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Positive XVAs

Stéphane Crépey1

August 19, 2022

Abstract

Since the 2008 crisis, derivative dealers charge to their clients various add-ons,
dubbed XVAs, meant to account for counterparty risk and its capital and funding
implications. As banks cannot replicate jump-to-default related cash flows, deals
trigger wealth transfers and shareholders need to set capital at risk. We devise
an XVA policy, whereby so called contra-liabilities and cost of capital are sourced
from bank clients at trade inceptions, on top of the fair valuation of counterparty
risk, in order to guarantee to the shareholders a hurdle rate h on their capital at
risk. The resulting all-inclusive XVA formula reads (CVA+FVA+KVA), where C
sits for credit, F for funding, and where the KVA is a cost of capital risk premium.
All these XVA metrics are portfolio-wide, nonnegative and, despite the fact that
we include the default of the bank itself in our modeling, they are ultimately
unilateral. This makes them naturally in line with the requirement that capital
at risk and reserve capital should not decrease simply because the credit risk of
the bank has worsened. An application of this approach to a dealer bank reveals,
in particular, the XVA implications of the centrally cleared hedging side of the
derivative portfolio of the bank.

Keywords: Counterparty risk, market incompleteness, credit valuation adjustment
(CVA), funding valuation adjustment (FVA), capital valuation adjustment (KVA),
wealth transfer. central counterparties (CCP).

Mathematics Subject Classification: 91B25, 91B26, 91B30, 91G20, 91G40.
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1 The Sustainable Pricing and Dividends Problem

We devise a pricing and dividend policy for a dealer bank, sustainable in the sense of
ensuring to its shareholders a constant instantaneous return rate h on their capital at
risk, even in the limiting case of a portfolio held on a run-off basis, i.e. without future
deals.
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Moreover, the corresponding policy of the bank should satisfy several regulatory
constraints. Firstly, in order to comply with the Volcker rule that bans proprietary
trading for a dealer bank, the market risk of the bank should be hedged as much
as possible. As a result, mainly counterparty risk remains. Secondly, reserve capital
should be maintained by the bank at the level of its expected counterparty credit losses,
along two lines: the credit valuation adjustment (CVA) of the bank, meant to cope with
the counterparty risk of the bank clients, i.e. with the expected losses of the bank due
to client defaults; and the funding valuation adjustment (FVA), meant to cope with
the counterparty risk of the bank itself, i.e. with its expected risky funding expenses.
Thirdly, capital should be set at risk by the bank to deal with its exceptional (above
expected) losses. The above return rate h is then meant at a hurdle rate for the bank
shareholders, i.e. a risk premium for their capital at risk within the bank.

Reserve capital, like capital at risk, should obviously be nonnegative . Further-
more, it should not decrease simply because the credit risk of the bank itself has
worsened, a property which we refer to as monotonicity : See Albanese and Andersen
(2014, Section 3.1) for the relevant regulatory wordings.

Further requirements on a solution to the above sustainable pricing and dividend
release policy problem are economic interpretability and logical consistency (for
intellectual adhesion by market participants), numerical feasibility and robustness
at the level of a realistic banking portfolio (for practicality), and minimality in the
sense of being, all things equal, as cheap as possible (for competitiveness).

The design of a pricing and dividend policy satisfying all the above
requirements is the main achievement of this article. Although we can not
claim for uniqueness, we will see in Section 7.2 that alternative XVA approaches in the
literature breach several of the above requirements. For instance, it is not uncommon
in the XVA literature to see some possibly negative FVA metrics, or CVA and KVA
metrics that tend to 0 when the default risk of the bank goes to infinity.

The cost-of-capital XVA approach has been introduced in Albanese, Caenazzo,
and Crépey (2016) and developed in various directions in a stream of papers including
Albanese, Caenazzo, and Crépey (2017) or Crépey et al. (2020). The intent of this work
is to clarify the foundations of this approach, i.e. the cost-of-capital XVA conceptual
framework. This is done in an abstract setup, which is then specified to bilateral and
centrally cleared trading setups. Related numerics are provided in Albanese, Crépey,
Hoskinson, and Saadeddine (2021)and Abbas-Turki, Crépey, and Saadeddine (2021)
for the bilateral trading case and by Albanese, Armenti, and Crépey (2020) for the
centrally cleared case.

1.1 Solution Setup

The starting point of our solution to the sustainable pricing and dividends problem
is an organizational and accounting separation between three kinds of business units
within the bank: the CA desks, the trading desks, and the management of the
bank. The CA desks are themselves split between the CVA desk and the FVA desk (or
Treasury) of the bank, respectively in charge of the default risk triggered by clients and
of the risky funding expenses of the bank. The corresponding cash flows are collectively
called the contra-assets of the bank. In an informal sense made precise by this paper,
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contra-assets (-liabilities)1 are bank liabilities (assets) that arise as a feedback effect of
counterparty credit risk on the counterparty-risk-free assets (liabilities) of the bank.

The CA desks guarantee the trading of the trading desks against client and bank
defaults, through an trading margin account, which also funds the trading of the trading
desks at the risk-free rate. Thanks to this work accomplished by the CA desks, the
trading desks can focus on the market risk of the contracts in their respective business
lines, as if there was no counterparty risk (even if some of their positions are liquidated,
this will occur at no loss from their perspective). We denote by MtM the amount on
the trading margin account of the bank (counted positively when posted by the CA
desks) and we write

CA = CVA + FVA (1.1)

for the overall amount of reserve capital of the bank, which will correspond to the
valuation of its contra-assets.

The management of the bank is in charge of its dividend release policy. We
consider a level of capital at risk (CR) sufficient to make the bank resilient to a forty-
year adverse event, i.e. greater than an economic capital (EC) defined as the expected
shortfall of the losses of the bank over one year at the confidence level α = 97.5% =
1 − 1

40 . The implementation of a sustainable dividend remuneration policy requires a
dedicated risk margin account, on which bank profits are initially retained so that they
can then be gradually released as dividends at a hurdle rate h on shareholder capital at
risk (as opposed to being readily distributed as day-one profit). Counterparty default
losses, as also funding payments, are materialities for default if not paid. By contrast,
risk margin payments are at the discretion of the bank management, hence they do
not represent an actual liability to the bank. As a consequence, the capital valuation
adjustment (KVA) amount on the risk margin account is also loss-absorbing, i.e. part
of capital at risk (CR). With minimality in view2, we thus set

CR = max(EC,KVA). (1.2)

All bank accounts are marked-to-model, i.e. continuously and instantaneously
readjusted to theoretical target levels, which will be defined in Section 2 in view of
yielding a solution to the sustainable pricing and dividends problem. All cash accounts
of the bank, as well as all the collateral (assumed all cash for simplicity) posted as a
guarantee for the trades, are remunerated at the risk-free rate.

In line with the sustainability requirement edicted in Section 1, the portfolio is
supposed to be held on a run-off basis between inception time 0 and its final maturity.
At the portfolio inception time 0, the trading desks pay MtM0 to the clients; the CA
desks add an amount MtM0 on the trading margin account if MtM0 > 0, whereas the
trading desks put an amount (−MtM0) on the trading margin account if MtM0 < 0; the
CA desks charge to the clients an amount CA0 and add it on the reserve capital account;
the management of the bank charges the amount KVA0 to the clients and adds it on
the risk margin account. Between time 0 and the bank default time τ (both excluded),
mark-to-model readjustments of all bank accounts are on bank shareholders. If the

1detailed in Table A.1.
2see Section 1, right before Proposition 2.1, and Section 7.4.
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bank defaults, any residual amount on the reserve capital and risk margin accounts, as
well as any remaining trading cash flows, are transferred to the estate of the defaulted
bank, dubbed creditors of the bank hereafter, which is mandated to deal with the
liquidation of the bank. These liquidation costs to be born by the creditors are outside
the scope of the model, as is also the primary business of the clients of the bank, which
motivates their deals with the bank.

See Table 1.1 for a list of the main valuation acronyms used in the paper.

CA Contra-assets valuation (1.1) and Table A.1
CL Contra-liabilities valuation Table A.1
CR Capital at risk Sect. 1 and (1.2)
CVA Credit valuation adjustment Sect. 1, (2.12), (B.5), and (6.27)
DVA Debt valuation adjustment Table A.1 and (6.31)
EC Economic capital Sect. 1 and Definition B.2
FDA Funding debt adjustment Table A.1 and (6.32)
FV Fair valuation of counterparty risk Table A.1 and Lemma A.1(ii)
FVA Funding valuation adjustment Sect. 1, (2.13), (B.6), and (6.28)
KVA Capital valuation adjustment Sect. 1.1, (2.17), and (B.7)
MtM Mark-to-market Sect. 1.1, (2.11), and (4.5)
SCR Shareholder capital at risk Definition 2.3

Table 1.1: Main valuation acronyms and place where they are introduced conceptually
and/or concretely specified in the paper.

2 The Cost-of-Capital XVA Equations

2.1 Probabilistic Setup

Implicit to the above-sketched XVA framework is a probabilistic structure, i.e. a mea-
surable space (Ω,A) endowed with a stochastic basis (G,Q), with respect to which
all the involved conditional expectations and risk measures are defined. The filtration
G = (Gt)t∈R+ satisfies the usual conditions. All the processes in the paper are G
adapted and all the random times of interest are G stopping times. The probability
measure Q is used for the linear valuation of cash flows3, using the risk-free asset as
our numéraire everywhere4.

The XVA matter also crucially entails nontraded assets (or trading constraints).
The default risk of most of the clients of the bank is not liquidly priced in the market.
Even if a liquid CDS market on the bank is avaible, this market is not accessible to the
bank itself, which, in particular, cannot sell jump-to-default protection on itself.

These hedging limitations of the bank lead us to introduce the financial sub-σ-
field B ⊆ A, on which a risk-neutral measure, equivalent to the restriction to B of the

3for simplicity, we only consider European derivatives.
4this choice of a numéraire simplifies equations by removing all terms related to the (risk-free, see

after (1.2)) remuneration of the cash accounts and of the collateral.
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physical probability measure (itself defined on A), is given. We then define Q to be the
uniquely defined probability measure on A, provided by Artzner, Eisele, and Schmidt
(2020, Proposition 2.1), such that (i) Q coincides with the risk-neutral measure on
B and (ii) Q and the physical measure coincide conditionally on B. The probability
measure Q that emerges from this construction is a hybrid of the underlying risk-
neutral and physical measures, with respect to which all the XVA computations are
then conducted.

Example 2.1 Q here and P in Section B should not be confused with the underlying
(aforementioned) risk-neutral and physical measures. In the special (unrealistic) case
of a bank that would not resort to dynamic hedging, then our probability measure Q
would just be the physical one and we would have H = 0 in the trading loss L of the
bank in (2.9) below. In the opposite (equally unrealistic, cf. Remark A.2) case of a
bank that would be perfectly hedged, our probability measure Q would coincide with the
reference risk-neutral probability measure on B = A and the trading loss process L of
the bank would vanish (cf. Proposition A.2), as in turn the economic capital and the
KVA of the bank. In practice it is mostly jump-to-default risk that cannot be hedged by
the bank and should therefore be assessed on a physical ground in our setup.

We denote by T the sum between the final maturity of all claims in the portfolio
(e.g. 50 years) and an upper bound δ ≥ 0 on the time of liquidating defaulted positions
(typically considered in practice to be of the order of one to two weeks). All our cash
flow and price processes are modeled as semimartingales, which are all taken in a càdlàg
version. All our cash flow processes are cumulative starting from 0 at time 0, stopped
at T , and integrable.

For any left-limited process Y , we denote by Y τ− and τ−Y the respective processes
Y stopped before the bank default time τ and starting before τ , i.e.

Y τ− = JY + (1− J)Yτ−,
τ−Y = Y − Y τ−, (2.1)

where J = 1J0,τJ is the survival indicator process of the bank.
The Q expectation and (Gt,Q) conditional expectation are denoted by E and

Et. Given counterparty risk and its funding and capital consequences, the pricing of a
derivative portfolio by the bank will depart from the Q valuation of its contractually
promised cash flows. The following distinction between valuation and shareholder
valuation will be important in this regard.

Definition 2.1 Given an optional, integrable process Y stopped at T (cumulative cash
flow stream in the financial interpretation), we call:
(i) value process Z of Y, the optional projection of (YT − Y), i.e.

Zt = Et(YT − Yt), t ≤ T, (2.2)

and Z vanishes on [T,+∞);
(ii) shareholder value process Y of Y, any process Y vanishing on [T,+∞) if T < τ
and such that

Yt = Et(Yτ− − Yt + Yτ−), t < τ. (2.3)
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Note that the shareholder value equation (2.3), for a process Y vanishing on [T,+∞)
if T < τ , is equivalent to

Y τ−
t = Et(Yτ−τ∧T − Y

τ−
t + 1{τ≤T}Y

τ−
τ ), t ≤ τ ∧ T. (2.4)

In particular, (Y + Y )τ− is then a martingale (stopped before τ).
This makes it apparent that the shareholder value equation (2.3) is actually an

equation for Y τ− and, in fact, a backward stochastic differential equation (BSDE) for
Y τ−. This is a nonstandard BSDE, stopped before the bank default time τ . Such
a BSDE is tantamount to the notion of recursive valuation of defaultable securities
in Collin-Dufresne, Goldstein, and Hugonnier (2004, Section 3.2), in the special case
where Rt(x) = x there. This notion is shown to be well posed in their Proposition 2,
based on Schönbucher (2004)’s tool of the bank survival pricing measure. We deal with
shareholder valuation by the more comprehensive reduction of filtration methodology of
Section B, yielding a more complete grasp on the related integrability issues (cf. Crépey
and Song (2017, Section 4.2) and Crépey, Sabbagh, and Song (2020, Lemma 5.2)).

2.2 Abstract Trading Cash Flows

In a first stage, to avoid blurring the XVA conceptual picture by the combinatorial
complexity of the financial network of the bank, we simply denote by P, C and F the
trading cash flows to the trading desks and from the CVA and FVA desks, respectively5.
These abstract cash flows P, C and F will then be instantiated in the application
Sections 4–6.

On top of P, C and F , we also consider the dynamic hedging cash flows (inclusive
of the cost of setting up the hedges)

H = Hmtm −Hcva −Hfva, (2.5)

where Hmtm is the dynamic hedging loss of the trading desks, whilst Hcva and Hfva
are the dynamic hedging gains of the CVA and FVA desks.

