative as an expected shortfall under R of the random variable J(C + F -CA), which is centered under R ⋆ and therefore under R, by (7). The first four formulas in Table 2 directly follow from the definitions of Table 1 and Lemma 3.3, which also implies that KVA = E h(EC -KVA) + = h(EC -KVA) + . As h is nonnegative, this KVA semilinear equation is equivalent to

where (KVA > EC and KVA = 0) contradicts the nonnegativity of EC, whereas, for h ∈ [0, 1] as assumed and EC ≥ 0, KVA = h 1+h EC implies KVA ≤ EC, i.e. max(EC, KVA) = EC. This and Lemma 3.3 yield

As CA = CCVA + CMVA + BCVA + BMVA + FVA, this is an FVA semilinear equation, which, as γ is nonnegative, is equivalent to the FVA formula

Last, we have EC = ES(J(C + F -CA)), where the identity C + F -CA = C -CVA and the formula for J(C -CVA) in Table 2 are obtained by substituting the already derived XVA formulas in ( 4) and (6).

A.4 Proof of Proposition 3.1

In the case of several CCP services, the second line in (3) must be turned into ccp IM ccp + IM ccp + DF ccp + b IM b ; the terms in the first lines of ( 4) and ( 6) must be summed over the various CCP services in which the bank is involved as a clearing member. The rest of the analysis proceeds as before.

A.5 Proof of Lemma 3.4

If R(ℓ = VaR(ℓ)) = 0, then, by the ES formula recalled after (8), we have