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Abstract

We propose a bottom-up quantitative reverse stress testing framework that
identifies forward-looking fragilities tailored to a bank’s portfolio, credit and fund-
ing strategies, models, and calibration constraints. Thus, instead of relying on
historical events, we run a Monte Carlo simulation, and we mine those future
states that contribute the most to a bank’s cost of capital expressed in terms of
scenario differential. We find that such an approach allows identifying both the
systemic and idiosyncratic weaknesses of the bank’s portfolio, with applications
that include solvency risk, extreme events hedging, liquidity risk management,
trading and credit limits, model validation and model risk management.

Keywords: quantitative reverse stress testing, cost of capital (KVA), model valida-
tion, model risk, trading limits, PFE.
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1 Introduction

Synthetic events feeding a model are the primary tool a risk manager has to evaluate the
impact the next market event might carry. For example, sensitivity analysis employs
artificial scenarios deviating from current markets by a handful of basis points (bps);
chronicles inspire the creation of mock events in Historical (or market-based) Stress
Testing (HST). The assumption that the past could repeat as we recorded it is the main
drawback of HST. Even more stringent limitations affect the usage of machine learning
methods to assess the fragility of a bank, as (i) difficulties in historical information
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the Chair Stress Test, RISK Management and Financial Steering, led by the French Ecole polytechnique
and its Foundation and sponsored by BNP Paribas.



gathering and management (e.g., echo and ghost effect) affect their training sets, (ii)
historical observations dilute the information current quotes carries, undermining their
risk reactiveness, and (iii) their calibration routines disregard the probabilities agents
assign to future possible market events.

In the aftermath of the 2007-2009 financial crisis, regulatory authorities emphasised
the complementary role of Reverse Stress Test, which focuses on discovering tailored
fragilities synthetically (see, e.g., BCBS (2009) and Fed (2012)).

Grundke and Pliszka (2018) distinguishes between qualitative and quantitative Re-
verse Stress Tests. A qualitative Reverse Stress Test enhances the one scenario to stress
them all approach hallmarking HST, as it considers the peculiarities and current state
of a firm (e.g., via SWOT and PESTLE analysis), customises a non-quantitative ad-
verse event to it (e.g., a severe operational or climate crisis), and estimates its impact.
A quantitative Reverse Stress Test, to which we reserve the RST acronym hereafter,
uses models to generate a synthetic pool of scenarios to data-mine. Instead of assessing
the loss an artificial scenario (e.g., akin to the Great Financial Crisis) created externally
from a model might carry, an RST mines fragility states from the synthetic simulation
pool of a model, conditional to a loss threshold set exogenously. In other words, while
HST picks an artificial event from registers and estimates its re-occurrence losses by
using a model, RST picks the critical loss exogenously and treats the paths a model
projects as the mining archive. Although a model can not label its forward-looking
projections (e.g., dot-com, euro-debt, covid or Ukrainian Crisis), it calibrates on run-
ning quotes, which reflect agents’ fair price to exchange protection against one or more
future events. Quoting Grundke and Pliszka (2018, Section 1), “a qualitative approach
alone would not work, or, at least, would have to be supported by quantitative elements
[...] Papers on quantitative reverse stress tests are also very rare.”

Despite the interest received from regulators, years after Grundke and Pliszka
(2018), the related literature is still scarce. Montesi and Papiro (2018) and Mon-
tesi, Papiro, Fazzini, and Ronga (2020) took the pioneering step of tailoring the notion
of (quantitative) RST to a bank’s balance sheet by proposing a top-down approach.
However, a top-down approach collapses a bank’s portfolio, the risk factors driving it,
its CSA terms, accounting and regulatory requirements into a handful of explanatory
variables. We find further limitations in current RST literature, as the models used
to describe the bank’s loss process rely on simplistic distributions only (e.g., ellipti-
cal, beta, logistic), for which expert judgment calls (and not market observable) fix
their parameters. To counterbalance their limitations, Montesi and Papiro (2018, page
23) propose a supra-entity delegated to “run a stochastic simulation for every single
financial institution with a common standard methodological paradigm”, i.e., a supra-
entity devoted to RST consistency. As a result, a bank is left with one action only if
it overshoots its survival threshold, i.e., to reserve cash: an expensive and sub-optimal
strategy that does not protect against any particular scenario, as its usage is invariant
across them all.