Example 2.2 Assuming a hedge of the trading desks implemented through a repo mar-
ket on a Black-Scholes stock S with volatility σ, then, supposing no dividends and no
repo basis on S, we have until the liquidation of the position that is hedged (with Hmtm
and S in units of the risk-free asset that we use as our numéraire):

dHmtmt = ζtdSt = ζtσStdWt. (2.6)

Here W is a (G,Q) Brownian motion driving S and ζ is the number of stocks shorted by
the trading desks as their hedge. Given our choice of the risk-free asset as numéraire,
the risk-free cost of funding the hedge is already included in (2.6).

Risky funding for the bank means borrowing at a nonnegative risky spread over
the risk-free rate. We assume the funding debt of the bank instantaneously liquidated
at the bank default time τ . Accordingly:

5unless explicitly specified, an amount paid means effectively paid if positive, received if negative.
A similar convention applies to the notions of loss and gain or cost and benefit.
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Assumption 2.1 The process F is a martingale nondecreasing before τ and stopped
at τ ∧ T . Each of the processes Ξ = Hmtm,Hcva,Hfva (hence, the aggregated hedging
loss H) is such that the processes Ξτ− and τ−Ξ are martingales.

Martingale assumptions on the hedging cash flows Ξ and on the risky funding cash
flows F are in line with the definition of Q provided in Section 2.1. As bank share-
holders only perceive bank pre-default cash flows, assuming that the Ξτ− processes are
also martingales makes it consistent with a bank shareholder centric viewpoint of the
different desks of the bank, in line with the fact that the shareholders have the control
of the bank as long at it is nondefault (see the end of Section 1.1). A shareholder risk
premium will be introduced in a second step, through KVA dividends.

Remark 2.1 Martingales with martingale (·)τ− component obviously include all mar-
tingales without jump at τ , in particular all continuous martingales. They also include
all the F (càdlàg) martingales in an immersed reduction of filtration framework F ⊆ G,
corresponding to the special case where P = Q in the setup of Section B, provided the
F Azéma supermartingale of τ is continuous and nonincreasing (Crépey, 2015, Lemma
2.1(ii)).

Remark 2.2 In the application Sections 4–6, nonnegative losses triggered by client
defaults accumulate before the default of the bank itself, so that Cτ− is nondecreasing,
if not for minor corrective terms related to a mismatch of temporality between some
cash flows and their hedge during the liquidation periods that separate the defaults from
their settlements. In particular, in the limiting case where defaults are instantaneously
settled, Cτ− is nondecreasing (see Remark 6.1).

2.3 Loss Processes

In our marked-to-model framework (see the end of Section 1.1), the gain process of the
trading desks is given, inclusive of the corresponding hedging loss Hmtm, by

P + MtM−MtM0 −Hmtm, (2.7)

for some theoretical target MtM to be devised later in view of addressing the require-
ments of Section 1. Likewise, the loss processes of the CA desks are given, inclusive of
their respective hedging gains Hcva (for the CVA desk) and Hfva (for the FVA desk),
by

C + CVA− CVA0 −Hcva

F + FVA− FVA0 −Hfva,
(2.8)

for some to-be-suitably-devised theoretical target CVA and FVA levels. Denoting
CA=CVA+FVA (cf. (1.1)), the overall loss of the bank is (recalling (2.5))

L = C + F + CA− CA0 − (P + MtM−MtM0) +H. (2.9)

A dealer bank should not do proprietary trading (cf. Section 1). But the risk
of financial loss as a consequence of client default is hard to hedge, because single
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name credit default swaps that could in principle be used for that purpose are illiq-
uid. The possibility for the bank of hedging its own jump-to-default is even more
questionable. Indeed, for the bank, hedging its default is tantamount to selling jump-
to-default protection on itself, which is unfeasible (see Section 2.1). Accordingly,
our reference dynamic hedging case is when the trading desks are perfectly hedged
(P+MtM−MtM0−Hmtm = 0) whilst the CA desks are not hedged (Hcva = Hfva = 0),
hence

H = Hmtm = P + MtM−MtM0 and L = C + F + CA− CA0. (2.10)

Example 2.3 Continuing with Example 2.2, the gain process of a trading desk long
a delta-hedged option position with payoff (SΘ − K)+ (for some fixed maturity Θ) is
given, until the liquidation of the position, by P + MtM − MtM0 −

∫ ·
0 ζtdSt, where

P = 1[Θ,+∞)(SΘ − K)+ and MtM is the Black-Scholes price process of the option
(vanishing from time Θ onward). This trading gain process is therefore 0 if the trader
uses the Black-Scholes delta as his hedge, which he should do in order to conform to
the Volcker rule.

Remark 2.3 Even if (2.10) is our reference dynamic hedging case, we do not assume
(2.10) throughout the paper. Indeed, on the one hand, the feasibility of the hedging loss
Hmtm = P + MtM−MtM0 by the trading desks is subject to the depth of the dynamic
hedging markets, so supposing this hedging loss would be too restrictive. On the other
hand, CVA traders do tentatively hedge their market (if not jump-to-default) risk, hence
supposing Hcva = Hfva = 0 (i.e. H = Hmtm) would also be too restrictive.

2.4 MtM, CVA, and FVA

Definition 2.2 MtM, CVA, and FVA are shareholder value processes6 of P, C, and
F .

That is, MtM, CVA, and FVA are killed at T on {T < τ} and, for t < τ,

MtMt = Et
(
Pτ− − Pt + MtMτ−

)
, (2.11)

CVAt = Et
(
Cτ− − Ct + CVAτ−

)
, (2.12)

FVAt = Et
(
Fτ− −Ft + FVAτ−

)
. (2.13)

Hence, by Assumption 2.1 and the sentence following (2.4):

Remark 2.4 The processes MtM and CA = CVA+FVA (cf. (1.1)) are such that each
of the trading gains and losses in (2.7)-(2.8), stopped before τ , is a martingale. So is
therefore

Lτ− = Cτ− + Fτ− + CAτ− − CA0 − (Pτ− + MtMτ− −MtM0) +Hτ− (2.14)

(cf. (2.9)), the trading loss of the bank shareholders.

6cf. Definition 2.1(ii). Explicit assumptions ensuring existence of all our XVA shareholder value
processes, and also their uniqueness within suitable spaces of square integrable solutions, are provided
by Lemma B.1, Proposition B.1 and Theorem 6.1.
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Given Assumption 2.1 on H, the reference dynamic hedging case (2.10) is only
attainable provided not only (P + MtM)τ− (as dictated by (2.11), cf. again the line
following (2.4)), but also τ−(P + MtM), hence P + MtM as a whole, is a martingale.
Even if we do not assume (2.10) throughout the paper (cf. Remark 2.3), this motivates
the following:

Assumption 2.2 MtM is the value process of P (in particular, MtMT = 0).

Remark 2.5 In further support of Assumption 2.2, note that, even if the trading desks
were able to find clients accepting to deal with the bank on the basis of an MtM process
that would be the bank shareholder value of P but not its value process, the corresponding
discrepancy between valuation and shareholder valuation of P would be an indication
of extreme dependence between the mark-to-market risk of the bank and its own default
risk, such as the bank trading its own default risk, which should be considered with
caution (cf. Remark A.2).

The processes CVA and FVA are so far unconstrained on Jτ,+∞J
⋂(
{τ ≤ T} ×

R+

)
. We define them as zero there. As they already vanish on [T,+∞) if T < τ , either

of them, say Y , is in fact killed at τ ∧ T , hence such that

τ−Y = 1Jτ,+∞J(Y − Yτ−) = −1Jτ,+∞JYτ−. (2.15)

2.5 Shareholder Capital at Risk and KVA

Since default risk can hardly be hedged, capital needs be set at risk by shareholders,
who therefore deserve, in the cost-of-capital pricing approach of this paper, a further
KVA add-on as a risk premium.

Economic capital (EC) is the level of capital at risk (CR) that a regulator would
like to see on an economic basis. In view of (1.2), where KVA is provided by the clients
in the first place (see Section 1.1):

Definition 2.3 We define the shareholder capital at risk (SCR), to be remunerated at
a constant and nonnegative hurdle rate h, as

SCR = CR−KVA = max(EC,KVA)−KVA = (EC−KVA)+, (2.16)

where KVA is a shareholder value process of
∫ ·

0 hSCRsds killed at τ ∧ T , i.e.

KVAt = Et
[ ∫ τ∧T

t
h
(
ECs −KVAs

)+
ds+ KVAτ−

]
, t < τ, and (2.17)

KVA is killed at τ ∧ T .

Remark 2.6 The process KVAτ− is a supermartingale with drift coefficient −hSCR =
−h
(
EC−KVA

)+
.

Note the following differential form of (2.17) (cf. (2.4)):

KVAτ−
T = 0 on {T < τ} and, for t ≤ τ ∧ T,

dKVAτ−
t = −hSCRtdt+ dνt,

for some martingale ν.
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This formulation makes it apparent that the KVA corresponds to the amount to be
maintained by the bank on its risk margin account in order to be in a position to deliver
to its shareholders, dynamically into the future, a hurdle rate h on their capital at risk
(SCR). In this sense our KVA addresses the sustainability requirement in Section 1.
Moreover the amount on the risk margin account should land off at KVAT = 0 on
{T < τ}. Indeed, ending up in the negative would mean an insufficient risk margin for
ensuring the hurdle rate h to the shareholders. Conversely, ending up in the positive at
T < τ would mean that the bank is unnecessarily expensive to its clients, which would
contradict the minimality requirement in Section 1. The last statement in Proposition
B.1(iv) shows that CR = max(EC,KVA) is in fact the minimal and cheapest capital at
risk process C satisfying the risk admissibility condition C ≥ EC and consistent with
the target hurdle rate h on shareholder capital at risk.

Proposition 2.1 Shareholder dividends

D = −(Lτ− + KVAτ− −KVA0) (2.18)

are a submartingale stopped before τ , with drift coefficient hSCR.

Proof. Shareholder trading gains (−Lτ−) and KVA risk margin payments result in
a dividend stream (2.18) to shareholders. The stated properties of D follow from the
observations made in Remarks 2.4 and 2.6.

3 Cash Flows Allocation Principles

3.1 Financial Network of the Bank

As explained in Section 2.3, banks can hardly hedge jump-to-default risk. Instead they
mitigate it, by partitioning their derivative portfolio into netting sets of contracts which
are jointly collateralized (guaranteed against default, to some extent) and liquidated
following the default of the related counterparty or of the bank itself. The counter-
party of the bank in a netting set can be a corporate client, another bank, or a group of
financial institutions pooled in the form of a central counterparty (CCP)7. See Figure
3.1, where the bank labeled by 0, with financial network emphasized in red, represents
the reference bank in the paper. The exchanges on top of Figure 3.1 denote platforms
where futures-style positions can be used by the bank for hedging its residual market
risk (not already statically offset between different deals) dynamically. Futures-style
positions are tantamount to continuously rolled-over instantaneously maturing posi-
tions, hence8 they are without XVA implications9. As will be detailed in Section 5,
the trades of the bank with the CCPs, corresponding to the bottom part in Figure 3.1,
are fully collateralized back-to-back mark-to-market hedges of client trades. To make
it short, the trades of the bank with CCPs and exchanges correspond to its respective
static and dynamic hedges.

7see Gregory (2014) for an overview on the CCP topic and Menkveld and Vuillemey (2021) for a
recent CCP survey.

8XVAs require a positive time horizon to develop.
9but they may entail liquidity issues, which are outside the scope of this paper.
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Exchanges

Dynamic hedges of bilateral trades

Corp. 0 Corp. m

Netting sets with individual clients

Bank 0 Bank n

CCP 0 CCP p

Static hedges of cleared trades

Figure 3.1: The network of corporate clients, banks, CCPs and exchanges. The solid
edges represent financial cash flows. Netting sets with individual clients, which can be
corporate clients or other banks, correspond to the upper part of the picture (banks
and above), and netting sets with CCPs to the lower part (below banks).

3.2 Default Cash Flows

In words to be turned into equations in this paper (see in particular the proofs of
Lemmas 4.2 and 5.2), the standing rule regarding the liquidation of a defaulted portfolio
is that:

Assumption 3.1 At the liquidation time of a netting set:

� if a counterparty in default is indebted toward the other beyond its posted mar-
gin10, then this debt is only reimbursed at the level of this posted margin plus a
fraction (recovery rate of the defaulted party) times the residual debt beyond the
margin;

� otherwise the debt between the two parties is fully settled.

Here debt is understood as the sum between, on the one hand, the counterparty-risk-free
value of the netting set at liquidation time and, on the other hand, the contractually
promised cash flows of the netting set unpaid during the liquidation period that separates
the default event from the settlement of the default.

Within the bank, the CVA desk is in charge of these netting set liquidation cash
flows.

10which cannot occur for both jointly, by nonnegativity of initial margins as we will see in Remark
4.4.
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3.3 Risky Funding Cash Flows

Regarding now the risky funding cash flows11, let R ≤ R̄ denote two predictable, [0, 1]
valued recovery rates processes, corresponding to two bonds of different seniorities
issued by the bank. Assuming the bank default time τ endowed with an intensity
γ = J−γ, we consider the martingales defined by U0 = Ū0 = 1 and, for t ≥ 0,

dUt = λtUtdt+ (1−Rt)Ut−dJt = (1−Rt)Ut−(dJt + γtdt)

dŪt = λ̃tŪtdt+ (1− R̄t)Ūt−dJt = (1− R̄t)Ūt−(dJt + γtdt),

where dJt + γtdt is the compensated jump-to-default martingale of the bank and λ =
(1 − R)γ, λ̃ = (1 − R̄)γ. We denote by R and S two G optional processes, with
S ≥ 0, corresponding to the overall amounts of rehypothecable collateral and segregated
collateral posted by the bank Treasury.

Assumption 3.2 Ū and U , where the recovery rate of the bank R is also the recovery
rate of the bank toward its clients, are the martingale price processes of two risky funding
assets used by the bank for its respective segregated collateral and residual12 borrowing
purposes. As the bank cannot sell default protection on itself, it can only take short
positions in U and Ū .

The mechanism through which a recovery rate R̄ ≥ R may be available on the borrowing
debt for segregated collateral is described in Albanese, Armenti, and Crépey (2020,
Section 5).

Lemma 3.1 We have

F =

∫ ·
0
λt(R− CA)+

t dt− (1−Rτ )(R− CA)+
τ−1Jτ,∞J

+

∫ ·
0
λ̃tStdt− (1− R̄τ )Sτ−1Jτ,∞J

=

∫ ·
0

(
(1−Rt)(R− CA)+

t− + (1− R̄t)St−
)
(dJt + γtdt), (3.1)

i.e.

Fτ− =

∫ ·
0
λt(R− CA)+

t dt+

∫ ·
0
λ̃tStdt,

τ−(−F) = (1−Rτ )(R− CA)+
τ−1Jτ,∞J + (1− R̄τ )Sτ−1Jτ,∞J.

(3.2)

Proof. By Assumption 3.2, the risky funding strategy of the bank consists in main-
taining short positions (consistent with the condition concluding Assumption 3.2) of
Sτ−
Ūτ−

units of the asset Ū and ((R−CA)+)τ−

Uτ− units of U . Given our use of the risk-free
asset as numéraire, the self-financing condition on the funding strategy of the FVA

desk is then written as dFt =
((R−CA)+)τ−t

Uτ−t
dUt +

Sτ−t
Ūτ−t

dŪt. This yields (3.1), which splits

as (3.2).

11beyond the riskless rate that applies to all deposits, as already accounted for by our choice of the
riskless asset as the numéraire.

12once everything else has already been accounted for, as prescribed by an overall self-financing
condition.
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4 Bilateral Trading Cash Flows

Table 4.1 gathers the notation pertaining to a netting set ι of financial derivatives
between the bank and an individual client (corporate client or other bank, as opposed
to a CCP that is considered in the next section). In the case of a netting set between the
bank and a client, collateral may come in two layers: rehypothecable variation margins,
which are flows designed to track the changes in the (counterparty-risk-free) value of
the netting set, possibly complemented by segregated initial margins, meant to cover
losses arising during the lapse of time that separates a default from its settlement13.
All the collateral processes VMι, IMι and IM

ι
are assumed to be G optional and killed

at the final maturity of the bank portfolio. Regarding the first row in Table 4.1, we
have by definition (2.2):

P ιt = Et
(
PιT − Pιt

)
, t ≤ T, (4.1)

and P ι vanishes on [T,+∞). Also note that, by definition of the various stopping times
involved and of T and δ in Section 2.1, we have, for all individual client netting sets ι,

τι ≤ τ δι ≤ (τι + δ) ∧ T , and τ ≤ τ δ ≤ τ + δ (4.2)

holds regarding the bank itself, with liquidation time denoted by τ δ.

Remark 4.1 By linearity, (4.1) is the sum over the netting set ι of the analogous
quantity pertaining to each individual deal in ι14. Hence, P ι computations reduce to
valuations at the individual trade level.

Pι and P ι contractually promised cash flows and their value process

τι T∧ the default time of the related client

τ δι T∧ the end of the liquidation period of the related client.

Rι related predictable, [0, 1] valued recovery rate process

sι = τι ∧ τ T∧ default time of the netting set ι

tι = τ δι ∧ τ δ T∧ liquidation time of the netting set ι

VMι variation margin exchanged between the bank and the
client (positive when posted from the client to the bank)

IMι ≥ 0 initial margin posted by the client to the bank

IM
ι ≥ 0 initial margin posted by the bank to the client

Γι = VMι + IMι overall collateral amount posted by the client to the bank

Γ
ι

= (−VMι) + IM
ι

overall collateral amount posted by the bank to the client

Table 4.1: Notation pertaining to the individual client netting set ι of contracts of the
derivative portfolio of the bank.

13we refer the reader to Albanese, Crépey, Hoskinson, and Saadeddine (2021, Section 1.4) for concrete
specifications, not needed in this paper, regarding variation and initial margins.

14assuming all European-style derivatives for simplicity.
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In this section we restrict attention to bilateral netting sets and the dynamic hedge
of their residual (non already statically offset across different deals) mark-to-market
exposure. For each such (non already defaulted) bilateral netting set ι ≡ b, the trading
desks and the CVA desk maintain between them an amount P b of rehypothecable
collateral on an trading margin account15. The process MtM corresponds to the total
amount on the trading margin account. At the time sb where a bilateral netting set
b defaults, the corresponding amount on the trading margin account is frozen at its
level P bsb− in the wait of being transferred (property-wise) from the CVA desk to the
trading desks at the liquidation time tb. During the liquidation period Jsb, tbK, the CVA
desk compensates the trading desks for their missed cash flows: contractual trading
cash flows dPbt and mark-to-model fluctuations dP bt . In addition, at the liquidation
time tb, the liquidation rule of Assumption 3.1 applies to the netting set (and the
dynamic hedge of the trading desks related to the netting set b is unwound, i.e. the
corresponding term in H is stopped at tb).

4.1 Cash Flows to the Trading Desks

In view of the above description, the concrete processes P (cash flows to the trading
desks) and MtM (amount on the trading margin account) corresponding to the present
bilateral trading setup are

P0 = 0, MtM0 =
∑

b P
b
0 and, for t ∈ (0, T ],

dPt =
∑
b

(
1{t<sb}dP

b
t + 1{sb≤t≤tb}(dP

b
t + dP bt ) + δtb(dt)P

b
sb−

)
, (4.3)

dMtMt =
∑
b

(
1{t<sb}dP

b
t − δtb(dt)P

b
sb−

)
.

Lemma 4.1 In a bilateral trading setup, we have

P =
∑
b

(
(Pb)tb + 1Jsb,tbJ(P

b − P bsb−) + 1Jtb,+∞JP
b
tb

)
, (4.4)

MtM =
∑
b

(1J0,sbJP
b + 1Jsb,tbJP

b
sb−), and (4.5)

P + MtM =
∑
b

(Pb + P b)tb , (4.6)

which is a martingale.

Proof. All formulas follow from (4.3) by positivity of the sb = τb ∧ τ (having assumed
all positive default times). By (4.1), each of the Pb + P b is a martingale. Hence so is
the sum (P + MtM).

As P + MtM is a martingale and MtMT = 0 (by (4.5) and definition of sb ≤ tb ≤ T
with ι ≡ b in Table 4.1), hence the MtM process in (4.5) is the value process (2.2) of
the process P in (4.4).

15see Section 1.1.
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Remark 4.2 For consistency with the requirement of Definition 2.2 that MtM also be
the shareholder value process (2.11) of P,

∑
b((Pb+P b)tb)τ− must also be a martingale,

which is satisfied if each P b is not only the value, but also the shareholder value process
of Pb (so that (Pb +P b)τ− is a martingale). See Remarks 2.1 and 2.5 for a discussion
of the ensuing setup.

Remark 4.3 Since tb = τ δ ∧ τ δb ≤ τ δ, (4.4) and (4.5) imply that P and MtM are
respectively stopped and killed at τ δ.

4.2 Collateral and Default Cash Flows

Lemma 4.2 In a bilateral trading setup, we have

R = (MtM−
∑
b

VMb), S =
∑
b

IM
b

(4.7)

and the trading cash flows C from the CVA desk are

C =
∑

b;τb≤τδ
(1−Rbtb)

(
P btb + Pbtb − P

b
sb− − Γbsb−

)+
1Jtb,∞J (4.8)

− (1−Rtb)
∑
b;τ≤τδb

(
P btb + Pbtb − P

b
sb− + Γ

b
sb−
)−
1Jtb,∞J

+
∑
b

1Jsb,tbJ
(
Pb + P b − (Pb + P b)sb−

)
.

Proof. In a bilateral trading setup, the rehypothecable collateral posted by the bank
Treasury is the difference between the amount MtM on the trading margin account
and the variation margin

∑
b VMb posted to the bank by its clients. This yields the

formula for R in (4.7), where the one for S corresponds to the initial margin posted by
the Treasury of the bank.

In view of the description following Table 4.1, during the liquidation period of the
bilateral netting set b, the CVA desk loses∫ ·

sb−
1t≤tb(dP

b
t + dP bt ) + P bsb−1Jtb,+∞J = (4.9)

1Jsb,+∞J((Pb)tb − Pbsb−) + 1Jsb,tbJ(P
b − P bsb−) + 1Jtb,+∞JP

b
tb
.

Moreover, by application of the liquidation rule of Assumption 3.1 to the bilateral
netting set b, the CVA desk receives the following amount from the client at tb, where
xb = Pbtb − P

b
sb− + P btb :

1{τb≤tb,xb>Γbsb−
}
(
Γbsb− +Rbtb(xb − Γbsb−)

)
(4.10)

− 1{τ≤tb,(−xb)>Γ
b
sb−
}

(
Γ
b
sb− +Rtb(−xb − Γ

b
sb−)

)
+ 1

¬
{(

τb≤tb,xb>Γbsb−

)
∨
(
τ≤tb,(−xb)>Γ

b
sb−

)}xb
= xb − 1{τb≤tb}(1−R

b
tb

)(xb − Γbsb−)+ + 1{τ≤tb}(1−Rtb)(xb + Γ
b
sb−)−.
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Subtracting (1Jtb,+∞J×(4.10)), where xb = Pbtb−P
b
sb−+P btb , from (4.9) yields the overall

loss process of the CVA desk as

1{τb≤tb}(1−R
b
tb

)(xb − Γbsb−)+1Jtb,∞J − 1{τ≤tb}(1−Rtb)(xb + Γ
b
sb−)−1Jtb,∞J

− 1Jtb,+∞J(Pbtb − P
b
sb− + P btb)

+ 1Jsb,+∞J((Pb)tb − Pbsb−) + 1Jsb,tbJ(P
b − P csb−) + 1Jtb,+∞JP

b
tb

= (1−Rbtb)(xb − Γbsb−)+1Jtb,∞J − 1{τ≤tb}(1−Rtb)(xb + Γ
b
sb−)−1Jtb,∞J

+ 1Jsb,tbJ
(
Pb + P b − (Pb + P b)sb−

)
,

where, recalling tb = τ δb ∧ τ δ,

{τb ≤ tb} = {τb ≤ τ δb } ∩ {τb ≤ τ δ} = {τb ≤ τ δ} and

{τ ≤ tb} = {τ ≤ τ δb } ∩ {τ ≤ τ δ} = {τ ≤ τ δb }.

By summation over the netting sets b, we obtain the formula (4.8) for C.

Remark 4.4 Since IMb, IM
b ≥ 0 in Γι = VMι + IMι and Γ

ι
= (−VMι) + IM

ι
(cf.

Table 4.1), we have in (4.10) (cf. the footnote in Assumption 3.1):{
xb > Γbtb−

}
∩
{

(−xb) > Γ
b
tb−} =

{
xb −VMb > IMb

tb−
}
∩
{

(xb −VMb) < −IM
b
tb−} = ∅.

5 Centrally Cleared Trading Cash Flows

In this section we consider a financial network of the bank “orthogonal” to the one of
Section 4, in the sense that the bank does all its trading with clients in the form of
netting sets cleared with a central counterparty (CCP). In the case of a client netting set
c of contracts cleared via the bank by a CCP (see Section 3.1), there is a mirroring set of
identical deals between the bank and the CCP. The contributions to the trading margin
account and the variation margin calls related to the mirroring trades are mirroring
the ones on the originating client trade. The bank does not post any initial margin to
the related client. In case the client of the netting set c defaults, not only the netting
set c between the client and the bank is liquidated, but the mirroring trades between
the bank and the CCP are also unwound.

We thus introduce a (single) CCP involving a finite number of clearing members,
including the bank itself. The data relative to the different clearing members are
indexed by a set of integers i, including i = 0 for the bank itself (and disjoint from any
other index set in the paper). We still use the notation of Table 4.1 relatively to the
individual client netting sets (here, cleared netting sets) of the bank, which we index
by ι ≡ c (for “cleared”), and we use the same notation, but with indices i instead of c,
and from the point of view of the CCP (sign-wise), relatively to the portfolios of the
clearing members toward the CCP. For instance, Pc denotes the cash flows promised
to the trading desks of the bank related to the cleared netting set c; P i means the cash
flows promised by the trading desks of the clearing member i to the CCP, which, by
the full collateralization mechanism provided by a counterparty-risk-free CCP as we
will see (with an unlimited unfunded default fund), will coincide with the actual cash
flows from the trading desks of the clearing member i to the CCP: see Figure 5.1.
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Bank CCP
P0

Pc’s Pi’s for i 6= 0

Figure 5.1: Cash flows Pc from the individual client (here cleared) netting sets c con-
tractually promised to the trading desks of the bank, and cash flows P i from the trading
desks of the clearing member i to the CCP, in a trading network centrally cleared via a
(single) CCP. The clearing members i 6= 0 (other than the bank) and their own clients
(other than the CCP) are not shown to alleviate the picture.

Remark 5.1 In practice, the trades of a clearing member with a CCP are partitioned
between so-called proprietary trades, which are in effect hedges of its bilateral trades
(as proprietary trading as such is forbidden for a dealer bank, which is not allowed to
be globally directional in its trading), and mirroring trades of cleared client trades. As
discussed around Albanese, Armenti, and Crépey (2020, Figure 1), proprietary CCP
trades and the corresponding bilateral trades can typically be rewired in the form of
cleared client trades and CCP mirorring trades that are more efficient in XVA terms.
Hence we ignore proprietary CCP trades in this paper, for notational simplicity.

As explained in (Armenti and Crépey, 2017, Remark 3.4), the defaultability of
the CCP itself is not an essential issue from an XVA viewpoint. Hence we assume the
CCP default-free, i.e. the existence of a default-free clearing member (other than the
reference bank).

All the deals between each clearing member i and the CCP are jointly collateral-

ized in terms of variation margin VMi and initial margin IM
i ≥ 0 posted by the clearing

member to the CCP, along with an additional layer of segregated collateral DFi ≥ 0,
depending not only on the CCP portfolio of the clearing member i, but also on the
CCP portfolios of the other members, dubbed (funded) default fund contribution of the

clearing member i16. All the collateral processes VMi, IM
i
, DFi and VMc are assumed

to be G optional. As the bank does not post any initial margin to its client in a cleared
netting set c, we have

IM
c

= 0 (hence Γ
c

= −VMc). (5.1)

Remark 5.2 We ignore the skin-in-the-game of the CCP17, which is negligible from

16we refer the reader to Albanese, Crépey, Hoskinson, and Saadeddine (2021, Section 3.2) for concrete
specifications, not needed in this paper, regarding the initial margin and default fund contributions
posted by a clearing memrber to a CCP.

17analog of a default fund contribution that would be posted by the CCP considered as an entity
of its own, whereas, for simplicity in our setup, the CCP is nothing more than the collection of its
clearing members.
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an XVA viewpoint: see Albanese, Armenti, and Crépey (2020, end of Section 3.2).

The following hypothesis completes Assumption 3.1 regarding the liquidation of
a netting set in the case where the counterparty of the bank is not an individual
client, but a finite collection thereof, pooled in the form of a CCP, so that a rule
is required to specify the allocation of the liquidation losses between the (surviving)
clearing members.

Assumption 5.1 In case of a loss triggered by the liquidation of the CCP portfolio of
a defaulted clearing member beyond its collateral posted to the CCP, then the loss in
excess of its collateral is born by the surviving clearing members, proportionally to G
optional allocation weights µi ≥ 0 such that µi = 0 on Jτi,∞J and

∑
i µ

i = 1.