This paper is a contribution to quantitative Reverse Stress Testing (RST). It founds
on the intuition that a coherent financial model used for business purposes expresses
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views around the realm of market possibilities, to which a calibration routine assigns a
probability number. We propose a bottom-up RST framework that identifies forward-
looking fragilities tailored consistently to a bank’s credit and funding strategy, its model
inventory and the prevailing market sentiment around future possibilities. Whereas cur-
rent literature abstracts RST from a bank’s view on which future economic states are
possible, in line with ECB (2019), we propose a theoretical framework and a computa-
tional methodology sensitive to the projected states of (i) all the market factors driving
a bank’s exposure and their correlations, (ii) the risk-free mark-to-market (MtM) value
of all the claims collected in its portfolio, (iii) each netting set’s collateral obligations, as
expressed in CSA terms, (iv) all clients’ hazard rates, (v) their default losses, and (vi)
their credit and funding valuation adjustment (CVA and FVA respectively) volatilities.
We account for CVA and FVA volatilities as the 2008 global financial, 2020 Covid and
2022 Ukrainian crises proved their material impact on a bank’s P&L. A key step in
building an RST is the specification of a suitable objective function. Cost of capital
(KVA) sizes the cost of the lack of internal capital buffers needed for a business-as-usual
operativity, a property that we believe sets it as merit function naturally.

We show in the paper how such a bottom-up RST framework fosters a “teoria
normativa per la coerenza del comportamento” [normative theory for the coherent be-
haviour ] (de Finetti (1970, Page 226, Note 1)), promoting coherent risk management
of the bank’s fragilities across Lines of Defence. For example, once a state of fragility
emerges, loss-driving counterparties and trades appear by deepening its mining phase,
and a bank could increase its capital buffers (the only option in current RST literature),
unwind, renegotiate and restructure specific trades or CSA terms, or even transfer the
risk externally. By changing the mining direction (from states to counterparties), an
RST covering the entire business strategy consistently can ameliorate credit limits,
generating a metric that sizes a client’s potential capital exposure (PKE) on the back
of the whole portfolio held, capturing credit and funding wayness too.

However, because RST anchors on models, their usage must satisfy a superior re-
quirement to local pricing tasks, i.e., global coherency (see de Finetti (1931)) that must
cover specification soundness, global calibration accuracy, and consistent usage of the
paths a model generates to propagate a risk-factor among all the business units of a
bank. To stress the importance of coherence in RST: let’s fix a risk factor and consider
the industry-standard practise of cherry-picking a model based on its local perfor-
mances in performing a narrow task (e.g., price a fixed-income derivative by matching
the claim’s hedges). Performing an RST run on a bank that uses inconsistent mod-
els (e.g., Hull and White (1990) and Albanese and Trovato (2008)) to model different
products (e.g., swaps and path-dependent derivatives) referencing the same risk factor
(e.g., USD IR) compromises output interpretability as incoherent (or model-specific)
stress clusters will surface inevitably.

A model can not label its synthetic events, and the stress conditions it generates
might not have a relationship to any possible reality. We advocate invalidating the
models that deem econometrically unrealistic future scenarios as possible. In other
words, econometrically realistic extreme states must take the same importance as a
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model’s calibration and sensitivity stability performances. A bank must disallow the
entire usage of those models that mingle reality and fiction in the blueprint of their
future states, regardless of their performance on local tasks.

Lastly, we argue that a coherent RST could provide a pioneering framework to quan-
tify the impact that model risk carries to bank’s survival via its model-interconnectedness
channel (MIC; cf. Devasabai (2017)). In studying the impacts that the MIC carries
to a bank’s survival, we extend the model risk analysis presented in Albanese, Crépey,
and Iabichino (2021), which focused on model risk effects on MtM (and hedging) risk
only.

To illustrate our methodology, we discuss a case study concerning a portfolio of
approximately 2,500 counterparties, 100,000 derivative trades with credit, all G10 cur-
rencies and their foreign-exchange rate exposures. Using globally specified and cali-
brated models only (e.g., cf. Albanese and Vidler (2007); Albanese and Trovato (2008);
Albanese, Bellaj, Gimonet, and Pietronero (2011)), we propagated 20,000 primary sce-
narios for market and credit factors, over 200-time points, covering 50 years. We relied
on nested simulations to compute future conditional CVA and FVA P&L distributions,
branching off 1,000 additional nested paths with yearly observation frequency and cov-
ering the portfolio’s residual lifespan. We combine default, CVA and FVA distributions
to heavy tailing the P&L distribution further. We share all the realisations of our risk
factors among the entire portfolio coherently, using a single server. The computation
reached a calculation time of 3 hours circa.

We organised the paper as follows: Section 2 details our theoretical framework,
Section 3 unfolds the panoply of actionable insights a coherent RST carries to a bank’s
Lines of Defence (expanding on extreme scenario hedging in Section 3.1, credit limit
amelioration in 3.2, and model validation in 3.3), and Section 4 concludes.

2 Theory of a Coherent Reverse Stress Test

2.1 Executive Summary

We start from a pool of individual scenarios ω and evaluation time-points ti used to
characterize the following processes:

• XM
ti , collecting the realisations of all the market risk-factors that drive the bank’s

expose. For examples, XM
ti collects the realisation of interest rates, foreign rates,

credit, and the clients’ conditional probability of default: cf. Albanese and Trovato
(2008), Albanese, Bellaj, Gimonet, and Pietronero (2011), and Albanese and Vi-
dler (2007) for global models specifications and calibration routines, while Al-
banese, Campolieti, Carr, and Lipton (2002) explains the re-interpretation of
de Finetti (1931) under our framework;

• XT
ti , tracking the realisations of the MtM process of all trades a bank has with

its clients, their collateral posting obligations, exposure at default and CVA fair
value (see (3)). The realisation of XT

ti is conditional to the realisation of XM
ti ;
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• XP
ti , gathering those random variables tightened to the bank’s business strategy.