The ensuing costs for the clearing members are known as their unfunded default fund
contributions (Ghamami, 2015).

5.1 Back-to-back Hedging Cash Flows

Regarding the reference bank, similar to (4.4)-(4.5), but for cleared netting sets c here
instead of bilateral netting sets b there, we postulate that the cash flows18 P0 from the
trading desks of the bank toward the CCP, are given by

P0 =
∑
c

(
(Pc)tc + 1Jsc,tcJ(P

c − P csc−) + 1Jtc,+∞JP
c
tc

)
. (5.2)

Regarding now the globality of the cash flows to the trading desks:

Lemma 5.1 In a trading setup centrally cleared via a unique CCP, we have P =
MtM = 0.

Proof. By the analysis having led to (4.3) here applied to the cleared netting sets
c, the trading desks get the right-hand side in (5.2) on client deals. By (5.2), they
deliver the same amount on CCP deals. Hence P = 0. Besides, the trading margin
calls on cleared trades of the bank being mirrored by identical trading margin calls on
the mirroring trades between the bank and the CCP, we have MtM = 0.

In this sense, in a centrally cleared trading setup, the deals of the bank with the CCP
provide a fully collateralized back-to-back hedge to the deals with the clients. The
bank is then statically hedged in terms of market risk. But, contrary to a dynamic
hedge with futures-style instruments, such a static hedge has XVA implications, which
are analysed hereafter.

In view of Lemma 4.1 and Remark 4.3, (5.2) implies that the value process P 0 of
P0 is worth

P 0 =
∑
c

(1J0,scJP
c + 1Jsc,tcJP

c
sc−) (in particular, P 0

0 =
∑

c P
c
0 ), (5.3)

18both promised and actual cash flows, through the full collateralization mechanism provided by the
CCP as we will see.
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and that

P0 + P 0 =
∑
c

(Pc + P c)tc , (5.4)

P0 is stopped at τ δ, P 0 is killed at τ δ . (5.5)

We postulate a structure of the cash flows P i of each clearing member i to the
CCP analogous to (5.2) with respect to their own clients (not shown in Figure 5.1 to
alleviate the picture) so that, in particular, P i is killed at τ δi .

5.2 Collateral and Default Cash Flows

For any subset I of the clearing members, let τ δI denote T∧ the (assumed G stopping)
time of occurrence of an instantaneous joint default of the clearing members I and
only in I, let τ δI denote T∧ the end of the corresponding liquidation period, and let the
breach BI denote the process

BI = 1JτδI ,∞J

∑
i∈I

(1−Ri
τδI

)(P i
τδI

+ P i
τδI
− P iτI− −VMi

τI− − IMi
τI− −DFiτI−)+ (5.6)

= 1JτδI ,∞J

∑
i∈I

(1−Ri
τδI

)(P i
τδI
− P iτI− −VMi

τI− − IMi
τI− −DFiτI−)+

(as the P i
τδI

for i ∈ I vanish, cf. the last paragraph of Section 5.1). Hence (cf. (2.1))

(BI)τ− = 1{τδI<τ}
BI . (5.7)

Lemma 5.2 In a trading setup centrally cleared via a unique CCP, we have

R = 0, S = IM
0

+ DF0, (5.8)

and the trading cash flows C from the CVA desk are

C =
∑

c;τc≤τδ
(1−Rctc)

(
P ctc + Pctc − P

c
sc− − Γcsc−

)+
1Jtc,∞J (5.9)

−
∑
c;τ≤τδc

(1−Rtc)
(
P ctc + Pctc − P

c
sc− + Γ

c
sc−
)−
1Jtc,∞J

+
∑
c

1Jsc,tcJ
(
Pc + P c − (Pc + P c)sc−

)
+
∑
I

µ0
τδI
BI − (1−R0

τδ)(P
0
τδ − P

0
τ− −VM0

τ− − IM0
τ− −DF0

τ−)+1Jτδ,∞J

+1Jτ,τδJ(P0 − P0
τ−).

Proof. The variation margin calls on cleared trades of the bank being mirrored by
identical variation margin calls on the mirroring trades between the bank and the
CCP. Hence the cleared trades and their mirroring CCP trades have in aggregate no
rehypothecable collateral implications for the bank Treasury, which however has the
segregated collateral borrowing needs corresponding to the initial margins and funded
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default fund contribution to be posted by the bank (recalling from (5.1) that the bank
does not post any initial margin to its clients). This yields (5.8).

The cash flows from the CVA desk are, on the one hand, the cash flows from the
CVA desk related to the individual client (here cleared) netting sets c, i.e., by the same
computation than the one having led to (4.8) (but for the netting set ι ≡ c, here)∑

c;τc≤τδ
(1−Rctc)

(
P ctc + Pctc − P

c
sc− − Γcsc−

)+
1Jtc,∞J (5.10)

− (1−Rtc)
∑
c;τ≤τδc

(
P ctc + Pctc − P

c
sc− + Γ

c
sc−
)−
1Jtc,∞J

+
∑
c

1Jsc,tcJ
(
Pc + P c − (Pc + P c)sc−

)
.

On the other hand, denoting by U0 the cumulative process of the unfunded default
fund contributions of the bank (see the line following Assumption 5.1), by x0 := P 0

τδ
+

P0
τδ
−P0

τ− = P0
τδ
−P0

τ− (as P 0
τδ

= 0), and going by the liquidation rule of Assumption
3.119, the cash flows from the CVA desk to the CCP are given by:

−
∫ ·

0
1τ≤t≤τδdP0

t + U0 + 1Jτδ,∞J× (5.11)(
1{x0≤VM0

τ−+IM0
τ−+DF0

τ−}x0 + 1{x0>VM0
τ−+IM0

τ−+DF0
τ−}(

VM0
τ− + IM0

τ− + DF0
τ− +R0

τδ(x0 −VM0
τ− − IM0

τ− −DF0
τ−)
)

= −
∫ ·

0
1τ≤t≤τδdP0

t + U0 + x01Jτδ,∞J

− (1−R0
τδ)
(
x0 −VM0

τ− − IM0
τ− −DF0

τ−
)+
1Jτδ,∞J,

where, as x0 = P0
τδ
− P0

τ−,

x01Jτδ,∞J −
∫ ·

0
1τ≤t≤τδdP0

t = (P0
τδ − P

0
τ−)1Jτδ,∞J −

∫ ·
0
1τ≤t≤τδdP0

t

= 1Jτ,τδJ(P0 − P0
τ−). (5.12)

Moreover, in view of the last line of (5.11) and by the symmetric cash flow analysis
that applies to each clearing member of the CCP (cf. the last sentence of Section 5.1),
at each time τ δI , where I ranges over all the possible subsets of the clearing members,
the loss to be taken over by the surviving clearing members through their unfunded
default fund contributions is BI

τδI
(cf. (5.6)). Given the allocation rule of Assumption

5.1 for these losses, we thus have in particular:

U0 =
∑
I

µ0
τδI
BI . (5.13)

Accounting for (5.12) and (5.13) into (5.11) and adding (5.10) yields (5.9).

19like in the proof of (4.8), but simplified here by the fact that one of the counterparties in the
netting set, namely the CCP, is default-free. The term (−

∫ ·
0
1τ≤t≤τδdP0

t ) is the analog of (4.9).
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6 Synthesis

We now consider the realistic situation of a bank involved in an arbitrary combination
of bilateral netting sets (as in Section 4) and of cleared netting sets and their mirroring
CCP trades (as in Section 5), with possibly multiple CCPs. The index ι now ranges
over all the individual client netting sets of the bank (individual as opposed to the
netting sets between the bank and the CCPs). We denote by bil the collection of all
the bilateral netting sets of the bank, indexed by b as per Section 4. The bank can
be a clearing member of several CCPs and we index all the CCP related quantities in
Section 5 by an additional index ccp, ranging in an index set disjoint from any other
index set in the paper. For instance, for a given CCP ccp, the second index I in ccp, I
ranges over all the possible subsets of clearing members of the CCP ccp;

∑
ccp,I is a

double sum over all CCPs and, for each of them, over all the corresponding subsets I.

6.1 Cash Flows

Lemma 6.1 Assuming the reduction of filtration setup of Section B:
(i) For any G optional process Y , if Y τ− is nonnegative, then Y ′ is nonnegative.
(ii) For any [0, T ] valued G stopping times θ and η such that θ ∧ τ ≤ η ∧ τ , we have
θ′ ≤ η′;
(iii) If, additionally, η ≤ θ + c holds for some constant c ≥ 0, then η′ ≤ θ′ + c .

Proof. We recall from Dellacherie and Meyer (1980, Chapitre VI no 17) that the set
{S > 0} (where S = Q(τ > · |F·)) is a random interval starting from 0 included, which,
in the reduction of filtration setup of Section B, is assumed to contain T .
(i) If Y τ− is nonnegative, then, for t ≤ T ,

Y ′t 1{t<τ} = Y τ−
t 1{t<τ} ≥ 0,

hence E(Y ′t 1{t<τ}|Ft) ≥ 0, i.e. Y ′t St ≥ 0, where St > 0.
(ii) If θ ∧ τ ≤ η ∧ τ , then 1Jθ∧τ,+∞J − 1Jη∧τ,+∞J ≥ 0, hence part (i) implies that
1Jθ′,+∞J − 1Jη′,+∞J ≥ 0, i.e. θ′ ≤ η′.
(iii) If, additionally, η ≤ θ+ c holds for some constant c ≥ 0, then part (i) implies that
θ′ ≤ η′ and we have

1J0,τJ(η
′ − θ′)1Jη′,+∞J = 1J0,τJ(η − θ)1Jη,+∞J ≤ c1J0,τJ1Jη,+∞J, (6.1)

where the left equality means that, for t ≥ 0,

1{η′≤t<τ}(η
′ − θ′) = 1{η≤t<τ}(η − θ′). (6.2)

To justify (6.2), note that the indicators in (6.2) must coincide, otherwise this would
imply that either η′ ≤ t < τ holds but not η ≤ t < τ , in which case η > t and
η′ ∧ τ ≤ t < η ∧ τ, or that η ≤ t < τ holds but not η′ ≤ t < τ , in which case η′ > t and
η∧τ ≤ t < η′∧τ, violating in both cases the identity η∧τ = η′∧τ (cf. (B.1)). Moreover,
as we already know from part (ii) that θ′ ≤ η′ and given the assumption θ ∧ τ ≤ η ∧ τ ,
if the indicators in (6.2) are both equal to one, then the identities η ∧ τ = η′ ∧ τ and
θ ∧ τ = θ′ ∧ τ imply that θ = θ′ and η = η′, so that η′ − θ′ = η − θ′, and the identity
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(6.2) holds (which is also obviously the case if the indicators in (6.2) are both equal to
zero).

By valuation at time η′ of the left and right processes in (6.1) and by taking the
(Fη′ ,Q) conditional expectation of the resulting expressions, we obtain

E((η′ − θ′)1{η′<τ}|Fη′) ≤ cE(1{η′<τ}1{η≤η′}|Fη′) ≤ cE(1{η′<τ}|Fη′),

i.e. (η′ − θ′)Sη′ ≤ cSη′ , where Sη′ > 0 a.s..

Lemma 6.2 For each individual client netting set ι, we have

tι − sι ≤ δ (6.3)

and, assuming the reduction of filtration setup of Section B,

0 ≤ τ ′ι ≤ (τ δι )′ ≤ T, (τ δι )′ − τ ′ι ≤ δ. (6.4)

Proof. We compute

tι − sι = τ δι ∧ τ δ − sι = (τ δι − sι) ∧ (τ δ − sι) = (τ δι − τι ∧ τ) ∧ (τ δ − τι ∧ τ)

=
(
(τ δι − τι) ∨ (τ δι − τ)

)
∧
(
(τ δ − τι) ∨ (τ δ − τ)

)
≤
(
δ ∨ (τ δι − τ)

)
∧
(
δ ∨ (τ δ − τι)

)
,

by (4.2), where, by (4.2) again: If τ ∨ τι = τ , then τ δι − τ ≤ τ δι − τι ≤ δ, otherwise
τ ∨ τι = τι and τ δ − τι ≤ τ δ − τ ≤ δ. This yieds (6.3), from which (6.4) follows, in the
reduction of filtration setup of Section B, by application of Lemma 6.1.

Writing M ι = Pι + P ι, we denote

Yccp = 1Jτ,τδJ(Pccp,0 − P
ccp,0
τ− )

Yι = 1Jsι,tιJ
(
M ι −M ι

sι−
) (6.5)

and, in the reduction of filtration setup of Section B,

X ι = 1Jτ ′ι ,(τδι )′J
(
M ι)′ − (M ι)′τ ′ι−

)
. (6.6)

As we will see these are corrective liquidation period CVA and DVA related cash flows.
Note that they all vanish identically in the instantaneous liquidation case where δ = 0
(so that the τ δι = the τι and τ δ = τ , by (4.2), and the (τ δι )′ = the τ ′ι , by (6.4)).

Proposition 6.1 In the realistic situation of a bank involved in an arbitrary combina-
tion of bilateral netting sets and of netting sets cleared with one among several available
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CCPs, we have

P =
∑
b

(
(Pb)tb + 1Jsb,tbJ(P

b − P bsb−) + 1Jtb,+∞JP
b
tb

)
(6.7)

MtM =
∑
b

(1J0,sbJP
b + 1Jsb,tbJP

b
sb−) (6.8)

P + MtM =
∑
b

(Pb + P b)tb (6.9)

R = MtM−
∑
b

VMb, S =
∑
b

IM
b

+
∑
ccp

(IM
ccp,0

+ DFccp,0) (6.10)

C −
∑
ι

Yι −
∑
ccp

Yccp =
∑

ι;τι≤τδ
(1−Rιtι)

(
P ιtι + Pιtι − P

ι
sι− − Γιsι−

)+
1Jtι,∞J

−
∑
ι;τ≤τδι

(1−Rtι)
(
P ιtι + Pιtι − P

ι
sι− + Γ

ι
sι−
)−
1Jtι,∞J

+
∑
ccp,I

µccp,0
τδI

Bccp,I (6.11)

−
∑
ccp

(1−Rccp,0
τδ

)(Pccp,0
τδ

− Pccp,0τ− −VMccp,0
τ− − IMccp,0

τ− −DFccp,0τ− )+1Jτδ,∞J

F =

∫ ·
0
λt
(
MtM−

∑
b

VMb − CA
)+
t
dt

−(1−Rτ )
(

MtM−
∑
b

VMb − CA
)+

τ−
1Jτ,∞J

+

∫ ·
0
λ̃t

(∑
b

IM
b

+
∑
ccp

(IM
ccp,0

+ DFccp,0)
)
t
dt

−(1− R̄τ )
(∑

b

IM
b

+
∑
ccp

(IM
ccp,0

+ DFccp,0)
)
τ−
1Jτ,∞J, (6.12)

i.e.