For example, XP
ti collects FVA and cost of capital (see (4), and (5)-(8) respec-

tively). The realisation of XP
ti is conditional to the realisation of XT

ti .

A consistent simulation engine is only the first building block for coherent RST, as
its implementation necessitates a landmark metric that can be differentiated and ranked
to express preferences concerning each scenario and a loss threshold (or quantile) set
exogenously. Our ranking proposal revolves around a bank’s cost of capital (KVA). We
chose KVA as the root vertex of our RST framework, because it allows to quantify the
contribution that an individual projection carries to the bank’s demand of shareholders’
capital, which is sensitive to all the above risk factors.

In a nutshell, we denote the scenario-differential KVA as δKVA(−ω), and mine
fragilities by applying the following framework:

1. Compute the initial KVA value (KVA0) over all the scenario pool, and a set of

KVA
(−ω)
0 numbers, computed using a “scenario extraction with reintroduction”

procedure. In other words, we compute a KVA
(−ω)
0 entry by excluding a single

scenario ω iteratively;

2. Select the scenarios for which their δKVA(−ω) = KVA0 − KVA
(−ω)
0 contribution

falls above a threshold (or inside a confidence interval (CI)) set exogenously, and
label this set as Stress Scenario Pool (Ω∗);

3. Perform an event-based temporal analysis for each scenarios belonging to the
Stress Scenario Pool to locate the temporal peak (ti∗) of the crisis (see Figure 2);

4. Data-mine the peak of a crisis to gather the simulated synthetic market condition
(see Figure 3).

2.2 Economic Capital and its Cost

Hereafter, for notation simplicity, we describe our theoretical RST framework using a
continuous-time and space formalism (while our approach relies on a finite specification
only).

Consider a filtered probability space (Ω,A,F,R), in which Ω is the state space,
F = (Ft) is a filtration over the σ-algebra A, and R is our reference probability measure.
R is a blend between physical (P) and risk-neutral (Q) measures, having the following
properties: (i) R equals Q on the financial sub-σ-algebra of the entire σ-algebra A
and (ii) R equals P conditionally on the financial sub-σ-algebra (cf. Artzner, Eisele,
and Schmidt (2020, Proposition 2.1) for proof of R’s well definiteness on A). We use
the risk-free asset growing at the OIS rate as a numéraire, and we present formulae
assuming no collateral exchanges between the bank and its clients, an assumption
relaxed in our framework’s implementation. We denote by Et the (Ft,R) conditional
expectation and, for a generic loss random variable ℓ, the expected shortfall (ESt(ℓ))
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at the quantile level α as:

ESt(ℓ) = Et

[
ℓ | ℓ ≥ VaRt(ℓ)

]
, (1)

in which VaRt(ℓ) is the corresponding value-at-risk, i.e.:

VaRt(ℓ) = inf{y;Et[1{ℓ≤y}] ≥ α}. (2)

We emphasise that both (1) and (2) are conditional on Ft. For t = 0 we just write
E,VaR and ES.

We start by defining CVA as:

CVAt = Et

[∑
c

1{t<τc<∞}(1−Rc)(MtMc
τc)

+

]

= Et

∫ ∞

t

[∑
c

(1−Rc)(MtMc
s)

+δτc(ds)

]
︸ ︷︷ ︸

dDs

= Et

∫ ∞

t

[∑
c

1{t<τc}e
−

∫ s
t λc

ζdζλcs(1−Rc)(MtMc
s)

+ds

]
,

(3)

in which: MtMc
s is the time-s risk-free MtM value of a client’s netting set c, λcs is the

client’s default intensity, τc his default-time, Rc his recovery rate, and δτc denotes a
Dirac mass at time τc. We point out that the last identity assumes some conditional
independence between τc and the reminder of the filtration (cf. Crépey, Bielecki, and
Brigo (2014, Section 13.7)).

Concerning FVA, we follow the entity-level FVA definition initiated by Albanese,
Andersen, and Iabichino (2015), i.e.:

FVAt = Et

∫ ∞

t[
1{s<τb}λ

b
s

(∑
c

MtMc
s1{s<τc} − CVAs − FVAs − ECs

)+

ds

]
︸ ︷︷ ︸

dFs

,
(4)

in which: λbs is the funding spread of the bank at time s, τb is the bank’s default arrival
time and EC is defined in (6).