Cτ− −
∑
ι

(Yι)τ− =
∑
ι;τδι <τ

(1−Rιtι)
(
P ιtι + Pιtι − P

ι
sι− − Γιsι−

)+
1Jtι,∞J

+
∑
ccp,I

µccp,0
τδI

Bccp,I

τ−(−C) +
∑
ι

τ−(Yι) +
∑
ccp

Yccp =∑
ι;τ≤τδι

(1−Rtι)(P ιtι + Pιtι − P
ι
sι− + Γ

ι
sι−)−1Jtι,∞J

−
∑

ι;τι≤τδ,τδι ≥τ

(1−Rιtι)
(
P ιtι + Pιtι − P

ι
sι− − Γιsι−

)+
1Jtι,∞J

+
∑
ccp

(1−Rccp,0
τδ

)(Pccp,0
τδ

− Pccp,0τ− −VMccp,0
τ− − IMccp,0

τ− −DFccp,0τ− )+1Jτδ,∞J

(6.13)
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and

Fτ− =

∫ ·
0
λt(MtM−

∑
b

VMb − CA)+
t dt+∫ ·

0
λ̃t

(∑
b

IM
b

+
∑
ccp

(IM
ccp,0

+ DFccp,0)
)
t
dt

τ−(−F) = (1−Rτ )
(

MtM−
∑
b

VMb − CA
)+

τ−
1Jτ,∞J

+ (1− R̄τ )
(∑

b

IM
b

+
∑
ccp

(IM
ccp,0

+ DFccp,0)
)
τ−
1Jτ,∞J.

(6.14)

Assuming the reduction of filtration setup of Section B, we have

L′ = C′ + F ′ + CA′ − CA0 − (P ′ + MtM′ −MtM0) +H′, (6.15)

where

MtM′ =
∑
b

(
(P b)′1J0,(τb)′J + 1J(τb)′,(τδb )′J(P

b)′τ ′b−
)
, (6.16)

P ′ + MtM′ =
∑
b

((Pb + P b)′)(τδb )′ (6.17)

C′ −
∑
ι

X ι =
∑
ι

(1− (Rι)′(τδι )′)
(
(P ι)′(τδι )′ + (Pι)′(τδι )′ − (Pι)′τ ′ι− − (Γι)′τ ′ι−

)+
1J(τδι )′,∞J

+
∑
ccp,I

(µccp,0)′
(τδI )′

(Bccp,I)′, (6.18)

F ′ =
∫ ·

0
λ′t

(
MtM′ −

∑
b

(VMb)′ − CA′
)+

t
dt+∫ ·

0
λ̃′t

(∑
b

(IM
b
)′ +

∑
ccp

(
IM

ccp,0
+ DFccp,0

)′)
t
dt, (6.19)

and

(Bccp,I)′ =
∑
i∈I

(
1− (Ri)′

(τδI )′

)
(6.20)

(
Pccp,i

(τδI )′
− Pccp,i

τ ′I−
−VMccp,i

τ ′I−
− IMccp,i

τ ′I−
−DFccp,i

τ ′I−
)
1J(τδI )′,∞J.

Proof. We partition the portfolio of the bank into the collections of its cleared netting
sets ccp, c and their netting set of mirroring deals ccp, 0, CCP by CCP, complemented
by the collection bil of the bilateral netting sets b of the bank and their dynamic hedge.

We then apply the analysis of Section 5, CCP by CCP, and the analysis of Section
4 to the collection of the bilateral netting sets and their dynamic hedge. As detailed
below, this results in respective cash flows Pccp = Rccp = 0,Sccp, Cccp stemming from
the cleared netting sets ccp, c and their back-to-back hedge ccp, 0, for each CCP ccp, and
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Pbil,Rbil,Sbil, Cbil stemming from the bilateral netting sets and their dynamic hedge,
such that (as justified below):

Sccp = IM
ccp,0

+ DFccp,0,

Cccp =
∑

c;τc≤τδ
(1−Rccp,ctc )

(
P ccp,ctc + Pccp,ctc − Pccp,csc− − Γccp,csc−

)+
1Jtc,∞J

−
∑
c;τ≤τδc

(1−Rtc)
(
P ccp,ctc + Pccp,ctc − Pccp,csc− + Γ

ccp,c
sc−

)−
1Jtc,∞J

+
∑
c

1Jsc,tcJ
(
Pccp,c + P ccp,c − (Pccp,c + P ccp,c)sc−

)
+
∑
I

µccp,0
τδI

Bccp,I

−(1−Rccp,0
τδ

)(Pccp,0
τδ

− Pccp,0τ− −VMccp,0
τ− − IMccp,0

τ− −DFccp,0τ− )+1Jτδ,∞J

+1Jτ,τδJ(Pccp,0 − P
ccp,0
τ− ),

Pbil =
∑
b

(
(Pb)tb + 1Jsb,tbJ(P

b − P bsb−) + 1Jtb,+∞JP
b
tb

)
,

MtMbil =
∑
b

(1J0,sbJP
b + 1Jsb,tbJP

b
sb−),

Rbil = MtMbil −
∑
b

VMb, Sbil =
∑
b

IM
b
,

Cbil =
∑

b;τb≤τδ
(1−Rbtb)

(
P btb + Pbtb − P

b
sb− − Γbsb−

)+
1Jtb,∞J

−(1−Rtb)
∑
b;τ≤τδb

(
P btb + Pbtb − P

b
sb− + Γ

b
sb−
)−
1Jtb,∞J

+
∑
b

1Jsb,tbJ
(
Pb + P b − (Pb + P b)sb−

)
.

For each CCP ccp, the formulas for Sccp and Cccp in the above follow by application
of the respective formulas (5.8) and (5.9) to the collection of the cleared netting sets
ccp, c and their netting set of mirroring deals ccp, 0. The formulas for Pbil and MtMbil

are obtained by application of Lemma 4.1 to the collection of the bilateral netting sets
b and their dynamic hedge. The formulas for Rbil, Sbil and Cbil follow by application
of the respective formulas (4.7) and (4.8) to the collection of the bilateral netting sets
b and their hedge.

The formulas (6.7) through (6.11) then follow from the above ones by summa-
tion through the identity Y = (

∑
ccp Yccp) + Ybil that applies for each cash flow

Y = P,R,S, C, reflecting the partition of the portfolio of the bank introduced in the
beginning of this proof, noting that the set of all the individual client netting sets ι of
the bank is itself partitioned into the subsets of the cleared netting sets ccp, c, for each
CCP ccp, complemented by the subset of the bilateral netting sets b.

25



The formula (6.11) for C splits as (noting that (Yccp)τ− = 0)

(C −
∑
ι

Yι)τ− =
∑

ι;τι≤τδ,tι<τ

(1−Rιtι)
(
P ιtι + Pιtι − P

ι
sι− − Γιsι−

)+
1Jtι,∞J

−
∑

ι;τ≤τδι ,tι<τ

(1−Rtι)
(
P ιtι + Pιtι − P

ι
sι− + Γ

ι
sι−
)−
1Jtι,∞J

+
∑
ccp,I

µccp,0
τδI

Bccp,I

τ−(−C +
∑
ι

Yι) +
∑
ccp

Yccp =
∑

ι;τ≤τδι ,tι≥τ

(1−Rtι)(P ιtι + Pιtι − P
ι
sι− + Γ

ι
sι−)−1Jtι,∞J

−
∑

ι;τι≤τδ,tι≥τ

(1−Rιtι)
(
P ιtι + Pιtι − P

ι
sι− − Γιsι−

)+
1Jtι,∞J

+
∑
ccp

(1−Rccp,0
τδ

)(Pccp,0
τδ

− Pccp,0τ− −VMccp,0
τ− − IMccp,0

τ− −DFccp,0τ− )+1Jτδ,∞J.

(6.21)

Regarding the index sets over which the sums are taken in (6.21) versus (6.13), note
that, as tι = τ δι ∧ τ δ: (i) tι < τ ⇔ τ δι < τ , hence {ι; τι ≤ τ δ, tι < τ} = {ι; τ δι < τ}, (ii)
{τ ≤ τ δι , tι < τ} = ∅, (iii) τ ≤ τ δι ⇒ tι ≥ τ, hence {ι; τ ≤ τ δι , tι ≥ τ} = {ι; τ ≤ τ δι }; (iv)
{c; τι ≤ τ δ, tι ≥ τ} = {c; τι ≤ τ δ, τ δι ≥ τ}. Hence (6.21) reduces to (6.13).

The formulas in (6.12) and (6.14) for F and its Fτ− and τ−(−F) components are
obtained by feeding (3.1)-(3.2) with R and S from (6.10).

Assuming the reduction of filtration setup of Section B, (6.15) follows from (2.9)
by definition, existence and uniqueness of optional reductions (cf. (B.2)). Moreover
we have, for each individual client netting set ι, sι ∧ τ = (τι ∧ τ) ∧ τ = τι ∧ τ and
tι ∧ τ = (τ δι ∧ τ δ)∧ τ = τ δι ∧ τ , hence s′ι = τ ′ι and t′ι = (τ δι )′, by definition, existence and
uniqueness of reductions of [0, T ] valued stopping times. Then (6.16) and (6.17) follow
from the expressions for MtM and (P + MtM) in (6.7)-(6.9), while (6.18), (6.19) and
(6.20) respectively follow from the expressions of (C)τ− in (6.13), where (Yι)′ = X ι, of
(F)τ− in (6.14) and of (BI)τ− in (5.6)-(5.7).

Corollary 6.1 P is additive over bilateral trades, C is additive over individual client
netting sets ι and CCPs. The different terms in F are additive over the corresponding
funding sets: bilateral client and CCP netting sets b and ccp, 0 for the segregated col-
lateral (S) related components of F (two last lines in (6.12)), while the rehypothecable
collateral (R) related component of F (two first lines in (6.12)) can only be assessed
at the level of the overall trading portfolio of the bank.

Proof. The assertion regarding P follows from (6.7) and by trade additivity of each of
the terms Pb and P b noted in Remark 4.1. The statements regarding C and F follow
by inspection of the related processes in (6.11)-(6.12).

6.2 Valuation Adjustments

Lemma 6.3 Given stopping times α ≤ β such that 0 ≤ β − α ≤ δ and a process
Y = 1Jα,βJX, for a (nonnecessarily adapted) càdlàg process X stopped at (T − δ) and
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such that Xα− = 0:
(i) The process Y = 1Jα,βJX is killed at T ;
(ii) If Y is adapted, then, for t ≤ T , Et(YT − Yt) = −Yt.

Proof. (i) T ≤ t and α ≤ t < β =⇒ α ≥ β − δ > t − δ ≥ T − δ, so that (X being
stopped at T − δ) Xt = Xα− = 0 and Yt = 0, which also holds in case T ≤ t and
¬(α ≤ t < β).
(ii) As YT = 0, if Y is adapted, then Et(YT − Yt) = −Yt.

Let further (cf. (6.5)-(6.6))

Zι = 1Jτ,tιJ1{τι<τ≤tι}(M
ι −M ι

τ−) = 1Jτ,τ∨tιJ1{τι<τ≤tι}(M
ι −M ι

τ−)

Vι = −1Jtι,+∞J1{τι<τ≤tι}(M
ι
τ− −M ι

sι−).
(6.22)

Note that all the processes Yccp,Yι,1{τ≤τι}Yι,Zι, and Vι are G adapted and start from
0 at time 0; assuming the reduction of filtration setup of Section B, the process X ι is
F adapted and starts from 0 at time 0.

Corollary 6.2 (i) Each process Yccp is killed at T and, for t ≤ T, the time-t value of
Yccp is −Yccpt = −1τ≤t<τδ(P

ccp,0
t − Pccp,0τ− ).

(ii) Each process 1{τ≤τι}Yι is killed at T and, for t ≤ T, the time-t value of 1{τ≤τι}Yι
is −1{τ≤τι}Yιt = −1{sι≤t<tι}1{τ≤τι}

(
M ι
t −M ι

sι−
)
.

(iii) Each process Zι is killed at T and, for t ≤ T, the time-t value of Zι is −Zιt =
−1{τ≤t<tι}1{τι<τ≤tι}(M ι

t −M ι
τ−).

(iv) Assuming the reduction of filtration setup of Section B, each process X ι is killed
at T and, for t ≤ T, E′t(X ιT −X ιt ) = −X ιt = −1{τ ′ι≤t<(τδι )′}

(
(M ι)′t − (M ι)′τ ′ι−

)
.

Proof. Recall from Section 2.1 that T exceeds by δ the final maturity of all claims in
all considered portfolios. Hence all the processes P ·, as well as their value processes
P ·, are stopped not only at T , but even at T − δ: in particular (cf. (5.2)),

dPccp,0t =
∑
c

(
1{t≤tc}dP

ccp,c
t + 1{sc≤t<tc}dP

ccp,c
t + P ccp,ctc δtc(dt)

)
= 1t≤T−δdPccp,0t .

Assuming the reduction of filtration setup of Section B (with optional reductions
stopped at T ), let us now show that

(M ι)′ = ((M ι)T−δ)′ = ((M ι)′)T−δ, (6.23)

so that (M ι)′ is also stopped at T − δ. To justify (the right equality in) (6.23), note
that ((M ι)T−δ)′ and (M ι)′)T−δ are two F optional processes coinciding with (M ι)T−δ

before τ . This holds by definition of an optional reduction, regarding the former.
Regarding the latter, we have (M ι)′1J0,τJ = M ι1J0,τJ, which implies by stopping at T−δ
that ((M ι)′)T−δ(1J0,τJ)

T−δ = (M ι)T−δ(1J0,τJ)
T−δ. But (1J0,τJ)

T−δ = 1{T−δ≥τ}1J0,τJ +

1{T−δ<τ}, hence 1J0,τJ(1J0,τJ)
T−δ = 1J0,τJ, therefore multiplying the above identity by

1J0,τJ yields ((M ι)′)T−δ1J0,τJ = (M ι)T−δ1J0,τJ, so that (M ι)′)T−δ indeed coincides with

(M ι)T−δ before τ , like((M ι)T−δ)′. By uniqueness (B.2) of optional reductions, the
processes ((M ι)T−δ)′ and (M ι)′)T−δ therefore coincide.
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All results then follow by application of Lemma 6.3, with
(i) α = τ, β = τ δ, X = Pccp,0 − Pccp,0τ− .
(ii) α = sι, β = tι, X = 1{τ≤τι}(M

ι −M ι
sι−)

(iii) α = τ, β = τ ∨ tι, X = 1{τι<τ≤tι}(M
ι −M ι

τ−)

(iv) α = τ ′ι , β = (τ δι )′, X = (M ι)′ − (M ι)′τ ′ι−.