We denote by Lt the bank’s total accumulated negative P&L process (a positive dLt

signals a loss). To derive the loss process L, we combine default, CVA and FVA losses,
assuming the bank hedges its portfolio’s MtM risk actively and hedges its counterparty
credit risk (CCR) exposures passively, i.e.:

Lt =

∫ t

0

(
dDs + dFs

)
+CVAt − CVA0 + FVAt − FVA0, (5)
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in which dDs and dFs represent a shorthand notation for future default and funding
losses, which terms are defined in line with (3) and (4) respectively. CVAt and FVAt

terms in (5) express the conditional future CVA and FVA levels, which we capture via
nested simulations (cf. Albanese, Caenazzo, and Crépey (2017)).

Economic Capital (EC) sizes the bank’s capital buffer dedicated to absorbing un-
expected losses and, following the fundamental review of the trading book (FRTB;
cf. BCBS (2013)), we define EC as the Expected Shortfall of the 1-year portfolio losses
at the quantile level α, i.e., as:

ECt = ESt(Lt+1 − Lt). (6)

Inspired by Solvency II’s risk margin, we chose KVA as the root vertex of our RST
as it monetises the bank’s shareholder capital at risk. Technically, following Albanese,
Caenazzo, and Crépey (2016); Albanese, Crépey, Hoskinson, and Saadeddine (2021);
Crépey (2022), we define KVA as:

KVAt = Et

∫ ∞

t
h(ECs −KVAs)

+ds = Et

∫ ∞

t
h
(
max(ECs,KVAs)−KVAs

)
ds

= Et

∫ ∞

t
he−h(s−t)max(ECs,KVAs)ds, t ≥ 0,

(7)

in which h is the (inter-temporal) hurdle rate, and (ECs − KVAs)
+ the bank’s share-

holder’s capital at risk (also dubbed excess capital demand). Regarding the amount of
capital at risk, although we could interpret EC as such directly, we note that similar
to CVA and FVA, the KVA that EC generates is a loss-absorbing buffer too. Thus, at
time s, a bank’s capital at risk is max(ECs,KVAs), and shareholder ’s capital at risk is
max(ECs,KVAs) − KVAs = (ECs − KVAs)

+ (as, similarly to CVA and FVA, a bank
can transfer KVA to its clients). Concerning h, it synthesises the target rate of return
to remunerate shareholders for their capital at risk, and the bank’s management sets its
level. Because a higher (resp. lower) level of h reflects a less (resp. more) conservative
dividend management policy, it impacts the temporal location of the stress cluster we
will mine.

From an implementation viewpoint, we highlight that (see Albanese, Caenazzo, and
Crépey (2017)): (i) path-wise EC computations as per (6) would requiremultiple nested
simulations (or biased regressions as in Abbas-Turki, Crépey, and Saadeddine (2022)),
instead we rather use an unconditional approximation of EC, defined by replacing Et

with E in (1)-(2) and hereafter denoted by EC(t) (instead of ECt for its real process),
(ii) Picard iterations can then be used to disentangle the FVA-EC dependency in (4)–
(6), and (iii) the max term in (7) is not binding typically. To summarise: we evolve
default and CVA/FVA losses, by branching a second (conditional) layer of Monte-Carlo
paths. Default, CVA, and FVA losses mingle in EC projections, which we synthesise
in the KVA number

KVA0 ≈ E
∫ ∞

0
he−hsEC(s)ds. (8)
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Figure 1 depicts the histograms of the bank’s yearly losses (Lt+1−Lt), in line with (5),
in which the white pins demark the (unconditional) EC(t) term structure.

Figure 1: Histograms of the bank’s yearly losses (Lt+1 − Lt) and corresponding EC
projections (see (5) and (6)).

2.3 Scenario Differentiation

By studying EC in (6), we note that we could design our RST framework with various
scenario ranking methods. Naturally, by zeroing-out different variables in (5), our RST
would generate another merit function, exposing a different risk flavour. For example,
by muting the dDs and CVA terms in (5), KVA and the RST mining phase will only
reflect funding risk; by silencing funding terms, only credit risk losses will surface.
Hereafter, we develop our coherent RST turning-on to all the terms comprising (6).

For each scenario belonging to our finite and pre-generated simulation pool, we
compute a scenario-differential KVA term (δKVA(−ω)). This is simply the difference
between the initial KVA value (KVA0), computed over the entire projection set, and

another KVA number (KVA
(−ω)
0 ), estimated referring to the same pool except for a

single scenario ω that we nullified iteratively. In view of Section 2.2, δKVA(−ω) =

KVA0 − KVA
(−ω)
0 represents the dividend accrual stream paid by the bank to raise

capital buffers along the scenario ω. Because δKVA(−ω) monetises the bank’s excess
capital demand related to the scenario ω, it enables a scenario-selection exercise based
on preferences. A scenario ω belongs to the Stress Scenario Pool Ω∗ iff its marginal
KVA contribution falls inside a pre-set CI:

δKVA(−ω) ∈ [lb, ub] ⇒ ω = ω∗ ∈ Ω∗, (9)
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in which lb and lb are model-exogenous lower and upper bounds that haircut scenario-
differential KVAs.

Lastly, we temporally investigate each scenario comprising Ω∗ to scout the time-
point that maximizes capital consumption, i.e., the peak of a crisis (ti∗ ; see Figure 2).
As the peak of a crisis is identified, the RST mining phase enters into play:

Ω∗ ∋ ω∗ ⇒ (ti∗ , XM (ω∗, ti∗)). (10)

In the end, an RST is a map that returns the economic state linked to the realization
of the variable of interest (see Figure 3).

Figure 2: P&L stress scenario (the red rhomboid indicates the peak of a crisis (ti∗)).

Figure 3: USD OIS and CAD CORRA projection for the P&L stress scenario depicted in
Figure 2 (the red rhomboid indicates the peak of a crisis (ti∗).

2.4 Extreme Scenario Mining: A Case Study

We consider our portfolio (see Section 1), run our multi-dimensional simulation engine,
set an EC quantile of 97.5% and a [99%, 99.9%] CI. Because we use a set of 20,000
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primary scenarios, 180 elements comprise our Stress Scenario Pool.

Figure 4 depicts the portfolio’s fragility states exposed by our RST engine for the
USD IR, from which we note a pivotal fragility cluster located in regimes of low-interest
rates. Generally, we observe low-interest rates post stress regimes, reflecting established
monetary policies, a cyclicality that emerges from Figure 4 (as losses materialises in
low IR regimes). We also note a second cluster of losses located in higher interest rate
environments from Figure 4. Central Banks tight their monetary policies in regimes
of material inflation and funding costs typically, and the fragilities in these regimes
signal an idiosyncratic weakness in a bank’s funding strategy, a material convexity or
exposure concentration.

z

Lastly, we highlight that although we focused on IR risk, studying the uni-variate
or bi-variate extreme states of other risk drivers (e.g., Equity, Commodities, Credit)
does not represent a challenge.

Figure 4: Extreme USD OIS states (in bps) using the SD model to model interest rates
(see Section 3.3). Blue and green lines represent the forward curve and the forward
curve conditional to stress scenarios (average of the dots), respectively.

3 Coherent Risk Management

In this section, we discuss the portfolio of actionable insights that will open to a bank’s
Lines of Defence if it can surface its forward-looking critical states coherently.

3.1 Hedge Rare Events

Having identified the Stress Scenario Pool, a coherent RST can deepen its mining
phase and reveal counterparties and trades that exacerbate excess capital demand.
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Figure 5: USD OIS vs. GBP SONIA
overnight rates (in bps) for stress scenar-
ios using the SD model. Connected dots
represent the USD-GBP forward curve.

Figure 6: USD OIS vs. CAD CORRA
overnight rates (in bps) for stress scenarios
using the SD model. Connected dots rep-
resent the USD-CAD forward curve.

Figure 7: USD OIS vs. JPY JSCC
overnight rates (in bps) for stress scenar-
ios using the SD model. Connected dots
represent the USD-JPY forward curve.

Figure 8: EUR EONIA vs. GBP SONIA
overnight rates (in bps) for stress scenarios
using the SD model. Connected dots rep-
resent the EUR-GBP forward curve.
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For example, a bank can examine its peak of a crisis (ω∗, ti∗), identifying loss-driving
netting sets (C∗(ω∗, ti∗)). A netting set c is the loss-driving one (c = c∗ ∈ C∗(ω∗, ti∗))
if its impact by removing it from the portfolio is the highest

c∗ = max
c∈C

[
Lti∗+1

(ω∗)− Lti∗ (ω
∗)− (L

(−c)
ti∗+1

(ω∗)− L
(−c)
ti∗

(ω∗))
]
, (11)

with C the bank’s client pool and L(−c) the loss process of the bank portfolio unwinding
all its trades with the client c.

In Figure 9, we re-consider our portfolio and show the impact of the top five loss-
driving counterparties for one of the peak of a crisis we identified in Figure 4.

Figure 9: Top five loss-driving counterparties to a peak of a crisis.

After having identified a loss-driving client, a similar scheme repeats to pinpoint
those trades that exacerbate loss concentration on the back of the portfolio held. If
more than one trade emerges to be a loss-driving, then the bank identified a risk-
concentration conditional to a fragility state. To hedge a risk-concentration, the bank
could unwind, renegotiate or restructure specific transactions or CSA terms, or even
build static hedges.