Lemma 6.4 (i) The process V is stopped at T .
(ii) For t ≤ T , we have EtVιT = Vιt +W ι

t , where

W ι
t = −1{t<tι}Et

[
1{τι<τ≤tι≤T}(M

ι
τ− −M ι

τι−)
]
.

Proof. (i) On {T ≥ tι}, V is worth −1{τι<τ≤tι}(M ι
τ− −M ι

sι−) on [T,+∞[. On {T <
tι} \ {τι < τ ≤ tι}, V vanishes identically, which also holds on {T < tι}∩ {τι < τ ≤ tι},
where τ > τι = sι ≥ tι − δ > T − δ (using (6.3)), so that M ι

τ− = M ι
sι−.

(ii) For t ≤ T ,

EtVιT = −Et
[
1{τι<τ≤tι≤T}(M

ι
τ− −M ι

sι−)
)]

= −Et
[
1{t≥tι}1{τι<τ≤tι}(M

ι
τ− −M ι

sι−)
)]

− Et
[
1{t<tι}1{τι<τ≤tι≤T}(M

ι
τ− −M ι

sι−)
)]

= Vιt − Et
[
1{t<tι}1{τι<τ≤tι≤T}(M

ι
τ− −M ι

sι−)
)]

= Vιt +W ι
t .

Lemma 6.5 (i) We have

τ−(Yι) = 1{τ≤τι}Y
ι + Zι + Vι. (6.24)

(ii) The time-t value of τ−(Yι) is −1{τ≤τι}Yιt −Zιt +W ι
t .

Proof. (i) By a repeated use of the definitions (2.1), we have, also using in the third
line the identity (XY )τ− = Xτ−Y τ− that holds for any left-limited processes (as both
sides are stopped before τ and coincide with XY before τ),

τ−(Yι) =τ−
(
1Jsι,tιJ

(
M ι −M ι

sι−
))

= 1Jsι,tιJ
(
M ι −M ι

sι−
)
−
(
1Jsι,tιJ

(
M ι −M ι

sι−
))τ−

= 1Jsι,tιJ
(
M ι −M ι

sι−
)
−
(
±M ι + (M ι)τ− −M ι

sι−
)
(1Jsι,tιJ)

τ−

=τ− (1Jsι,tιJ)
(
M ι −M ι

sι−
)

+τ−(M ι)(1Jsι,tιJ)
τ−,

where

(1Jsι,tιJ)
τ− = 1{τ>tι}1Jsι,tιJ + 1{τι<τ≤tι}1Jsι,+∞J

τ−(1Jsι,tιJ) = 1Jsι,tιJ − (1Jsι,tιJ)
τ− = 1{τ≤τι}1Jsι,tιJ − 1{τι<τ≤tι}1Jtι,+∞J

τ−(M ι) = 1Jτ,+∞J(M
ι −M ι

τ−).
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Hence

τ−(Yι) =
(
1{τ≤τι}1Jsι,tιJ − 1{τι<τ≤tι}1Jtι,+∞J

)(
M ι −M ι

sι−
)

+
(
1{τ>tι}1Jsι,tιJ + 1{τι<τ≤tι}1Jsι,+∞J

)
1Jτ,+∞J(M

ι −M ι
τ−)

=
(
1{τ≤τι}1Jsι,tιJ

(
M ι −M ι

sι−
)

+ 1{τ>tι}1Jsι,tιJ1Jτ,+∞J(M
ι −M ι

τ−)

− 1{τι<τ≤tι}1Jtι,+∞J
(
M ι −M ι

sι−
)

+ 1{τι<τ≤tι}1Jsι,+∞J1Jτ,+∞J(M
ι −M ι

τ−),

where the first two lines respectively equal 1{τ≤τι}Yι and 0, whereas the last line equals

− 1{τι<τ≤tι}1Jtι,+∞J
(
M ι −M ι

sι−
)

+ 1{τι<τ≤tι}1Jtι,+∞J(M
ι −M ι

τ−)

+ 1{τι<τ≤tι}1Jsι,tιJ1Jτ,+∞J(M
ι −M ι

τ−)

= Vι + 1{τι<τ≤tι}1Jτ,tιJ(M
ι −M ι

τ−) = Vι + Zι.

Hence we obtain (6.24).
(ii) follows from part (i), Corollary 6.2(ii)-(iii) and Lemma 6.4(ii).

Theorem 6.1 In the reduction of filtration setup of Section B for a bank involved in
an arbitrary combination of bilateral netting sets and of netting sets cleared with one
among several available CCPs, if∑

ι

(1− (Rι)′(τδι )′)
(
(P ι)′(τδι )′ + (Pι)′(τδι )′ − (Pι)′τ ′ι− − (Γι)′τ ′ι−

)+
1{(τδι )′<T} (6.25)

+
∑
ccp,I

(µccp,0)′
(τδI )′

(Bccp,I)′
(τδI )′

1{(τδI )′<T}

is P square integrable,
∑

ιX ι ∈ S̃′2, E′
∫ T

0 λ′tdt <∞ and

λ′
(
MtM′ −

∑
b

(VMb)′
)+

+ λ̃′
(∑

ι

(IM
ι
)′ +

∑
ccp

(IM
ccp,0

+ DFccp,0)′
)

and λ′
∑
ι

X ι

(6.26)

are in L′2, then the CVA and FVA equations (2.12)-(2.13) are well posed in S2 and we
have, for t ≤ T ,

CVA′t+
∑
ι

X ιt =∑
ι

E′t
[
(1− (Rι)′(τδι )′)

(
(P ι)′(τδι )′ + (Pι)′(τδι )′ − (Pι)′τ ′ι− − (Γι)′τ ′ι−

)+
1{t<(τδι )′≤T}

]
+
∑
ccp,I

E′t[(µccp,0)′
(τδI )′

(Bccp,I)′
(τδI )′

1{t<(τδI )′≤T}],

(6.27)

FVA′t = E′t
∫ T

t
λ′s
(
MtM′ −

∑
b

(VMb)′ − CVA′ − FVA′
)+
s
ds+

E′t
∫ T

t
λ̃′s

(∑
b

(IM
b
)′ +

∑
ccp

(
IM

ccp,0
+ DFccp,0

)′)
s
ds,

(6.28)
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dL′t =
∑
ι

(1− (Rι)′(τδι )′)
(
(P ι)′(τδι )′ + (Pι)′(τδι )′ − (Pι)′τ ′ι− − (Γι)′τ ′ι−

)+
δ(τδι )′(dt)

+
∑
ccp,I

(µccp,0)′
(τδI )′

(Bccp,I)′
(τδI )′

δ(τδI )′(dt)

+ d(CVA′ +
∑
ι

X ι)t

+ λ′t
(
MtM′ −

∑
b

(VMb)′ − CVA′ − FVA′
)+
t
dt

+ λ̃′t
(∑

b

(IM
b
)′ +

∑
ccp

(IM
ccp,0

+ DFccp,0)′
)
t
dt

+ dFVA′t

−
∑
b

1{t≤(τδb )′}d(Pb + P b)′t + dH′t.

(6.29)

Moreover, if
∑

b((Pb + P b)′)(τδb )′ − H′ ∈ S̃′220. then the KVA equation (2.17) is
then well posed in S2 and we have, for t ∈ [0, T ],

KVA′t = E′t
∫ T

t
he−h(s−t)max(EC′s,KVA′s)ds. (6.30)

Regarding the contra-liabilities defined in Table A.1, we have

DVAt+
∑
ccp

Yccpt −
∑
ι

1{τ≤τι}Y
ι
t −

∑
ι

Zιt +
∑
ι

W ι
t =

Et
[ ∑
ι;τ≤τδι

1{t<tι≤T}(1−Rtι)(P
ι
tι + Pιtι − P

ι
sι− + Γ

ι
sι−)−

]
(6.31)

−Et
[ ∑
ι;τι≤τδ,τδι ≥τ

1{t<tι≤T}(1−R
ι
tι)
(
P ιtι + Pιtι − P

ι
sι− − Γιsι−

)+]
+Et

[∑
ccp

(1−Rccp,0
τδ

)(Pccp,0
τδ

− Pccp,0τ− −VMccp,0
τ− − IMccp,0

τ− −DFccp,0τ− )+
]

+Et
[
1{t<τ≤T}CVAτ−

]
,

FDAt = Et
[
1{t<τ≤T}(1−Rτ )(MtM−

∑
b

VMb − CA)+
τ−

]
+Et

[
1{t<τ≤T}(1− R̄τ )

(∑
b

IM
b

+
∑
ccp

(IM
ccp,0

+ DFccp,0)
)
τ−

]
+Et

[
1{t<τ≤T}FVAτ−

]
= FVAt. (6.32)

Proof. The CVA related statement follows by application of Proposition B.1(i) with
C′ −

∑
ιX ι given by (6.18), which is nondecreasing and worth (6.25) at T , also using

Corollary 6.2(iv) to obtain the liquidation period corrective term
∑

ιX ιt in (6.27).

20e.g. in the reference dynamic hedging case (2.10), where
∑
b((P

b + P b)′)(τ
δ
b )

′
−MtM0 −H′ = 0.
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Note that CVA′+
∑

ιX ι ≥ 0, by (6.27). Hence, also using the 1-Lipschitz property
of x 7→ (a− x)+ in the third line, we have:(

MtM′ −
∑
b

(VMb)′ − CVA′
)+

=
(
MtM′ −

∑
b

(VMb)′ − (CVA′ +
∑
ι

X ι) +
∑
ι

X ι
)+

≤
(
MtM′ −

∑
b

(VMb)′ − (CVA′ +
∑
ι

X ι)
)+

+ |
∑
ι

X ι|

≤
(
MtM′ −

∑
b

(VMb)′
)+

+ |
∑
ι

X ι|. (6.33)

The FVA related statement then follows by application of Proposition B.1(ii), with R
and S there given by (6.10) so that, by (6.33), λ′(R′−CVA′)+ + λ̃′S ′ is in L′2 provided
the two terms in (6.26) are in L′2.

The dynamics (6.29) for L′ are obtained by plugging (6.17)–(6.19) into (6.15).
This process L′ belongs to S̃′2 as the sum (modulo a constant) between CVA′ + C′,
the (F,P) martingale part of FVA′, and −

∑
b((Pb + P b)′)(τδb )′ + H′, assumed in S̃′2.

Hence EC′ ∈ L′2, by the Lipschitz property of expected shortfall. By an application of
Proposition B.1(iv) (given (6.17)), the KVA equation (2.17) is then well posed in S2

and the KVA′ formula (6.30) holds.

In view of the definitions of Table A.1, the DVA and FDA formulas respectively
follow from the expressions of τ−(−C) in (6.13), also using Corollary 6.2(i) and Lemma
6.5(ii), and τ−(−F) in (6.14). The last equality in (6.32) is a general consequence,
established in Lemma A.1(ii), of the martingale property of F .

Remark 6.1 The CVA with liquidation period δ is given by two dominant nonnegative
terms (the two terms on the right-hand side in (6.27)) and a corrective explicit term∑

ιX ι only nonnull during the liquidation periods (which, therefore, vanishes identically
in the δ = 0 case where all liquidations are instantaneous). Similar comments apply to
the DVA.

Remark 6.2 The industry terminology distinguishes a strict FVA, in the sense of the
cost of funding rehypothecable collateral, from an MVA, corresponding to the cost of
funding segregated collateral. In this paper, to spare one “VA” notation, we merge the
two in an overall FVA meant in the broad sense of the cost of funding the derivative
trading of the bank. The strict FVA and the MVA correspond to the first and the second
lines on the right-hand side of (6.28).

7 Discussion

To sum up, the portfolio-wide, all XVA-inclusive, cost-of-capital pricing formula is

MtM− (CVA + FVA + KVA),
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charged to the clients of the deals at the portfolio inception time 0. The trading margin
amount corresponds essentially21 to the counterparty-risk-free value of the portfolio.
The reserve capital amount CA = CVA + FVA is used by the CVA desk and the bank
Treasury for coping with the expected client default losses and risky funding expenses
of the bank. The KVA risk margin amount is used by the management of the bank
for gradually releasing a dividend risk premium to the shareholders of the bank, at
a hurdle rate h on their capital at risk. Figure 7.1 provides a focus on a subset of
the (red) financial network of the reference bank labeled by 0 in Figure 3.1, detailing
further the respective roles of the different desks within the bank.

In this section we revisit, in the light of the requirements of Section 1, the corre-
sponding cost-of-capital XVA solution to the sustainable pricing and dividend release
policy problem.

7.1 Regulatorily Admissible and Sustainable

As stated in Proposition 2.1, shareholder trading gains and KVA risk margin pay-
ments result in a −(Lτ− + KVAτ− −KVA0) dividend stream, turning the shareholder
equity process into a submartingale with growth rate h on their capital at risk (yet
the shareholder wealth process is a martingale and the setup is nonarbitrable in the
sense explained after Proposition A.1). This holds even in the case of a portfolio held
on a run-off basis, i.e. without the need to enter new deals for generating new profits.
This feature addresses the sustainability requirement in Section 1. Moreover, Albanese,
Crépey, Hoskinson, and Saadeddine (2021, Section 4.2) shows that the sustainability
property of Proposition 2.1 is still valid in the (realistic) case of a trade incremental
portfolio, provided the there-defined trade incremental XVA policy is applied at every
new deal.

Our setup crucially includes the default time τ of the bank itself, which is the
essence of the contra-liabilities wealth transfer issue detailed in Section A. However,
accounting for all wealth transfers involved (cf. Proposition A.1), we end up with
portfolio-wide nonnegative22 and ultimately unilateral CVA, FVA, and KVA, which
price the related (nondecreasing) cash flows until the final horizon T of the XVA prob-
lem (cf. (B.5)–(B.7)), as opposed to τ ∧ T . This makes our approach naturally in line
with the monotonicity requirement of Section 1, that capital at risk and reserve capital
should not decrease simply because the credit risk of the bank has worsened.

7.2 Economically Credible and Logically Consistent

Whereas counterparty jump-to-default risk risk can fundamentally not be hedged, a
large part of the XVA literature relies on a replication paradigm. However, as es-
tablished in Proposition A.2, in a theoretical, complete counterparty risk market, the
all-inclusive XVA formula would simply be CVA−DVA, instead of CVA+FVA +KVA
when market incompleteness is accounted for.