Assume our bank (B) identifies a selling bank (S) for a trade (ϵ) that might hedge
its losses against one of its states of fragility. The two banks will execute the transaction
iff they are able to fix a price p such that

MtM
(ϵ)
0 + (∆SCVA

(−ϵ)
0 +∆SFVA

(−ϵ)
0 +∆SKVA

(−ϵ)
0 ) ≤ p ≤

MtM
(ϵ)
0 − (∆BCVA

(ϵ)
0 +∆BFVA

(ϵ)
0 +∆BKVA

(ϵ)
0 ),

(12)

in which MtM
(ϵ)
0 is the risk-free valuation of the trade (seen from B’s viewpoint),

∆B/SXVA
(±ϵ)
0 is the incremental impact of the trade on the XVA metrics of banks B

and S, and we assumed no Margin Valuation Adjustment (MVA) charges between the
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two. Because the price p can be decoupled in the sum of the risk less MtM of the hedge

and its Funds Transfer Price FTP := MtM
(ϵ)
0 − p, we have, equivalently to (12):

∆BCVA
(ϵ)
0 +∆BFVA

(ϵ)
0 +∆BKVA

(ϵ)
0 ≤ FTP ≤

− (∆SCVA
(−ϵ)
0 +∆SFVA

(−ϵ)
0 +∆SKVA

(−ϵ)
0 ).

(13)

Assuming

∆BCVA
(ϵ)
0 +∆BFVA

(ϵ)
0 +∆BKVA

(ϵ)
0 +∆SCVA

(−ϵ)
0 +∆SFVA

(−ϵ)
0 +∆SKVA

(−ϵ)
0 ≤ 0,

a Pareto exchange can locate in any segment of the FTP no-arbitrage price range.
From Figure 4, we identified two fragility clusters, i.e., an idiosyncratic and a sys-

temic one. A bank could expect a wider a non-arbitrage price range for an hedge that
counterbalances an idiosyncratic fragility than a systemic one and higher chances to

drive FTP closer to FTPB := ∆BCVA
(ϵ)
0 + ∆BFVA

(ϵ)
0 + ∆BKVA

(ϵ)
0 , given the lower

market appetite.

3.2 Enrich Limits: from PFE to PKE

By changing the mining direction (from states to counterparties), an RST tailored to
the entire exposure of the portfolio held can enrich Credit Limits, generating a metric
that sizes a client’s potential capital exposure (PKE) on the back of the entire portfolio
held, capturing credit and funding wayness too.

Current risk appetite management practices revolve around metrics that already
rely on extreme sub-pools of projections. For example, following BCBS (2013), banks
often define PFE as an expected shortfall of a client’s (c) projected MtM losses at
the time horizon t. The metric credit officers typically employ to monitor the credit
exposure of a client c is the maximum PFE, defined as

PFEc = max
t∈[0,T ]

ES(MtMc
t −MtMc

0), (14)

in which T is either the residual life of the netting set or its first year of credit exposure,
MtMc is client c’s exposure (equal to the sum of each trade’s MtM comprising the
client’s netting set in which the ISDA does not have a CSA), and with a pre-defined
quantile level α, in the [95%, 99%] range typically.

Nonetheless its usage, the industry heavily criticises PFE-like metrics as structural
limitations characterise them. For example, PFEc considers a client’s MtM exposure
only, which is computed under the assumption of lack of correlation between a client’s
and his bank’s exposure.

We note that also KVA synthesises in a number an ES term structure, with the
difference that its input is a client’s impact on his bank’s capital at risk. We define
Potential Capital Exposure (PKEc) as the difference between KVA0 and another KVA

number (KVA
(−c)
0 ), computed assuming a complete unwind of the client c. Thus, PKEc

shifts the question from “how much is the maximum MtM loss a client can carry to
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his bank?” to “how much would it cost the bank to sustain a client’s unexpected losses
over the residual life of his portfolio?”.

For each client c, Figure 10 compares PFEc and PKEc, from which we observe
virtually unrelated risk profiles generated by different risk sensitivities. For example,
counterparties with immaterial PKEc can show material PFEc, and vice-versa. The sign
of the difference between a client’s PFEc and PKEc hints a risk-offsetting property of
the netting set under consideration: A positive (resp. negative) PFEc-PKEc difference
identifies a capital offsetting (resp. absorbing) client to the reminder of his bank’s
exposure that is penalised (resp. praised) by PFEc (see Figure 10).

Figure 10: PKEc vs. PFEc using the SD model (see (16)). The orange lines denote the
area within which the intermediary 50% of the data lie.

3.3 Invalidate Counterfeiting Reality Models

In finance, the profitability in running a model is the driving force that validates model
usage; in natural science, an event that contradicts the reality described by a theory
invalidates it (e.g., cf. Popper (1934)). In Albanese, Crépey, and Iabichino (2021),
we analysed the exchange between short-term profits and medium-term risk economet-
rically unsound models carry, focusing on MtM risk only. However, a bank’s model-
interconnectedness channel (MIC) represents a paramount source of model risk, which
could severely veil the risk/profitability analysis of a trade. We elaborate on turning a
coherent RST framework into a model validation test-bench, that covers all the usages
of a model as id customises to its interconnectedness.

We conclude that a bank must disallow the entire usage of those models that mingle
reality and fiction in allocating their future states, regardless of their performance on
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local tasks. In other words, a model validator could use a coherent RST framework to
study the econometric soundness of the blueprint of the future a model embeds.