In particular, the Burgard and Kjaer (2011, 2013, 2017) FVA approach was pio-
neering, but it breaches several of the requirements stated in Section 1, namely: non-

21and exactly so at time 0; see Section 4.1 and (6.8).
22essentially, cf. Remark 2.2.
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Trading desks of bank 0Corp. 0

Bank n

XVA desks of bank 0

CCP 0
P clearP clear

P bankn

P corp0 + P bankn

P corp0

CA+KVA

Figure 7.1: Zoom on the reference bank labeled by 0 in Figure 3.1, focusing on its
netting sets with Corp. 0, Bank n and CCP 0. The solid arrows represent the direction
of deal entry payments between the bank, its clients and the CCP. The reference clearing
member bank 0 buys assets from its corporate clients, at a (CA + KVA)-deducted
price with respect to their counterparty-risk-free valuation, P ι (cf. Table 4.1), at which
transactions between banks are concluded. The dashed arrow refers to the trading
margin amount P corp0+P bankn posted by the Treasury to the trading desks of Bank 0, so
that these can setup bilateral netting sets valued P corp0 and P bankn (on a counterparty-
risk-free basis) with Corp. 0 and Bank n, in the way detailed in Section 4. The
aggregate P corp0 + P bankn is dynamically hedged on exchanges (not shown to alleviate
the picture). In addition, the bank has a netting set of cleared deals with Corp. 0,
with counterparty-risk-free value P clear, which are statically replicated by identical
deals between the bank and CCP 0, in the way detailed in Section 5.

negativity (with an FVA that may become negative in the limiting case of a deeply
out-of-the-money portfolio), monotonicity (with CVA and KVA tending to 0 when the
default risk of the bank goes to infinity), and economic realism (which is lacking to an
“XVA replication paradigm”). Likewise, the Green, Kenyon, and Dennis (2014) KVA
approach was pioneering but it breaches monotonicity, economic realism, and (see Sec-
tion 7.4 below) minimality. The XVA metrics of Bichuch, Capponi, and Sturm (2018)
also breach the nonnegativity and monotonicity requirements.

With respect to these XVA replication frameworks, our cost-of-capital XVA ap-
proach results in materially different XVA formulas and balance sheet implications. In
particular:

� Despite the fact that we include the default of the bank itself in our modeling,
our (portfolio-wide) XVA metrics are, ultimately, unilateral (hence do not tend
to decrease simply because the credit risk of the bank has worsened), and they
are nonnegative (portfolio-wide);

� Our KVA is loss-absorbing: by contrast with the KVA of Green, Kenyon, and
Dennis (2014), it does not belong to the loss process L of the bank (it is not a
liability like the CVA and the FVA, it would make no sense to try and replicate
it);
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� As a consequence of the previous point, our KVA discounts future capital at risk
projections at the hurdle rate h (cf. (B.7)-(6.30) and (1.2)), which makes a big
difference at the very long time horizon T (such as 50 years) of XVA computations.

In addition, instead of working with economic capital, Green, Kenyon, and Den-
nis (2014) use approximations in the form of scriptural regulatory capital specifica-
tions. This is meant for simplicity but it is less satisfying economically. It is also
less self-consistent: under the cost-of-capital, economic capital based, XVA approach,
counterparty-risk-free valuations flow into CVA computations, which in turn flow into
FVA computations, which all flow into KVA computations. These connections make
the counterparty-risk-free valuation, CA = CVA + FVA, and KVA equations, thus the
derivative pricing problem as a whole, a self-contained and self-consistent problem.

7.3 Numerically Feasible and Robust

These connections can also be exploited for numerical purposes. Albanese, Crépey,
Hoskinson, and Saadeddine (2021, Section 5) and Abbas-Turki, Crépey, and Saaded-
dine (2021) present numerical applications on realistically large bilateral trade portfo-
lios, based on neural net regression computational strategies. See also Albanese, Cae-
nazzo, and Crépey (2017, Section 5) and Abbas-Turki, Diallo, and Crépey (2018) for
an alternative, nested Monte Carlo computational strategy. These papers demonstrate
the numerical feasibility and scalability of the cost-of-capital XVA approach.

The model risk inherent to XVA computations in general, and to economic capital
based KVA computations more specifically, can be addressed by a Bayesian variant of
our baseline cost-of-capital XVA approach. This is achieved by combining, in a global
simulation, paths of the risk factors obtained in several “good” models, all economet-
rically realistic and calibrated to the market in counterparty-risk-free valuation terms
(cf. Albanese, Crépey, and Iabichino (2021)). Drawing scenarios equally from each
makes tails more leptokurtotic and risk measures greater as they are when one picks
just a single (even good) model. The difference between the resulting enhanced KVA
and a baseline, reference KVA, can be used as a reserve against model risk.

7.4 Minimal

An FVA for rehypothecable collateral computed at the level of a unique funding set,
as in the first term of (6.28), avoids the over-conservatism of FVAs for rehypothecable
collateral sometimes calculated for simplicity by netting set and aggregated. Indeed,
such simplification misses the FVA markdown corresponding to the rehypothecability
of (eligible) collateral across the different netting sets of the bank. One should also
account for the further FVA markdown due to the possibility for a bank to use its
capital at risk as variation margin, which is done in Crépey, Sabbagh, and Song (2020).

Our KVA is minimal in the sense of the last statement in Proposition B.1(iv). An
even cheaper KVA as in (Albanese et al., 2017, Proposition 4.2(v)) results from the
following variation on our approach in this paper: Upon bank default, notwithstanding
the bankruptcy rules recalled in the last paragraph of Section 1.1, the residual risk
margin flows back into shareholder equity instead of going to creditors. Likewise, a
cheaper FVA as in (Albanese et al., 2017, Proposition 4.2(i)) follows from asserting
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that, upon bank default, the residual reserve capital of the FVA desk flows back into
shareholder equity instead of going to creditors. However, these violations of the usual
bankruptcy rules induce shareholder arbitrage, in the sense of a riskless profit strategy
consisting for shareholders in letting the bank default instantaneously at time 0, right
after the client portfolio has been setup and the corresponding reserve capital and
risk margin amounts have been sourced from the clients. Our approach in this paper,
instead, excludes such shareholder arbitrage opportunities (see after Proposition A.1).

Hence, “local departures” from our cost-of-capital XVA solution to the sustainable
pricing and dividends problem of Section 1 may be a bit cheaper, but they are less self-
consistent. As seen in Section 7.2, more radically different approaches to the problem
suffer from severe shortcomings with respect to the requirements of Section 1. In
an intuitive formulation, we conclude that the cost of capital XVA solution to the
sustainable pricing and dividends problem may not be the only solution, nor is it
necessarily “globally minimal”, but it has some “locally minimizing properties, at least
in certain directions of the search space”, and we are not aware of any other “distant
solution”.

Conclusion: From Replication to Balance Sheet Optimiza-
tion

The generic23 KVA formula (6.30), where max(EC′,KVA′) = CR′ represents the capital
at risk (cf. (1.2)), appears as a continuous-time analog of the risk margin formula under
the Swiss solvency test cost of capital methodology: See Swiss Federal Office of Pri-
vate Insurance (2006, Section 6, middle of page 86 and top of page 88). More broadly,
as detailed in Table 7.1, the cost-of-capital XVA approach can be seen as an investment
banking, genuinely dynamic and continuous-time version of the Solvency II insurance
methodology, driven by the same motivation for a sustainable (financial or insurance)
system and economy.

This KVA formula (6.30) can be used either in the direct mode, for computing the
KVA corresponding to a given target hurdle rate h set by the management of the bank,
or in the reverse-engineering mode, like the Black–Scholes model with volatility, for
defining the implied hurdle rate associated with the actual amount on the risk margin
account of the bank (see after Remark B.1). Cost of capital proxies have always been
used to estimate return-on-equity. Whether it is used in the direct or in the implied
mode, the KVA is a refinement, dynamic and fine-tuned for derivative portfolios, but
the base concept is far older than even the CVA. In the current state of the market,
even when they are computed, the KVA and even the MVA (which is included in
the FVA in this paper, see Remark 6.2) are not necessarily passed into entry prices.
But they are strategically used for collateral and capital optimization purposes. This
reflects a switch of paradigm in derivative management, from replication to balance
sheet optimization.

23cf. (B.7).
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contra-assets CA = CVA + FVA
liabilities best estimate, also called
market consistent valuation

priced by conditional expectation
of related future cash flows

priced by conditional expectation
of related future cash flows

economic capital EC solvency capital requirement

sized as a conditional expected shortfall of
future losses over one year

sized as unconditional expected shortfall of
future losses over each successive year

capital valuation adjustment KVA market value margin or risk margin

sized as a supermartingale with drift coeff.
hSCR and zero terminal condition sized as summed future (deterministic) hSCR

Table 7.1: Left: Cost-of-capital XVA banking approach; Right: Solvency II insurance
methodology (with SCR = (EC−KVA)+ for shareholder capital at risk everywhere).

A Wealth Transfer Analysis

This section brings to light the symmetrical companions of the contra-assets, i.e. the
contra-liabilities. Put together, contra-assets and contra-liabilities allow analyzing the
wealth transfers triggered by the trading of the bank, which occur without giving rise to
arbitrage opportunities to shareholders. A view on DVA and FDA as wealth transfers
is consistent with the conclusions drawn in a structural default model of the bank by
Andersen, Duffie, and Song (2019) (who however do not deal with the KVA).

Using (2.15) that applies to Y = CVA and FVA, Figure A.1 details the split of
the overall loss process of the bank, L in (2.9), as the difference between the pre-bank
default loss process, i.e. the shareholder loss process Lτ− as per (2.14), and the creditor
gain process

τ−(−L) =τ− (−C) +τ−(−F) + 1Jτ,+∞JCAτ−−τ−(−P −MtM) +τ−(−H). (A.1)

Shareholders Creditors

F τ− + FVAτ− − FVA0

Pτ− + MtMτ− −MtM0

Hτ−

Cτ− + CVAτ− − CVA0

τ−(−F) + 1Jτ,+∞JFVAτ−

τ−(−P −MtM)

τ−(−H)

τ−(−C) + 1Jτ,+∞JCVAτ−

Figure A.1: Left: Pre-bank-default trading cash flows Lτ−. Right: Trading cash flows
from bank default onward τ−(−L).
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Table A.1 identifies various cash flows (column 3) and the related value processes24

(columns 1 and 2) involved in the foregoing wealth transfer analysis.

CA Contra-assets valuation Cτ− +Fτ− + 1Jτ,+∞JCAτ−
CL Contra-liabilities valuation τ−(−L)
DVA Debt valuation adjustment τ−(−C) + 1Jτ,+∞JCVAτ−
FDA Funding debt adjustment τ−(−F) + 1Jτ,+∞JFVAτ−
FV Fair valuation of counterparty risk C + F
KVAsh Shareholders’ KVA (KVA0 −KVAτ−)
KVAcr Creditors’ KVA 1Jτ,+∞JKVAτ−

Table A.1: Valuation acronym and name (columns 1 and 2) of various cash flows
(column 3) involved in the XVA wealth transfer analysis.

Lemma A.1 We have
(i) CL = DVA + FDA, which is the value process of both τ−(−L) and (−L);
(ii) FVA = FDA, FV = CA− CL = CVA−DVA;

(iii) KVAsh
t = JtEt

∫ τ
t h
(
ECs −KVAs

)+
ds and KVAcr

t = JtEtKVAτ−, for t ∈ R+.

Proof. (i) holds by the definitions of Table A.1, the formula (A.1) for τ−(−L), and
the martingale (hence, zero-value) properties of τ−(P + MtM), τ−H, and Lτ− (see
Assumption 2.1 and Remark 2.4).
(ii) holds by the definitions of Table A.1, by (2.12), (2.13), (1.1), and the fact that F
is a martingale (hence, zero-valued) stopped at τ ∧ T , by Assumption 2.1.
(iii) At t < τ , the value processes of (KVA0−KVAτ−) and 1Jτ,+∞JKVAτ− are respec-

tively worth Et(KVAt−KVAτ−) = Et
∫ τ
t h
(
ECs−KVAs

)+
ds (by (2.17)) and EtKVAτ−.

From τ onward these value processes vanish, as well as KVAsh and KVAcr.

We assume that the shareholders have no other business than their involvement
within the bank. The bank creditors, instead, have to face the liquidation costs of the
bank, which are outside the scope of our model.

Definition A.1 We call wealth transferred to the bank shareholders and creditors by
the derivative trading of the bank, denoted by Wsh and Wcr, the sum between their
respective (received) cash flows and the value process of their cash flows.

Proposition A.1 The shareholder and creditor wealth transfer processes are the mar-
tingales

Wsh = −(Lτ− + KVAτ− −KVA0) + KVAsh and (A.2)

Wcr =τ− (−L) + CL + 1Jτ,+∞JKVAτ− + KVAcr, (A.3)

which start from the respective values KVAsh
0 and CL0 + KVAcr

0 at time 0.

24cf. Definition 2.1(i).
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Proof. The shareholder cash flows are given by D in (2.18), where Lτ− is zero-valued
(as a martingale starting from zero) and KVA0 −KVAτ− is valued by KVAsh (by def-
inition of the latter in Table A.1). The creditor cash flows are given by τ−(−L) +
1Jτ,+∞JKVAτ−, where τ−(−L) is valued by CL, by Lemma A.1(i), and 1Jτ,+∞JKVAτ−
by KVAcr (by definition of the latter in Table A.1).

Should the shareholders decide to put the bank in default at time 0 right after the
portfolio has been set up, they should not make any profit or loss, otherwise this would
be an arbitrage for the shareholders. The fact that the shareholder wealth process
Wsh starts from KVAsh

0 > 0 (positive initial wealth transfer to shareholders, unless the
KVA vanishes) suggests that our XVA framework may entail shareholder arbitrage.
Yet, given the rules of default settlement stated in Section 1.1, upon bank default,
the residual value on the (reserve capital and) risk margin account of the bank goes
to creditors. So, even though KVAsh

0 is part of the wealth of the shareholders, the
shareholders would not monetize KVAsh

0 by putting the bank in default at time 0
right after the portfolio has been set up. Hence the positive initial wealth transfer to
shareholders does not entail such a shareholder arbitrage.

Likewise, the fact that the creditor wealth transfer martingale Wcr starts from
CL0+KVAcr

0 suggests that the derivative trading of the bank may entail a riskless profit
to creditors. However, the scope of the model does not include the liquidation costs of
the bank. For the creditors to monetize the wealth transfer triggered to them by the
derivative portfolio of the bank, the bank has to default and there is a substantial cost
associated to that to creditors.