Because we could imagine that our bank doubles its positions, choosing different IR
models to describe the USD IR dynamic in the new and old portfolio, we will shed light
on the practice of having a kit of models that differ in their specification and end-usage
and not on the risk factor they model. To study the MIC effects, we re-consider the
coherent risk-management actions discussed above, considering two perfect substitute
IR models that calibrate the same volatility surface globally and accurately but differ
on the risk factor domain, as only one uses a cap to force it to verify econometric
bounds.

Two IR Models, One Reality In the counterparty credit risk space, the Hull and
White (1990) 2-factor (HW) model is a well-accepted industry standard thanks to its
implementation ease and low computational resources used to calibrate its parameters
on vanilla fixed-income products. To ease implementation by gaining traceability, Hull
and White (1990) chose to stylise the IR randomness via an unbounded Gaussian
process.

The stochastic differential equation (SDE) driving the HW model for a short-rate
process r has the following form:{

drt = k(θt − rt)dt+ σ(t)dW
(1)
t

dθt = κ(a− θt)dt+ νdW
(2)
t ,

(15)

in which k and κ are mean-reversion rates, θt and a mean-reversion levels, σ(t) and
ν volatilities, W (1) and W (2) correlated Brownian motions such that d⟨W (1),W (2)⟩t =
γdt. To speed-up computational performances, banks often chose to constrain the
calibration of σ(t) to the backbone of the reference IR volatility surface only.

A model derived from Hull and White (1990) is Albanese and Trovato (2008), a.k.a.,
the stochastic drift (SD) model. The SD model starts from the same two mean-reverting
factors characterising (15), augmenting it as

drt = κ(θt − rt)dt+ σ(t)rβt dW
(1)

dθt = k(a− θt)dt+ νdW (2)

ϕ(t) = min(0, f(t)− ψ)

rt = ϕ(t) + λ(t)rt,

(16)

in which λ(t) is a drift adjustment factor, f(t) is the (infinitesimal) forward rate, and
ψ is a bound calibrated econometrically.

If we compare the HW and SD models (15) and (16), we observe that Albanese and
Trovato (2008) bounds the IR process to take non-negative values only, apart from the
handful of basis points allowed by ψ. Moreover, a shifted exponential constrains the
functional form of σ(t), which calibrates to the entire IR volatility surface and β can
be adjusted to enhance accuracy.
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Figure 11: The HW model’s extreme USD
OIS states (in bps).

Figure 12: The SD model’s extreme USD
OIS states (in bps).

Distorted Risk Appetites We start our study from Figures 11-12, which put vis-
à-vis the extreme scenarios mined by using HW and SD. The blue and green lines
represent the forward curve and the forward curve conditional on stressing scenarios
(average of the dots), respectively. Figure 11 shows that HW locates the main fragility
cluster both in the short time-horizons and in conjunction with extremely low-interest-
rate regimes, in the unrealistic range between -100 and -350 bps.

As visible on Figure 12, the SD model renegades the short-run deep fragilities sig-
nalled by the HW model, located in extremely low-interest-rate regimes, and disperses
the risk more homogeneously over the lifetime of the book while skewing only slightly
it on shorter maturities. Although the SD model recognises that the USD rate could
approach a negative territory in the downturn of an economic cycle, it manages the
deepen of its access by ψ, fixed at the level of -20bps in our case study.

The difficulties to interpret the RST output if a bank models a risk-factor incoher-
ently (e.g., picking models based on the local task at hand) are well visible by comparing
Figures 11 and 12.

The Hull and White (1990) model played a pivotal role in bypassing the techno-
logical boundaries that were constraining financial growth, thanks to its underneath
Gaussian hypothesis. However, the financial growth it promoted turned the model’s
biggest strength in its Achille’s heel. HW’s Achille’s heel affect a bank’s survival by
biasing the effectiveness of his Lines of Defence as follows:

• From IR models to XVA Billing and Fair-Value: Table 1 compares the
(time-0) XVA metrics computed with the HW and SD model, from which we
observe the bias that a model that is deemed as sound to perform constrained
tasks could generate to the fair value of the XVA. In other words, the model risk
embedded in the blueprint of the future HW embeds propagates to an XVA price
unfairness for either the client or the bank’s shareholders via the MIC.

The material impact of a model’s state space is well visible from Figure 13, which
depicts the EC projected by the two models. The different view the models have
on the UDS IR domain affects materially the bank’s EC profile (see (6) and Figure
13). Because HW does not constrain the realm of possibilities in its blueprint of
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future possibilities, its calibration routine could potentially assign a probability
to the most unrealistic future state, exacerbating capital demand.

• Hedge Rare Events: One of the most trivial arbitrage opportunity is the situ-
ation in which a client is willing to buy a ticket for a lottery that does not exist
(cf. de Finetti (1931)).

By only deeming a future impossible state as possible, a model biases the natural
domain of the target risk factor, jeopardising risk appetite and optimal hedging
strategies. For example, an ill-intentioned agent can easily exploit the distorted
risk appetite of an HW model-user if he receives the biased signal of trading
protection against fictitious states (e.g., against the cluster of short-run fragility
that materialises in conjunction with a catastrophically deep negative rate regime
in Figure 11).

• Credit Limits: To analyse the distortion a model’s imagined reality generates
to risk appetites, we reconsider the credit limit analysis proposed in Section 3.3,
chaining the IR model from SD to HW, generating Figure 14 and 15. Although
PFE relies on the extreme MtM losses haircut performed by (14), it has low
sensitivity to the model of choice (as its realisations scatter roughly along the
diagonal). Contrarily, PKE is highly sensitive to the field of possibilities the
underneath IR model deems as possible. The different sensitivity to the radically
different nature of rare events confirms the thesis that a client could generate
losses that are more material than those originated from the MtM value of his
portfolio, an eventuality that credit limit metrics built on canonical PFEs can
not size.

• Model Validation: The narrow economy often stylised by a model conflicts with
the growing sophistication of MIC and clients’ risk profiles, veiling the effects the
thin demarcation line between reality and fiction a model draws has on a bank’s
survival. For example, the real applicability of a model that behaves well under
bespoke usages (e.g., price a fixed-income derivative by matching the claim’s
hedges accurately), but mingles reality and fiction in the blueprint of its states,
could cascade to different metrics and to the bank’s effectiveness of his Lines of
Defence unforeseeably.

Thus, we hint to invalidate the models that deem econometrically unrealistic
future states as possible directly, instead of relying on a model reviewer’s knowl-
edge and expertise to identify the hidden structural limitations of a model. A
coherent RST framework can elevate current model validation practices, comple-
menting the pillars of ensuring a good fit to the claim’s hedges and a stability in
its sensitivities with a model’s extreme events soundness.

Remark. The combination of sound model specification and accurate calibration to the
entire volatility surface do not determine realistic models uniquely. If a bank deems as
econometrically sound more than one model, the residual model risk can be accounted for
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HW Model SD Model Model Risk

CVA 242 248 2.5%

FVA (RHO) 126 109 -13%

FVA (RHO + EC + CVA + FVA) 62 45 -27%

KVA 275 388 41%

Table 1: Comparison of the time-0 XVA metrics (in million USD) between the SD and
HW models. FVA (RHO) accounts only for the re-hypothecation option (i.e., ignores
the “−” terms in (4)), where FVA (RHO + EC + CVA + FVA) deems reserve and
economic capital as a fungible source of funding.

Figure 13: Comparison of the economic capital projections computed with the HW
(blue) and the SD (orange) models.
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Figure 14: PFEc obtained with the HW model (x-axis) versus the same metric obtained
with the SD model (y-axis). Note that the regression line (in orange) has an angular
coefficient very close to 1, indicating a lack of sensitivity of the PFE metric.

Figure 15: PKEc obtained with the HWmodel (x-axis) versus the same metric obtained
with the SD model (y-axis). Note that the regression line (in orange) now has an
angular coefficient relatively far from 1, indicating a systematic bias due to model risk
of the KVA metric.
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through Bayesian averages. A bank can run Bayesian averages in the vein of Black and
Litterman (1991, 1992), using EC projections and KVA obtained by mixing (on a path)
the realisations obtained using different sound models co-calibrated to the same surface
globally (e.g., similarly to the VaR case in Siu, Tong, and Yang (2004)). Because
different dynamics could describe the future evolution of a risk factor over an econo-
metrically sound grid, a bank could use a Bayesian average, over the multi-dimensional
set of realisations generated by econometrically sounds models, to reserve model risk
capital buffers soundly.

4 Conclusion

Artificial scenario generation is the main tool a risk manager has to estimate the P&L
impact the next market event might carry. Instead of estimating losses by feeding
a model with an artificial scenario akin to current markets or historical achieves, we
proposed a bottom-up quantitative Reverse Stress Testing framework that identifies
forward-looking fragilities tailored consistently to a bank’s credit and funding strategy,
its model inventory and the prevailing market sentiment around future possibilities. In
summary, the requirements for a coherent Reverse Stress Framework are the possibility
to:

1. reflect the risk of the portfolio held faithfully, both in terms of trades, ISDA, and
CSA terms;

2. reflect the bank’s modelling choices, which must verify no-arbitrage requirements
(cf. de Finetti (1931));

3. bound the subjectivity in the parameter marking of the processes used to model
the elementary drivers of a bank’s loss, using market observable and global cali-
bration routines;

4. ensure consistent usage of the paths generated by the model chosen to propagate
a risk factor.

Such a bottom-up approach fosters “a normative theory for the coherent behaviour”
(de Finetti (1970, Page 226, Note 1)), i.e., a coherent risk management across the Lines
of Defence of a bank.
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