A.1 What-If Analysis

In this section we examine the consequences of an assumption that the bank could
hedge out its risks completely, including default risk. As explained in Section 2.3, this
assumption is counterfactual, for both practical and legal reasons. However, we endorse
it here for the sake of the argument.

We recall from Lemma A.1(i) that the value process of (−L) is CL. To “complete
the market”, we now assume that the bank has access to a new deal with a client,
insuring the payment of a cash flow stream L to the bank, along with a time 0 premium
CL0 (initiating the strategy at time 0 where the portfolio is settled). The deal would be
fully collateralized, in the sense that the above cash flows would occur independently
of the default status of the bank and its client.

Proposition A.2 Assume that the bank has access to the new deal as defined above,
coming on top of the derivative portfolio of the bank and its dynamic hedge considered
earlier in the paper. Then

MtM− FV = MtM− (CVA−DVA) = MtM− (CA− CL)

(by Lemma A.1(ii)) is a replication price process for the derivative portfolio of the bank,
in the sense that the resulting loss process of the bank (impact of all the hedges included)
vanishes, as do in turn the economic capital of the bank, its KVA, and the shareholder
and creditor wealth transfer processes.
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Proof. Here is the detail of a corresponding replication strategy, starting from time
0 where the portfolio is settled. The trading and CVA desks act exactly as before.
The FVA desk passes to the client (at time 0) and to the bank shareholders (on (0, τ))
a diminished add-on FVA − CL, instead of FVA before without the new deal. In
addition, a new CL desk puts the upfront premium CL0 of the new deal on a dedicated
cash account, along with a matching liability of CL0 on the bank balance sheet. This
CL account, like all the other ones within the bank, is market-to-model, i.e. reset in
continuous time to the value process of the corresponding liability (see Section 1.1),
namely to the value CL of the cash flow (−L) due by the bank under the terms of
the new deal. Before bank default, the resets to the CL account, which accumulate to
CL0 − CL, are passed to bank shareholders, as is the Lτ− component from the cash
flows of the new deal (which thus do not stay on the balance sheet of the bank). Finally,
from time τ onward, the τ−L component of the cash flows of the new deal hedges out
the τ−(−L) cash flows that were previously falling into the hands of the bank creditors.

As a result, the loss of the bank starting before τ (i.e. the process “τ−(loss)”)
vanishes, whereas before τ the loss of the bank (i.e. the process “(loss)τ−”) is given by

C + F + FV − FV0 − (P + MtM−MtM0) +H︸ ︷︷ ︸
modified loss of the CA desks

+ −Lτ− + CL− CL0︸ ︷︷ ︸
new hedging loss components passed to shareholders

= C + F + CA− CA0 − (P + MtM−MtM0) +H−L = 0,

where Lemma A.1(ii) (and L = Lτ− before τ) was used in the first equality and (2.9)
in the second one.

Shareholders bear no more trading risk, hence economic capital and the KVA
vanish, as do in turn the shareholder and creditor wealth transfer processes.

Remark A.1 Before τ , the amount available free of charge to the bank for its rehy-
pothecable collateral funding purposes is FV + CL = CA as before. Hence the risky
funding cash flows for collateral, F , are not modified by the new deal. The cash flows
C are not affected by the new deal either.

Due to the new deal, the creditors are left without any resource to adress the liquidation
costs of the bank. The clients pay (CA0−CL0)−MtM0 instead of (CA0+KVA0)−MtM0

before, hence they are better off by the amount CL0 + KVA0. As before, the bank
shareholders are indifferent to the portfolio at the accordingly adjusted price paid by
the bank. But this price is now MtM0−(CA0−CL0), instead of MtM0−(CA0 +KVA0)
before.

Remark A.2 The reason why the new deal may alter the XVA picture so deeply is that
this deal is different in nature from the contracts eligible to the bank derivative portfolio
or its dynamic hedge earlier in the paper. In fact, as Lτ− is a martingale, the only case
where the value process CL = DVA + FVA of (−L) could also be its shareholder value
(as required for eligibility to the derivative portfolio or its dynamic hedge earlier in the
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paper, cf. the combined requirements of (2.11) and Assumption 2.2) would be when

CLt = Et
(
− Lτ−τ− + Lτ−t + CLτ−

)
= EtCLτ−, t < τ, (A.4)

e.g. if CL = DVA + FVA = 0, Hence the new deal cannot be seen as part of the
derivative portfolio of the bank or its dynamic hedge earlier in the paper.

Instead, one may interpret the trading loss −L + CL − CL0 triggered by the new
deal as an additional line of risky funding cash flows, coming on top of the risky funding
cash flows F earlier in the paper. However, as opposed to F as per (3.2), this new line
of risky funding entails a loss of the bank at its own default, hence a benefit prior to τ ,
which is how the new deal allows the shareholders to monetize the default of the bank.

In any case, again, the new deal is unfeasible for the bank. In particular, a risky
funding benefit of the bank at its own default means that the bank is effectively selling
default protection on itself, which is even illegal (cf. the condition concluding Assump-
tion 3.2).

Even if the new deal is unfeasible, the what-if analysis of Proposition A.2 is enlightening
on the nature of the XVAs:

Corollary A.1 The shareholder and creditor wealth transfers (A.2) and (A.3) can be
interpreted as the wealth transferred to them by the trading of the bank, due to the
inability of the bank to hedge, in particular, jump-to-default risk.

Proof. Without the new deal, the wealth transfers to shareholders and creditors are
given by (A.2) and (A.3), whereas Proposition A.2 shows that these wealth transfers
would vanish if the bank had access to the new deal.

B Reduction of Filtration Setup

Let there be given a reduced stochastic basis (F,P), for a quasi-left continuous filtration
F ⊆ G (also satisfying the usual conditions) and P ∼ Q on FT , with time-t conditional
expectation denoted by E′t.

Remark B.1 In contrast with the setup of Crépey, Sabbagh, and Song (2020) (see
Section 1.1 there), where more general anticipated XVA BSDEs are considered, in this
paper no specific structure of the (F,P) martingales is required. We do not even need
to specify the risk drivers in the model. In practice (see e.g. Abbas-Turki, Crépey, and
Saadeddine (2021, Section B)), those would typically consist of Brownian motions, driv-
ing the market risk factors, and of a continuous-time Markov chain (possibly modulated
by the Brownian motions), used for driving the client default events.

Assumption B.1 For any G predictable, resp. optional process Y , there exists an F
predictable, resp. optional process Y ′, dubbed F reduction of Y, that coincides with Y
on K0, τK, resp. on J0, τJ.

In particular, any G stopping time θ admits an F stopping time θ′, dubbed F reduction
of θ, such that

θ ∧ τ = θ′ ∧ τ. (B.1)
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Remark B.2 As can classically be established by section theorem, for any G pro-
gressive Lebesgue integrand X such that the G predictable projection pX exists,25 the
indistinguishable equality

∫ ·
0

pXsds =
∫ ·

0 Xsds holds. As a consequence, one can actu-
ally consider the F predictable reduction X ′ of any G progressive Lebesgue integrand X
(even if this means replacing X by pX).

Definition B.1 We call invariance probability measure, a probability measure P on
FT equivalent to the restriction of Q to FT , such that
(i) stopping before τ turns (F,P) local martingales on [0, T ] into (G,Q) local martingales
on J0, τ ∧ T K, and
(ii) the F optional reductions of (G,Q) local martingales on J0, τ ∧ T K without jump at
τ are (F,P) local martingales on [0, T ].

We denote by S = Q(τ > · |F·) the F Azéma supermartingale of τ , i.e. the (F,Q)
optional projection of J = 1J0,τJ.

(Crépey and Song, 2017, Lemma 2.3 and Theorem 3.5) Under Assumption B.1,
if ST > 0 a.s., then

Two F optional processes that coincide before τ coincide on [0, T ]. (B.2)

For τ also endowed with a (G,Q) intensity process γ = γJ− such that e
∫ τ
0 γsds is Q

integrable, then there exists a unique invariance probability measure P on FT .

Hereafter we endorse the above reduction of filtration setup, so that F optional reduc-
tions of G optional processes are uniquely defined on [0, T ], and F reductions of [0, T ]
valued G stopping times are uniquely defined. Given our focus on the time interval
[0, T ] in the paper, we may and do assume that F optional reductions are stopped at
T (and are thus uniquely defined on R+), without loss of generality.

Definition B.2 The economic capital (EC) of the bank is defined as J ES, where, for
t ≥ 0, ESt is the (Ft,P) conditional expected shortfall of the random variable L′t+1−L′t
at the confidence level α = 97.5%, in the following (F predictable) sense26:

ES = inf
rationals k

(
k + (1− α)−1 p

[
(L′·+1 − L′· − k)+

])
,

where p· denotes the (F,P) predictable projection operator27.

Assuming that L′ is an (F,P) martingale (as in the setup of Theorem 6.1), EC is non-
negative28, finite, and killed at τ ∧ T .

We denote by:

25For which σ integrability of X valued at any stopping time, e.g. X bounded or càdlàg, is enough.
26making EC′ = ES a suitable input to the BSDE (B.7), see (Crépey et al., 2020, Lemma 2.1), whose

proof works in the present setup by the assumed quasi-left continuity of F.
27which applies to any raw, non necessarily adapted, càdlàg process, such as (L′·+1 − L′· − k)+ for

any constant k; see e.g. He, Wang, and Yan (1992, Theorem V.5.2).
28as expected shortfall of a centered random variable.
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� L2, the space of G progressive processes X such that

E′
[ ∫ T

0
(X ′s)

2ds
]
< +∞. (B.3)

� S2, the space of càdlàg G adapted processes Y vanishing on [τ ∧T,+∞) and such
that

E′
[

sup
t∈[0,T ]

(Y ′)2
t

]
<∞; (B.4)

� L′2, the space of F progressive processes X ′ making the expectation finite in (B.3);

� S̃′2, resp. S′2, the spaces of F adapted càdlàg processes Y ′ making the expectation
finite in (B.4), resp. and vanishing on [T,+∞).

We also consider the following equation for K = K(C) ∈ S2, parameterized by C ∈ L2:

Kt = Et
[ ∫ τ∧T

t
h(Cs −Ks)ds+Kτ−

]
, t < τ.

The following result can be proven much like Crépey, Sabbagh, and Song (2020,
Proposition 6.1 (first part) and Lemma 6.1).

Lemma B.1 The equations (2.12), (2.13)-(3.1), and (2.17) for processes CVA, FVA,
KVA, and K in S2 (given C ∈ L2) are respectively equivalent, via the correspondence
“Y = JY ′”, to the following equations in S′2: For t ≤ T,

CVA′t = E′t
(
C′T − C′t

)
, (B.5)

FVA′t = E′t
∫ T

t
λ′s(R′ − CVA′ − FVA′)+

s ds+ E′t
∫ T

t
λ̃′sS ′sds, (B.6)

KVA′t = hE′t
∫ T

t
(EC′s −KVA′s)

+ = hE′t
∫ T

t
e−h(s−t) max(EC′s,KVA′s)ds,(B.7)

K ′t = E′t
∫ τ∧T

t
he−h(s−t)C ′sds = E′t

∫ τ∧T

t
h(C ′s −K ′s)ds. (B.8)

Proposition B.1 (i) If C′ ∈ S̃′2, then the formula (B.5) yields a well defined CVA′

process in S′2.

(ii) Assuming further E′
∫ T

0 λ′tdt <∞ and λ′(R′−CVA′)+ + λ̃′S ′ ∈ L′2, then the FVA′

equation (B.6) is well posed in S′2;
(iii) For any C ′ ∈ L′2, the K ′ = K ′(C ′) equation (B.8) is well posed in S′2;
(iv) If, additionally, EC′ ∈ L′2, then the KVA′ equation (B.7) is well posed in S′2,
with KVA′ nondecreasing with respect to the hurdle rate parameter h; it holds that
CR := max(EC,KVA) = min Adm and KVA = minC∈AdmK(C), where Adm := {C ∈
L2;C ≥ max

(
EC,K(C)

)
} and K = K(C).
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Proof. (i) proceeds from Crépey, Sabbagh, and Song (2020, Remark 2.4), whereas (ii)-
(iv) follow from Kruse and Popier (2016, Theorem 1 and Proposition 4), where the latter
is applied to the BSDE (B.7) for different h in order to prove the monotonicity of the
KVA in h. Regarding the last statement in (iv), we have with CR′ := max(EC′,KVA′):

KVA′ = K ′(CR′), hence CR′ = max
(
EC′,K ′(CR′)

)
,

by uniqueness of a solution in S′2 to (B.7). Therefore CR′ ∈ Adm′ := {C ′ ∈ L′2;C ′ ≥
max

(
EC′,K ′(C ′)

)
. Moreover, for any C ′ ∈ Adm′, we have h

(
EC′t − K ′t(C

′)
)+ ≤

h(C ′t −K ′t(C ′)). Hence the coefficient of the KVA′ BSDE (B.7) never exceeds the co-
efficient of the linear BSDE (B.8) when both coefficients are evaluated at the solution
K ′t(C

′) of (B.8). Since these are BSDEs with equal (null) terminal condition, the BSDE
comparison principle of Proposition 4 in Kruse and Popier (2016)29 applied to the BS-
DEs (B.7) and (B.8) yields KVA′ ≤ K ′(C ′). Consequently, KVA′ = minC′∈Adm′ K

′(C ′)
and, for any C ′ ∈ Adm′,

C ′ ≥ max(EC′,K ′(C ′)) ≥ max(EC′,KVA′) = CR′ = min Adm′.

This shows the last statement in (iv) “with ·′ everywhere”, from which the statement
itself (“without ·′”) readily follows by the equivalences regarding KVA and K = K(C)
in Lemma B.1.

The fact that KVA is continuous and nondecreasing30 in h as seen in Proposition
B.1(iv) allows one to define the implied hurdle rate as the value of the target hurdle
rate h ∈ R+ calibrated, through the KVA formula (B.7) valued at time t = 0, to
the actual amount on the risk margin account of the bank (if this amount cannot be
reached by any h ∈ R+, then the implied hurdle rate is deemed infinite). We refer the
reader to the concluding paragraph of Albanese, Crépey, Hoskinson, and Saadeddine
(2021, Section 3.3) for a simple example in a stylized, one-period XVA model, where
the implied hurdle rate can be characterized quite explicitly, shedding light on the
impact thereon of the portfolio of the bank, the default intensities for the bank and its
counterparty, and the risk aversion of the bank shareholders.

The following immediate corollory to Lemma B.1 and Proposition B.1 echoes the
title of the paper:

Corollary B.1 Assuming all the conditions in Proposition B.1, the FVA and KVA
processes that arise by application of Lemma B.1 and Proposition B.1 are nonnegative.
So is also CVA provided Cτ−31 is nondecreasing32.
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